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Abstract

What is the optimal spatial distribution of population? Although being a central policy

issue, existing answers are based on a static framework. We fill this gap by studying the con-

strained efficient allocation of dynamic spatial equilibrium models with frictional migration.

The key constraint is that the location preference shocks are private information. We show

that the impementation of the constrained efficient allocation only requires the allocation to

depend on the history of living locations. We then provide a recursive formula that the con-

strained efficient allocation must satisfy, summarizing the dynamic trade-off between provid-

ing consumption insurance and incentivizing efficient migration. We apply our framework

to the U.S. states to study welfare gains from moving to the constrained efficient allocation

from a status quo economy with exogenously incomplete market. In the steady state, we find

that substantial welfare gains can be achieved not only by reducing spatial inequality but also

by reallocating population toward more productive states through dynamic incentives. This

highlights the important role of dynamic incentives in overcoming the trade-off between spa-

tial inequality and efficiently allocating the population across space. Along the transition in

response to localized productivity shocks, the constrained efficient allocation features slower

transitions relative to the status-quo economy with an exogenously incomplete market.
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1 Introduction

What is the optimal spatial distribution of population? How does it differ from the observed

equilibrium? And what policies can improve aggregate welfare? These questions lie at the center

of ongoing academic and policy debates surrounding the design of place-based interventions

(Fajgelbaum and Gaubert 2025). Yet, most of the existing literature addresses them in a static

setting. This overlooks an important fact that migration is slow and subject to frictions (Caliendo,

Dvorkin, and Parro 2019). The focus on static settings also limits the ability to speak about the

optimal response to regional shocks. In this paper, we examine these questions through a dynamic

perspective.

We study constrained efficient allocation in a dynamic spatial general equilibrium model in

which agents make forward-looking migration decisions. In each period, individuals receive id-

iosyncratic location preference shocks and choose their location accordingly. A social planner

allocates population to each location every period, subject to the constraint that the preference

shocks are private information. We derive a recursive formulation of the constrained optimum,

highlighting the core trade-off between consumption smoothing and efficient migration. When

applied to the U.S. economy, our model predicts that the steady-state constrained efficient allo-

cation features lower population and higher per capita consumption in less productive regions

sustained through a dynamic incentive to move out from unproductive regions. We also examine

the planner’s dynamic response to regional productivity shocks and compare it with decentral-

ized equilibrium outcomes.

We consider a general environment with many heterogeneous locations that differ in the

paths of productivity, amenities, trade costs, and agglomeration externalities. In each period,

households draw idiosyncratic preference shocks and choose their optimal residential location

for the following period, following the framework of Artuç, Chaudhuri, and McLaren (2010) and

Caliendo et al. (2019). A social planner allocates consumption and assigns locations, but must

respect the fact that preference shocks are privately observed. As a result, the planner cannot

directly control migration decisions and must design allocations that are incentive-compatible.

The main challenge in solving the constrained-efficient allocation arises from the high dimen-

sionality of the state space and the choice variables. The planner must track the full distribution

of agents by migration history and assign consumption and locations accordingly. We show that

this complex problem can be decomposed into tractable subproblems: for each agent, the plan-

ner determines consumption and location assignments conditional only on their current location

and promised continuation utility. Because each sub-problem depends only on each agent’s cur-

rent location and promised utility, this structure significantly reduces the dimensionality of the

problem, yielding both analytical and computational tractability.
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We derive a recursive formulation that fully characterizes the constrained-efficient allocation

and formalizes the central trade-off facing the planner. On the one hand, the planner seeks to

incentivize migration to more productive regions. This can be achieved by offering either higher

contemporaneous consumption or by committing to higher future consumption conditional on

remaining in those locations. On the other hand, the planner also values consumption smoothing,

especially for agents who, due to their idiosyncratic shocks, remain in less productive areas where

the marginal utility of consumption is higher.

Our formula reveals that optimal allocation is inherently dynamic: agents who relocate to

productive regions initially receive lower consumption that increases over time, while those in

unproductive regions receive higher initial consumption that declines over time. These dynamic

incentives can support a steady-state allocation in which less productive regions feature lower

population and higher per capita consumption, compared to the market equilibrium. Therefore, it

is possible to achieve redistribution toward unproductive regions and reallocation toward produc-

tive ones simultaneously. We demonstrate that this pattern indeed arises in our model calibrated

to the U.S. economy.

Our analysis highlights the central role of dynamic incentives in achieving the constrained-

efficient allocation. To further illustrate this point, we consider an alternative planning prob-

lem in which consumption allocations depend solely on an agent’s current location, rather than

their full migration history – a setting we call the history-independent constrained-efficient al-

location. We derive a corresponding recursive formulation, which reveals a more limited scope

for dynamic incentives, as consumption can no longer be tailored based on past migration de-

cisions. As a result, the planner faces a sharper trade-off between incentivizing migration to

productive regions and smoothing consumption in unproductive ones. While suboptimal rela-

tive to the (history-dependent) constrained efficient allocation, the benefit of history-independent

constrained-efficient allocation is less demanding to implement. Indeed, we show that, under the

common assumption that migrating agents are hand-to-mouth, the history-dependent allocation

can be implemented through location- and time-specific transfers.

We calibrate our model assuming that the status quo economy features an exogenously in-

complete market in the spirit of Bewley-Huggett-Aiyagari (Bewley 1986, Huggett 1993, Aiyagari

1994, Imrohoroğlu 1989). We calibrate our economy to the 2017 US States to flexibly match bilat-

eral trade and migration flows. We discipline the ability of households to smooth consumption

by matching the empirical estimates of the marginal propensity to consume.

Armed with our calibration, we solve the steady state constrained efficient allocation. As

noted earlier, we find that the constrained efficient allocation features less spatial inequality in

consumption and more population concentration toward productive locations. The absence of

trade-off between inequality and efficiency can be explained by the dynamic incentive. Consis-
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tent with our theoretical analysis, consumption profile is backloaded in the productive locations,

incentivizing households to stay. In contrast, the consumption profile is front-loaded in unpro-

ductive locations, incentivizing households to leave. By appropriately choosing the level of con-

sumption, the planner can simultaneously achieve low spatial inequality and efficient migration.

We find welfare gains from moving from the status quo to constrained efficient allocation to be

around 4%, measured in consumption equivalent units of utilitarian welfare.

We then turn to the history independent allocation. With the lack of dynamic incentives, we

find the planner faces a substantial trade-off in spatial inequality and efficiency. In our calibration,

the planner balances the trade-off by creating substantial spatial inequality to acheive the efficient

migration decisions. This undermines the welfare gains by 0.5%.

In the final part of the paper, we study the constrained efficient response to the localized

technology shocks. We first show that aggregate shocks can be tractably studied by focusing

on the one-time shock that occurs with arbitrarily small probability. This is distinct from “MIT

shock” in that the shock is anticipated so that the planner writes contingent plans in response

to the shock. This circumvents the issue of time-inconsistency problem that arises if we were to

study an unanticipated “MIT shock.” We then show that the aggregate response can be obtained

solely using the sequence space Jacobian (Auclert, Bardóczy, Rognlie, and Straub 2021) around

the deterministic steady state.
1

Relying on the above approach, we study a permanent negative productivity shock in one

location. We find that the constrained efficient allocation involves more population reallocation

in the short-run and less reallocation in the long-run, relative to the status-quo economy with

exogenously incomplete market.

Related Literature First, we contribute to the literature of dynamic spatial general equilibrium

models. These frameworks have been used for various applications, such as regional incidence of

import competition, the rise of automation, immigration shocks, or climate change (see Desmet

and Parro (2025) for a recent survey). Earlier work has models hand-to-mouth agents building

on the framework of Caliendo et al. (2019), and more recent work has introduced agents’ saving

decisions (e.g., Bilal and Rossi-Hansberg 2023, Giannone, Li, Paixão, and Pang 2023, Greaney,

Parkhomenko, and Van Nieuwerburgh 2025).

So far, the literature has remained largely silent about the optimal allocation and policies

in that environment. An important recent exception is O’Connor (2024), who study the role of

spatial transfers to address dynamic inefficiency resulting from wage rigidity. He provides an

analytical formula for the optimal transfers for a two-period model and quantitatively imple-

1
Similar approaches appear in the context of optimal risk-sharing contracts (Fukui 2020) and endogenous port-

folio choice (Auclert, Rognlie, Straub, and Tapak 2024). Mukoyama (2021) clarifies the difference between the “MIT

shock” and an anticipated shock with arbitrary small probability.
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ments it with U.S. commuting zones using a linearized dynamic model.
2
Our paper is distinct in

two important ways. First, instead of focusing on particular sources of externalities, we work

with general infinite-horizon, fully-dynamic spatial equilibrium models and provide an analyt-

ical formula for its constrained efficient allocation. Second, besides externalities, our analytical

results highlight the incentive-insurance trade-off resulting from information constraints for the

planner.

Our paper also extends the literature of optimal policies in spatial equilibrium models. This

literature focuses on how spatial policies can address externalities and redistribution (see Fajgel-

baum and Gaubert 2025 for a recent review). In this static literature, our paper is particularly

close to Gaubert, Kline, and Yagan (2021) and Guerreiro, Rebelo, and Teles (2023), who charac-

terize the constrained efficient allocations subject to private information about households’ skills

and preference shocks, in the tradition of public finance literature (Mirrlees 1971). We extend

these analyses to a dynamic environment.

We also contribute to the literature on macroeconomics and public finance that aims to char-

acterize constrained efficient allocation of dynamic general equilibrium models under the plan-

ner’s information constraints. In particular, our recursive formulation of constrained efficient

allocation extends Atkeson and Lucas (1992), Farhi and Werning (2007), Veracierto (2022) to a

dynamic discrete migration choice environment. We develop a computational method to handle

many heterogeneous locations and implement them in the U.S. economy. Kurnaz, Michelini, Öz-

denören, and Sleet (2023) analyzes optimal tax design in a dynamic discrete choice choice with

hand-to-mouth agents and characterizes its property in the steady state. Our paper differs in

that we characterize constrained efficient allocations by taking a primitive approach of solving

the planner’s problem subject to information constraints and characterize both steady state and

transition dynamics.

2 Model Environment

We consider an economy consisting of J locations. Time is discrete and the horizon is infinite,

t = 0, 1, . . . ,∞. There is a unit measure of household dynasty indexed by h ∈ [0, 1], each of

which is endowed with a unit of labor. This section defines the model environment. We introduce

specific market structures later when we discuss implementations and calibration.

Timing and Demographics. At the beginning of the period t, households living in location j

consumes the location-specific consumption basket. Households then die with probability 1−ω,

2
Lhuillier (2023) also characterizes the optimal allocation with dynamic learning externality among workers in

a stylized overlapping dynamic spatial general equilibrium model.
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and they are replaced by newborns. The newborns are born in location j. Surviving households

and newborns then draw idiosyncratic location preference shocks and decide where to live for

the next periods. We now describe each step in details below.

Preferences. In each period t, households living in location j consume location-specific final

good aggregator. We denote the consumption of goods produced in location j and time t as Cjt.

The households’ flow utility from the consumption in location j is given by ujt(Cjt).

At the end of period t, households die with probability 1 − ω. Whenever households die,

they are replaced by newborns in the same location j. Then, both surviving households and

newborns in location j draw a vector of idiosyncratic preference shocks and decide where to

migrate. The location preference shocks ϵjt ≡ [ϵjkt]k are additively separable from ujt(Cjt). These

preference shocks [ϵjkt]k capture factors determining migration decisions specific to households

that are difficult to observe (e.g., find a new job, friends or relatives living in town). We do not

impose particular assumptions on its distribution function Gjt(ϵjt), such as the independence

across alternative options k or extreme-value distribution, as commonly assumed in the literature

(e.g., Artuç et al. (2010), Kennan and Walker (2011), and Caliendo et al. (2019)). However, we do

assume that households draw of [ϵjkt]k are serially uncorrelated, in line with virtually all existing

works.
3
Notice also that themean of ϵjkt can arbitrarily depend on origin j, destination k, and time

t, which capture the migration utility costs that depend on location pairs and time. Throughout,

we denote Eit as the expectation operator over ϵit, i.e., Eit[x] ≡
∫
xdGi.

After observing the preference shocks, both surviving households and newborns can migrate.

