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Abstract

This paper develops and tests a novel algorithm that globally solves nonlinear dy-

namic stochastic general equilibrium models with a high degree of accuracy. Models

with heterogeneous agents can also be accurately solved using this method. The algo-

rithm is based on the ergodic theorem: if a simulated path of the aggregate shock is

long enough, all the possible aggregate allocations are realized, which allows to fully

recover rationally expected future outcomes at each point on the path. Furthermore,

the market-clearing prices and the expected aggregate states are directly computed at

each point on the path without relying on a parametric law of motion. Using the algo-

rithm, I analyze a heterogeneous-firm business cycle model where firms are subject to

an external financing cost and hoard cash as a buffer stock. In the model, due to the

missing general equilibrium effect on cash, the aggregate fluctuations in cash and con-

sumption feature significant nonlinearity and state dependence. Based on the model,

I discuss the business cycle implications of the corporate cash holdings.
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1 Introduction

In this paper, I introduce an algorithm that solves a heterogeneous agent model with
aggregate uncertainty without specifying the law of motion. I name the algorithm re-
peated transition method. This method provides a breakthrough to solve a broad class
of heterogeneous-agent models that feature rich nonlinear aggregate dynamics accurately
and globally. The methodology is also useful for representative-agent models with highly
nonlinear aggregate dynamics, as highly accurate global solution can be obtained.

Under the rational expectation, heterogeneous agents are aware of the true law of mo-
tion in the aggregate states and correctly predict the future aggregate state. In contrast,
there is no specific form of the law of motion known to a researcher. Moreover, it is com-
putationally costly to track the evolution of a distribution that is an infinite-dimensional
object. To overcome this problem, Krusell and Smith (1998) suggested a log-linear pre-
diction rule of the finite number of moments of the individual state distribution as an
approximation to the true law of motion. Afterward, numerous research papers in the
literature have found that this prediction rule gives a surprisingly accurate approximation
to the true law of motion in the broad class of heterogeneous agent models with aggregate
uncertainty.

Still, there are macroeconomic environments where the log-linear rule does not apply.
The dynamics of aggregate allocations subject to occasionally binding constraints are an
example of such cases (Fernandez-Villaverde et al., 2020). Also, the history dependence of
the investment dynamics, as in Lee (2022), makes it difficult to approximate the true law
of motion using the log-linear specification. According to Krusell and Smith (1997) and
Krusell and Smith (1998), these problems can be handled by tracking more moments of
the state distribution. However, the functional form of the prediction rule and selection of
the moments still remain an open-ended problem.

The repeated transition method overcomes these problems by relying on the theoretical
fact of the ergodic theorem: if a simulated path of stationary shock process is long enough,
all the possible allocations should be realized on the simulation path. This fact implies
that state-contingent future allocations are obtainable somewhere on the simulation path
as a realized outcome. Then, by properly identifying which period has the corresponding
outcome to each of the expected future states, an agent’s rational expectation at any time
on the simulated path can be fully recovered. In the identifying step for the corresponding
periods for expected future outcomes, the law of motion does not need to be specified: the
only information needed for this step is a measure of similarity among the aggregate states
across the periods.
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For example, consider an agent is at time t, and a macroeconomist needs to come up
with the rationally expected value function of period t + 1. For each possible exogenous
aggregate shock realization s ∈ S in t + 1, I find a period t̃s + 1 in the simulation history
where the endogenous aggregate states are the closest to the ones in period t + 1, and the
aggregate shock realization is s. Then, I combine the value functions from these periods
{t̃s + 1}s∈S to construct the expected future value function. Due to the ergodic theorem, if
the simulation path is long enough, there almost surely exists a period t̃s + 1 where the en-
dogenous aggregate allocations such as the distribution of individual states are perfectly
identical to the ones in period t + 1 among the periods where the aggregate shock realiza-
tion is s. Therefore, the expected value function can be correctly constructed by combining
these state-contingent value functions on the path.

In the implementation of the algorithm, due to the finite length of the simulation path,
it is often difficult to find period t̃s + 1 that shares the exactly identical endogenous aggre-
gate allocations to the ones in period t + 1. I overcome this hurdle by approximating the
expected future value function through interpolating the value functions of the periods
which closely mimic period t + 1 in terms of the endogenous aggregate states for each
exogenous aggregate shock realization.

The repeated transition method is a sequence-space-based methodology, where the
market-clearing prices and the expected allocations are directly computed at each point on
the path (in-sample simulation). Once the approximation is completed, I estimate the best-
fitting non-parametric/parametric law of motion from the in-sample simulation. Using
this law of motion, I extrapolate the stochastic dynamics of allocations over the out-of-
sample simulated paths of the aggregate shocks. Lastly, I check the validity of the law of
motion by comparing the model’s solution over the out-of-sample simulated paths of the
aggregate shocks based on the estimated law of motion and the extrapolated aggregate
allocations.

The repeated transition method builds upon the method utilizing perfect-foresight im-
pulse response suggested by Boppart et al. (2018). In the paper, aggregate allocations’
impulse responses are obtained from the transition dynamics induced by MIT shocks to
the steady-state distribution. Then, the law of motion of aggregate allocations is locally ap-
proximated around the steady state. Therefore, the method assumes certainty equivalence
between the expected deterministic path and the expected path when the aggregate un-
certainty is present. In contrast, the repeated transition method does not assume certainty
equivalence and globally solves the model. And it directly computes aggregate allocations
and market-clearing prices in each period on the simulation path without specifying the
law of motion.
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Therefore, the repeated transition algorithm is distinguished from the solution meth-
ods based on perturbation and linearization (Reiter, 2009; Boppart et al., 2018; Winberry,
2018; Childers, 2018; Auclert et al., 2019). As this method utilizes a single path of simulated
aggregate shock that is long enough to fully represents the stochastic process, its approach
is closely related to Kahou et al. (2021). Kahou et al. (2021) utilizes the fact that a whole
economy’s dynamics can be characterized by solving a finite number of agents’ problems
on a single Monte Carlo draw of individual shocks under the permutation-invariance con-
dition. And the law of motion is nonlinearly computed using the deep-learning algorithm.
Instead of the law of motion being characterized as an equilibrium object, the repeated
transition algorithm computes the path of equilibrium allocations at each point on the
simulated path. Then the law of motion can be backed out from the time series of the re-
alized allocations. This method relies only on relatively simple computational techniques
but computes highly accurate solutions. Also, the algorithm is widely applicable as the
algorithm does not rely on the particular characteristics of the problem presented in this
paper. The repeated transition method also provides an accurate global solution for the
representative-agent models with aggregate uncertainty, when the model features highly
nonlinear dynamics in the allocations. The application to the representative-agent model
smoothly follows once the endogenous aggregate state variable is set to be the aggregate
allocations.1

The repeated transition algorithm outperforms the algorithm of Krusell and Smith
(1997) in models with non-trivial market-clearing conditions and nonlinear aggregate dy-
namics in terms of accuracy and computation time. However, for the models with log-
linear aggregate dynamics without a non-trivial market-clearing condition, such as the
model of Krusell and Smith (1998), the repeated transition method works only at a similar
speed as Krusell and Smith (1998) algorithm.

