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Abstract

A model integrates a modern implementation of monetary policy (MP) into an incomplete-

markets monetary economy with wage rigidity. MP sets corridor rates and conducts open-market

operations. These tools grant independent control over credit spreads and inflation. We study the

implementation of spreads and inflation via different MP instruments. Through its influence on

spreads, MP affects the evolution of real credit, interests, output, and wealth distribution (both in

the long and the short run). We decompose effects through different transmission channels. The

combination of incomplete markets, wage rigidity, and a zero-lower bound on deposits, introduce

a trade-off between micro insurance (redistribution) and macro-insurance (stabilization). As a

result, MP should balance operate with a small balance sheet that induces positive spreads during

booms, but expand its balance sheet during recessions.

Keywords: Monetary Economics, Monetary Policy, Credit Channel.

JEL: E31-2, E41-4, E52-2

∗We would like to thank Alex Carrasco and Mengbo Zhang for outstanding research assistance. We also thank An-
drew Atkeson, Pierpaolo Benigno, Anmol Bhandari, Javier Bianchi, Markus Brunnermeier, Vasco Curdia, Chris Edmond,
Emmanuel Farhi, Aubhik Kahn, Greg Kaplan, Galo Nuño, Guillermo Ordonez, Guillaume Rocheteau, Martin Schneider,
Thomas Sargent, Dimitri Vayanos, Amilcar Velez, Pierre-Olivier Weill, Diego Zuñiga, and seminar participants at the
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1 Introduction

In modern economies, MP operates through the provision of reserves and a corridor of policy rates.1

A popular view among academics is that these tools implement a desired nominal interest rate,
which grants control over inflation, and this is ultimately what matters for MP (Woodford, 1998). A
bank-centric view has it that these tools influence bank credit and spreads, and thus, impact real ac-
tivity through their influence on the financial system (Bernanke and Blinder, 1988, 1992). Although
this view is widely held by practitioners, and has strong empirical support (Kashyap and Stein,
2000; Drechsler et al., 2017), its theoretical foundations are still being laid out. This paper presents
an incomplete-markets economy where credit is intermediated by banks that hold reserves to man-
age liquidity. MP is implemented through a corridor system and open market operations (OMO).
On positive analysis, the paper articulates how these tools affect credit, monetary balances, borrow-
ing and lending rates, inflation, and output, in the context of an incomplete-markets economy. On
normative analysis, the paper articulates why the size of the central bank’s (CB) matters.

In the present environment, operating a corridor system grants MP enough tools to implement an
inflation target and manage credit spreads, as independent policy targets. In particular, interest
on reserves grant control over inflation whereas the OMO the ability to move spreads. Whereas
the control over inflation relates to well-traveled transmission mechanisms (the interest-rate and
inflation-tax channels), the control over credit spreads is a notion of the credit channel.2 This feature
allows for the positive of the credit channel within an incomplete-markets economy. Studying the
credit channel in an incomplete-markets economy is important because it fleshes out an important
policy tradeoff. Through the ability to induce credit spreads, MP can limit the amount of micro-
insurance in an economy. However, by inducing positive spreads, MP can limit the amount of credit
in the economy, to provide better macro-insurance. This trade-off is in fact at the core of recurrent
and historical debates (Bagehot, 1873; Stein, 2018) in which, during booms it is argued that MP is
sowing the seeds of crises, but during busts, that MP is akin to pushing on a string. Our framework
allows to articulate these views in terms of a trade-off between micro and macro insurance. We
argue that to achieve the right balance, MP should operate with a small balance sheet (and positive
spreads) during booms, but expand its balance sheet (and eliminating spreads) during busts. This

1A corridor system is a framework/procedure for implementing monetary policy whereby a central bank can
use/combine various tools to steer the market interest rate toward a chosen target. Two important tools are the dis-
count rate and the interest rate on reserves. The discount rate is the rate at which a central bank lends reserves, against
collateral, to banks that are below their reserve requirement. The discount rate tends to be the upper bound or ceiling
for the market interest rate. The interest rate on reserves is the rate at which banks are remunerated for holding reserve
balances at the central bank. It tends to be the lower bound or floor for the market interest rate for interbank loans. These
two rates form a “corridor” that will contain the market interest rate. Open market operations are then used as needed
to change the supply of reserve balances so that the market interest rate is as close as possible to the target.

2A narrative description of different transmission channels of MP is found in Ben S. Bernanke (1995)’s “Inside the
Black box.” Kashyap and Stein (2000) presented evidence on the credit channel by exploiting differences in the cross
section of liquidity ratios across banks. Bindseil (2014) describes the modern implementation of MP through banks
across countries.
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message is particularly pertinent now that countries are considering replacing corridor systems with
floor systems and permanently switching to regimes with large balance sheets. For this paper, this
change means surrendering an important policy tool.

We build this case through the study of a canonical continuous-time incomplete-markets environ-
ment. This is an endowment economy where households face idiosyncratic unemployment risk, as
in Huggett (1993). This is where micro-insurance comes about. To speak to aggregate demands ex-
ternalities, we introduce wage rigidities as to this incomplete markets economy, as and Kaplan et al.
(2016). The novelty is the introduction of intermediation and money into this environment, which
enables MP to control credit spreads. Credit is nominal and intermediated by a fringe of competi-
tive banks. In addition to deposits and loans, banks hold reserves to manage liquidity. The power
to influence spreads stems from an institutional feature. Whereas loans are permanently held by
the issuer bank, deposits circulate. Thus, banks use reserves to settle deposit transfers. A potential
shortage of reserves by some banks opens the door for interbank credit. The interbank market, how-
ever, operates with matching frictions (á la Ashcraft and Duffie, 2007; Afonso and Lagos, 2015). As
a result, not all reserves deficits can be tapped with private credit and some deficits are forced to be
borrow at a penalty rate set by MP. The overall quantity of reserves and the corridor rates set by MP
translate into an intermediation cost. Ultimately, banks are a pass-through from a policy corridor
spread to actual credit spreads.

A similar implementation of the credit channel already appears in Bianchi and Bigio (2017a), and in
related work by Piazzesi and Schneider (2016); De Fiore et al. (2018); Chen et al. (2017); Drechsler et
al. (2017). Here, bank decisions are simplified, and the pass-through from policy rates to spreads is
immediate. The emphasis is not on the banking sector, but on the effects of spreads in an incomplete
market economy with nominal rigidity. The latter delivers a broad set of implications for changes
in credit spreads. Notably, the real effects of MP are driven by the precautionary motive. Because
MP indirectly affects the distribution of wealth, it influences the mass of agents that choose the inef-
ficient endowment, and this impacts productive efficiency. Because this mechanism is independent
of inflation, the model connects transparently with other transmission mechanisms.3

The paper first delves into the details of implementation. It presents closed-form expressions for
nominal deposits and loans interests. These nominal rates carry different premia over the rate on
reserves. The difference between these premia is a real credit spread, which, in turn, is expressed
as a function of a liquidity ratio and the policy corridor spread set by MP. The implementation is
explicit about a reserve satiation regime (a floor system), and a zero lower bound on deposit rates
(DZLB). Away from either regime, OMO and/or reductions in policy corridor spread, implement a
reduction in the credit spread. Another tool, the interest on reserves, grants direct control over in-
flation, without affecting on the spread. In a satiation regime, all rates equal the interest on reserves,

3In the language of Achdou et al. (2019), a borrower-lender spread is dubbed “soft-constraint.” The mechanics of the
credit-channel can thus be interpreted as the ability of MP to affect soft constraints in an incomplete markets economy.
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so MP can control inflation, but not spreads.4 In a DZLB, OMO are irrelevant, but reductions in the
interest on reserves can produce a joint movement in credit spreads and inflation, a phenomenon
that has been recently identified in the date (Heider et al., 2019; Eggertsson et al., 2019).