All households discount the future with discount factor β ∈ (0, 1). Let ℓt(h) ∈ {1, . . . , J} be the
location that household dynasty h lives, and Cjt(h) be the final goods consumption of location j

by household dynasty h at time t. The value function of household h living in location j at time

t are recursively given by

vjt(h) = ujt(Cjt(h)) + βωEjt

[∑
j

I(ℓt(h) = k){vkt+1(h) + ϵjkt}

]
. (1)

3
Howard and Shao (2022) allows for time-series correlation in the form of generalized extreme value (GEV)

distribution between time t − 1 and t draw of preference shock for a given location. Given the nature of the GEV

distribution, the distribution of preference draw at time t conditional on the choice of past location at time t − 1 is

still given by the GEV distribution that depends only on the choice of past location and calendar time t. Since we
allowGit to depend on location i and time t, our model nests their specification. XXX CHECKWITH GREG ABOUT

THIS STATEMENT? XXX
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The value function of newborns h born in location j at the end of period t is

vnjt(h) = Ejt

[∑
j

I(ℓt(h) = k){vkt+1(h) + ϵjkt}

]
. (2)

Technology. The location-specific final good aggregator is a composite of various goods, some

of which can be tradable (e.g. food or manufacturing goods) or nontradable (e.g. housing or

nontradable services). Instead of modeling each of these goods, we follow Adao, Costinot, and

Donaldson (2017) and specify the reduced-form production technology for location-specific final

good aggregators using labor services from various locations. Specifically, the non-tradable goods

in each location j is produced using labor from various locations:

Yjt = fjt ({lkjt}k, {Lkt}k) . (3)

where lkjt is the labor service in k used for producing final goods in j at time t, and Lkt is the

total population size of location k. We assume fjt is constant returns to scale in {lkjt}k. The

dependence on population size distribution {Lkt} captures the agglomeration and congestion

forces through which the population size affects productivity of a location.

Resource Constraints. The goods market clearing conditions are∫ 1

0

Cjt(h)dh = fjt ({lkjt}k, {Lkt}k) , (4)

and the labor market clearing conditions are

Ljt =

∫ 1

0

I [ℓt(h) = j] dh =
∑
k

ljkt. (5)

Generality and Scope of the Environment. It should be clear that our model is general

enough to nestmany of the dynamic discrete choice literature in general equilibrium, for example,

by Artuç et al. (2010) and Caliendo et al. (2019). We have not explicitly introduced endogenous

amenity in ourmodel, but we can interpret that a part of the final consumption goods in (3) consist

of endogenous amenity that can be produced or affected by agglomeration and congestion forces.

Note also that, although our main application is dynamic spatial models, our analysis equally

applies to any other dynamic discrete choice models such as occupational and sectoral choice

and the discrete choice of consumption basket (Mongey and Waugh 2025).

In order to focus on the dynamic migration margin, in the baseline model, we abstract from

several considerations that appear in existing works. First, we abstract from capital accumulation
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in the baseline model. However, it is straightforward to introduce capital accumulation in each

location, as we do in Appendix A.4. Second, we assume all households are ex-ante homogeneous,

which we relax in Appendix A.5. Third, we assume agglomeration forces come from contempo-

raneous population distribution. In Appendix A.6, we allow for agglomeration forces to depend

on lagged population distribution.

We introduce overlapping generation structure in order to induce stationary distribution in

the constrained efficient allocation, as explained in Farhi and Werning (2007). Models with in-

finitely lived households are nested as a special case with ω = 1, in which constrained efficient

allocation features immiseration in the long-run (Atkeson and Lucas 1992).

3 Constrained Efficient Allocation

We first briefly discuss the first-best allocation with complete information as a benchmark. We

then move to the case where idiosyncratic location preference shocks are private information.

We set up the planner’s problem and characterize the constrained efficient allocation. In all cases,

we assume the planner seeks to maximize the weighted average of the expected utility of each

generation:

W0 =
∞∑
t=0

1

Rt

J∑
i=1

Λiv
n
it(1− ω)

∫ 1

0

I[ℓt(h) = i]dh, (6)

where vnit is the lifetime value of the newborns born at time t in location i, (1−ω)
∫ 1

0
I[ℓt(h) = i]dh

corresponds to the mass of households born in location i at time t, Λi is the welfare weight

attached to households born in i, and R > 1 is the social discount rate.

3.1 Complete Information Benchmark

We start from the complete information case as a theoretical benchmark. Suppose the planner

observes the history of idiosyncratic preferences of households, ϵt ≡ (ϵ0, . . . , ϵt). The planner

specifies the consumption and the location of living of each history of preference shocks, ϵt.

Following the large literature on dynamic public finance, we work with a recursive formu-

lation of the planning problem using promised utility and continuation value instead of the se-

quence of allocation contingent on the history of preference shocks (e.g., Atkeson and Lucas 1992,

Farhi andWerning 2007). At any given point in time, each household is identified by the promised

utility v and the location of living i. Let ϕi(v) denote the measure of households in location iwith

promised utility v. The state variable of the planner is ϕ ≡ [ϕi]i.
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The planning problem in a recursive form is

Wt(ϕ) = max
{Cit(v,ϵ),ℓni (ϵ),ℓi(v,ϵ),v

n
i ,v

n′
ij (ϵ),v

′
ij(v,ϵ),lji,ϕ

′,Li}

∑
i

Λiv
n
i (1− ω)

∫
dϕi +

1

R
Wt+1(ϕ

′) (7)

subject to

vni = βEt

[∑
j

I[ℓni (ϵ) = j]
{
vn′ij (ϵ) + ϵi,j

}]
(8)

v = ui(Cit(v)) + βωEt

[∑
j

I[ℓi(v, ϵ) = j]
{
v′ij(v, ϵ) + ϵi,j

}]
(9)∫

Cit(v)dϕi = fit({lki}k ; {Lk}k) (10)∑
j

lij =

∫
dϕi (11)

Li =

∫
dϕi (12)

and the law of motion of the distribution:

ϕ′
j(V) = ω

∑
i

Eit

[
ϕi(v

−1
ij (V, ϵ))I[ℓi(v−1

ij (V, ϵ), ϵ) = j]
]

+ (1− ω)

∫
dϕiEit

[
I[ℓni (ϵ) = j]I[vn′ij (ϵ) ∈ V]

]
.

(13)

The first constraint (8) is the definition of the value of newborn born in location i. The second

constraint (9) is the promise keeping constraint for existing generations. Note that the value

of existing generations do not enter into the objective function because their values are pre-

determined in the past. The third and fourth constraints, (10) and (11), are the resource constraint

of the final goods and the labor market clearing condition, respectively. The fifth constraint (12)

defines the population size that governs the agglomeration/congestion forces.

While the original problem is quite complex because of infinite dimensionality of the state

variable and the control variables, the problem dramatically simplifies by considering the La-

grangian of the above problem. We detail the derivations in Appendix A.1 and focus on the key

results in the main text. Let Pit, wit, and witαit denote the Lagrangian multipliers of (10), (11),

and (12), respectively. Let St(ϕ) denote the associated Lagrangian. We then guess and verify that
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the Lagrangian St(ϕ) is additively separable in (v, i):4

St(ϕ) =
∑
i

∫
Sit(v)dϕi +Dt, (14)

where Dt is the term that is independent of ϕ. The constant term Dt solves

Dt = max
{lij ,Li}

∑
i

Pitfit({lki}k ; {Lk}k)−
∑
i

wit

∑
j

lij −
∑
i

αitwitLi +
1

R
Dt+1. (15)

The first-order optimality conditions are given by the following static conditions:

Pit
∂fit
∂lki

= wkt (16)∑
i

Pit
∂fit
∂Lk

= wktαkt. (17)

As one can imagine from the above expressions, and as we later show, once we consider decen-

tralization of the planner’s solution, the Lagrangian multiplier Pit would correspond to the price

of final consumption goods in i, wit corresponds to the wage in i, and αit corresponds to the

agglomeration elasticity in location i.

The dynamics comes from the following component planning problem, a problem for the

household in location i with promised utility v:

Sit(v) = max
{Cit,v′ij(ϵ),ℓi(ϵ)}

wit (1 + αit)− PitCit + (1− ω)Sn
it

+
1

R
ωEit

∑
j

I[ℓi(ϵ) = j]Sjt+1

(
v′ij(ϵ)

) (18)

subject to the promise keeping constraint:

v = ui(Cit) + βωEit

[∑
j

I[ℓi(ϵ) = j]
{
v′ij(ϵ) + ϵi,j

}]
. (19)

4
Similar techniques appear in Atkeson and Lucas (1992), Farhi and Werning (2007, 2012), and Veracierto (2022,

2023) in the context of various different models.
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The term Sn
it is the value function associated with newborns in location i, which solves

Sn
it = max

vni ,{vn′
ij (ϵ),ℓ

n
i (ϵ)}

Λiv
n
i +

1

R
Eit

∑
j

I[ℓni (ϵ) = j]Sjt+1(v
n′
ij (ϵ)) (20)

s.t. vni = βEit

∑
j

I[ℓni (ϵ) = j]
{
vn′ij (ϵ) + ϵi,j

}
. (21)

We let {Cit(v), v
′
ij(v, ϵ), ℓi(v, ϵ)} denote the policy functions associatedwith (18), and let vni , {vn′ij (ϵ), ℓni (ϵ)}

denote the policy functions associated with (20).

The objective function Sit(v) has a clear economic interpretation as the net surplus associated

with households in i with promised utility v (net of household utility). At each point in time,

such a household adds the marginal product of labor, wit, and the agglomeration benefit, witαit,

while subtracting the cost of resource consumed by the household, PitCit. We can also interpret

them as fiscal and technological externalities that each household generates in the equilibrium

that decentralizes the planner’s solution. A household may also die and drop newborns, which

corresponds to the term (1−ω)Sn
it. The continuation value takes into account that the household

may move to the other locations.

Taking the first-order conditions and combining it with the envelope condition, we have the

following characterization of the first-best allocation with complete information.

Proposition 1. Under complete information, the following conditions must hold at the planner’s
solution. For each household, the consumption over time and across space satisfies

u′(Cit)

Pit

= βR
u′jt+1(Cjt+1)

Pjt+1

(22)

for all i, j, t. The migration decision solves

ℓit(v, ϵ) ∈ argmax
l

βω
Pit

u′(Cit)
[vilt+1(v, ϵ) + ϵil] +

1

R
ωSlt+1(vil(v, ϵ)). (23)

Proposition 1 reveals a relatively intuitive property that the efficient complete information

allocation must feature. Condition (22) says that the marginal utility of income must be equal-

ized across space and over time after adjusting for discounting. If the marginal utilities were

not equalized, the planner can improve welfare by reallocating resources from location or time

periods with low marginal utility to those with high marginal utility. Note that condition (22)

also shows that consumption, Cjt+1, is independent of the realization of the preference shock,

conditional on the location of living, which comes from the additive separability of the prefer-

ence shock. This implies that the continuation value, vijt+1(v, ϵ), is independent from ϵ as well,

vijt+1(v, ϵ) = vijt+1(v). The second condition (23) says that the location choice must maximize
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the total surplus, a sum of worker utility and the net surplus.

Finally, we note that Proposition 1 is a dynamic analogue of the efficiency conditions in a

static discrete choice models, presented in Mongey and Waugh (2024) and Donald, Fukui, and

Miyauchi (2024). Relative to the static efficiency condition, there are two differences. First, the

planner equalizes marginal utility of income not only across space but also over time. Second,

the location choice is governed by a dynamic discrete choice system, rather than the static one.

3.2 Location Preference Shock as Private Information

The analysis in the previous section assumes that the planner observes the location preference

shock. Although it serves as a theoretical benchmark, such a situation is hardly realistic. We

now move to the case where the preference shocks are private information of the households. By

revelation principle, we can focus on the direct revelation mechanism where households report

their preference shock in each period. Due to the independence of preference shocks over time,

we do not need to carry past realization or report of preference shocks as state variables.