Using the repeated transition method, I study a business cycle implication of corporate
cash holdings in a heterogeneous-firm business cycle model. In the model, firms face a
convex external financing cost, so they have a precautionary motivation to hoard cash.
Cash is assumed to be an internal asset of a firm. Thus, it is not traded across firms and
discounted at a different rate than the interest rate in the equity market. The rate is exoge-
nously given as a parameter in the model. Due to these features of cash, the dynamics of
aggregate cash holdings in the model become highly nonlinear; there is no general equilib-
rium force to flatten the dynamics of aggregate cash holdings. On top of this nonlinearity,
the market-clearing condition in the model is not trivial, as in Khan and Thomas (2008).

1In the application, the repeated transition method utilizes sufficient statistics of the distribution of the
individual states, which helps the seamless application of the algorithm to the representative agent model.
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Despite these difficulties in computation, the repeated transition method solves the model
efficiently and accurately.

In the model, lagged aggregate cash holding significantly lowers consumption response
to the negative productivity shock and intensifies consumption response to the positive
productivity shock. This is because the corporate cash holding behavior helps consump-
tion smoothing through their dividend smoothing behavior. Especially, the corporate cash
stock gives an asymmetrically stronger insurance effect toward the negative TFP shock
than the consumption boosting effect when the positive TFP shock hits. This model pre-
diction of state-dependence is empirically supported by the data couterpart, and this em-
pirical pattern is observed only after the early 1980s.2 The fact that the corporate cash
holding has dramatically increased after the early 1980s partly explains why such signifi-
cant nonlinear cash-holding effect is observed only after the early 1980s.

Roadmap Section 2 explains the repeated transition method based on the model in
Krusell and Smith (1998). Section 3 validates the accuracy of the repeated transition
method by comparing the computed outcome with the existing well-known results in the
literature. Section 4 introduces a heterogeneous-firm business cycle model where firms
save cash. Section 5 discusses the business cycle implication of corporate cash holdings
predicted by the model compared to the observations from the data. Section 6 concludes.
Other detailed figures and tables are included in appendices.

2 Repeated transition method

2.1 A model for algorithm introduction: Krusell and Smith (1998)

I explain the repeated transition method based on the heterogeneous agent model with
aggregate uncertainty in Krusell and Smith (1998). In this section, I briefly introduce the
basic environment of the model.

A measure one of ex-ante homogenous households consumes and saves. At the begin-
ning of a period, a household is given wealth at and an idiosyncratic labor supply shock
zt. Households are aware of the distribution of households Φt, the aggregate productivity
shock At, and how the aggregate states evolve in the future G(Φt, At, At+1). The idiosyn-
cratic shock and the aggregate shock follow the stochastic Markov processes elaborated in

2The result is robust over other choices of the cutoff year around 1980.
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Krusell and Smith (1998). The Markov process is specified by the transition matrix π

π :=


πuB,uB πuB,eB πuB,uG πuB,eG

πeB,uB πeB,eB πeB,uG πeB,eG

πuG,uB πuG,eB πuG,uG πuG,eG

πeG,uB πeG,eB πeG,uG πeG,eG

 =


0.525 0.350 0.03125 0.09375
0.035 0.84 0.0025 0.1225

0.09375 0.03125 0.292 0.583
0.0099 0.1151 0.0245 0.8505


In each element of the matrix, the first index indicate the current individual state s ∈ {u, e},
where u indicates an unemployed status and e indicates an employed status; the second
index indicate the current aggregate state S ∈ {B, G} where B indicates a bad aggregate
productivity state and G indicates a good aggregate productivity state. The third and
fourth indices are the future individual and aggregate states, respectively. For example,
πuB,uB implies a transition probability that an unemployed worker stays unemployed in
the next period when the economy is bad and stays bad in the future period.

The income sources of a household are labor income and capital income. The budget
constraint of the household is as follows:

ct + at+1 = wtzt + (1 + rt)at

The wage wt and capital rent rt is determined at the competitive input factor market.
Households are subject to a borrowing constraint at+1 ≥ 0, as in the standard incomplete
market model. I close the model by introducing a representative firm producing output
from a constant returns-to-scale production function. The recursive formulation of the
model is as follows:

(Household) v(a, s; S, Φ) = max
c,a′

log(c) + βE(v(a′, s′; S′, Φ′))

s.t. c + a′ = w(S, Φ)z(s) + (1 + r(S, Φ))a

a′ ≥ 0, Φ′ = G(Φ, S, S′)

(Production sector) max
K,L

A(S)KαL1−α − w(S, Φ)L − (r(S, Φ) + δ)K

(Market clearing) K̂(S, Φ) =
∫

adΦ

L̂(S, Φ) =
∫

zdΦ

(Shock processes) P(s′, S′|s, S) = πsS,s′S′ , s, s′ ∈ {u, e}, S, S′ ∈ {B, G}

All the variables with an apostrophe indicate variables in the future period. Following the
original model assumption, z = 0.25 when s = u and z = 1 when s = e. If S = B, I assume
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A = 0.99, and when S = G, A = 1.01.3

2.2 Intuition behind the methodology

In this section, I explain the basic intuition behind the methodology. For this, I first briefly
describe the methodology. Suppose we simulate T periods of aggregate shocks {At}T

t=0,
and hypothetically the simulated path is long enough to make almost all the possible
equilibrium allocations happen on the simulated path.4 Suppose I start from the ini-
tial guess of three time series: 1) value functions, {V(0)

t }T
t=0, 2) distributions of individ-

ual states {Φ(0)
t }T

t=0, and 3) prices {p(0)t }T
t=0. Using these guesses, I solve the allocations

backward from the terminal period T, and simulate the economy forward using the so-
lution. The forward simulation generates the time series of the distribution of individ-
ual states and prices. Using these, I update the guess to move on to the next iteration,
{V(1)

t , Φ(1)
t , p(1)t }T

t=0.
Now, suppose I’ve run the (n − 1)th iteration and that I am now at the nth iteration

at period t after solving the problem backward from the terminal period T until (t + 1)
period. On the simulated aggregate state path, suppose period t+ 1 features that St+1 = G
(At+1 = 1.01). For a problem of an agent at t, I need to construct a rationally expected
future value function EtṼt+1. This step is problematic for the economist because only
Vt+1(·, S = G) is available from the backward solution, while Vt+1(·, S = B) is not. This is
because only one shock is realized in a period. I define this unobserved value Vt+1(·, S =

B) as a counterfactual conditional value function.
In the standard state-space-based approach, this problem is handled by replacing the

time index with the distribution or sufficient statistics and specifying a law of motion in
these aggregate states. The counterfactual conditional value function is obtained by inter-
polating unconditional value functions at the predicted future state. Therefore, depending
on the accuracy of this predicted future state, the accuracy of the solution is determined.
However, before obtaining the solution and simulating the economy based on the solu-
tion, it is hardly understandable whether the law of motion is correctly specified or not.
Importantly, if the law of motion is turned out to be incorrect, a researcher needs to come
up with a new guess about the law of motion, which is subject to almost an infinite de-
gree of freedom. To summarize the difficulties in this step in two aspects, one is about
which statistics to include in the law of motion, and the other is about what parametric

3For brevity, I omit the explanation of the other parameter levels.
4In theory, an infinitely-long simulation might need to be considered, but for the illustrative purpose, I

consider T-period long simulation. Later in the application, a long-enough finite simulation is used as an
approximation for the infinitely-long ergodic simulation.
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forms to choose for the law of motion. Unless the aggregate dynamics is well-known to
be log-linear, as in Krusell and Smith (1998), this problem cannot be easily resolved.