After the implementation, the paper presents a positive analysis of the real effects of MP. The equi-
librium in the economy is summarized by a single clearing condition; the deposit, money and loans
markets collapse into a single market for real claims. In turn, clearing in the real claims market is
influenced by a spread target. At steady-state, there is a single-real interest that clears the market in
real claims. Thus, holding fixed a spread target, changes in nominal rates are super neutral. How-
ever, through its control over spreads, MP influences the long-run the real rates at which real claims
clear. In particular, it lowers the real savings rate, but produces an even stronger increases in lending
rates. This inhibits long-run insurance.5

In the short-run, due to nominal rigidities, the real rate is pinned down by the path of inflation and
policy rates. Thus, the variable that clears the market for real claims is the rate of job separation.
In the short, thus, changes in nominal rates operate through the interest-rate channel. In particular,
reductions in the interest on reserves are expansionary, but only until the point where the DZLB is
reached. Beyond that point, reduction in real rates are contractionary. Thus, changes in policy rates
have effects on aggregate demand but only up to a point where the economy hits the DZLB. In turn,
open-market operations in the short-run impact spreads, and through these, they affect aggregate
demand, but their effect disappears after the economy hits a satiation limit. Thus, OMO have effects
also through insurance and through this channel, on aggregate demand but only up also up to a
point.

The model also has implications for the statistical relationship between monetary aggregates and
inflation. Whereas the model is entirely consistent with the quantity theory of money, it can also
produce a liquidity effect. For example, a temporary OMO can produce a reduction in inflation. The
effect of the operation is a reduction in spreads and an increase in output, which increases the real
deposit rate. If MP keeps the rate on reserves constant, the monetary expansion is deflationary.

Turning to the normative analysis, the optimal spread is governed by a trade-off between insurance
and leaving “powder” for macroeconomic stabilization. The paper ends with a study of the problem
of an egalitarian planner that expects the economy to suffer an aggregate shock such as a credit
crunch shock or an impatience shock. Upon the shock, the can lower the interest on reserves, and

4Different from Woodford (1998), the control over nominal rates is achieved without OMO, but by setting the interest
on reserves. Inflation changes are neutral, but we are explicit that with additional frictions, a control over nominal rates
can produce effects through the interest rate, inflation cost, and debt deflation channels, all of which can be thought
of as operating independently. In each case, the model would need an additional ingredient: nominal rigidities, cash
transactions, and long-term debt, respectively.

5A permanent increase in the spread primordially impact the loans rate, the effect on efficiency is driven by the impact
on borrowers. With higher loans rates, borrowers have stronger incentives to repay debts, on the one hand. On the other
hand, debt rollover becomes more difficult with higher rates. As a result, mild increases in spreads concentrate the
distribution of wealth toward the middle as borrowers repay their debts faster. Further increases in spreads, makes it
harder to repay debt, to the point that borrowers give up. This effect fans out the distribution of debt, and more agents
hit their debt limits.
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can even reach negative territory. However, it will not want to do so beyond the point where it
triggers a DZLB because beyond that point, the shock is recessionary. Because aggregate demand
cannot be fully stabilized with an interest-rate policy, the planner wants a positive steady-state value
for spreads which is closed after the shock. This positive spread, although limits the degree of social
insurance at stead-state, limits the unemployment losses upon an aggregate shock. We find that the
optimal steady-state spread is a positive spread that balances distributional considerations against
efficiency considerations.6 To implement the counter-cyclical spread, the CB must operate with a
lean balance sheet at steady-state, but flood banks with reserves during a crisis. In other words, MP
should operate a corridor system that satiates banks with reserves during crises, but runs through a
standard corridor system in normal times.

Connection with the Literature Our paper’s title emphasizes the connection with the two most
common frameworks for MP analysis. One approach emphasizes the connection between money and
prices and the other between interest and prices. In the first approach, money plays a transactions role
(Lucas and Stokey, 1987; Lagos and Wright, 2005) and there is a tight connection between prices and
the quantity of (outside) money. The real rate is fixed, so any real effects follow because inflation is
a transactions tax. The second approach is the new-Keynesian approach where the important con-
nection is between interest and prices. Under that framework, MP controls real rates directly because
prices are rigid. There is no role for monetary balances. Neither framework emphasizes the effect of
MP on credit, at least not directly. The model here establishes a meaningful connection between in-
termediation, money, interest and prices. Because the credit channel here can be studied independently
of the control of inflation, it only complements the inflation-tax or interest-rate channels in those
approaches.

Since 2008, there’s been an increased interest in how MP interacts with credit markets. That gap is
being filled, and incomplete market models are a natural starting point.7 In fact, the first generation
of heterogeneous agent models, Lucas (1980) and Bewley (1983), were about MP and were not inter-
ested in heterogeneity per se. However, neither model established how MP affects credit.8 Credit, of

6In terms of redistribution: wider spreads hurt everyone, especially the very poor and very rich who care the most
about rates.

7Models that feature credit must provide a motive for credit. One way is to endow agents with different technologies
as in Bernanke and Gertler (1989) and the other is make them subject to idiosyncratic risk. To establish a connection
between MP and credit markets, models must have features by which MP impacts credits. A first such model is Bernanke
et al. (1999), which incorporated nominal rigidities into the two-sector economy of Bernanke and Gertler (1989). In
Bernanke et al. (1999), MP was capable of moving real rates because of nominal rigidities. In that model, and models
that follow it, Christiano et al. (2009), credit imperfections amplify the effects of the interest rate channel—through the
financial accelerator. However, the effect on credit spreads is not an independent instrument, as it is here.

8In both models, there was a constant supply of outside money. Lucas (1980) studied a stable price equilibrium.
Bewley (1983) focused on the case where money earned an interest rate financed with lump sum taxes, so the interest
rate had redistributive consequences because it was funded with lump sum transfers. Ljungqvist and Sargent (2012,
Chapter 18) describes how policies in Bewley (1983) models are akin to changes in borrowing limits in economies with
pure credit. Lippi et al. (2015) introduce aggregate shocks into a pure currency economy, and study the optimal helicopter
drops.
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course, has a tradition in heterogeneous agent models (see the early work of Huggett, 1993; Aiyagari,
1994), but the literature evolved abstracting away from its initial interest in MP.

A recent generation of works has introduced nominal rigidities into heterogeneous agent models.
To replicate the credit crunch of 2008, Guerrieri and Lorenzoni (2017) studies the tightening of bor-
rowing limits in a Bewley economy with nominal rigidities.9 These models are appealing because,
as an artifact of heterogeneity, MP responses depend on the distribution of wealth and borrowing
constraints. Auclert (2016) decomposes the response to policy changes into different forces that
appear in that class of models. Kaplan et al. (2016) introduce illiquid assets, which produce high-
income elasticities among rich agents, something that changes the nature of propagation in the new-
Keynesian model.10 In that generation of works, MP operates exclusively through the interest rate
channel of the new-Keynesian model. Instead, here MP operates through the credit channel by af-
fecting spreads.

Another set of recent works in the money and prices tradition, allows for credit in models where
money plays a transactions role. When credit (inside money) is an imperfect substitute for outside
money, the inflation-tax channel spills over to the supply of credit (see for example Berentsen et al.,
2007; Williamson, 2012; Gu et al., 2015). Rocheteau et al. (2016) bring the insights of money-search
transactions into a heterogeneous agent environment. The model here abstracts from the inflation-
tax channels, but can naturally be adapted to feature transactions, following the methodology in
Rocheteau et al. (2016).

By introducing long-term debt, another set of works, Gomes et al. (2016) for example, recognizes
that MP affects the distribution of wealth through debt deflation. Nuno and Thomas (2017) take
that insight to a heterogeneous agent environment and study optimal MP in a heterogeneous agent
environment with nominal rigidities and possible debt deflation.