It is instructive to first consider why households have an incentive to misreport their prefer-

ences in the complete information allocation. Since households only care about their utility, if

households currently living in i could choose the location of living in the next period, they would

solve

max
l
βω[vilt+1(v) + ϵil], (24)

instead of (23). Herewe already imposed that the continuation value vilt+1 does not depend on ϵ as

explained earlier. This implies that households have an incentive to report their preferences so as

to be assigned to location that solves (24) instead of (23). Intuitively speaking, from an individual

household’s perspective, they do not consider the fiscal surplus or the agglomeration/congestion

forces that they generate in choosing where to live. In contrast, these forces are what the planner

takes into account, and hence the misalignment arises.

We therefore need to impose the following incentive compatibility constraint such that the

truth-telling is optimal from the household’s perspective:

ϵ ∈ argmax
ϵ̂

βω
∑
j

I[ℓi(v, ϵ̂) = j]
{
v′ij(v, ϵ̂) + ϵij

}
. (25)

From the above expression, it is tempting to think that the planner should promise a low value

of v′ij(v, ϵ̂) to households with a high value of ϵ̂ij , since such a household would anyway choose

location j so the planner does not need to give a strong incentive. However, equation (25) tells

us that such a policy is not incentive compatible. In fact, v′ij(v, ϵ̂) cannot depend on the reported
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preference shock, ϵ̂, conditional on living location j. If v′ij(v, ϵ̂) were a function of the reported

preference shock, households would misreport the preference that gives the highest value of

v′ij(v, ϵ̂).

The above discussion implies that any incentive-compatible allocation must feature

v′ij(v, ϵ̂) = v′ij(v). (26)

This says that conditional on location of living and the promised value, the planner cannot dis-

criminate households. Such a property should be intuitive. If two households choose to live in

Boston, it is impossible to tell from their behavior whether one likes to live in Boston more than

the other.

This result also implies that the optimal policy is necessarily a placed-based policy, even

though we have not restricted it to be. We later formally show that the constrained efficient

allocation can be implemented by policies that depend on the history of living locations.

Based on the above observation, we can rewrite the incentive compatibility constraint as

households directly choose the location of living to maximize their utility, instead of reporting

preferences and receive assignment:

ℓi(v, ϵ) ∈ argmax
l

βω [v′il(v) + ϵil] (27)

Imposing this incentive compatibility constraint in the problem (18), we have the following com-

ponent planning problem:

Sit(v) = max
{Cit,v′ij ,ℓi(ϵ)}

wit (1 + αit)− PitCit + (1− ω)Sn
it

+
1

R
ωEit

[∑
j

I[ℓi(ϵ) = j]Sjt+1

(
v′ij
)] (28)

s.t. v = ui(Cit) + βωEit

[∑
j

I[ℓi(ϵ) = j]
{
v′ij + ϵi,j

}]
(29)

ℓi(ϵ) ∈ argmax
l

βω [v′il + ϵil] . (30)

The only difference from the complete information case is the presence of the incentive compat-

ibility constraint (30).

We can further simplify the above problem using the representation result fromHofbauer and

Sandholm (2002). They show that any discrete choice problem can be equivalently represented

as the maximization problem with respect to choice probability subject to appropriately defined

12



cost function. Formally, we can rewrite the above problem as

Sit(v) = max
{Cit,v′ij ,µij}

wit (1 + αit)− PitCit + (1− ω)Sn
it +

1

R
ω
∑
j

µijSjt+1

(
v′ij
)

(31)

s.t. v = ui(Cit) + βω

[∑
j

µijv
′
ij − ψit({µij}j)

]
. (32)

{µij}j ∈ arg max
{µ̃ij}j

βω

[∑
j

µ̃ijv
′
ij − ψit({µ̃ij}j)

]
(33)

for some function ψit that only depends on the distribution functionGit
5
and µijt ≡ EitI[ℓit(ϵ) =

j]. Let {Cit(v), v
′
ij(v), µij(v)} denote the policy functions associated with the above Bellman

equation.
6
Likewise, the net surplus of newborns, Sn

it, is given by

Sn
it = max

vni ,{vnij ,µn
ij}

Λiv
n
i +

1

R

∑
j

µn
ijSjt+1(v

n
ij) (34)

s.t. vni = β
∑
j

[
µijv

n′
ij − ψit({µn

ij}j)
]

(35)

{µn
ij}j ∈ argmax

{µ̃n
ij}
β
∑
j

[
µ̃n
ijv

n′
ij − ψit({µ̃n

ij}j)
]
, (36)

where µn
ij ≡ EitI[ℓit(ϵ) = j].

At this point, the problem has a similar structure to the optimal design of dynamic unemploy-

ment insurance byHopenhayn andNicolini (1997) and Veracierto (2022). There, the planner seeks

to equalize the marginal utility of employed and unemployed over time, taking into account that

doing so discourages the job search effort. Here, the planner seeks to equalize marginal utility

across space and over time taking into account that doing so leads to inefficient spatial popula-

tion distribution. Aside from the difference in context, our problem differs in that we derived the

problem from the dynamic discrete choice problem and that our problem accommodates a general

choice set as well as a general production structure with technological externalities. The above

problem is also closely related to optimal wage tenure contracts between a firm and a worker, as

in Burdett and Coles (2003), Shi (2009), Balke and Lamadon (2022), and Souchier (2022), where

the firms seek to insure workers against productivity shocks while trying to retain workers. In

fact, we show that our formula that characterize the constrained efficient allocation resembles

5
See Hofbauer and Sandholm (2002) or Donald et al. (2024) for an explicit expression for ψ.

6
In general, Sit(v)may not be concave in v, in which case, the lottery is needed to ensure concavity in the value

function (see e.g., Prescott and Townsend 1984, Balke and Lamadon 2022), For the sake of notational simplicity, we

abstract from the use of lottery. In the quantitative exercise, we verify that Sit(v) is concave, and therefore the

lottery is not used even if available.
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their formula below.

Solving the above problem gives the following condition that the constrained efficient alloca-

tion must satisfy.

Proposition 2. In any constrained efficient allocation, the following equation must hold for each
household living location i at time t:

µijt

[
βR

u′j(Cjt+1)/Pjt+1

u′i(Cit)/Pit

− 1

]
+
∑
k

∂µik

∂Cjt+1

Skt+1(v
′
ik)

Pjt+1︸ ︷︷ ︸
≡ ξijt

= 0. (37)

for all i, j, t.

The above proposition characterizes the trade-off between equalization of marginal utility of

income and distorting migration decisions. Without the term ξijt, the above condition is iden-

tical to (22) in the complete information benchmark. The term ξijt encompasses the additional

consideration that the planner must navigate in equalizing the marginal utility. In particular, an

increase in consumption at location j at time t + 1, Cjt+1, for households living in location i at

time t induces migration responses, which is associated with a change in net surplus. Note that

migration responds not only at location j, but also at all locations k = 1, . . . , J .

First, consider the case with ξijt > 0. This means that increasing consumption at location j

at time t + 1 induces migration responses that are net positive in terms of net surplus. In this

case, the planner has an incentive to increase the relative consumption at location j at time t+1

to consumption at i at t beyond the complete information benchmark. This is the case where

the planner back-loads the consumption profile to incentivize households to migrate to good

locations. The opposite is true in the case of ξijt < 0. In this case, an increase in consumption

at location j at time t + 1 induces migration responses that are net negative. In this case, the

planner lowers the relative consumption at location j at time t + 1 to consumption at i at time

t relative to the complete information benchmark. This is the case where the planner front-load

consumption in order to discourage migration toward bad locations.

As mentioned earlier, Proposition 2 has a close connection with the formulas in the context of

optimalwage tenure contracts derived in Burdett andColes (2003), Balke and Lamadon (2022), and

Souchier (2022). There, a similar trade-off arises between smoothing consumption and retaining

workers. Proposition 2 is also a dynamic analogue of the static optimal spatial transfer formula

derived in Donald, Fukui, and Miyauchi (2024).

Proposition 2 implies the inverse Euler equation.
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Corollary 1. Any constrained efficient allocation must satisfy the inverse Euler equation:

Pit

u′i(Cit)
= Eit

[
Pjt+1

βRu′j(Cjt+1)

]
(38)

As observed by Diamond and Mirrlees (1978) and Rogerson (1985), constrained efficient al-

location in an economy with private information generally satisfies the inverse Euler equation.

Not surprisingly, our environment is not an exception.

The rest of the allocations and the Lagrangian multipliers are determined in the same way as

the complete information case. In particular, {lijt, Lit, ϕ
′
i, Pit, wit, αit} solve (10), (11), (12), (13),

(16), and (17).

Decentralization. Now we briefly discuss how the constrained efficient allocation can be de-

centralized. There are many ways to implement the constrained efficient allocation, but the key is

that the policies to be contingent (only) on the history of living locations. For example, suppose

households are hand-to-mouth, or the government bans the private savings. In this case, the

transfers contingent on the history of living locations can implement the constrained efficient

allocation, as we formally show in Appendix A.3. A tax system that has more “decentralized”

flavor involves non-linear capital income taxation contingent on the history of living locations,

as discussed in Kocherlakota (2005) in the context of dynamic Mirleese environment.

3.3 History-Independent Constrained Efficient Allocation

As discussed earlier, the implementation of constrained efficient allocation requires policy in-

struments to condition on the past history of living locations. We now study a simpler and more

restricted policies that can only depend on the current location of living. This exercise serves

two purposes. First, comparing this history independent policy to the history dependent policy

sheds light on the importance of dynamic incentives we emphasized earlier. Second, while a pol-

icy contingent on a history of living locations should be feasible in theory, it might be difficult to

implement in practice. Therefore, a simple history-independent policy might be a its own interest

from a pratical perspective.

We argue that the underlying principles in Proposition 2 carry over to more restricted poli-

cies. To make this point, we place the restriction that consumption in each location must be the

same for all households residing in the same location. This is trivially satisfied in many of the

existing dynamic spatial equilibrium literature that assumes hand-to-mouth households (Artuç,

Chaudhuri, and McLaren 2010, Caliendo, Dvorkin, and Parro 2019). Consequently, the set of im-

plementable allocations coincide with the allocation that can be implementable with transfers
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that only depend on the current locations in those models.

The restriction implies that all households currently living in the same location attain same

utility going forward in expectation. Imposing these requirements in the original problem, we

obtain the formula that any history independent optimal policy must satisfy.

Proposition 3. Any constrained efficient and history independent allocation that must satisfy

∑
i

Lit

[
µij

[
βRω

u′j(Cjt+1)/Pjt+1

u′i(Cit)/Pit

+ βR(1− ω)Λi

u′j(Cjt+1)

Pjt+1

− 1

]
+
∑
k

∂µikt

∂Cj+1

Skt+1

Pjt+1

]
= 0,

(39)

where

Sjt = wjt (1 + αjt)− PjtCjt + (1− ω)Λjv
n
j +

1

R

∑
k

µjktSkt+1 (40)

An important observation here is that the formula in Proposition 3 is isomorphic to that in

Proposition 2 except that now that it is a weighted average across migration origins and gen-

erations. Since the planner cannot discriminate households from different origin locations and

across cohorts, the planner weighs insurance-incentive trade-offs of all these different households

altogether.

An important conceptual difference from Proposition 2 is that the planner is no longer able

to back-load or front-load the consumption profile for each household. If the planner would like

to invite more households to a certain location, then the planner must increase the consumption

in that location regardless of the previous consumption level. We highlight this difference in the

quantitative exercise later.

Note that when households are infinitely lived, ω = 1, the above formula simplifies to

∑
i

Lit

[
µij

[
βR

u′(Cjt+1)/Pjt+1

u′(Cit)/Pit

− 1

]
+
∑
k

∂µikt

∂Cj+1

Skt+1

Pjt+1

]
= 0, (41)

and

Sjt = wjt (1 + αjt)− PjtCjt +
1

R

∑
k

µjktSkt+1. (42)

With the lack of history dependence, the stationary distribution in this environment exists even

with infinitely lived households, avoiding the immiseration result by Atkeson and Lucas (1992).

Formulae (41) and (42) might be on its own interest if one wishes to study the optimal dynamic

spatial policy in an environment where households are hand-to-mouth (e.g., Caliendo et al. 2019)
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and the government can only condition on the current location of living.
7

3.4 Extensions

Our baseline model deliberately abstracts from several considerations in order to transparently

convey the main forces. We now discuss extensions and generalizations of the baseline model.