Then, I consider a new approach where the counterfactual conditional value function
is obtained from the value function of another period t̃ + 1 in which the endogenous ag-
gregate state is exactly the same as the period t+ 1 but the counterfactual shock is realized:

Φ(n)
t̃+1

= Φ(n)
t+1

St̃+1 = B ̸= G = St+1

Then, all the aggregate states of the realized state of period t̃ + 1 are identical to the ones
in the counterfactual state of period t + 1. Thus, we are given that

V(n)
t̃+1

(·, S = B) = V(n)
t+1(·, S = B).

Importantly, V(n)
t̃+1

(·, S = B) is observed factual conditional value function available in the

nth iteration. As we have both V(n)
t+1(·, S = G) and V(n)

t+1(·, S = B)(= V(n)
t̃+1

(·, S = B)),
the rationally expected future value function EtṼt+1 can be correctly constructed. Even
if an aggregate shock process is discretized finer than two grid points, we can construct
the rationally expected future value function using the same process. Due to the ergodic
theorem, if a simulated path is long enough, the existence of such period t̃ + 1 is almost
surely guaranteed.

In this new approach, a law of motion is not needed to construct the rational expected
future value function. As long as the period t̃ + 1 that contains the information about the
counterfactual realization of t + 1 is identified, the problem can be solved. For this step,
tracking {Φ(n)

t }T
t=0 is important, as it allows us to identify the period t̃+ 1. In the following

section, I elaborate on the detailed steps to implement the repeated transition method.

2.3 Algorithm

I simulate a single path of exogenous aggregate TFP shocks for a long-enough period T,
A = {At}T

t=0, using the aggregate transition matrix πA. So, we also have the time series
of the corresponding aggregate states, S = {St}T

t=0, where St ∈ {B, G}. The aggregate
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transition matrix is as follows:5

πA =

[
πB,B πB,B

πG,B πG,B

]
=

[
0.875 0.125
0.125 0.875

]

For the brevity of notation, I define a price vector pt := (wt, rt). I define a time partition
T (S) that groups periods with the same shock as follows.

TS := {τ|Sτ = S} ⊆ {0, 1, 2, ..., T} for S ∈ {B, G}.

The pseudo algorithm of the repeated transition method is as follows:

Step 1. Guess on the paths of the prices, the value functions, and the state distributions,
{V(n)

t , Φ(n)
t , p(n)t }T

t=0.6

Step 2. Solve the model backward from the terminal period T in the following sub-steps.
The explanation is based on an arbitrary period t. Without a loss of generality, I
assume St = G and St+1 = G:

2-a. Find t̃ + 1 where the endogenous aggregate allocation in period is identical to
the one in period t + 1, but the shock realization is different from period t + 1:

t̃ + 1 = arg inf
τ∈TB

||Φ(n)
τ − Φ(n)

t+1||∞,

2-b. Compute the expected future value function as follows:

EtṼt+1 = πG,GVt+1 + πG,BṼt+1

2-c. Using EtṼt+1 and p(n)t , solve the individual agent’s problem at the period t.
Then, I obtain the solution {V∗

t , a∗t+1}
After the taking these sub-steps for ∀t, {V∗

t , a∗t+1}T
t=0 are available.

Step 3. Using {a∗t+1}T
t=0, simulate forward the time series of the distribution of the individ-

ual states {Φ∗
t }T

t=0 starting from Φ∗
0 = Φ(n)

0 .7

Step 4. Using {Φ∗
t }T

t=0, all the aggregate allocations over the whole path such as {K∗
t }T

t=0

can be obtained. Using the market-clearing condition, compute the time series of the

5The transition matrix is from Krusell and Smith (1998).
6In practice, I use the stationary equilibrium allocations for all periods as the initial guess.
7In this step, I use the non-stochastic simulation method (Young, 2010).
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implied prices {p∗t }T
t=0.8

Step 5. Check the distance between the implied prices and the guessed prices.

sup
BurnIn≤t≤T−BurnIn

||p∗t − p(n)t ||∞ < tol

Note that the distance is measured after excluding the burn-in periods at the begin-
ning and the end of the simulation path. This is an adjustment to handle a potential
bias from the imperfect guesses on the terminal period’s value function V(n)

T and the
initial period’s distribution Φ(n)

0 .

If the distance is smaller than the tolerance level, the algorithm is converged. Other-
wise, I make the following updates on the guess:9

p(n+1)
t = p(n)t ψ1 + p∗t (1 − ψ1)

V(n+1)
t = V(n)

t ψ2 + V∗
t (1 − ψ2)

Φ(n+1)
t = Φ(n)

t ψ3 + Φ∗
t (1 − ψ3)

for ∀t ∈ {0, 1, 2, 3, ..., T}. With the updated guess {V(n+1)
t , Φ(n+1)

t , p(n+1)
t }T

t=0, I go
back to Step 1.

(ψ1, ψ2, ψ3) are the parameters of convergence speed in the algorithm. If ψi is high,
then the algorithm conservatively updates the guess, leaving the algorithm to converge
slowly. If the equilibrium dynamics are almost linear, as in Krusell and Smith (1998), I
found uniformly setting ψi around 0.8 guarantees convergence at a fairly high conver-
gence speed. However, if a model is highly nonlinear, as in the baseline model in Section
4, the convergence speed needs to be controlled to be much slower than the one in the
linear models. This is because the nonlinearity can lead to a sudden jump in the realized

8It is worth noting that the prices here are not the market-clearing prices that are determined from the
interactions between demand and supply. Rather, the prices in this algorithm are the prices implied by
the market-clearing condition. In Section 3, I use this algorithm to solve Khan and Thomas (2008) where the
marginal value of consumption needs to be computed in the external loop of the model due to the non-trivial
market-clearing condition. I found this technique significantly saves computation time. Further discussion
on the computational gain is in Section 3.

9In highly nonlinear aggregate dynamics, I have found that the log-convex combination updating rule
marginally dominates the standard convex combination updating rule in terms of convergence speed. The
log-convex combination rule is as follows:

log(p(n+1)
t ) = log(p(n)t )ψ1 + log(p∗t )(1 − ψ1)
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allocations during the iteration if a new guess is too dramatically changed from the last
guess. A heterogeneous updating rule ψi ̸= ψj (i ̸= j) is also helpful in cases where the
dynamics of certain allocations are particularly more nonlinear than the others.