The credit channel in this paper is not new. The implementation is inherited from Bianchi and Bigio
(2017a). That paper articulates a notion of the credit channel and how MP functions through cor-
ridor rates. In contrast to this paper, that paper presents a rich description of bank decisions and
studies shocks that impact the interbank market, whereas the nonfinancial side is static. In that pa-
per, any dynamic effects of MP follow from the evolution of bank net worth. Here, the banking side
is simplified, but the dynamics depend on the evolution of household wealth. Piazzesi and Schnei-
der (2016) also feature a similar implementation of MP. The focus of that paper is on the connection
between interbank settlements and asset prices. Our model also shares common elements with and
Brunnermeier and Sannikov (2012). In Brunnermeier and Sannikov (2012), agents face undiversified

9Following up on that work, McKay et al. (2015) compare the effects of forward-guidance policies in representative
agent new-Keynesian models and incomplete markets economies.

10Greenwald (2016) and Wong (2016) study interest rate sensitivities to mortgage refinancing options.
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investment risk, so a demand for currency emerges due to market incompleteness.11

The focus on incomplete market economies leaves room for normative analysis. The methodol-
ogy employed in the normative study here follows directly from Nuno and Thomas (2017), which
together with Bhandari et al. (2019), are the first papers to study optimal MP under incomplete mar-
kets. In both works, MP balances aggregate demand stabilization with insurance considerations.
Instead, here the problem is to design the optimal management of the credit channel, weighing fi-
nancial stability with insurance considerations. Seeing financial stability as a crucial element of MP
is discussed formally in Stein (2012), for example. The normative message, that MP should actively
target credit spreads, is controversial. Curdia and Woodford (2016) and Arce et al. (2019), for exam-
ple, study whether the control over spreads is a useful tool in economies with nominal rigidities.
Their answer is no, and that suggests that there are no costs from switching to a floor system. In-
stead, we take the sides of Stein (2012) and Kashyap and Stein (2012), and the control of spreads is
crucial for financial stability. A corridor system is a way to achieve this stability, and moving to a
floor system is a mistake.

Organization. The organization is as follows. Section 2 lays out the core model. Section 3 describes
the determination of credit, interest and prices and the implementation of MP. Section 4 presents a
study on MP regimes. Section 5 studies the optimal use of spreads. Section 6 concludes.

2 Environment

2.1 From Policy Spreads to Credit Spreads

In the model that follows, we embed financial intermediation (by banks) in an environment where
money holdings, prices, and rates are determined in general equilibrium. In this introductory sec-
tion, we present the banking block. We derive a simple formula that maps a MP corridor spread
into a real intermediation spread for given monetary aggregates. Later, we show how real spreads
determine monetary aggregates, and thus, how the CB has the ability to control spreads.

Banks. There is free entry and perfect competition among banks. We consider the static portfolio
decision of a bank within an interval of time ∆—below, we take the limit of ∆ → 0 to embed the
banking block to the general equilibrium. Banks are owned by households. Because there are no
aggregate shocks during the ∆ interval, the bank’s objective is to maximize static expected profits.
Competition guarantees zero expected bank profits.

11Other related work includes Silva (2016), that focuses on open market operations and the effects of expected infla-
tion. In Buera and Nicolinni (2016), the identity of borrowers and lenders is determined by a threshold interest rate.
Furthermore, there is an explicit role for outside money because a transactions instruments and MP have real effects
because they affect the stock of risk-free bonds which, in turn, affects the threshold identity of borrowers and lenders.
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At the start of the ∆ interval, banks choose their supply nominal deposits, a, nominal loans, l, and
reserve holdings, m. The aggregate supply of deposits and loans, and holdings of reserves are de-
noted by Ab, Lb, and Mb, respectively. Deposits, loans, and reserves earn corresponding rates ia, il,
and im. Whereas the loan and deposit rates are equilibrium objects, im is a policy instrument.

After the portfolio decision is made, banks face random payment shocks, as in Bianchi and Bigio
(2017a); Piazzesi and Schneider (2016). In particular, within the interval, payment shocks take one
of two values, ω ∈ {−δ,+δ}. Each possible value occurs with equal probability and is i.i.d across
banks. If ω = δ, a bank receives δa deposits and is credited δa reserves from other banks. If ω = −δ,
the bank transfers δa deposits and δa is debited to other banks. Naturally, if a bank receives a deposit,
it absorbs the liability from another bank. If it loses a deposit, another bank absorbs its liability. As
a result of the transfer of liabilities, assets need to be transferred to settle the transaction. A key
assumption is that within the ∆ time interval, loans are illiquid in the sense that they must stay with
banks. Therefore, net deposit flows must be settled with reserves, which are cleared at the CB.

Upon the payment shock to a bank, the net reserve balance of a bank at the CB:

b = m + min {ω, 0} a.

That is, if the bank suffers a withdrawal, its balance at the CB is reduced. If the bank experiences an
inflow of deposits, its overnight balance is unchanged, although the balance will increase the next
day, after the position settles. Notice that deposits never leave the banking system, but a bank that
receives a deposit inflow cannot lend the reserves it is owed.

Since ω is random, the reserve balance is not entirely under the control of a bank. For that rea-
son, it is possible that the bank ends with a negative balance, b < 0, provided a bank starts with
insufficient reserves. A bank with a negative balance must close this negative position, either by
borrowing reserves from banks with a surplus or from the CB. Figure A.1 in the Appendix presents
the corresponding T-accounts for the scenarios that can emerge within the ∆ interval.

Interbank Market. After reserve positions are determined, an interbank market opens and banks
borrow and lend reserves to each other. For a balance b, a fraction of those balances, are lent (or
borrowed, if negative) in the interbank market. In particular, if a bank has a surplus b, it lends the
fraction ψ+ to other banks and, hence, b − ψ+b remains idle in a CB account. If the bank has a
deficit, −b, it borrows only the fraction ψ− from other banks, and the remainder deficit − (b− ψ−b)
is borrowed from the CB at a discount window rate idw. The discount rate is also a policy choice.
By convention, borrowed reserves from the CB earn the interest on reserves im. Thus, the effective
borrowing cost is the policy spread ι ≡ idw − im. The trading probabilities {ψ+, ψ−} are meant to
capture trading frictions in the interbank market.

Integrating b across banks yields expressions for the aggregate surplus and the aggregate deficit
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balances:

B− ≡ 1
2

max
{

δAb −Mb, 0
}

and B+ ≡ 1
2

(
Mb + max

{
Mb − δAb, 0

})
.

Clearing in the interbank market requires that the total amount of reserve balances lent is equal to
the amount borrowed,

ψ−B− = ψ+B+. (1)

Trading frictions, a well-documented empirical feature (see Ashcraft and Duffie, 2007; Afonso and
Lagos, 2014), are key in the model to have a pass-through from policy to credit spreads. There are
many ways to induce trading frictions. Here, we assume that the interbank market is an over-the-
counter (OTC) market in the spirit of Afonso and Lagos (2015), but we adopt the formulation in
Bianchi and Bigio (2017b) that renders analytic expressions. The interbank market works as follows:
The market operates in a sequence of n trading rounds. Given the initial positions

{
B−0 , B+

0
}
≡

{B−, B+}, surplus and deficit positions are matched randomly. When a match is formed between
two banks, they agree on an interbank market rate for the transaction. The remaining of surplus and
deficit positions define an new balance,

{
B−1 , B+

1

}
. New matches are formed, and a new interbank

market rate emerges. The process is repeated n times, defining a sequence
{

B−j , B+
j

}
j∈1:n

until a final

round is reached. Whatever deficit remains is then borrowed from the CB at a cost given by ι.