3.4.1 Capital Accumulation

Some existing work (e.g., Kleinman, Liu, and Redding 2023, D’Amico and Alekseev 2024) intro-

duce capital accumulation into the dynamic spatial equilibrium model, which we have abstracted

from so far. In Appendix A.4, we show that our environment can be straightforwardly extended

to incorporate location-specific capital accumulation subject to capital adjustment costs. Impor-

tantly, such consideration does not meaningfully interact with the trade-off that we highlighted

in Proposition 2. In fact, Proposition 2 and the underlying Bellman equations remain unchanged.

Meanwhile, optimal investment and capital accumulation follow the standard q-theory of invest-

ment.

3.4.2 Ex-ante Heterogeneous Households

In the baseline model, we have assumed that all households are ex-ante homogeneous. In Ap-

pendix A.5, we extend our baseline environment to an environment with many ex-ante hetero-

geneous household types θ ∈ {θ1, . . . , θM} with arbitrary heterogeneity in preferences, location

choice, and demographics. We also consider a general form of agglomeration/congestion forces

that allow for spillover across different household types. There, we show that Proposition 2 and

the underlying Bellman equations remain unchanged, except that now everything is indexed by

θ.

3.4.3 Lagged Agglomeration/Congestion Forces

In the baseline model, we have assumed that the agglomeration and congestion forces arise from

contemporaneous population size. Some existing work like Allen and Donaldson (2020) allows

the agglomeration/congestion forces to depend on the lagged population size. In Appendix A.6,

we extend our environment to allow agglomeration/congestion forces to depend on arbitrarily

long lags of population size distribution. The only material difference from our baseline model is

the term αit in (31) now includes the agglomeration/congestion forces not only today but also of

future dates.

7
This was the focus of the earlier version of this paper.
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4 Quantification

In this section, we calibrate our model assuming the status quo is generated by an exogenously in-

complete market in the style of Bewley-Hugget-Aiyagari. We then solve the constrained efficient

allocation to quantify its deviation from the status quo economy.

4.1 Status Quo Economy with Exogenously Incomplete Market

We assume an exogenously incomplete financial market in the spirit of Bewley-Hugget-Aigayari

in the status quo economy (Bewley 1986, Huggett 1993, Aiyagari 1994, Imrohoroğlu 1989). The

only available asset in the economy is the state non-contingent bonds in zero net supply. Let

1 + rt be the real interest between time t and t + 1. All households face a common exogenous

borrowing limit and the minimum asset level is given by a. We also introduce spatial transfers

implemented by the government. Households living in location j at time t receive transfers Tjt.

The Bellman equation of the household living in location j at time t with bond holding at is

vjt(at) = max
Cjt,{µjk}k,at+1

ujt(Cjt) + βω

[∑
k

µjkvkt+1(at+1)− ψ({µjk})

]
(43)

s.t. PjtCjt + at+1 = (1 + rt−1)at + wjt + Tjt (44)

at+1 ≥ a, (45)

where Pjt is the price index, wjt is the wage, and a is the exogenous minimum asset level. Here,

we have already imposed the representation result by Hofbauer and Sandholm (2002) and Donald

et al. (2024) to write the dynamic discrete choice problem. Let Cjt(a), ajt+1(a), and µjk(a) denote

the policy functions associated with the above value functions. We assume that when households

die, they leave accidental bequests for their offspring. Note that our model nests commonly used

hand-to-mouth households as a special case with a = 0.

There is a representative firm in each location that imports factor services from other regions

and produces non-traded financial goods. The representative firm in location j solves

max
{lkjt}k

Pjtfjt({lkjt}, {Lkt}k)−
∑
k

wktlkj, (46)

taking {Lkt}k as given. Therefore, agglomeration/congestion forces are externalities that are not

internalized by private agents.

We assume that the government runs a balanced budget. The government budget constraint
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is ∑
k

Tkt = 0. (47)

Let φj(A) denote the measure of households with bond a ∈ A in location j. The goods market

clearing condition is ∫
Cjt(a)dφj = fjt({lkjt}k, {Lkt}k). (48)

The factor market clearing condition is

∑
j

lkjt =

∫
dϕk. (49)

The consistency of population size requires

Lkt =

∫
dϕk. (50)

The distribution evolves according to the following law of motion:

φjt+1(A) =
∑
k

µkjt(a
−1
jt+1(A))φkt(a

−1
jt+1(A)) (51)

The decentralized equilibrium of the status quo economy consists of value and policy func-

tions {vjt(a), Cjt(a), ajt+1(a), µjk(a)}, factor contents of trade, {lkjt}, population distribution,

{Lkt}k, spatial transfers, {Tkt}, distribution over assets in each location, {φjt}, and prices {wkt, Pkt, rt}
such that: (i) given prices {wkt, Pkt, rt} and policy {Tkt}, the value and the policy functions

{vjt(a), Cjt(a), ajt+1(a), µjk(a)} solve the households problem (43); (ii) given prices {wkt, Pkt}
and population size {Lkt}, the factor contents of trade {lkjt} solve the firm’s problem (46); (iii)

the government sets the transfer that satisifes (47); (iv) markets clear (48), (49); (v) the population

size is consistent (50); and (vi) the distribution {φjt} evolves according to (51).

We note that there is no reason to expect that the status quo economy achieves first-best nor

constrained efficient allocation for two reasons. First, private agents do not internalize agglom-

eration or congestion in making agglomeration decisions. Second, the market is incomplete in

the sense that there is no market that insures agents against the uncertainty in location of liv-

ing or preference shocks. In what follows, we quantify these deviations through the lens of the

calibrated model.
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4.2 Calibration

Table 1 summarizes our calibration. We calibrate our status-quo economy to match the data on

the US 2017, assuming that the US is in its steady state in 2017. One period is a year. We consider

48 states in the US as a geographical unit, which excludes Alaska and Hawaii from 50 states.

We choose Alabama’s labor as numeraire and set its wage to one. Since our calibration assumes

steady state, we drop the subscript t whenever there is no risk of confusion.

We first parameterize the utility function as a CRRA utility function,

uj(Cjt) =
C1−γ

jt − 1

1− γ
, (52)

and we set γ = 1, corresponding to log utility, a standard specification in the literature (e.g.,

Caliendo et al. 2019). We also set ω = 1 − 1/75 so that the average life expectancy is 75 years.

The production function is assumed to take the constant elasticity of substitution form:

fj({lkj}, {Lk}k) =

[∑
k

(Akj(Lk) lkj)
σ−1
σ

] σ
σ−1

, (53)

where σ > 1 corresponds to the trade elasticity, and Akj(Lk) is the productivity shifter of goods

shipped from location k to j that depends on the population size of location k. The productivity

is an iso-elastic function of population size of the origin location:

Akj(Lk) = AkjL
α
k . (54)

This specification, together with (16) and (17), implies

αjt = α for all j, t. (55)

For the baseline model, we assume α = 0.04. This value corresponds to an intermediate estimate

in the literature summarized in Rosenthal and Strange (2004) and Combes and Gobillon (2015).

We set the trade elasticity to σ = 5, as in Costinot and Rodríguez-Clare (2014).

We assume that the migration cost function takes the following form:

ψi(µijt) =
1

θ

∑
j

µij ln(µij/χij), (56)

which would imply logit dynamic discrete choice system, as in Artuç et al. (2010) and Caliendo,

Parro, Rossi-Hansberg, and Sarte (2018). This is equivalent to assuming {ϵj}j follows an indepen-
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Table 1: Parameter Values

Parameter Description Value Source/Target

A. Assigned Parameters

γ Risk aversion 1 Standard

σ Trade elasticity 5 Costinot and Rodríguez-Clare (2014)

θ Migration elasticity 0.5 Caliendo et al. (2019)

ω Surviving probability 0.987 Life expectancy 75 years

α Agglomeration elasticity 0.04 Baseline

B. Internally Calibrated Parameters

β Private discount factor 0.988 Real interest rate 2%

a Borrowing limit -0.60 MPC 0.3

{Aij} Productivity shifter - Trade flows and real output

{χij} Migration cost shifter - Migration flows

{κi} Net transfer rate - Net transfer from the government

C. Parameters for Social Welfare Function

1/R Social discounting 0.988 Private discount factor

{Λj} Location welfare weights - Equal weight

Note: The table shows the parameters used in our quantitative exercise. Parameter values for {Aij}, {χij}, and {κi}
are chosen to exactly match the data moments described in the main text.

dent Type-I extreme value distribution, as originally shown by Anderson, De Palma, and Thisse

(1988). The parameter θ governs the migration elasticity, and χij represents the bilateral migra-

tion cost shifter. We set the value of migration elasticity to θ = 0.5, in line with the estimates in

Caliendo et al. (2019).

We briefly describe the calibration of other parameter values and relegate the details to Ap-

pendix B.1. We choose {Aij}i ̸=j and {χij}i ̸=j to match the bilateral trade and migration flows

at the state level. We choose {Aii} to match the real wage level in each state, and we normalize

χii = 1 for all i. We set the discount factor β so that the real interest rate is 2%. We choose

the value of a so that the average annual marginal propensity to consume (MPC) is 0.3, which

corresponds to the estimate by Orchard, Ramey, and Wieland (2023).
8
Finally, we parameterize

Tj = κjwj + T̄ and choose {κj} to match the net transfer from the government to income ratio

at the state level. We obtain net transfer from the government from the Bureau of Economic

Analysis (BEA). We adjust the term T̄ to ensure the government budget constraint holds.

Finally, we need to take a stance on the parameters that govern the social welfare function,

{R,Λj}. We choose the social discounting 1/R to be the same as the private discount factor β.

The planner puts equal weight on households born in different regions, which we normalize to

8
This is at the lower end of the MPC estimates in the literature. We view this choice as conservative since higher

MPC calibration would give less of a chance of risk sharing in the status quo economy.
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Figure 1: Steady State Consumption and Population: Status Quo vs. Planner

Note: The left panel plots the average consumption per capita in each state against the real wage in the

status quo economy. The square dot correspond to the status quo economy, and the circle dot corresponds

to the planner’s solution. The dashed red line is the best linear fit for the status quo economy. The solid

blue line is the best linear fit for the planner’s solution. The right panel plots population size against the

real wage in the status quoeconomy and is analogous to the left panel.

one, Λj = 1 for all j.

4.3 Steady State: Status Quo vs. Planner

Armed with our calibrated parameters, we solve the constrained efficient allocation and compare

to the status quo economy. Our first goal is to understand the steady state properties.

The left panel of Figure 3 compares the average consumption per capita. We plot them against

the real wage in the status quo economy, which proxy how “good” the location is.
9
The square

dots plot the average consumption in each state against the real wage in the status quo economy.

If the economy were in financial autarky, they would lie exactly on the 45 degree line. The

availability of state non-contingent bonds and government transfers in the status quo economy

helps smooth consumption, and consequently the slope of the relationship is slightly below one.

The circle dots show the consumption per capita in the planner’s solution, and the relationship

is nearly flat. This suggests that the constrained efficient allocation features substantially more

spatial equality.

9
In fact, Appendix Figure C.2 that the real wage in the status quo economy is strongly positively related to the

average net surplus Sj . Appendix Figure C.1 shows that the real wage in the planner’s solution are tightly related

to that in the status quo economy.
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Figure 2: Consumption and Real Wage over the Life-Cycle for Stayers

(a) Alabama

(b) Washington

Note: The figure plots the consumption and real income profile of households born in Alabama (panel

(a)) and in Washington (panel (b)). We focus on the households who keep staying in the same location.

The left panel shows the status quo economy, and the right panel shows the planner’s solution. In both

cases, the initial condition is the average of the households born in each location.

The right panel of Figure 3 compares population. The slope of the planner’s solution is higher

than the status quo economy. Therefore, perhaps surprisingly, we see more population realloca-

tion toward states with higher real wage in the planner’s solution, despite their average consump-

tion being lower than the status quo economy. In a static economy, there is generally a trade-off

between equalizing consumption and distorting reallocation of population to the productive lo-

cation (Donald, Fukui, and Miyauchi 2024). Here, it appears that there is no such trade-off.