As can be seen from the convergence criterion in Step 5, the algorithm stops only when
the expected allocation paths are close enough to the simulated allocation paths. There-
fore, once the convergence is achieved, the accuracy of the solution is guaranteed. If the
accuracy is measured in R2 or in the mean-squared errors, as in Krusell and Smith (1998),
the repeated transition method features R2 of unity, and its mean-squared error becomes
negligibly different than zero.

After the equilibrium allocations are computed over the in-sample path A, I estimate
the implied law of motion from the in-sample allocations. The law of motion can poten-
tially take any nonlinear form. Then, using the fitted law of motion, equilibrium alloca-
tions are computed over out-of-sample paths of simulated aggregate shocks.

2.4 A sufficient statistics approach

In the algorithm explained in the previous section, Step 2-a is the most demanding step as
it needs to find a period t̃ + 1 that is identical to period t + 1 in terms of the distribution.
Therefore, the similarity of the distributions across the periods needs to be measured,
which is a computationally costly process.

However, if there are sufficient statistics that can perfectly represent a period’s en-
dogenous aggregate state, such as aggregate capital, the computational efficiency can be
substantially improved.10 This is because we can find period t̃ + 1 by only comparing
the distance between these sufficient statistics instead of the distributions. For example,
in Krusell and Smith (1998), the aggregate capital is the sufficient statistics, which makes
Step 2-a easier:

t̃ + 1 = arg inf
τ∈TB

||K(n)
τ − K(n)

t+1||∞,

As the algorithm relies on the ergodic theorem, a sufficiently long period of simulation
is needed for accurate convergence. However, in practice, the simulation still ends in
finite periods. Therefore, the period t̃ + 1 that shares exactly identical sufficient statistics
as period t+1 might not exist. For this hurdle, the following adjusted versions of Step 2-a
and Step 2-b help improve the accuracy of the solution:

10Under which condition the sufficient statistics approach can be used is discussed in Section 2.5
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2-a′. Find t̃up + 1 where the endogenous aggregate allocation is closest to the one in period
t + 1 from above, but the shock realization is different from period t + 1:

t̃up + 1 = arg inf
τ∈TB, K(n)

τ ≥K(n)
t+1

||K(n)
τ − K(n)

t+1||∞,

Similarly, find t̃dn + 1 where the endogenous aggregate allocation is closest to the one
in period t + 1 from below, but the shock realization is different from period t + 1:

t̃dn + 1 = arg inf
τ∈TB, K(n)

τ <K(n)
t+1

||K(n)
τ − K(n)

t+1||∞,

Then, we have K(n)
t̃up+1

and K(n)
t̃dn+1

that are closest to K(n)
t+1 from above and below, re-

spectively. Using these two, we can compute the weight ω to be used in the convex
combination of value functions in the next step:

ω =
K(n)

t+1 − K(n)
t̃dn+1

K(n)
t̃up+1

− K(n)
t̃dn+1

2-b′. Compute the expected future value function as follows:

EtṼt+1 = πG,GVt+1 + πG,B
(
ωṼtup+1 + (1 − ω)Ṽtdn+1

)
Step 2-a’ and Step 2-b’ construct a synthetic counterfactual conditional value function

by the convex combination of the two value functions that are for the most similar periods
to period t + 1. These adjusted steps help accurately solve the problem in relatively short
periods of simulation. For example, the model in Krusell and Smith (1998) can be accu-
rately solved using only T = 500 periods of simulation (except for 100 burn-in periods in
the beginning and the end of the simulation path).

2.5 A sufficient condition for the sufficient statistics

In this section, analyze under which condition the sufficient statistic can replace the entire
distribution in the repeated transition method to allow the sufficient statistics approach
(Section 2.4). In Krusell and Smith (1998), the law of motion in the entire distribution is
sharply approximated by the law of motion in the aggregate capital stock. This is one ex-
ample where a sufficient statistic can completely represent the infinite-dimensional object.
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Likewise, various research in the literature has considered sufficient statistics to overcome
the curse of dimensionality, but there has been limited theoretical understanding about
when we can use such approximation. Proposition 1 provides a sufficient condition for
those approaches in the application of the repeated transition method.

Proposition 1 (A sufficient condition for the sufficient statistics).
For a sufficiently large T, if there exists a time series of an aggregate allocation {xt}T

t=0 such that
for each time partition TS = {t|St = S}, ∀S ∈ {B, G},

Vt(a, z) is strictly monotone in xt for ∀(a, z), ∀t ∈ TS,

then xt is the sufficient statistics of the endogenous aggregate state Φt for ∀t.

Proof.
See Appendix. ■

Proposition 1 states that if a time series {xt}T
t=0 monotonically ranks the level of value

function for each individual state, xt is the sufficient statistic of time period t. Intuition
behind the proposition is as follows. Suppose a situation where a researcher is searching
for a value function to build a rationally expected future value function. If a time index of
the correct counterfactual period to use τ is given to a researcher, then the researcher can
easily identify which value function to use, as all value functions are indexed by time. So,
in this case, Vτ is trivially the one to use. Suppose {xt}T

t=0 satisfies the sufficient condition
in Proposition 1.

Now instead of τ, suppose the level of xτ is known to the researcher. Then, similar to
the prior situation where τ is known, the researcher can identify which value function to
use because the ranking information uniquely pins down the corresponding value func-
tion due to the strict monotonicity. For example, if two periods τ0 and τ1 share the same
level of xt, thus xτ0 = xτ1 , then the strict monotonicity says Vτ0 = Vτ1 . If this is not the case
(Vτ0 ̸= Vτ1), then either the ergodicity or strict monotonicity assumption is violated, and
this is the key idea of the proof.

To summarize the theoretical results in this section, once the ranking information is
known, we can exactly pin down the value function to use. In the application steps using
the interpolation (2-a’ and 2-b’ in Section 2.4), the strict monotonicity of value functions in
the sufficient statistic makes it feasible to smoothly interpolate the value functions along
the sufficient statistic.

The sufficient condition provides a theoretical ground to understand how a sufficient
statistics approach work in the repeated transition method. In the quantitative analysis
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of the baseline model in Section ??, the monotonicity is quantitatively validated for the
converged solution. However, the sufficient condition is not constructive for the algorithm
as it cannot be checked prior to the implementation: the condition can be verified only
after the solution converges. Also, the sufficient statistics in the sequence-space-based
approach do not imply that these statistics are only allocations to be considered in the law
of motion in the state-space-based approach. This is because the former may not include
sufficient information about the inter-temporal dynamics in the endogenous aggregate
state variables.11

3 Accuracy of the repeated transition method

This section compares the equilibrium allocations obtained from the repeated transition
method and the method in Krusell and Smith (1998). In the computation, parameters are
set as in the benchmark model in Krusell and Smith (1998) without idiosyncratic shocks in
the patience parameter β. For both of the algorithms, I stopped when the largest absolute
difference between the simulated average capital stock and the expected average capital
stock is less than 10−6.