The interbank market rate at a given trading round is determined by a bargaining problem in which
banks take into consideration the matching probabilities and trading terms of future rounds. This
produces an endogenous average interbank rate, ı̄ f . Given trading probabilities, the policy rates and
the average rate i f

, the average rates earned on negative and positive positions are respectively:

χ− = ψ−
(

i f − im
)
+ (1− ψ−) · ι, and χ+ = ψ+

(
i f − im

)
.

Banks take into account these costs and benefits when forming their portfolios. To express {χ−, χ+},
Bianchi and Bigio (2017b) assume that matches are formed on a per-position basis and according
to a Leontief matching technology, λ

n min
{

B−j , B+
j

}
, where λ captures the trading efficiency. Let

θ = B−/B+ ≤ 1 define an initial interbank “market tightness.” In the limit n → ∞, trading prob-
abilities across all trading rounds, {ψ+, ψ−}, converge to ψ+ (θ) = θ (1− exp (−λ)) and ψ− (θ) =

1− exp (−λ), two expressions consistent with market clearing. Then, the average interbank market
rate i f

that results when both bargaining weights are equal is

i f
(θ, im) ≡ im + ι ·

(
(θ + (1− θ) exp (λ))1/2 − 1

)
(1− θ) (exp (λ)− 1)

. (2)
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The corresponding expressions for the average cost functions are:

χ+ (θ) = ι ·

(
θ (θ + (1− θ) exp (λ))1/2 − θ

)
(1− θ) exp (λ)

and, (3)

χ− (θ) = ι ·

(
(θ + (1− θ) exp (λ))1/2 − θ

)
(1− θ) exp (λ)

.

These coefficients are independent of im and only depend on the total gains from trade, ι = idw − im.
Of course, im affects the direct return of holding reserves. If the CB has the ability to control χ, it will
have control over credit spreads.

The Bank Problem. We turn to the banks optimal portfolio choice. The average benefit (cost) of an
excess (deficit) reserve balance, b, is:

χ(b; θ) =

χ− (θ) b if b ≤ 0

χ+ (θ) b if b > 0
. (4)

We label χ the liquidity yield function. With this function, we are ready to present the bank’s problem:

Problem 1 [Bank’s Problem] A bank maximizes its instantaneous expected profits:

Πb = max
{l,m,a}∈R3

+

il · l + im ·m− ia · a + E [χ (b; θ, ι)]

subject to the budget constraint l + m = a where the distribution of reserve balances is:

b (a, m) =

{
m with probability 1/2

m− δ · a with probability 1/2
.

At the individual level, the bank objective is piece-wise linear and, in particular, linear along a ray
in the {m, a}-space. As in any model with linear firms, banks must earn zero (expected) profits in
equilibrium, otherwise they would make infinity profits. Furthermore, at the individual level, banks
will be indifferent among different portfolios, within a cone of in the {m, a}-space. However, at the
aggregate level, the ratio of reserves to deposits will pin down the

{
il, im}. This feature is similar to

what occurs with competitive firms that operate a Cobb-Douglas production technology with two
inputs—whereas firms earn zero profits and the individual scale is indeterminate, the ratio of inputs
pins down relative prices.

Equilibrium Credit Spreads. Next, we explain how a ratio of monetary aggregates determines
the equilibrium loan and deposit rates. To that end, we define the aggregate liquidity ratio as Λ ≡
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Mb/Ab, which corresponds to the inverse of the so called “money multiplier.”12 The interbank
market tightness can be expressed in terms of this ratio:

θ (Λ) ≡ max
{

δ

Λ
− 1, 0

}
. (5)

The tightness θ is decreasing in the liquidity ratio because with more liquidity, there is less need to
borrow. The tightness decreases with Λ, and satisfies limΛ→0 θ = ∞ and θ = 0 for any Λ ≥ δ. If we
substitute (5) into (4), we can express χ as a function of the policy corridor, ι, and the liquidity ratio,
Λ, and do not depend on the level of

{
Mb, Ab}. Then, the linearity of the bank’s problem, coupled

with a free-entry condition, yield corresponding equilibrium nominal rates and a real spread:

Proposition 1 [Nominal Rates and Real Spread] Consider an aggregate liquidity ratio Λ . Then, for given
{Λ, im , ι}, any equilibrium with finite loans and deposits must feature the following loans and deposit rates:

il ≡ im +
1
2
(
χ+ + χ−

)
︸ ︷︷ ︸

liquidity value of reserves

(6)

ia ≡ im +
1
2
(
χ+ + χ−

)
︸ ︷︷ ︸

liquidity value of reserves

− δ

2
χ−.︸ ︷︷ ︸

deposit liquidity risk

(7)

Furthermore, if Λ ≥ δ, then, il = ia = im. In all cases, banks earn zero expected profits.

Proposition 1 establishes that the interest on reserves is a base rate for both the nominal borrowing
and lending rates. Both rates carry a different liquidity premium relative to the rate on reserves. To
understand this aspect, consider first the liquidity premium of loans. Loans earn a premium over
reserves because, on the margin, an additional reserve earns χ+ if the bank ends in surplus or spares
the bank χ− if the bank ends in deficit—each scenario occurs with equal probability. The deposit
liquidity premium reflects that an additional deposit will increase expected costs by δ · χ− if the
bank ends with a negative balance. Thus, the deposit premium is the sum of the expected marginal
increase in earnings from an additional reserve minus the expected marginal increase in payments
of an additional deposit.

The loan deposit spread, a key object for the real sector, directly follows from subtracting the deposit
rate from the loans rate. The equilibrium credit spread, il − ia, is given by,

il − ia =
δ

2
χ−. (8)

Now, the spread between two nominal rates is a real object, and thus affect household decisions,

12We prefer to avoid the terminology of money multiplier employed in the textbook description of the creation of
deposits. According to that arithmetic, the money multiplier equals inverse of the ratio of reserve requirements, an
object that is not present here.
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(a) Equilibrium nominal rate given ι and Λ
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(b) Equilibrium spread given ι and Λ

Figure 1: Interest Rates and Spread as Functions of Λ
Note: Panel (a) plots the nominal deposit, loan, average interbank rate, and policy rates as functions of liquidity yield and spread as functions of
liquidity ratio Λ. Panel (b) shows the components of the liquidity yield and the equilibrium spread. The figure is constructed using parameters from
the calibration presented in section 4.

regardless of the inflation rate. This credit spread is positive whenever the liquidity ratio is below
the amount needed to satisfy the clearing of deficit banks Λ < δ, and decreasing with the liquidity
ratio. Therefore, if the CB can influence that ratio, it will influence real activity. Figure 1 depicts the
formulas in Proposition 1 for nominal rates and the spread as functions of Λ. The left panel plots{

il, i f
, ia
}

as functions of (6) and (7) for fixed policy rates {ι, im} . Both rates lie in between im and

idw.13 We also see how the credit spread decreases with the liquidity ratio.

The next section embeds bank intermediation into the incomplete markets economy, in the spirit
of the early monetary model of Bewley (1983). Before we proceed, we discuss the assumptions
encountered so far.

Digression: on discount loans and payment shocks. The discount window rate and the size of
payment shocks stand in for features missing from the model. In practice, the cost of reserve short-
ages can be much larger than the discount window rate set by the CB. One reason for this is that
discount window loans require high quality collateral. If collateral is scarce and a bank cannot close
its position, the bank that cannot close a negative balance can be intervened, (for a related bank
model with collateralized discount loans see De Fiore et al., 2018). Another issue is that discount
window loans can bear a stigma (as in Ennis and Weinberg, 2013). This is because discount window
loans are uncollateralized in the model and the discount window rate may be too low compared to
the actual cost of a reserve shortage. For this reason, the discount window rate in the model must be
treated as a much larger cost than the discount rate seen in the data.