The key here is that the dynamic incentives goes a long way in overcoming the tradeoff be-

tween spatial inequality and distorting migration decisions. The planner not only controls the

average consumption level in each state, but also the entire path of consumption conditional on

the history of living locations. The planner can incentivize households to stay in good locations

by back-loading the consumption profile, even with a low average consumption. Likewise, the

planner can incentivize households to leave bad locations by front-loading the consumption pro-

file.
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Welfare (C equivalent)

Status quo 1.000

Planner (second-best) 1.042

Complete information (first-best) 1.060

History independent 1.029

Table 2: Steady State Welfare of Newborns

Note: The table shows the utilitarian welfare of newborns. They are measured in consumption equivalent

units, Ceq = u−1((1−βω)W ), whereW is the utilitalian welfare. We normalize by the welfare of status

quo economy to one.

Figure 2 demonstrates this by plotting life-cycle consumption and income profile in Alabama

(“bad” location) and in Washington (“good” location). We consider households born in these lo-

cations and end up staying there for their lifetime. In the status quo economy, households born

in Alabama borrow to consume more than the real wage. This immediately drives down the asset

and eventually hits the borrowing constraint. After hitting the borrowing constraint, consump-

tion remains flat. In contrast, in the planner’s solution, the consumption profile is front loaded

throughout the lifetime with initially higher level of consumption than the status quo economy.

In this way, the planner can effectively insure households born in Alabama while strongly in-

centivizing them to leave Alabama. Washington example illustrates the polar opposite case. In

the status quo economy, as households accumulate savings, consumption increases over the life-

cycle but at a moderate pace. In the planner’s solution, the consumption initially starts from a

low level but is steeply backloaded. This strongly incentivizes households to stay in Washington

while sharing the risk of where to be born.

What are the welfare gains from moving to the constrained efficient allocation? The second

row of Table 2 shows that the utilitarian welfare of newborns is 4.2% higher in consumption

equivalent units. For comparison, the third row of Table 2 shows that moving to the first-best

allocation with complete information, which we characterized in Proposition 1, achieves 6.03%

of welfare gains. Therefore, even with private information, the constrained efficient allocation

achieves the bulk (70% = 4.2/6.0) of welfare gains that are possible under complete information.

4.4 History-Independent Constrained Efficient Allocation

We have highlighted the importance of dynamic incentives in simultaneously achieving con-

sumption smoothing and efficient migration decisions. This critically relies on the planner’s abil-

ity to set the consumption profile as a function of the history of living locations.

We now contrast the history contingent allocation with a simple history-independent allo-

cation that we characterized in Proposition 3. With history independent allocation, the planner

is no longer able to use dynamic incentives, as the planner has to give the same consumption to
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two households currently living in the same location but differ in their history of living locations.

For this reason, the comparison sheds light on the importance of dynamic incentives. As before,

we focus on the steady-state allocations.

Figure 3 shows the per-capita consumption per capita and population that is analogous to

Figure 3. The left panel shows that the planner creates substantial spatial consumption inequal-

ity with a higher slope than one (45-degree line). Despite inducing substantial spatial inequality,

population is less concentrated in the productive locations than the constrained efficient allo-

cation. These two results highlight the importance of dynamic incentives in overcoming the

trade-off. Without dynamic incentives, the planner faces a strong trade-off in spatial inequality

and efficient migration decisions.

The third row of Table 3 shows that the welfare gains from history-independent policy is 2.9%

relative to the status-quo economy, measured in consumption equivalent units. Therefore, the

welfare gains from the optimal history-independent allocation is 30% lower than the constrained

efficient allocation and less than half of the optimal complete information allocation. As high-

lighted in Figure 3, the welfare gain predominantly comes from the reallocation of population at

the expense of creatin dispersion in the marginal utility across space.

4.5 Robustness to Alternative Parameterization

To be written.

5 Transitions in Response to Aggregate Shocks

So far, we have focused on the steady state. Now we introduce aggregate shocks to our baseline

economy to study the transition dynamics.

5.1 Introducing Aggregate Shock

We now study the response to aggregate shocks. We consider a one-time shocks to technologies.

Let xt = 0, 1, . . . denote the time elapsed since the arrival of the aggregate shock, where xt = 0

indicates the before the arrival of the shock. If the shocks have not occurred, the technology

evolves according to

fjt({lkjt}k, {Lkt}k) =

f 1
j ({lkjt}k, {Lkt}k) with prob. p

f 0
j ({lkjt}k, {Lkt}k) with prob. 1− p

, (57)
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Figure 3: Steady State Consumption and Population: Planner vs. History-Independent

Note: The left panel plots the average consumption per capita in each state against the real wage in the

status quo economy. The square dots correspond to the constrained efficient economy, and the circle dot

corresponds to the history independent solution. The solid line is the best linear fit. The right panel plots

population and is analogous to the left panel.

where f 0
j is the technology before the realization of the shock that is constant over time, and f 1

j

is the technology immediately after the realization of the shock. After the arrival of the aggre-

gate shock, the technology is given by the deterministic sequence {fx
j }∞x=1, and we assume the

sequence is convergent:

fx
j → f∞

j as x→ ∞. (58)

The Bellman equation before the realization of the aggregate shock is

S0
it(v) = max

Cit,{vx′k ,µx
ij}j,x∈{0,1}

w0
it (1 + α0

it)− P 0
itCit + (1− ω)Sn,0

it (59)

+ (1− p)

[
1

R

∑
k

µ0
ijS

0
jt+1(v

0′
k )

]
+ p

[
1

R

∑
j

µ1
ijS

1
jt+1(v

1′
j )

]
(60)

s.t. v = ui(Cit) + βω

{
(1− p)

[∑
j

µ0
ijv

0′
j − ψ({µ0

ij}j)

]
+ p

[∑
j

µ1
ijv

1′
j − ψ({µ1

ij}j)

]}
(61)

{µx
ij}j ∈ argmax

µ̃x
ij

∑
j

µ̃x
ijv

x′
j − ψ({µ̃x

ij}j) for x ∈ {0, 1}, (62)
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where the variables with superscript x = 0, 1, . . . denote those after x periods have passed since

the arrival of the shock. The Bellman equation for newborn S0
jt is likewise given by

Sn
it = max

{vn,x,vn,x
ij ,µn,x

ij }
(1− p)

[
Λiv

n,0 +
1

R

∑
j

µn,0
ij Sjt+1(v

n,0
ij )

]
(63)

+ p

[
Λiv

n,1 +
1

R

∑
j

µn,1
ij Sjt+1(v

n,1
ij )

]
(64)

s.t. vn,x = β

[∑
j

µn,x
ij v

n,x
ij − ψ({µn,x

ij }j)

]
for x ∈ {0, 1} (65)

µn
ij ∈ arg max

{µ̃n
ij}j

∑
j

µ̃n,x
ij v

n,x
ij − ψ({µ̃n,x

ij }j). (66)

After the realization of aggregate shock, the Bellman equations are analogous to (??) and (??)
indexed with x = 1, 2, . . .

Importantly, we make following two assumptions. First, we assume that the probability that

the aggregate shock hits the economy is arbitrarily small:

p→ 0. (67)

Note that this assumption is distinct from the “MIT shock” (a one-time unanticipated shock).

Here, the shock is anticipated, and the planner writes contingent plans in response to the shock.
10

This distinction is important because if shocks were unanticipated, the planner needs to re-

optimize in response to the shock. If the planner could re-optimize, then the planner faces the

time inconsistency problem that the new plan is not necessarily optimal from the viewpoint of

the pre-shock plan. Second, we study the first-order approximation with respect to the size of

the aggregate shock.

These two assumptions have two implications that dramatically simplify our analysis. First,

the economy is in a deterministic steady state before the realization of the aggregate shock. Sec-

ond, the response to an aggregate shock can be studied using the sequence space Jacobian (Auclert

et al. 2021) around the deterministic steady state.
11
We describe the details of the computational

algorithm in Appendix B.3.

We compare the response of constrained efficient allocation to those in the status quo econ-

omy. We continue to assume that the only available asset in the status quo economy is state

non-contingent bonds. This implies that the response to the above shock is the same as the re-

10
Mukoyama (2021) clarifies this difference in detail.

11
Similar approaches appear in the context of optimal risk-sharing contracts (Fukui 2020) and endogenous port-

folio choice (Auclert et al. 2024).
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Figure 4: Population Response to 1% Reduction in Massachusetts Productivity

Note: The figure plots the response of Massachusets population in response to 1% permanent

negative productivity shock to Massachusetts. The blue line is the status quo economy, and

the red line is the constrained efficient allocation.

sponse to an “MIT shock,” and therefore, the first-order response can be obtained by applying the

sequence space Jacobian methodology in Auclert et al. (2021).

Figure 4 shows the result in response to 1% permanent negative productivity shock to Mas-

sachusetts. We find that the constrained efficient allocation involvesmore population reallocation

in the short-run and less reallocation in the long-run, relative to the status-quo economy with

exogenously incomplete market.

5.2 Spectrum Analysis and the Speed of Convergence

6 Concluding Remarks

To be written.
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A Theory Appendix

A.1 Lagrangian of the Recursive Planning Problem

Let Pit, wit, and witαit denote the Lagrangian multipliers of (10), (11), and (12), respectively. Let

St(ϕ) denote the associated Lagrangian of the problem (7). It is given by

St(ϕ) = max
{Cit(v,ϵ),ℓni (ϵ),ℓi(v,ϵ),v

n′
j (ϵ),v′ij(v,ϵ),lji,ϕ

′,Li,Pit,wit,αit}

∑
i

Λiv
n
i (1− ω)

∫
dϕi

+
∑
i

Pitfit({lki}k ; {Lk}k)−
∑
i

Pit

∫
Cit(v)dϕi

+
∑
i

wit

∫
dϕi −

∑
i

wit

∑
j

lij

+
∑
i

αitwit

∫
dϕi −

∑
i

Li

+
1

R
St+1(ϕ

′)

(A.1)

subject to

vni = βEit

[∑
j

I[ℓni (ϵ) = j]
{
vn′ij (ϵ) + ϵi,j

}]
(A.2)

v = ui(Cit(v)) + βωEit

[∑
j

I[ℓi(v, ϵ) = j]
{
v′ij(v, ϵ) + ϵi,j

}]
(A.3)

and the law of motion of the distribution

ϕ′
j(V) = ω

∑
i

Eit

[
ϕi(v

−1
ij (V, ϵ))I[ℓi(v−1

ij (V, ϵ), ϵ) = j]
]

+ (1− ω)

∫
dϕiEit

[
I[ℓni (ϵ) = j]I[vn′ij (ϵ) ∈ V]

]
.

(A.4)

We now guess and verify that the value function takes the following form:

St(ϕ) =
∑
i

∫
Sit(v)dϕi +Dt. (A.5)

First, observe that the flow value in (A.1) is additively separable in ϕi and i. Second, under the
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guess, the continuation value can be rewritten as

1

R
S(ϕ′) =

1

R
ω
∑
i

Eit

[∑
j

I[ℓi(v, ϵ) = j]Sjt(v
′
ij(v))

]

+
1

R
(1− ω)

∑
i

Eit

[∑
j

I[ℓni (ϵ) = j]Sjt(v
n′

ij )

]. (A.6)

With these observations, it is immediate to see that the guess satisfies the Bellman equation (A.1)

with Sit(v) solving (18) and Dt solving (15).

A.2 Proofs

A.2.1 Proof of Proposition 1

Let Ξi be the Lagrangian multiplier on the promise-keeping constraint (19). The first-order con-

dition with respect to v′ij(ϵ) is given by

1

R
∂vSjt+1(v

′
ij(ϵ)) + βΞi = 0. (A.7)

The first-order condition with respect to Cit is

Pit = u′i(Cit)Ξi. (A.8)

The envelope condition is

∂vSit(v) = −Ξi. (A.9)

Combining the above three expressions, we have

− 1

R

Pjt+1

u′j(Cjt+1)
+ β

Pit

u′i(Cit)
= 0, (A.10)

which is (22).