In the converged solution, the mean squared difference in the solutions between the
repeated transition method and Krusell and Smith (1998) algorithm is around 2 ∗ 10−4. It
takes around 20 minutes for the repeated transition method to converge under the con-
vergence speed parameter ψ1 = ψ2 = ψ3 = 0.8; it takes around 20 mins for Krusell and
Smith (1998) algorithm.12 The convergence speed might change depending on the updat-
ing weight.

Figure 1 plots the expected path (Predicted) and the simulated path (Realized) of ag-
gregate capital Kt obtained from the repeated transition method and the simulated path
from Krusell and Smith (1998).13 The expected path refers to {V(n)

t , Φ(n)
t , p(n)t }T

t=0 in Sec-
tion 2.3, and the simulated path indicates {V∗

t , Φ∗
t , p∗t }T

t=0. As can be seen from all three
lines hardly distinguished from each other, the repeated transition method computes al-
most identical equilibrium allocations as Krusell and Smith (1998) algorithm at a similar
speed. This is because the model in Krusell and Smith (1998) features log-linear dynamics
of aggregate capital. Thus, their algorithm with the log-linear law of motion can compute

11When I fit the nonlinear aggregate dynamics of sufficient statistics obtained from the repeated transition
method to the parametric/non-parametric law of motions in Section ??, the fittest specification includes
multiple lagged terms of the sufficient statistics. However, the sufficient statistics for each time period in the
repeated transition method is just a single-dimensional aggregate allocation.

12This computation is done in 2015 MacBook Pro laptop with a 2.2 GHz quad-core processor
13This figure is motivated from the fundamental accuracy plot suggested in Den Haan (2010).
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the solution both fast and accurately.
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Figure 1: Computed dynamics in aggregate wealth (Krusell and Smith, 1998)

However, the repeated transition method outperforms Krusell and Smith (1997) al-
gorithm when the market-clearing condition is non-trivial, as in the model of Khan and
Thomas (2008).14 This is because the non-trivial market-clearing condition requires an
extra loop to find an exact market-clearing condition in each iteration.

I solve Khan and Thomas (2008) using both the repeated transition method and the
Krusell and Smith (1998) algorithm with an external loop for non-trivial market-clearing
condition. I stopped the iteration when the following criterion is satisfied:15

max{sup
t
{||p∗t − p(n)t ||}, sup

t
{||K∗

t − K(n)
t ||}} < 10−6

Figure 2 plots the dynamics of price pt and aggregate capital stock Kt computed from
the repeated transition method and Krusell and Smith (1998) algorithm. For the allocations
computed from the repeated transition method, both the predicted value and the realized
values are reported. As shown from the figure, all three lines display almost identical

14Krusell and Smith (1997) algorithm is a variant of the algorithm in Krusell and Smith (1998), which
is applicable to models with non-trivial market-clearing conditions. Khan and Thomas (2008) uses this
algorithm.

15The terminal condition is slightly different from the one in Step 5 of Section 2.3. Likewise, the terminal
condition can be flexibly adjusted based on different combinations of V(n)

t , Φ(n)
t , and p(n)t .
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dynamics of the price and the aggregate allocations. The mean squared difference in the
solutions between the repeated transition method and Khan and Thomas (2008) is less
than 10−5.

In the computation of repeated transition method, I use ψ1 = ψ2 = ψ3 = 0.9 for speed
of convergence. The reason for using this conservative updating rule is because the model
in Khan and Thomas (2008) features a strong general equilibrium effect; dramatic updates
in the price might lead to divergence. The repeated transition method took around 20
minutes to converge on average, while Krusell and Smith (1998) algorithm converged in
around 3 to 4 hours on average. The convergence speed might change depending on the
updating weight.
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(a) Price pt (= 1/Ct)
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(b) Aggregate capital stocks Kt

Figure 2: Computed dynamics in aggregate capital stocks (Khan and Thomas, 2008)

In the next section, I will compare the algorithm performance between the recursive
transition method and Krusell and Smith (1998) algorithm using a model with nonlinear
dynamics. The previous comparisons were made for linear aggregate dynamic models,
where Krusell and Smith (1998) algorithm can make a successful approximation to true
aggregate dynamics. However, in nonlinear models, the accurate approximation might
be hard to achieve for Krusell and Smith (1998) algorithm, while the repeated transition
method successfully makes a convergence between predicted allocations and realized al-
locations.

4 Baseline model

In this section, I analyze the business cycle implication of the rising corporate cash hold-
ing, using the heterogeneous-firm real business cycle model. In the model, the dynamics
of firm-level and aggregate-level cash holding becomes highly nonlinear due to lack of
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general equilibrium effect on the corporate cash holding, as cash is assumed to be not
priced in the market. The model is solved using the repeated transition method.

4.1 Technology

There is a continuum of measure one of ex-ante homogenous firms that hoard cash and
produces business outputs. For simplicity, I assume a firm operates using only labor in-
put. This can be understood as equivalent to a setup where a firm uses both capital and
labor inputs but the optimal capital demand decision is already internalized in the labor
demand decision. Consistent with this explanation, I set the labor share (equivalent to the
span of control parameter) at γ = 0.85 in the quantitative analysis, which is greater than
the standard labor share and captures internalized capital demand decision.

The business output is produced by the following Cobb-Douglas production function:

f (nit, zit; At) = zitn
γ
it At

where nit is a labor demand; γ < 1 is the span of control parameter; zit and At are idiosyn-
cratic and aggregate productivities, respectively. Each firm needs to pay a fixed operation
cost ξ > 0 in each period.

The logged idiosyncratic productivity shock process {zit} follows an AR(1) process:

log(zit+1) = ρzlog(zit) + ϵit+1, ϵit+1 ∼i.i.d N(0, σz)

For computation, the idiosyncratic productivity process is discretized by the Tauchen
method.16 The stochastic aggregate productivity process is from (Krusell and Smith, 1998):17

ΓA =

[
0.8750 0.1250
0.1250 0.8750

]
At ∈ {0.99, 1.01}.

16I discretize it using equally-spaced nine grid points within the two-standard deviation range around the
mean.

17The repeated transition method works for a finer discretization than two grid points. However, to
preserve the symmetry between the corporate cash-holding model and the household saving model (Krusell
and Smith, 1998), I assume the same aggregate productivity process.
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4.2 External financing cost

A firm earns operating profit and decides how much to distribute as a dividend dit to
equity holders (a representative household). The remaining part in the operating profit
after dividend payout is used to adjust cash holding, cat+1/(1 + rca) − cat. The future
cash holding is discounted at an internal discount rate rca > 0 as cash is not traded in
the market across the firms. rca is an exogenous parameter and assumed to be lower than
market interest rate rt. Cash holding level is assumed to be non-negative cat ≥ 0. Thus,
the model features a standard incomplete market assumption with the borrowing limit as
in Aiyagari (1994).