Another point worth discussing is that payment shocks are i.i.d. In the data, payment shocks are
likely to be persistent. To precisely capture the cost of withdrawals, we must increase the size of

13Credit risk or illiquidity is enough to produce rates above those bands.
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shocks to compensate for the lack of persistence in the withdrawal shock. Adding persistence makes
the model more realistic, but this comes at the expense of tractability.

2.2 General Equilibrium

We now embed intermediation into the general equilibrium model. We take a continuous time limit
of the bank’s problem. Within a ∆ time interval, average profits are ∆ · πb—all rates are scaled by ∆
and the objective is linear. Since bank policy functions are independent of ∆, the equilibrium rates of
Proposition 1 also scale with ∆, even as ∆→ 0. Next, intermediation, into the continuous-time limit
of the general equilibrium. To do so, we work with a ∆→ 0 limit.14

The non-financial sector of the economy features a measure-one continuum of heterogeneous house-
holds. From their perspective, time is indexed by some t ∈ [0, ∞). The price of the good in terms
of money is Pt. Banks intermediate between borrower and lender households, but since they make
zero profits, they are simple passthrough entities. The CB determines the policy corridor rates, con-
ducts open market operations, and makes/collects (lump sum) transfers/taxes to/from households.
Households attempt to smooth idiosyncratic income shocks, via the insurance provided by the in-
termediation sector.

Notation. Individual-level variables are denoted with lowercase letters. Aggregate nominal state
variables are denoted with capital letters. Aggregate real variables are written in capital calligraphic
font. For example, ah

t will denote nominal household deposits, Ah
t the aggregate level of deposits,

and Ah
t real household deposits.

Households. Households face a consumption-saving problem. Household preferences are de-
scribed by:

E

[ˆ ∞

0
e−ρtU (ct) dt

]

where U (ct) ≡
(

c1−γ
t − 1

)
/ (1− γ) is their instantaneous utility.

Households receive a flow of real income given by:

dwt = w (z) dt.

Income is the sum of monetary transfers Tt (discussed below) and labor income. Labor income
depends the employment status z ∈ {e, u}. If z = e, the household is employed and if z = u, the

14Note that the balance by the end of a time interval bt, is a random variable. If we were to track bt as a function of
time, this stochastic process would not be well defined—the sum of coin tosses in continuous time is not well defined.
However, treating bt+∆ as the single realization of a random variable in a single instance is a perfectly well defined object.
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household is unemployed. The income of the employed and unemployed are related via

w (e) =
(

1− τl
)
+ Tt, w (u) = b + Tt.

where b is an exogenous unemployment benefit that measures a degree of labor market insurance
and τl is a labor tax used to finance the unemployment benefit. In the expression, we are normalizing
the real wage to one. The unemployment benefit b is important to control the degree of insurance in
the economy and endow the unemployed with some income.

Households transition from employment to unemployment states according to an instantaneous
transition probability:

Γt ≡
[

Γeu
t

Γeu
t

]
=

[
νeu + (φt)

+

νue − (φt)
−

]
. (9)

where {νue, νeu} are exogenous (natural) transition rates. The term, φt is an endogenous employment-
unemployment adjustment rate that occurs do to nominal wage stickiness. Namely, φt is positive
when the rigidity constraint is binding and there is an excess supply of final goods if φt = 0. In turn,
φt is negative when the rigidity constraint is binding and there is an excess demand of final goods
under φt = 0. The transition matrix, Γzz′

t measures the endogenous transition rate from state z to
state z′, where z 6= z′.

All financial assets are nominal. Although all claims are nominal, the individual state variable is, st,
a stock of real financial claims. Households store wealth in bank deposits, ah

t , or currency, mh
t , and

borrow loans against banks, lh
t . By convention,

{
ah

t , mh
t , lh

t
}
≥ 0. The real rates of return on deposits

and liabilities are ra
t ≡ ia − Ṗt/Pt and rl

t ≡ il − Ṗt/Pt. Currency doesn’t earn nominal interest, and
thus, its real return is −Ṗt/Pt. The law of motion of real wealth follows:

dst =

(
ra

t
ah

t
Pt
− Ṗt

Pt

mh
t

Pt
− rl

t
lh
t

Pt
− ct

)
dt + dwt (10)

and the balance-sheet identity:(
ah

t + mh
t

)
/Pt = st + lh

t /Pt.

From a household’s perspective, there is no distinction between holding deposits or currency beyond
their rates of return. Hence, currency is only held when the nominal deposit rate is zero, and both
assets yield the same return. Importantly, currency is introduced into the model to articulate a DZLB
as an implementation constraint. Another observation is that households will never hold deposits
and loans, if there’s a positive spread between them. Combining these insights, (10) can be written
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more succinctly as:

dst = (rt (s) s− ct) dt + dwt where rt (s) ≡
{

ra
t if st > 0

rl
t if st ≤ 0

. (11)

Another important assumption is that employment risk cannot be diversified due to incomplete mar-
kets. In particular, households can borrow, but with some limitations. Concretely, credit is limited
by a debt limit s̄ ≤ 0. This limit determines an absolute lower bound on real debt, st ≥ s̄ where s̄ ≤ 0
is exogenous and constant. Technically, this means that at s = s̄, it must be that dst ≥ 0. With these
constraints, the corresponding household Hamilton-Jacobi-Bellman (HJB) equation is:

Problem 2 [Household’s Problem] The household’s value and policy functions are the solutions to:

ρV (z, s, t) = max
{c}

U (c)+V′ (z, s, t) [rts− c + y (z) + Tt] + Γzz′
t ·
[
V
(
z′, s, t

)
−V (z, s, t)

]
+

∂V (z, s, t)
∂t

and ṡ ≥ 0 at s = s̄.

We define by the drift of wealth by µ (z, s, t) ≡ rts− c + y (z) + Tt.

Inflation. The price level moves according to a

π̇ (t) = ρ (π (t)− πss)− κ (uss − ut) . (12)

This is a classic forward-looking Phillips curve (NS), where we use the unemployment rate above/below
the natural rate uss. In the expression, πss is a long-run expected inflation-target implemented by the
CB interest-rate policy.

Solving the equation Forward, delivers the following integral solution for inflation:

π (t) = πss + κ

ˆ ∞

0
exp (−ρs) (uss − ut+s) ds.

Importantly, π (t) is not pre-determined as it depends on path of future unemployment. Inflation
is boosted at intensity κ, as unemployment falls below steady state. When unemployment is below
steady state, the economy experience wage pressure. In that case, wages tend to increase. Similarly,
the economy features deflation as the unemployment rate rises above steady state. When κ 7→ ∞,
the economy approaches a flexible price equilibrium, and as κ 7→ 0, it converges to a constant price
equilibrium.

Distribution of Wealth and Employment Status. The mass of households sums to one. Among
them, the fraction e is active in the work force, and the fraction u is unemployed. The mass of
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unemployed evolves according to the law of motion derived from the transition probabilities:

u̇ =
[
νeu + (φt)

+
]
· (1− u)−

[
νue − (φt)

−
]
· u.