The location choice maximizes the Lagrangian:

ℓi(v, ϵ) ∈ argmax
l
βωΞi[vilt+1(v, ϵ), ϵ) + ϵil] +

1

R
Slt+1(vil(v, ϵ)). (A.11)

Substituting the expression for Ξi in (A.9) gives (23).
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A.2.2 Proof of Proposition 2

Let Ξjt be the Lagrangian multiplier on the promise-keeping constraint (32). The first order

conditions are

Ξitu
′
i(Cit) = Pit (A.12)

1

R
µim∂v′imSmt+1(v

′
im) + Ξitβµim +

1

R

∑
k

∂µik

∂v′im
Skt+1(v

′
k) = 0 (A.13)

The envelope condition is

∂vSit(v) = −Ξit. (A.14)

Combining the three equations,

− 1

R
µim

Pmt+1

u′m(Cmt+1)
+

Pit

u′i(Cit)
βµim +

1

R

∑
k

∂µik

∂v′m
Skt+1(v

′
k) = 0 (A.15)

Rewriting the above equation,

µim

[
βR

u′m(Cmt+1)/Pmt+1

u′i(Cit)/Pjt

− 1

]
+
∑
k

∂µik

∂Cmt+1

Skt+1(v
′
k)

Pmt+1

= 0, (A.16)

as desired.
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A.2.3 Proof of Proposition 3

The planning problem in a recursive form is

St({vit, Lit}) = max
{vj ,vni ,Cit,µij}

∑
i

[wit (1 + αit)− PitCit]Lit (A.17)

+ (1− ω)
∑
i

Ξiv
n
i Lit +

1

R
St+1({vjt+1, Ljt+1}) (A.18)

s.t. vit = ui(Cit) + βω

[∑
j

µijvjt+1 − ψ({µij}j)

]
(A.19)

vnit = β

[∑
j

µijvjt+1 − ψ({µij}j)

]
(A.20)

µij ∈ arg max
{µij}j

∑
j

µijvjt+1 − ψ({µij}j) (A.21)

Ljt+1 =
∑
k

Lktµkjt+1 (A.22)

Let κitLit be the Lagrangian multiplier on constraint (A.19). The first-order condition w.r.t. vj is

1

R

[
∂St+1

∂vjt+1

+
∑
k

∂µikt

∂vj
Lit

∂S
∂Lkt+1

]
+ β

∑
i

(ωκit + (1− ω)Ξi)Litµij = 0. (A.23)

The first-order condition w.r.t. Cjt is

Pjt = κjtu
′(Cjt) (A.24)

The envelope conditions are

∂St

∂vjt
= −κjtLjt (A.25)

∂St

∂Ljt

= wjt − PjtCjt + (1− ω)Ξjv
n
j +

1

R

∑
k

µjkt
∂St+1

∂Lkt+1

(A.26)

Combining the above expressions,

1

R

[
− Pjt+1

u′(Cjt+1)
Ljt+1 +

∑
k

∂µikt

∂vj
LitSkt+1

]
+ β

∑
i

(
ω

Pit

u′(Cit)
+ (1− ω)Ξi

)
Litµij = 0,

(A.27)
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which we can further rewrite as

∑
i

Lit

[
µij

[
βRω

u′(Cjt+1)/Pjt+1

u′(Cit)/Pit

+ βR(1− ω)Ξi
u′(Cjt+1)

Pjt+1

− 1

]
+
∑
k

∂µikt

∂Cj+1

Skt+1

Pjt+1

]
= 0.

(A.28)

A.2.4 Proof of Corollary 1

We divide both sides of the expression in Proposition 2 by uj(Cjt+1)/Pjt+1 to obtain

µijt

[
βR

1

u′i(Cit)/Pit

− u′j(Cjt+1)/Pjt+1

]
+
∑
k

∂µik

∂Cjt+1

u′j(Cjt+1)Skt+1(v
′
ik) = 0, (A.29)

We further rewrite this as

µijt

[
βR

1

u′i(Cit)/Pit

− u′j(Cjt+1)/Pjt+1

]
+
∑
k

∂µik

∂ujt+1

Skt+1(v
′
ik) = 0, (A.30)

where ujt+1 ≡ uj(Cjt+1). With a slight change in notation, we can equivalently express house-

hold’s migration decisions as

Vit = max
{µik}k

∑
µik

µik[uk(Ckt+1) + βωVkt+1]− ψ({µik}k) (A.31)

From this expression, uniformly increasing ujt+1 for all j would not affect the choice probability:∑
j

µik

∂ujt+1

= 0 (A.32)

for all i, k.

Using this property and summing (A.30) across j, we have

βR
1

u′i(Cit)/Pit

−
∑
j

µiju
′
j(Cjt+1)/Pjt+1 +

∑
k

Skt+1(v
′
ik)
∑
j

∂µik

∂ujt+1︸ ︷︷ ︸
= 0

= 0, (A.33)

so that

1

u′i(Cit)/Pit

=
1

βR
Eit

[
u′j(Cjt+1)

Pjt+1

]
, (A.34)

as desired.
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A.3 Decentralization

We present one example of implementation with no private savings, either because households

do not have access to the credit market or because the government bans private savings. The

underlying environment remains the same as described in Section 2. Here we focus on explaining

the market structure.

The households supply labor in each location i at wage wit. The price of final goods in each

location is Pit. Let ℓt ∈ {1, . . . , J} denote the location of living at time t, and let ℓt denote

the history of location of living of any household. The government sends transfers Tt(ℓ
t) as a

function of history of living locations.

The household problem in a recursive form is

vjt(ℓ
t) = max

Cjt,{µjk}k
ujt(Cjt) + βω

[∑
k

µjkvkt+1({ℓt, k})− ψ({µjk})

]
(A.35)

s.t. PjtCjt = wjt + Tt(ℓ
t). (A.36)

Let Cjt(ℓ
t) and µjkt(ℓ

t) denote the policy functions associated with the above problem.

The firm takes prices and population size {Lkt}k as given. The profit maximization problem

of firm in location i is

max
{lkjt}k

Pjtfjt({lkjt}, {Lkt}k)−
∑
k

wktlkj. (A.37)

Here, agglomeration/congestion forces are externalities that are not internalized by private agents.

The government budget constraint is ∑
ℓt

Tt(ℓ
t) = 0. (A.38)

LetΦ(ℓt) denote the measure of households with history ℓt. The goods market clearing condition

is ∫
Cjt(ℓ

t)dΦ = fjt({lkjt}, {Lkt}k). (A.39)

The factor market clearing condition is

∑
j

lkjt =

∫
I[ℓt = k]dΦ = Lkt. (A.40)
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The distribution evolves according to the following law of motion:

Φt+1({ℓt, k}) = µℓtkt(ℓ
t)Φt(ℓ

t). (A.41)

In the above decentralized equilibrium, appropriate choice of the transfer system Tt(ℓ
t) im-

plements the constrained efficient allocation characterized in Proposition 2. To see this, first note

that the continuation value in the constrained efficient allocation is only depends on location

of living in the next period and the promised utility. Therefore, given the initial location that

each household is born, the promised value is only a function of the history of living locations.

Let v(ℓt) denote the promised value with a history of living location ℓt. Then, Cℓtt(v(ℓ
t)) is the

consumption of households currently in location ℓt with a history ℓt in the constrained efficient

allocation.

Consider the following transfer system:

Tt(ℓ
t) = PℓttCℓtt(v(ℓ

t))− wℓtt. (A.42)

From the budget constraint, it is immediate to see that such transfer system implements the con-

strained efficient allocation as long as {Pjt, wjt}j in the decentralized equilibrium coincide with

those in the constrained efficient allocation. In fact, they do. To see why, the migration proba-

bilities are identical given {Pjt, wjt}j . The optimality conditions of (A.39) is identical to (16) in

the constrained efficient allocation. The market clearing conditions and the evolution of the dis-

tribution are identical in both economies by construction. Finally, the government budget (A.38)

is satisfied in Warlas’ law. Given that all the conditions in two economies coincide, the transfer

scheme (A.42) implements the constrained efficient allocation as a decentralized equilibrium.

A.4 Capital Accumulation

We now introduce capital accumulation in the baseline model. Assume that in each location j,

there is a capital stock denoted asKjt. The production function of the final goods at location j is

now given by

Yjt = fjt({lkjt}k, {kkjt}k, {Lkt}k), (A.43)

where kkjt denotes the use of capital stock from location k in location j. The capital stock in

location j at time t depreciates at rate δjt, but the final goods in location j can be invested into
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the capital stock in the same location. The law of motion of capital stock in location j is

Kjt+1 = Kjt(1− δjt) + Ijt, (A.44)

where Ijt is the investment. The investment incurs the adjustment cost of the form Ψjt(Ijt, Kjt)

in the units of final goods in location j. The capital market clearing condition is∑
k

kjkt = Kjt. (A.45)

The goods market clearing condition in location j is modified as∫ 1

0

Cjt(h)dh+ Ijt +Ψjt(Ijt, Kjt) = fjt ({lkjt}k, {kkjt}k, {Lkt}k) . (A.46)

The rest of the environment remains unchanged.

In this environment, there is no change in the component planning problem (31) and (34).

The only change comes fromDt in (14). Let rjt be the Lagrangian multiplier on (A.45). The term

Dt now includes the distribution of capital stock in each location as a state variable and is given

by

Dt({Kjt}) = max
{lij ,kij ,Li,Kjt+1}

∑
i

Pitfit ({lki}k, {kki}k, {Lk}k)−
∑
i

wit

∑
j

lij (A.47)

−
∑
i

αitwitLi −
∑
i

ritKit −
∑
i

rit
∑
j

kijt −
∑
i

Pit [Iit +Ψit(Iit, Kit)] (A.48)

+
1

R
Dt+1({Kjt+1}). (A.49)

s.t. Kjt+1 = Kjt(1− δjt) + Ijt. (A.50)

The first-order conditions with respect to lij and Li remain essentially the same as in the main

text:

Pit
∂fit ({lkit}k, {kkit}k, {Lkt}k)

∂lki
= wkt (A.51)∑

i

Pit
∂fit ({lkit}k, {kkit}k, {Lkt}k)

∂Lk

= αktwkt. (A.52)

The optimality condition of spatial allocation of capital services kij is given by

Pit
∂fit ({lkit}k, {kkit}k, {Lkt}k)

∂kki
= rkt. (A.53)
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The first-order condition with respect to investment Ijt is

Pjt (1 + ∂IΨjt(Ijt, Kjt)) =
∂Dt+1({Kjt+1})

∂Kjt+1

. (A.54)

The envelope condition is

∂Dt({Kjt})
∂Kjt

= rjt − Pjt∂KΨjt(Ijt, Kjt) + (1− δ)
1

R

∂Dt+1({Kjt+1})
∂Kjt+1

. (A.55)

Let

qjt ≡
∂Dt({Kjt})

∂Kjt

(A.56)

be the “marginal q” of capital stock in location j at time t. Using this expression, we can equiva-

lently write (A.54) and (A.55) as

Pjt (1 + ∂IΨjt(Ijt, Kjt)) = qjt+1. (A.57)

and

qjt = rjt − Pjt∂KΨjt(Ijt, Kjt) + (1− δ)
1

R
qjt+1. (A.58)

Therefore, optimal investment follows similarly to what is prescribed by the q-theory of invest-

ment.

A.5 Ex-Ante Heterogeneous Household Types

In the baseline model, we have assumed that households are ex-ante homogeneous. We now

consider an extension of the baseline model to multiple ex-ante heterogeneous household types.

There are M heterogeneous household types (e.g., race, skills, or gender). Each household

belongs to one of the types indexed by θ ∈ {θ1, . . . , θM}, each of which has a mass ℓθ. We

allow arbitrary heterogeneity across households with respect to θ including preferences, location

preference shock distribution, and death probability. When a household of type θ dies, they are

replaced by a newborn of the same type, so the mass of type θ remains fixed at ℓθ. Importantly,

we assume the ex-ante types are observable to the planner.

The technology to produce the final goods consumed by the household θ in location j at time
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t is

Y θ
jt = f θ

jt({l
θ̃,θ
kjt}j,θ̃, {L

θ̃
kt}k,θ̃), (A.59)

where lθ̃,θkjt denotes the labor services of type θ̃ shipped from location k to j used to produce final

goods for consumption goods of type θ, and Lθ
it is the population size of households of type θ in

location i at time t. Here, we allow for agglomeration/congestion forces to depend arbitrarily on

the population size of different household types.

The planner’s objective is to maximize the following social welfare function:

W0 =
∞∑
t=0

1

Rt

J∑
i=1

Λθ
i v

θ,n
it (1− ωθ)

∫ 1

0

I[ℓθt (h) = i]dh, (A.60)

where Λθ
i is the welfare weight attached to household of type θ born in location i.