The corporate finance literature has theoretically and empirically investigated the rea-
son why firms hoard cash. Among the well-known reasons, the precautionary motivation
about binding financial constraint in the future has pointed out as a driver of corporate
cash

If a dividend is determined to be negative, then a firm is financing through an external
sources, which incurs extra pecuniary cost C(dit) (Jermann and Quadrini, 2012; Riddick
and Whited, 2009). This external financing cost is specified as follows:

C(dit) :=
µ

2
I{dit < 0}d2

it

Thus, the net dividend is dit − µ
2 I{dit < 0}d2

it. It is worth noting that this net dividend
function belongs to C2 class as it smoothly changes the slope at dit = 0 without a kink.
Therefore, the standard analysis used in the models with concave differentiable utility of
households smoothly applies to the model.

If there is no external financing cost, hoarding cash is not the desired option for a firm
because it is more expensive than receiving the dividend

(
1

1+rca > 1
1+rt

)
. However, due to

the presence of the external financing cost, a firm has a precautionary motivation to hoard
cash, saving for rainy days (low zt or low At). In the corporate finance literature, there has
been a rich set of empirical evidence for corporates’ dividend smoothing behavior (Leary
and Michaely, 2011; Bliss et al., 2015). Especially, Leary and Michaely (2011) empirically
showed that cash-rich firms smoothen their dividend significantly more than the others.
The equilibrium patterns in this model can match these empirical patterns.
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4.3 Resursive formulation

At the beginning of each period, a firm i is given with a cash holding cait and an idiosyn-
cratic productivity level zit. Thus, the individual state variable sit is as follows:

sit = {cait, zit}

All firms rationally expect the future and are aware of the full distribution of the firm-level
state variables. The aggregate state variable St is as follows:

St = {At, Φt}

where At is the aggregate productivity and Φt is the distribution of the individual state
variable sit.

The recursive formulation of a firm’s problem is as follows:

[Firm] J(ca, z; S) = max
ca′,d

d − C(d) +
1

1 + r(A, Φ)
E(J(ca′, z′; S′))

s.t. d +
ca′

1 + rca = π(z; A, Φ) + ca

ca′ ≥ 0, Φ′ = G(Φ, A)

[Operating profit] π(z; A, Φ) := max
n

zAnγ − w(A, Φ)n − ξ

[External financing cost] C(d) :=
µ

2
I(d < 0)d2

[Aggregate state] S := {A, Φ}

where J is the value function of a firm; ca and z are cash holding and idiosyncratic produc-
tivity, respectively; A is the aggregate productivity; Φ is the distribution of the individual
state variables; w and r are wage and interest rate which are functions of aggregate state
variables S = {A, Φ}.

4.4 Equilibrium

I close the model by introducing a stand-in household that holds equity as wealth and
saves on equity. The household consumes and supplies labor and rationally expects the
future aggregate states. The income sources of the household are labor income and divi-
dend from equity holding.
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The recursive formulation of the representative household’s problem is as follows:

V(a; S) = max
c,a′,lH

log(c)− ηlH + βEA′
V(a′; S′)

s.t. c +
∫

a′q(S, S′)dS′ = w(S)lH + a

G(S) = Φ′

GA(A) = A′ (AR(1) process)

where V is the value function of the household; a is wealth; c is consumption; a′ is a future
saving level; lH is labor supply; w is wage, and q is the state-contigent equity price. The
household is holding the equity of firms as their wealth.

The recursive competitive equilibrium is defined based on the following market-clearing
conditions:

(Labor market) lH(S) =
∫

n(ca, z; S)dΦ

(Equity market) a(A, Φ) =
∫
(J(ca, z; S) + C(d(ca, z; S)))dΦ

The model does not assume a centralized market for cash holding. Therefore, rca is not
endogenously determined at the market. This is a realistic assumption as a firm’s cash
holding is not tradable across firms. I interpret this setup as the cash holding return is de-
termined by each firm’s idiosyncratic financing status independently from the centralized
capital market condition. rca is the average level of the idiosyncratic financing cost.18

5 Quantitative analysis

In this section, I quantitatively analyze the recursive competitive equilibrium allocations
computed from the repeated transition method. For easier computation, I first normal-
ize the firm’s value function by contemporaneous consumption ct following Khan and
Thomas (2008). I define the consumption good price pt := 1/ct, so the normalized value
function is J̃t = pt Jt. From the intra-temporal and inter-temporal optimality conditions of
households, I have wt = η/pt and rt = pt+1/pt. Thus, pt is the only price to characterize
the equilibrium. The following analysis will focus on the dynamics of pt and the aggregate
cash holdings (the first moment of the distribution of cash holding).

18Fot simplicity, the model is abstract from the heterogeneity in the financing cost.
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5.1 Calibration

The model’s key parameters are the external financing cost parameter µ and the operating
cost parameter ξ. The external financing cost is identified from the aggregate-level cor-
porate cash holding-to-consumption ratio. In the moment calculation, the aggregate cash
holding is obtained from the Flow of Funds.19 Consumption is from the National Income
and Product Accounts (NIPA).20 In the model, as µ increases, the corporate cash holding-
to-consumption ratio increases due to increasing precautionary motivation. The key iden-
tifying moment of the operating cost parameter is the dispersion of the cash holdings
among corporates. For this, I use the time-series average of the cross-sectional standard
deviation of cash holding normalized by the cross-sectional average of the cash holding.21

As operating cost increases, the dispersion of cash increases in the model. Additionally,
labor disutility cost η is calibrated to have a representative household spend a third of its
hours on the labor supply. The calibrated results are summarized in Table 1. The other
fixed parameters are summarized in Appendix A.1.

Parameters Target Moments Data Model Level

µ Corporate cash holding/Output (%) 10.00 9.28 0.40
ξ Consumption/Output (%) 66.00 64.02 0.15
η Labor supply hours 0.33 0.34 3.90

Table 1: Calibration target and parameters

5.2 Nonlinear business cycle

Using the repeated transition method, I compute the recursive competitive equilibrium
allocations over the simulated path of aggregate shocks. In the algorithm, the interpola-
tion of the value function (step 2.3) is based on the first moment of the cash distributions
(the aggregate cash holding level) following Krusell and Smith (1998) (hereafter, KS algo-
rithm). The aggregate cash holding level follows highly nonlinear dynamics in the com-
puted outcome because the general equilibrium effect does not strongly affect each firm’s
cash holding demand. The price of cash holding is rca which is exogenously determined
in the model because the cash holding is not allowed to be traded across the firms. In
the setup where the cash is traded across the firms, the opportunity cost of cash holding

19The detailed definition of aggregate cash holding is available in Appendix A.2.
20In this ratio, the consumption includes both durable and non-durable consumptions.
21To rule out extreme outliers, I winsorize the cash holdings distribution at the top 90th percentile.
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(rt − rca
t ) shrinks close to zero. So, the aggregate cash holding is predicted to be higher

on average in the alternative setup. I check this point using the computed result from the
prototype KS algorithm instead of the repeated transition method.22
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Figure 3: Aggregate fluctuations in the economy

Figure 3 plots a part of the simulated path of consumption good price and aggregate
corporate saving obtained from both the repeated transition method and the prototype.
The solid line plots expected allocations in the repeated transition method, and dash-
dotted line plots simulated allocations in the repeated transition method. The dashed line
represents the dynamics of the allocations in the prototype KS algorithm. As can be seen
from the aggregate corporate saving in the right-hand side figure, the average corporate
saving is higher in the KS algorithm than the repeated transition method. This is because
the prototype KS algorithm assumes log-linearity in the law of motion of aggregate corpo-
rate saving and assumes that internal cash holding is linearly affected by the real interest
rate.