At each instant, there’s a distribution f (z, s, t) of real financial wealth across households given their
employment status z. The law of motion of this distribution satisfies a Kolmogorov-Forward Equa-
tion (KFE): mh (s, t) be the solutions to the household’s problem. The KFE of f is,

∂

∂t
f (e, s, t) = − ∂

∂s
[µ (e, s, t) f (e, s, t)]− Γeu

t · f (e, s, t) + Γue
t · f (u, s, t) , and

∂

∂t
f (u, s, t) = − ∂

∂s
[µ (u, s, t) f (u, s, t)]− Γue

t · f (u, s, t) + Γeu
t · f (e, s, t) . (13)

Central Bank. The CB maintains zero equity every period. Thus, its assets and liabilities are equal
in every period, L f

t = Mt. CB holds as assets L f
t , and issues liabilities, that represent the monetary

base, Mt. The monetary base is divided into reserves Mb
t and currency, M0t. In the paper, we

assume that banks can’t hold currency due to regulation, taxation, or physical costs. An open-market
operation (or a reverse open-market operation) is a simultaneous increase (or decrease) in Mt and L f

t .
Because of interest rate differentials, and its discount-window loans, the CB generates operational
profits which it distributes to the central government. In addition to these operations, the CB also
sets the discount window rate idw

t , the rate at which banks can borrow reserves and the interest
on reserves, im

t , that we presented earlier.15 In principle, we can think of
{

im
t , idw

t
}

as independent
instruments. However, for the rest of the paper, we assume that the policy corridor spread ι =

idw
t − im

t is a constant.

The operational profits of the CB are:

ΠCB
t = il

tL
f
t − im

t (Mt −M0t) + ιt
(
1− ψ−t

)
B−t . (14)

The CB earns il
t on L f

t , and pays im
t on the portion of the money supply held as reserves, hence it

earns an interest rate differential. The third term, ιt
(
1− ψ−t

)
B−t , is the income earned from discount

window loans.

The CB operational income plus the surplus or deficit of from social insurance, etτ
l − utb, are the

total revenues of the government, which we assume are distributed lump-sum:

PtTtdt = ΠCB
t dt + Pt

(
τlet − but

)
.

15The CB faces a solvency restriction, idw
t − im

t ≥ 0, and also idw ≥ 0 . The spread idw
t − im

t ≥ 0 because a negative
corridor spread would enable banks to borrow from the discount window and lend back to the CB and create arbitrage
profits. If idw < 0, banks could borrow reserves and lend reserves as currency to households swapping the currency for
deposits at zero rates. This operation would produce another arbitrage for the bank.
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To set the interest on reserves, the CB works with a Taylor rule that allows for both, a discretionary
component that is triggered during a credit crunch, but also follows a standard Taylor rule that
captures commitment for the long-run. This feature is important. Without a Taylor rule, the price-
level is unstable, so we need the long-run component. At the same time, we want to capture the idea
that MP responds to economic conditions. For the rest of the paper, we assume Tt adjusts to satisfy
the balanced budget above (fiscal passive regime).

A Time-Varying Taylor Rule. For that, we specify the following rule:

im
t = īm

t + ηt · (πt − πss) (15)

where ηt the time-varying response of the Taylor-rule to inflationary pressures. Importantly, īm
t is

a time-varying process that induces a long-run inflation target. We use this parameter to study the
effects of changes in nominal policy rates. It is important to let ηt and īm

t vary over time. First, by
letting īm

t change, we can analyze the effects of changes in the monetary policy rule. However, we
also need to change the response of the policy rule to inflation to properly isolate the responses of
variables. Thus, this formulation is flexible enough to allow for isolated changes in the interest rate
rules, but in ways that the economy is permitted to transition to the one governed by a standard
Taylor rule in the long-run.

Markets. Outside money is held as bank reserves or as currency. The aggregate currency stock is

M0t ≡
ˆ ∞

s̄
mh

t (s) f (s, t) ds.

Equilibrium in the outside money market is:

M0t + Mb
t = Mt. (16)

The credit market has two sides, a deposit and a loans market. In the deposit market, households
hold deposits supplied by banks. In the loans market, households obtain loans supplied by banks.
The distinction between the loans and deposits is that they clear with different interest rates. The
deposit market clears when:

Ab
t =

ˆ ∞

0
ah

t (s) f (s, t) ds, (17)
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where ah
t (s) ≡ Pts−mh

t (s), for a positive s. The left of this equation is the bank supply of deposits.
The loans market clears when:

Lb
t + L f

t =

ˆ 0

s̄
lh
t (s) f (s, t) ds, (18)

where lh
t (s) ≡ −Pts for negative s. Finally, the goods market clears when:

ˆ ∞

s̄
y (u (s, t)) f (s, t) ds ≡ Yt = et = Ct ≡

ˆ ∞

s̄
c (s, t) f (s, t) ds. (19)

Equilibrium. A price path-system is the vector function
{

P (t) , il (t) , ia (t)
}

: [0, ∞) → R3
+. A

policy path is the vector function
{

L f
t , Mt, , idw

t , im
t , Tt

}
: [0, ∞) → [0, ∞) → R5

+. Next, we define an
equilibrium path.

Definition 1 [Perfect Foresight Equilibrium.] Given an initial condition for the distribution of household
wealth f0, an initial price level P0, and a policy path

{
L f

t , im
t , ιt, Tt

}
, a perfect-foresight equilibrium (PFE)

is (a) a path for inflation, (b) a path for the real wealth distribution f , (c) a path of aggregate bank holdings{
Lb

t , Mb
t , Ab

t
}

t≥0 , (e) unemployment flows, and (d) household’s policy
{

c, mh} and value functions {V}t≥0,
such that:

1. The path of aggregate bank holdings solves the static bank’s problem (1) at each t,

2. The household’s policy rule and value functions solve the household’s problem (2),

3. The unemployment transitions satisfy (9),

4. The law of motion for f (s, t) is consistent with Kolmogorov-Forward equation (13),

5. The government’s policy path satisfies the governments budget constraint (14),

6. All the asset markets and the goods market clear (1,16-19).

Next, we characterize the equilibrium dynamics. A steady state occurs when ∂
∂t f (s, t) = 0 and{

ra
t , rl

t
}

are constant. We use subscripts ss to denote variables at steady state.

Digression: Model Assumptions. The financial architecture in the model captures a fundamental
feature of banking. In practice, banks issue deposits in two transactions. The first is a swap of liabil-
ities with the non-financial sector. When banks make loans, they effectively credit borrowers with
deposits, a bank liability is exchanged for a household liability. This swap is the process of inside
money creation. Deposits then circulate as agents exchange deposits for goods. This circulation gives
rise to the settlement positions. The second transaction is the exchange deposits (a bank liability) for
currency (a government liability).
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A missing element is government bonds. In practice, central banks conduct open-market operations
by purchasing government bonds. Here, negative holdings of L f are interpreted as government
bonds. The implicit assumption is that bonds are as illiquid as private loans. Bianchi and Bigio
(2017a) introduce government bonds that are more liquid than loans, but less so than reserves, be-
cause they cannot be used for settlements.

3 Implementation

We begin with a simplest of observations. A spread between nominal rates equals the spread be-
tween the corresponding real rates. This observation is important because households take decisions
based on real rates. If the central bank can control a nominal spread, it implies it can control more
than one real rate. As shown in Proposition 1, the spread is governed by the liquidity ratio, Λ. We
now explain how the CB implements a desired credit spread by conducting open-market operations,
and then how the spread affects the steady-state and transitions in this model.

Implementation. From equation (8), we know that the real spread ∆rt is a function of the liquidity
ratio Λt. A natural question is to what extent does the CB control the liquidity ratio? The main result
of this section is that OMO affects the liquidity ratio, unless the economy reaches a DZLB or unless
the economy is satiated with reserves.

We first characterize the DZLB. The DZLB emerges because households can convert deposits into
currency. Hence, although the CB can set a negative interest im

t < 0, the deposit rate is always
satisfies ia

t ≥ 0 in equilibrium. To characterize the DZLB, we define Λzlb
t as the threshold liquidity

such that for any liquidity ratio above that point, the equilibrium deposits rate, as determined by
equation (7), would be negative:

Λzlb (im
t , ιt) ≡ min

{
Λ|0 ≥ im +

1
2
(
χ+ (Λ) + (1− δ) χ− (Λ)

)}
.