Let φθ
j be the distribution over promised utility of households of type θ living in location j.

The goods market clearing condition for consumption goods of type θ is∫
Cθ

jt(v)
θdϕθ

j = f θ
jt({l

θ̃,θ
kjt}j,θ̃, {L

θ̃
kt}k,θ̃). (A.61)

The labor market clearing condition for type θ is

∑
k,θ̃

lθ,θ̃jkt =

∫
I[ℓθt (v, ϵ) = j]dϕθ

j , (A.62)

and the following equation dictates the agglomeration forces:∫
I[ℓθt (v, ϵ) = j]dϕθ

j = Lθ
jt. (A.63)

The evolution of distribution is

ϕθ′

j (V) = ωθ
∑
i

Eθ
it

[
ϕθ
i (v

θ,−1
ij (V, ϵ))I[ℓθi (v

θ,−1
ij (V, ϵ), ϵ) = j]

]
+ (1− ωθ)

∫
dϕθ

iEθ
it

[
I[ℓn,θi (ϵ) = j]I[vθ,n′ij (ϵ) ∈ V]

]
.

(A.64)

Given all these environments, the value function Dt in (15) in the main text is now replaced
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by

Dt = max
{lθ̃,θij ,Lθ

i }

∑
i,θ

P θ
itf

θ
it({l

θ̃,θ
ki }k,θ̃ ; {L

θ̃
k}k,θ̃)−

∑
i,θ

wθ
it

∑
j,θ̃

lθ,θ̃ij −
∑
i,θ

αθ
itw

θ
itL

θ
i +

1

R
Dt+1, (A.65)

where P θ
jt, w

θ
jt, and α

θ
jt are Lagrangian multipliers on (A.61), (A.62), and (A.63). The first-order

optimality conditions are

P θ
it

∂f θ
it({l

θ̃,θ
ki }k,θ̃ ; {Lθ̃

k}k,θ̃)

∂lθ̃,θki

= wθ
kt (A.66)

∑
i,θ

P θ
it

∂f θ
it({l

θ̃,θ
ki }k,θ̃ ; {Lθ̃

k}k,θ̃)
∂Lθ

k

= αθ
ktw

θ
kt. (A.67)

The component planning problems are essentially the same as (31) except that now everything

is indexed by θ:

Sθ
it(v) = max

{Cθ
it,v

θ′
ij ,µ

θ
ij}
wθ

it (1 + αθ
it)− P θ

itC
θ
it + (1− ωθ)Sθ,n

it +
1

R
ωθ
∑
j

µθ
ijS

θ
jt+1

(
vθ

′

ij

)
(A.68)

s.t. v = uθi (C
θ
it) + βθωθ

[∑
j

µθ
ijv

θ′

ij − ψθ
it({µθ

ij}j)

]
(A.69)

{µθ
ij}j ∈ arg max

{µ̃θ
ij}j

βθωθ

[∑
j

µ̃θ
ijv

θ′

ij − ψθ
it({µ̃ij}j)

]
(A.70)

and the following replaces (34):

Sθ,n
it = max

vθ,ni ,{vθ,nij ,µθ,n
ij }

Λθ
i v

θ,n
i +

1

R

∑
j

µθ,n
ij S

θ
jt+1(v

θ,n
ij ) (A.71)

s.t. vθ,ni = βθ
∑
j

[
µijv

θ,n′
ij − ψθ

it({µ
θ,n
ij }j)

]
(A.72)

{µθ,n
ij }j ∈ arg max

{µ̃θ,n
ij }

βθ
∑
j

[
µ̃θ,n
ij v

θ,n′
ij − ψθ

it({µ̃
θ,n
ij }j)

]
. (A.73)

The following formula is analogue of Proposition 2:

µθ
ijt

[
βθR

uθ′j (C
θ
jt+1)/P

θ
jt+1

uθ′i (C
θ
it)/P

θ
it

− 1

]
+
∑
k

∂µθ
ik

∂Cθ
jt+1

Sθ
kt+1(v

θ′
ik)

P θ
jt+1︸ ︷︷ ︸

≡ ξθijt

= 0. (A.74)
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A.6 Lagged Agglomeration/Congestion Forces

In the baseline model, we assumed that agglomeration/congestion forces only depend on the

contemporaneous population size distribution. We now allow for the agglomeration/congestion

forces to depend on the lagged population size distribution.

The only modification is that now the production function takes the following form:

Yjt = fjt
(
{lkjt}k, {Lt

kt}k, {Lt
kt−1}k, . . . , {Lt

kt−TL}k
)
, (A.75)

which replaces (3) in the main text. Here Lt
kt−s denotes the population size in location k at time

t − s that enters as agglomeration/congestion forces for production at time t. We allow for the

population size of t − 1, . . . , t − TL
with TL ≥ 1 enters the production function. The lagged

population sizes are defined as

Lt
jt−s =

∫
dϕjt−s for s = 1, . . . , TL. (A.76)

Let αt
jt−swjt be the Lagrangian multiplier on the above equation.

Given all these modification, the value functionDt in (15) in the main text is now replaced by

Dt = max
{lij ,Li}

∑
i

Pitfjt

(
{lkjt}k, {Lt

kt}k, {Lt
kt−1}k, . . . , {Lt

kt−T}k
)
−
∑
i

wit

∑
j

lij (A.77)

−
TL∑
s=0

∑
i

αt
it−switL

t
it−s +

1

R
Dt+1. (A.78)

The first-order optimality conditions are

Pit
∂fit
∂lki

= wkt (A.79)∑
i

Pit
∂fit
∂Lkt−s

= wkt−sα
t
kt−s. (A.80)

The value function Sit(v) now takes into the fact that increasing current population size of a

44



location changes the technology in the future:

Sit(v) = max
{Cit,v′ij ,µij}

wit

[
(1 + αit) +

∑TL

s=1

1

Rs
αt+s
it

]
− PitCit + (1− ω)Sn

it +
1

R
ω
∑
j

µijSjt+1

(
v′ij
)

s.t. v = ui(Cit) + βω

[∑
j

µijv
′
ij − ψit({µij}j)

]

{µij}j ∈ arg max
{µ̃ij}j

βω

[∑
j

µ̃ijv
′
ij − ψit({µ̃ij}j)

]
.

The value function for newborns Sn
it(v) remains unchanged and is given by (34).
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B Quantitative Appendix

B.1 Details on Calibration

The aggregate trade flow from location i to j, denoted as xij ≡ wilij , is given by

xij =
(wi/Aij(Li))

1−σ∑
k(wk/Akj(Lk))1−σ

∫
PjCj(a)dφj. (B.1)

Taking the ratio of xij to xjj , we have

xij
xjj

=
(wi/Aij(Li))

1−σ

(wj/Ajj(Lj))1−σ
, (B.2)

which we can rewrite as

1

Aij(Li)
=

(
xij
xjj

) 1
1−σ wj

wi

1

Ajj(Lj)
(B.3)

The price index of location j is

Pj =

[∑
i

(wi/Aij(Li))
1−σ

] 1
1−σ

(B.4)

=

∑
i

((
xij
xjj

) 1
1−σ wj

wi

1

Ajj(Lj)
wi

)1−σ
 1

1−σ

(B.5)

=
wj

Ajj(Lj)

1

(xjj)
1

1−σ

[∑
i

xij

] 1
1−σ

(B.6)

=
wj

AjjLα
j

1

(xjj)
1

1−σ

[∑
i

xij

] 1
1−σ

, (B.7)

where we used (B.9) in the second line. As a result, conditional on the choice of (σ, α), we can

infer Ajj given the data on trade flows {xij}, price index {Pj}, population size, Lj , and output

per capita, wj =
∑

j xij/Li:

Ajj =
wj

PjLα
j

1

(xjj)
1

1−σ

[∑
i

xij

] 1
1−σ

. (B.8)
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With {Ajj} in hand, we also infer all {Aij} using (B.9):

Aij =
1

Lα
i

(
xjj
xij

) 1
1−σ wi

wj

AjjL
α
j . (B.9)

We choose the remaining parameter values, {χij}, a, β, by repeatedly solving the model to

exactly match (i) migration flows in the data, (ii) the steady-state real interest rate of 2%, and (iii)

the marginal propensity to consume of 0.3. We normalize χii = 1 for all i, since what matters for

the migration decision is χij/χii. In calibrating the migration cost, we use the following updating

rule. Given the guess of {χo
ijld}, we can solve the model to obtain the aggregate migration flows

from region i to j:

µmodel
ij ≡

∫
µij(a)dφi. (B.10)

Given the data on migration probabilies in the data, µdata
ij , we update χij as follows

χnew
ij = ξ

µdata
ij

µmodel
ij

χold
ij + (1− ξ)χold

ij , (B.11)

where ξ ∈ (0, 1] is the degree of updating. For β and a, we update using the bisection method.

B.2 Computational Algorithms

We describe the computational algorithm to solve the satus quo economy and the constrained

efficient allocation. For both cases, we describe the algorithm for the steady state. The algorithm

for the transitions are similar with everything indexed by time t.

B.2.1 Computational Algorithm for Status Quo Economy

In the steady state, households solve

vj(at) = max
Cj ,{µjk}k,a′≥a

uj(Cj) + βω

[∑
k

µjkvk(a
′)− ψ({µjk})

]
(B.12)

s.t. PjCj + a′ = (1 + r)at + wj + Tj. (B.13)

The first-order condition is

u′j(Cj)/Pj ≥ βω

[∑
j

µjk∂avk(a
′)

]
(B.14)
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with equality whenever a′ > a.

For the inner problem, where we solve the Bellman equation givne prices, we proceed as

follows. The algorithm extends the endogenous gridpointmethod by Carroll (2006) to incorporate

dynamic discrete choices. Let A ≡ [a1, . . . , aI ] denotes the gridpoints in assets.

1. For each grid point in a′ ∈ A, guess {vk(a′)}.

2. Given {vk(a′)}, one can computemigration probabilities conditional on saving a′ by solving

{µEGM
jk (a′)}k ∈ argmax

{µjk}

∑
k

µjkvk(a
′)− ψ({µjk}) (B.15)

for each j and a′ ∈ A.

3. Assuming the first-order condition holds with equality, invert the consumption using

CEGM
j (a′) = u

′−1
j

(
Pjβω

[∑
j

µEGM
jk (a′)∂avk(a

′)

])
(B.16)

for each j and a′ ∈ A. Then, we are able to obtain the current asset level that is consistent

with next period saving a′ and non-binding borrowing constraint.

aEGM
j (a′) =

1

1 + r

(
a′ + PjC

EGM
j (a′)− wj − Tj

)
. (B.17)

4. For a such that a ≤ aEGM
j (a), the borrowing constraint is binding. Therefore, we recover

the saving policy functions as follows.

a′j(a) =

a
EGM,−1
j (a) if a > aEGM

j (a)

a if a ≤ aEGM
j (a)

, (B.18)

where aEGM,−1
j denote the inverse function of aEGM

j (a).

5. The migration policies are givne by

µjk(a) = µEGM
jk (a′j(a)). (B.19)

and the consumption function is

Cj(a) =
1

Pj

(
(1 + r)a+ wj − a′j(a)

)
. (B.20)
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Now we can update the value function as

vnewj (a) = uj(Cj(a)) + βω

[∑
k

µjk(a)vk(a
′
j(a))− ψ({µjk(a)})

]
(B.21)

If |vnewj (a)− vj(a)| < tol, we are done. Otherwise, go back to 2 with vj(a) = vnewj (a).

The outer problem iterates over prices {r, {wj,, Pj}j}. We divide the outer problem in two

layers. In the inner layer, we iterate over r to clear the bond market. In the outer layer, we iterate

{wj} to clear the final goods market for each location.

1. Guess {wj, Lj}, where we take location 1’s wage as numeraire, w1 = 1, and Lj is the

population size of location j.

2. Given {wi, Li}, compute the price indices in each location:

Pj =

[∑
i

(
wi

Aij Lα
i

)1−σ
]1/(1−σ)

(B.22)

3. Given {wj}, iterate over r or β until the bond market clears,

∑
j

∫
adφj ≈ 0. We use

bisection to update r or β. We iterate over r when we solve for the counterfactual. We

iterate over β when we calibrate β to match the target interest rate r.