To determine which prediction is the correct approximation to the true dynamics, I first
evaluate the goodness of fitness R2 and mean-squared error between expected dynamics
and simulated dynamics on the newly simulated shock path (out-of-sample path). KS
algorithm immediately gives the parametric form of the law of motion after the algorithm
converges. In contrast, the repeated transition method gives the sequence of allocations
which requires an extra step to fit the sequences into a parametric/non-parametric law of
motion.

The repeated transition method gives R2 of 0.9999 and mean squared error of 10−6 for
both consumption good price and aggregate cash holding dynamics. On the other hand,

22The prototype refers to the method of tracking the first moment of the state distribution, and the pre-
dicting prices based on the first moment as in Khan and Thomas (2008).
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the KS algorithm gives the following law of motion and goodness of fitness:23

log(CAt+1) = −0.8238 + 0.9755 ∗ log(CAt), if At = A1, and R2 = 0.9788, MSE = 1.0464

log(CAt+1) = −2.0397 + 0.2963 ∗ log(CAt), if At = A2, and R2 = 0.5532, MSE = 0.6598

log(CAt+1) = −0.1787 + 0.8332 ∗ log(CAt), if At = A3, and R2 = 0.9854, MSE = 0.0098

log(pt) = 2.5741 − 0.0008 ∗ log(CAt), if At = A1, and R2 = 0.5470, MSE = 0.0000

log(pt) = 2.5508 − 0.0009 ∗ log(CAt), if At = A2, and R2 = 0.3410, MSE = 0.0000

log(pt) = 2.5221 − 0.0042 ∗ log(CAt), if At = A3, and R2 = 0.8974, MSE = 0.0000

The log-linear rule of the prototype KS algorithm relies on the prices’ smoothing effect
on the dynamics of aggregate allocations. For example, when there is a surge of cash
holding demand, the price of cash holding goes up to mitigate the surge, and vice versa
for the case of decreasing cash holding demand. In numerous applications in the literature,
this flattening force from the general equilibrium has been proved to be powerful enough
to guarantee the log-linear specification as the true law of motion of aggregate variable.
One example is Khan and Thomas (2008) where the micro-level lumpiness is smoothed out
by real interest rate dynamics. However, in the baseline model of this paper, the general
equilibrium effect is missing for the cash holding demand. Thus, the log-linear prediction
rule fails to capture the true law of motion in the recursive competitive equilibrium.

On top of the nonlinearity, there is another feature in the model that makes the pro-
totype KS algorithm cannot simply address: there is a non-trivial market-clearing con-
dition with respect to consumption good price pt. Krusell and Smith (1997) suggested
an algorithm to solve this problem by considering an external loop in the algorithm that
solves market-clearing price pt in each iteration. This algorithm is known to successfully
solve the log-linear models with non-trivial market-clearing conditions such as Khan and
Thomas (2008). However, due to the extra loop in each iteration, the algorithm entails
high computation cost. In the repeated transition method, the price and allocations are
explicitly computed at each point on the simulated path in every iteration. Therefore, the
method does not require an extra loop for computing market-clearing price, so it saves
great amount computation time. In the baseline model, computation time is reduced by
factor of 2.24

23The aggregate productivity shock is discretized by three grid points.
24The KS algorithm takes around one hour to compute a converged solution when the simulation length

is T = 500 and the cross-sectional grid of cash holding is 50 points. However, in the repeated transition
method, it takes only around 30 minutes to make a convergence. For the fair comparison, the initial guess
of the KS algorithm is from the log-linear relationship implied in the initial guess of the repeated transition
method.
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5.3 Discussion: Model prediction and empirical evidence

In this section, I analyze the role of corporate cash holdings on the aggregate fluctuations
using the baseline model and support the model prediction from the empirical evidence.

To investigate the role of the corporate cash holding on consumption dynamics, I ana-
lyze how the consumption volatility changes over the average lagged cash holding level.
First, I residualize the aggregate consumption time-series by the recent four lagged con-
sumptions after taking a log.

log(Ct) = ρ1log(Ct−1) + ρ2log(Ct−2) + ρ3log(Ct−3) + ρ4log(Ct−4) + ϵt, ϵt ∼ N(0, σ)

Then, I run the regression of the logged absolute-valued residuals on the average lagged
cash holdings for the periods with ∆log(Ct) > 0 (positive consumption growth) and
∆log(Ct) < 0 separately (negative consumption growth).25

log(σ̂t) = ρlog(Casht−1) + ηt, ηt ∼ N(0, ση)

s.t. Casht−1 =
1
4

4

∑
i=1

Casht−i

Table 2 reports the regression results. The residual standard deviation is negatively cor-
related with the average lagged cash holding in the periods with the negative consump-
tion growth. Conversely, the residual standard deviation is positively correlated with the
average lagged cash holding in the periods with the positive consumption growth. The
volatility of consumption decreases by 1.1% when the lagged aggregate cash holding in-
creases by 1% for the periods with the negative consumption growth. This relationship is
visualized by a scatter plot in Figure 4.

Therefore, the aggregate cash holding gives a consumption buffer against a negative
aggregate shock by smoothing the dividend stream in the simulated data. I support this
model prediction from the macro-level data. The data is the quarterly frequency and cov-
ers from 1951 to 2018. Consumption and the total dividend of the corporate sector are from
BEA National Income and Product Accounts (NIPA); the aggregate cash holding and the
total asset holding are obtained from the Flow of Funds. I normalize the aggregate cash
holding and dividend by the total asset holding. The aggregate consumption is detrended
by HP-filter with a smoothing parameter at 1600.

Table 3 reports the regression results of conditional heteroskedasticity, using the em-
pirical counterparts of the model variables. First, the consumption is residualized using

25The residualized consumptions are normalized by the unconditional standard deviation of the residuals.
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Dependent variable:

log(σ̂t) (%)
Neg. Pos.

(1) (2)

log(Casht−1)(%) −1.075∗∗∗ 1.694∗∗∗

(0.286) (0.337)

Constant Yes
Observations 197 204
R2 0.068 0.111

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 2: Heteroskedasticity of consumption conditional on average lagged cash holding
in the model
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Figure 4: Scatter plot of logged residual standard deviation and average lagged cash hold-
ing conditional on ∆log(Ct) < 0

the autoregressive process up to the fourth order.26 The residualized consumption is re-
gressed on average lagged normalized cash and dividend separately for pre-1980 periods
and post-1980 periods. The reason for separating the two periods is because the corporate
cash holding has increased dramatically after 1980, which made pre-1980 and post-1980
periods starkly different in terms of the size of corporate cash holdings.27

As can be seen from Table 3, the residualized consumption display heteroskedastic-
ity conditional on aggregate cash holding during the post-1980 periods. The greater the

26As in the model counterpart, the residualized consumptions are normalized by unconditional standard
deviation of the residuals.