Because a negative deposit rate cannot occur in equilibrium, in any equilibrium Λt ≤ Λzlb (im
t , ιt). If

the CB attempts to increase Λt, beyond Λzlb, the increment in the money supply must immediately
translate into an increase in currency M0t, but not in Mb

t ! Thus, at the DZLB the CB loses the ability
to influence spreads through an increase in OMO. Furthermore, because χ− ≥ χ+ ≥ 0, we know
that Λzlb is a finite only if im

t < 0. Thus, the DZLB is relevant only when im is negative.

We can define a monetary base liquidity ratio, ΛMB
t as ΛMB

t ≡ Mt/At. Different from the liquidity ratio
of banks, Λt, which is the relevant object to determine bank spreads, the monetary base liquidity
ratio ΛMB

t is defined in terms of the total monetary base, which includes reserves and currency. We
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express ΛMB
t in terms of the composition of the CB’s balance sheet in real terms:

ΛMB
t =

L f
t /Pt

At/Pt
=

L f
t´ ∞

0 s f (s, t) ds
≡ ΛMB

(
ft,L f

t

)
.

In addition to the DZLB regime, OMO are also irrelevant when banks are satiated with reserves and
θ = 0. This regime occurs when Λt ≥ δ, because in that case, banks have enough liquidity to cover
a withdrawal. When, im < 0, we know that Λzlb (im

t , ιt) < δ, because otherwise χ− = χ+ = 0, and
the deposit rate would be negative. This means that the satiation regime occurs only when rates on
reserves are positive. This observation, allows us to organize the effects of policy tools into a single
proposition:

Proposition 2 [Properties of Equilibrium Rates and Spreads] Consider a CB policy given by
{
L f

t , im
t , ιt

}
.

1. Corridor Regime: Let Λt < min
{

δ, Λzlb (im
t , ιt)

}
, then im < ia < il < idw and ∆r ∈ (0, ι). Further-

more, the effect of policy instruments on the spread is:

∂∆r

∂L f
t

< 0 and
∂∆r
∂im

t
= 0.

2. Floor regime: Let im ≥ 0 and Λt ≥ δ, then il = ia = im and ∆r = 0. Furthermore, the effect of policy
instruments on the spread is:

∂∆r

∂L f
t

= 0 and
∂∆r
∂im

t
= 0.

3. NIOR and DZLB regime: Let im < 0 and Λt = Λzlb (im
t , ιt), then il > ia = 0 and ∆r > 0. Further-

more, the effect of policy instruments on the spread is:

∂∆r

∂L f
t

= 0 and
∂il

∂im
t
=

∂∆r
∂im

t
< 0,

∂ia

∂im
t
= 0.

Proposition 2 establishes the direction of policy effects. There are three regimes: In the first regime,
Λt < min

{
δ, Λzlb (im

t , ιt)
}

so liquidity is scarce enough to promote interbank lending. In CB jargon,
this regime is a corridor system. It features a positive credit spread controlled via open market oper-
ations. Increases in im induce a parallel increase in both nominal rates, with effects on employment
and inflation, but keep the spread constant. The neutrality of im on the spread implies that the CB
can control inflation independently from the impact on spreads, which is its balance sheet policy.

When im > 0 and the liquidity ratio exceeds, Λ > δ, banks are satiated. In that case, all nominal rates
equal im. This regime is a floor system. Furthermore, OMO have no effects and therefore satisfy classic
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Wallace irrelevance, (Wallace, 1981). In a floor system, the CB loses the ability to affect spreads and
can only handle inflation. Appendix B presents additional figures for the case of a negative rate on
reserves.

Now consider a regime with negative interest on reserves, im
t < 0. This regimes opens the possibil-

ity of a DZLB. A DZLB occurs when the liquidity ratio is above the endogenous liquidity ratio Λzlb
t

that makes the deposit rate hit zero. In that region, OMO are irrelevant because any increase in CB
liabilities translates into an increase in currency, not reserves. However, the spread is still positive,
even though OMO have no effects. The reason is that negative rates on reserves tax deposits. Since
the deposit rate is fixed at zero, banks require a higher lending rate—because deposits have an in-
finite price elasticity at that rate. As a result, changes in im

t produce a joint effect on the real spread
and inflation, which is something that does not occur in a corridor system. The change of behav-
ior of spreads at the DZLB has been documented by (Heider et al., 2019; Eggertsson et al., 2019).
In different models, Brunnermeier and Koby (2019) and Ulate (2019) obtain a similar effect, but the
mechanism operates through bank capital. Figure 16 in...

Two Intermediate results. Next, we discuss the steady state and how MP affects the steady state.
We then discuss the effects along a transition. then discuss the effects of policies along a transition.
Before that, we derive the clearing conditions of this economy.

We begin by expressing the government budget constraint in real terms. If the CB induces a real
spread, and banks earn zero profits, the revenues from the spread must go somewhere. The only
possibility is that the revenue from the spread goes to the operational profits on the CB. The next
proposition uses this observation to relate the real fiscal transfers to the spread and the fiscal deficit:

Proposition 3 [Real Budget Constraint] The real spread produces transfers equal to

Tt = ∆rt ·
ˆ ∞

0
s f (s, t) ds︸ ︷︷ ︸

operational revenue

+ τlet − but︸ ︷︷ ︸
fiscal deficit

. (20)

Given {∆rt, Tt}, market clearing in real financial claims is consistent with an equilibrium real deposit
rate ra

t and a job separation rate φt. This real equilibrium rate is the one that solves a single clearing
condition which, in turn, implies clearing in all asset markets:

Proposition 4 [Real Wealth Clearing] Let nominal rates be given by (6) and (7), and let the liquidity ratio be
given by Λt. Then, market clearing in real wealth,

0 =

ˆ ∞

s̄
s f (s, t) ds for t∈[0,∞), (21)

implies market clearing in all asset markets. Furthermore, if (??) and the Kolmogorov-Forward equation (13)
hold, then, the goods market clearing condition (19) holds.
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Figure 2: Excess Savings as a Function of Deposit Rate in Steady State
Note: The figure depicts the excess savings supply as a function of the real deposit rate (in steady state). Taking the real spread as given, the spread is
constant. The figure is constructed using parameters from the calibration presented in Section 4.

The proposition shows that all clearing conditions are summarized by a single condition. To guaran-
tee clearing along a transition, we must obtain a real deposit rate, ra

t . For example, Figure 2 plots the
relationship between the excess supply in real savings relative to GDP at a steady state, as a function
of a real deposit rate ra

t .

Steady State. Consider now a steady state. Let the CB have a specific target long-run target for ∆rss.
At steady-state, the disturbance in job-separation φt must be zero because that is the only possibility
consistent with the Phillips curve that generates no acceleration in inflation. We also know that that
inflation has no effects in a steady state—unlike the new-Keynesian model. In other words, money
is superneutral. Thus, at steady-state, the real interest rate ra

ss adjusts to solve:

0 =

ˆ ∞

s̄
s fss (s) ds.

Once we obtain an equilibrium ra
ss in steady state which also corresponds to the real interest rate that

prevails in flexible price equilibrium, we obtain the path of inflation:

πss = π∞ = im
∞ − ra

∞ +
1
2
[
χ+

∞ + (1− δ) χ−∞
]

.

21



Once inflation is obtained, all nominal variables grow at the rate of inflation. Finally, to implement,
∆rss we find the size of monetary base such consistent with Λt such that ∆rss is given by (8).