4. We then update wages {wj} and population size {Lj} as follows. Given the implied distri-

bution φj and consumption policy functions Cj(a) from the guess {wj}, we compute

wnew
i = ξw

[
1

Li

∑
j

(1/(AijL
α
i ))

1−σ∑
(wl/(AljLα

l ))
1−σ

∫
PjCj(a)dφj

] 1
σ

+ (1− ξw)wj (B.23)

Lnew
i = ξL

∫
dφi + (1− ξL)Li (B.24)

where ξ ∈ (0, 1] is the degree of updating. If |wnew
i − wi| < tol and |Lnew

i − Li| < tol for

all i, we are done. Otherwise, set wi := wnew
i and Li := Lnew

i and go back to step 1.

Practically, the above algorithm finds the equilibrium prices orders of magnitude faster thanmore

conventional algorithms such as Newton’s method.

B.2.2 Computational Algorithm for Constrained Efficient Allocation

Throughout, we impose the parametric functional form (56) that we use in the quantitative ex-

ercise. We first derive the optimality conditions under the function form of (56), which will be
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useful for our computation. We then explain howwe can efficiently solve the constrained efficient

allocation on the computer.

The problem in the steady state is

Si(v) = max
{vij ,Cit,µij}

wi (1 + αi)− PiCi + (1− ω)Sn
i +

1

R
ω
∑
j

µijSj(vij) (B.25)

s.t. v = ui(Ci) + βω

[∑
j

µijv
′
ij − ψi({µij}j)

]
(B.26)

{µij}j ∈ arg max
{µ̃ij}j

∑
j

µ̃ijv
′
ij − ψi{µ̃ij}j) (B.27)

and the value of the newborn in the steady state is

Sn
i = max

vni ,{vnij ,µn
ij}

Λiv
n
i +

1

R

∑
j

µn
ijSj(v

n
ij) (B.28)

s.t. vni = β
∑
j

[
µijv

n′
ij − ψi({µn

ij}j)
]

(B.29)

{µn
ij}j ∈ argmax

{µ̃n
ij}
β
∑
j

[
µ̃n
ijv

n′
ij − ψi({µ̃n

ij}j)
]
, (B.30)

A challenge in numerically solving the above problem is the dimensionality of the control

variables. We need to optimize over continuation value for each location. However, we show

below that with our functional form assumption (56), the problem essentially collapses to a one-

dimensional optimization problem.

We first describe the problem for the incumbent generation (B.25). We solve for Cj to rewrite

the problem as

Si(v) = max
{vij ,Cit,µij}

wi (1 + αi)− PiCi + (1− ω)ΛiS
n
i +

1

R
ω
∑
j

µijSj(vij) (B.31)

s.t. Ci = u−1
i

(
v − βω

[∑
j

µijv
′
ij − ψi({µij}j)

])
(B.32)

{µij}j ∈ arg max
{µ̃ij}j

∑
j

µ̃ijv
′
ij − ψi({µ̃ij}j) (B.33)

The first-order conditions with respect to v′im are

ω

R
µim∂vSm(v

′
im) +

Pj

u′i(Ci)
βωµim +

ω

R

∑
k

∂µik

∂v′m
Sk(v

′
k) = 0, (B.34)
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where we have omitted the dependence for brevity. Under the logit specification (56), we have

∂µjk

∂v′m
=

θµjk (1− µjk) for k = m

−θµjkµjm for k ̸= m
(B.35)

Therefore, the FOC simplifies to

∂vSm(v
′
im) + βR

Pi

u′i(Ci)
+ θSm(v

′
im)− θ

∑
k

µikSk(v
′
ik) = 0. (B.36)

From this expression, the policy functions must satisfy:

∂vSm(v
′
im(v)) + θSm(v

′
im(v)) = ∂vSn(v

′
in(v)) + θSm(v

′
in(n)) (B.37)

= θ
∑
k

µikSk(v
′
ik(v))− βR

Pi

u′i(Ci(v))
(B.38)

≡Mi(v) (B.39)

for allm and n. This observation leads to a substantial simplification. Instead of optimizing over

{vim(v)}m, we instead optimize over a one-dimensional objectMi(v). Given the guess ofMi(v),

we can immediately obtain vim(v) by solving

∂vSm(v
′
im(v)) + θSm(v

′
im(v)) =Mi(v) (B.40)

for each m. Once we obtain {vim(v)}m, we can obtain {µim(v)}m using (B.33). With {vim(v)}m
and {µim(v)}m in hand, consumption is residually determined from the promise-keeping con-

straint (B.32):

Ci(v) = u−1
i

(
v − βω

[∑
j

µij(v)v
′
ij(v)− ψi({µij(v)}j)

])
. (B.41)

Given all the steps for a given guess of Mi(v), we can search for the optimal Mi(v) using the

standard one-dimensional optimization routine such as Brent method. In practice, we can obtain

further speed gain with the endogenous grid point method by Carroll (2006). Below, we describe

the algorithm for value function iteration that relies on the endogenous grid point method.

The newborn’s problem (B.28) can be solved similarly, or is even simpler. The first-order
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condition with respect to vn′im is

∂vSm(v
n′

im) + βRΛi + θSm(v
n′

im)− θ
∑
k

µn
ikSk(v

n′

ik ) = 0, (B.42)

which is analogous to (B.36). Therefore, it must be that

∂vSm(v
n′

im) + θSm(v
n′

im) =Mn
i (B.43)

for someMn
i . For a given guess ofMn

i , we can find the continuation value vn
′

im that is consistent

withMn
i for all m by inverting (B.43). Given vn

′
im, we can find the migration probabilities using

the incentive compatibility constraint (B.30).

Algorithm. We first describe the algorithm for solving the Bellman equation for given vec-

tor of {wi, Pi}i. Note that with out functional form assumption (54), αi is exogenously fixed

at α. The outer loop updates {wi, Pi}, which we describe later. We let V ≡ [v1, . . . , vNV
] de-

note the grid point of the promised utility. We let M denote the grid points for Mit(v) ∈ M ≡
[M1,M2, . . . ,MNM

].

1. Guess the value function Sit(v).

2. For each i = 1, . . . , J ,

(a) For eachm ∈ M

i. Compute vEGM ′
im (M) that is consistent with (B.40) withMit(v) =M :

∂vSm(v
EGM ′
im (M)) + θSm(v

EGM ′
im (M)) =M, (B.44)

for eachm = 1, . . . , J .

ii. Using {vEGM ′
im (M)}m obtained from the previous step, compute {µEGM

im (M)}m
using (B.33) associated with v′im = vEGM ′

im (M).

iii. Find Ci(M) that is consistent with the optimality conditions (B.38) and (B.39):

CEGM
i (M) = u

′−1
i

(
βRPi

[θ
∑

k µ
EGM
ik (M)Sk(vEGM ′

ik (M))−M ]

)
. (B.45)

iv. Now we can find the value of today’s promised utility v that is consistent with
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M using the promise keeping constraint (B.32):

vEGM
i (M) = ui(C

EGM
i (M)) + βω

[∑
j

µEGM
ij (M)vEGM ′

ij (M)− ψi({µEGM
ij (M)}j)

]
(B.46)

(b) Now we invert the mapping of vEGM
i (M) to obtain the optimal M for each v ∈ V:

Mi(v) ≡ vEGM,−1
i (M). WithMi(v) for each v ∈ V in hand, we can compute all the

associate policy functions from the previous step.

(c) For newborn’s problem (B.28), we simply optimize overMn
i and finds associated con-

tinuation values {vn′
im}m using (B.43) to maximize the right hand side of (B.28) to

obtain Sn
it.

(d) Now we can update the value function:

Snew
i (v) = wi (1 + αi)− PiCi(v) + (1− ω)ΛiS

n
i +

1

R
ω
∑
j

µij(v)Sj(v
′
ij(v)) (B.47)

3. If |Sit(v)
new − Sit(v)| < tol for all i and v ∈ V, the value function has converged. If not,

update the value function, Sit(v) := Sit(v)
new

and go back to step 2.

The outer loop updates Lagrangian multipliers {wi, Pi}. We proceed as follows.

1. Guess {wi, Li}, where Li is the population size of location i.

2. Given {wi, Li}, compute the implied {Pj} with the CES price index:

Pj =

[∑
i

(
wi

Aij Lα
i

)1−σ
]1/(1−σ)

(B.48)

3. With {wi, Pi} in hand, solve the Bellman equation using the algorithm described above.

This gives us the consumption policy function {Cj(v)} and the steady-state distribution

associated with the policy function, {ϕj}j .

4. We then update wages {wj} and population size {Lj} as follows. Given the distribution ϕj
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and consumption policy functions Cj(a) from the guess {wj}, we compute

wnew
i = ξw

[
1

Li

∑
j

(1/(AijL
α
i ))

1−σ∑
(wl/(AljLα

l ))
1−σ

∫
PjCj(v)dϕj

] 1
σ

+ (1− ξw)wj (B.49)

Lnew
i = ξL

∫
dφi + (1− ξL)Li (B.50)

where ξ ∈ (0, 1] is the degree of updating. If |wnew
i − wi| < tol and |Lnew

i − Li| < tol for

all i, we are done. Otherwise, set wi := wnew
i and Li := Lnew

i and go back to step 2.

B.3 Aggregate Shock

For notational simplicity, we drop x superscript and let t denote the time elapsed since the arrival

of the aggregate shock instead. Note that with our assumption of p → 0, the economy is in the

deterministic steady state before the arrival of the shock. We let t = 0 to denote the deterministic

steady state.

The first-order condition with respect to v′j1 is

p
1

R1
t

dSj1(v
1′
j )

dv′j1
+ p

1

R1
t

∑
k

∂µ1
jk

∂v1′j
Skt+1(v

1′
k ) + p

Pjt

u′(Cjt)
µ1
ji = 0. (B.51)

Given the path of Lagrangian multipliers {P x
j , w

x
j , α

x
j }∞x=1, which we denote in vector format

(stacking both j and x), {P ,w,α}, the first-order condition described above, together with the

incentive compatibility and promise-keeping constraints, determines the sequence of policy func-

tions following the shock: {vx′
ij (v), µ

x
ij(v), C

x
j (v)}∞x=1. These policy functions, in turn, determine

the evolution of distribution, {ϕx
j }∞x=1. Notice that even when p → 0, the optimality condition

(B.51) is well defined, as p cancels out.

Likewise, given the sequence of Lagrangian multipliers, {P ,w,α}, the following optimality

conditions pin down {lxij, Lx
j }∞x=1:

P x
i

∂fx
i

∂lxki
= wx

k (B.52)∑
i

P x
i

∂fx
i

∂Lx
k

= wx
k (B.53)

for all i, k

The sequences of Lagrangian multipliers, {P ,w,α}, are determined to satisfy the following
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three conditions:

0 =

∫
Cx

i (v)dϕi − fx
i ({lxki}k, {Lx

k}k) ≡ Fx,C(P ,w,α) (B.54)

0 =
∑
j

lxij −
∫
dϕx

i ≡ Fx,L(P ,w,α) (B.55)

0 = Lx
i −

∫
dϕx

i ≡ Fx,A(P ,w,α). (B.56)

As described earlier, since policy functions and distributions are functions of the sequence of

Lagrangian multipliers {P ,w,α}, these conditions can be expressed solely as a function of

{P ,w,α}, which we denoted as Fx,C ,Fx,L,Fx,A
above.

Our approach is to obtain first-order solutions to {P ,w,α} in sequence space by solving the

fixed points described in (B.54)-(B.56). We obtain the sequence space Jacobian (Jacobian of the

Fx,C ,Fx,L,Fx,A
) using the methodology in Auclert et al. (2021).
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C Additional Figures

Figure C.1: Real Wage: Status Quo vs. Planner

Note: The figure compares the real wage wj/Pj in the efficient allocation (y axis) and in the

status-quo economy (x axis). Each square dot corresponds to a US state. The dashed grey line

is a 45 degree line.
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Figure C.2: Net Surplus S in the Planner’s Solution and Real Wage Status Quo

Note: The figure compares the population weighted average of the net surplus Sj in the

planner’s solution (y axis) and real wage in the status quo economy (x axis). Each square dot

corresponds to a US state. The solid blue line is the best linear fit.
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