27The result is robust over other choices of the cutoff year around 1980.
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Dependent variable:

σ̂t (%)
Pre 1980 Pre 1980 Post 1980 Post 1980

(1) (2) (3) (4)

Casht−1 (%) 0.558 −0.947∗∗

(0.448) (0.412)
Dividendst−1 (%) 0.828 −0.967∗∗∗

(0.607) (0.351)

Constant Yes Yes Yes yes
Observations 107 107 156 156
R2 0.015 0.017 0.033 0.047

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Sensitivity of consumption to aggregate TFP shock contingent on corporate cash
holdings

lagged aggregate cash holding is, the weaker responsiveness consumption displays to an
exogenous aggregate shock. The same interpretation can be made to the aggregate divi-
dend as well. These empirical results are consistent with the model prediction.

However, the model diverges from the data when it comes to the pre-1980 periods.
The possible explanation for this result is that before 1980, corporate cash holding was not
large enough to play an important role in dividend smoothing. Therefore, an increase in
cash holding did not help consumption smoothing in the pre-1980 periods.

Figure 5 plots the scatter plot of the residualized consumption’s standard deviation as
a function of lagged aggregate cash holding (panel (a) and (b)), and as a function of lagged
aggregate dividend (panel (c) and (d)) separately for pre-1980 and post-1980 periods. A
significant negative relationship is observed from the post-1980 periods.

I further investigate whether it is a negative aggregate shock or a positive aggregate
shock that drives the conditional heteroskedasticity of consumption. Here I use variation
in the Solow residual (TFP) as an aggregate shock. The TFP time-series is fitted into AR(1)
process to obtain the innovation in TFP, and I group observations into the positive inno-
vation period and the negative innovation period based on the sign of TFP innovation in
each period. Then, I run the following regression:

∆Ct

Ct
= β0 + β1TFP Innovationt + β2TFP Innovationt × Casht−1 + Xt + ϵt

where Xt is a vector of control variables including Casht and Dividendt; TFP innovationt

is normalized by its standard deviation. The coefficient of interest is β2. If cash holding
buffers consumption response, the sign of β2 would be negative.
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(a) Cash ratio (%) before 1980
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(c) Dividend ratio (%) before 1980
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(d) Dividend ratio (%) after 1980

Figure 5: Conditional heteroskedasticity of consumption growth rate (%) before and after
1980

Dependent variable:

∆Ct/Ct (%) before 1980 ∆Ct/Ct (%) after 1980
Neg. Pos. Neg. Pos.

(1) (2) (3) (4)

TFP Innovationt (s.d.%) −0.001 0.010∗ 0.013∗∗∗ 0.005
(0.005) (0.005) (0.003) (0.004)

TFP Innovationt × Casht−1 (%) 0.115 −0.090 −0.186∗∗ −0.086
(0.088) (0.102) (0.079) (0.090)

Control Yes Yes Yes yes
Constant Yes Yes Yes yes
Observations 59 53 79 77
R2 0.264 0.409 0.409 0.186

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4: Sensitivity of consumption: cash

Table 4 reports the regression coefficients, β1 and β2, with standard errors in the bracket.
As can be seen from the third column of the table, the significant consumption smoothing
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effect is observed only for negative TFP innovation during post-1980 periods. A similar
result is obtained when the TFP innovation term interacts with the lagged dividend, as
reported in Table 5. Therefore, I conclude that the model prediction of the consumption
smoothing effect of corporate cash holding towards the negative aggregate shock is em-
pirically supported from the data.

Dependent variable:

∆Ct/Ct (%) before 1980 ∆Ct/Ct (%) after 1980
Neg. Pos. Neg. Pos.

(1) (2) (3) (4)

TFP Innovationt (s.d.%) 0.006 0.009 0.015∗∗∗ −0.001
(0.008) (0.006) (0.003) (0.004)

TFP Innovationt × Dividendst (%) −0.098 −0.268 −0.696∗∗∗ 0.101
(0.636) (0.463) (0.241) (0.282)

Control Yes Yes Yes Yes
Constant Yes Yes Yes Yes
Observations 59 53 79 77
R2 0.241 0.404 0.429 0.177

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 5: Sensitivity of consumption: dividend

6 Conclusion

This paper develops and introduces a novel algorithm to solve heterogeneous-agent mod-
els with aggregate uncertainty, which I name as repeated transition method. This method
iteratively updates agents’ expectations on the future path of aggregate states from the
transition dynamics on a single path of simulated shocks. The algorithm runs until the
expected path converges to the simulated path. In each iteration, market-clearing prices
and aggregate allocations are explicitly computed at each period on the simulation path.
Therefore, the method does not rely on a parametric form of the law of motion or an ex-
ternal loop for non-trivial market-clearing conditions.

Then, I introduce a heterogeneous-firm business cycle model where firms face a convex
external financing cost and hoard cash out of precautionary motivation. Using the model,
I study the business cycle implication of corporate cash holding. Cash is assumed to be
an internal asset of a firm; thus, not traded across firms; and discounted at a different
rate than the real interest rate in the equity market. The model features highly nonlinear
dynamics of aggregate cash holdings due to the absence of general equilibrium force on
the aggregate cash holding. I found the repeated transition method solves the problem
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more efficiently and more accurately than the existing global methods. The model predicts
that the more outstanding corporate cash holding lowers the consumption volatility. This
model prediction is supported by macro-level evidence of consumption heteroskedasticity
conditional on the lagged aggregate cash holding.
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A Appendix

A.1 Fixed Parameters

The fixed parameters are set at the following levels:

(Span of control) γ = 0.7;

(Corporate saving technology) rca = 0.038;

(Idiosyncratic shock persistence) ρz = 0.90;

(Idiosyncratic shock volatility) σz = 0.053;

(Aggregate shock persistence) ρA = 0.95;

(Aggregate shock volatility) σA = 0.007;

(Household’s discount factor) β = 0.985.

These fixed parameters are chosen at a reasonable level based on the literature.
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A.2 Definition: Aggregate cash holding from the Flow of Funds

The aggregate cash holding is defined as sum of following items in the Flow of Funds:

• (FL103091003) Foreign deposits

• (FL103020000) Checkable deposits and currency

• (FL103030003) Time and savings deposits

• (FL103034000) Money market fund shares

• (LM103064203) Mutual fund shares

• (FL102051003) Security repurchase agreements

• (FL103069100) Commercial paper

• (LM103061103) Treasury securities
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A.3 Cash holding and dividend

Dependent variable:

Dividendst (%)
Neg. Pos.

(1) (2)

Casht−1 (%) 0.095∗∗∗ 0.210∗∗∗

(0.011) (0.028)

TFP Control Yes Yes
Constant Yes Yes
Observations 112 156
R2 0.395 0.278

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table A.1: Correlation between dividend and cash
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