Transitions. Along a transition, things work differently. In particular, πt is pre-determined by the
Phillips curve (12). Given im

t and a liquidity ratio, il
t and ia

t are determined. Hence, rl
t and ra

t follow
from the Fisher equation,

rx
t = ix

t − πt for x ∈ {l, a}. (22)

To satisfy clearing in the asset market, then, the job separation rate adjusts to satisfy (21). We obtain
the following:

Proposition 5 [Implementation Conditions] Consider an equilibrium path for {ra
t , ∆rt, ft, πt, φt}t≥0. To im-

plement the equilibrium path, the CB chooses
{

im
t ,L f

t

}
subject to the following restrictions:

1. The equilibrium liquidity ratio is Λt = min
{

Λzlb (im
t , ιt) , ΛMB

(
ft,L f

t

)}
.

2. The real transfer, Tt adjusts to satisfy (20).

3. The real spread ∆rt is given by (8) for given Λt.

4. Given im
t and Λt the nominal rates

{
il
t, ia

t
}

are given by (6-7).

5. Given φt, the unemployment rate ut satisfies the law of motion (9).

6. Inflation is consistent with the Phillips curve, (12).

7. The real rates
{

rl
t, ra

t
}

are consistent with Fisher’s equation(22).

8. The distribution of real wealth, ft , evolves according to (13) with f0 given.

9. Given ft, the job separation φt guarantees the real asset market clearing condition (21).

Proposition 5 describes the dynamic allocations that can be induced by the CB. Allocations are af-
fected by the CB because it controls the real spread by conducting OMO and through the effects of
im
t .

Policy Discussion: Tools and Targets. At any point, in the current formulation, the CB here has
two direct tools,

{
im,L f

t

}
. We observed that im controls inflation through the Phillips curve. We also

saw that given ι a choice of L f
t can produce a desired spread. To understand whether the latter are

redundant assets, we must ask if the implementation of a credit spread has fiscal consequences. In
the model, the smae spread can be obtained by moving the corridor spread ι, or by implementing
OMO. We could be tempted to argue that these instruments have different fiscal consequences, but
they don’t as Proposition ?? shows:
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Corollary 1 [No Fiscal Consequence of an implementation choice] Consider two policies {ι, Λt} that imple-
ment the same real spread target, ∆rt. Both are consistent with the same discount window profits and, hence,
produce the same fiscal revenues.

In summary,
{

ι,L f
t

}
have the same effect on households through the spread, and have the same

effect on fiscal revenues, both instruments are redundant.16

Policy Discussion: Alternative Implementations, the DZLB, and Fiscal-Monetary Interactions.
It is worth discussing MP implementations used in practice (Bindseil, 2014, reviews cross-country
practices.). In the model, one alternative way to the control the real spread directly through OMO
while keeping ι constant, is to target an interbank market rate i f

: given ι, we can find a consistent
Λ that delivers i f

. Because there is also a map from i f
to ∆rt, a target for the interbank rate also

implements a spread.

In practice, most CBs have an explicit interbank target, but restrict they way in which they achieve
it. So CBs set corridor systems with a constant corridor width ι and move Λ and target an interbank
market at the middle, i f

= im + 1
2 ι. Other countries, keep the rate on reserves at zero but move ι,

and simultaneously target i f
at a constant distance from ι. Our analysis suggests that under either

system, a CB will simultaneously move spreads and inflation, perhaps inadvertently. However, in
doing so, CBs lose an instrument: they can target inflation and spreads within a given mix, but not
as independent targets. If CBs are open to move im and ι, they can reach both targets. This paper
argues that targeting spreads is desirable.

The effects of policy at the zero lower bound are different from those that emerge in cash-in-advance
constraints. In those models, a ZLB emerges if the CB floods the public with savings instruments so
that the asset clears at negative rates. That opens the door to an unrealistic arbitrage in which the
households borrow at negative rates from the CB to hold currency.17 Here, it is important to note
that while the ZLB applies to the nominal deposit rate, it does not apply to the rate on the policy
instruments. The policy conclusion is that a CB that reduces im

t , perhaps in an attempt to increase
inflation, will cause an increase in credit spreads.

The model inherits classical monetary properties in Bewley economies (Bewley, 1983; Ljungqvist
and Sargent, 2012, , Chapter 18.11). First, a version of the quantity theory holds. If we fix a path for
Tt, and ∆rt, then we can scale every nominal variable by a scalar and obtain the same equilibrium.
Second, changes in the growth rate of nominal transfers produce an increase in steady-state inflation.
If im increases at that same rate, the effect of the policy is neutral.18 Third, because the economy is

16However, ι can be increased to achieve any spread. Instead, OMO can produce spreads within the bound ∆r ∈
{

ι
2 , ι
}

.
17In Rognlie (2016), negative rates are possible because there are costs of holding physical currency.
18To illustrate, assume a policy where from t onward, the CB increases the growth rate of nominal transfers. Then

inflation rate will increase at a constant rate as long as the CB keeps a real transfers constant, but the CB must also
increase im

t and idw by the new rate of inflation. Thus, if the CB moves its policy rates accordingly, monetary policy is
super neutral. If instead, the CB increases transfers but keeps the real rate constant, it effectively changes the real value
of transfers and the real rate. In that case, monetary policy is not super neutral.
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neutral, there is potentially a continuum of equilibrium indexed by time zero prices. By normalizing
P0, we fix the initial distribution of wealth.

4 Positive Analysis: From Instruments to Channels

This section discusses the positive analysis of the effects of MP within the three regimes described
earlier. First, we discuss the regime where MP eliminates any credit spread (a floor system) achieved
by satiating banks with reserves. We then move of to discuss a regime that opens spreads (a corridor
system). We then move on to discuss the effects of policy at the DZLB. Table 1 presents a summary
of the instruments that are operative under each regime (corresponding to Proposition 5) and the
channels that they activate. At the end of this section, we discuss the effects of a credit crunch, as a
prelude to the normative analysis of the following section.

Instrument Channel
Regime im

t L f
t Fisherian Non-Ricardian Credit

Floor system (sec 4.1) X X
Corridor system (sec 4.2) X X X X X

DZLB (sec 4.2) X X X

.

Table 1: Instruments and Transmission Channels

Calibration. At this stage, we must proceed with numerical examples. Next, we present a cali-
bration to produce the computations. The paper has many missing elements that would allow for a
proper quantitative analysis. The spirit, nonetheless, is to provide a quantitative sense of the strength
of the different transmission mechanisms. The calibration, is also a guide to where the model needs
realism. The calibration is summarized in Table 2 and inspired by the US economy. Risk aversion,
which coincides with the inverse inter-temporal elasticity, γ, is set to 2. The time discount, ρ, is set
to 4%, which yields a real steady-state deposit rate of approximately 1.0%.

The unemployment benefit is set to 0.41% matching the unemployment insurance replacment. The
labor tax τl is set to 0.3, the average labor-income tax. The coefficient of the Taylor rule η is set to 1.5,
a standard value. In turn, κ in the Phillips curve is set to 0.1, as in Nakamura and Steinsson xxx.

The interbank-market efficiency, λ, is set to 2.1. This number is directly taken from Bianchi and Bigio
(2017a), who calibrate it to match the size of discount window loans. The rate on reserves is set to
im
ss = ra

ss, so steady state inflation is zero, which is a normalization. The discount window rate is set to
produce a steady-state spread of 2%, for the exercises where the spread is open. The required spread
between the discount-window rate and the rate on reserves is much higher than in the data, but as
we argued above, this is a stand-in for missing elements such as collateral and stigma (De Fiore et
al., 2018). The average shock δ is set to produce the same market tightness in the interbank-market
as in Bianchi and Bigio (2017a).
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Parameter Value Description Target/Reference
γ 2 Risk aversion standard
ρ 0.04 time discount 1.0% real risk-free rate

νeu 0.4 Job separation rate Shimer (2005)
νue 5.4 Job finding rate Shimer (2005)
κ 0.1 Phillips curve parameter Nakamura Steinsson (2020)
b 0.41 Unemployment benefit UI Replacement
τl 0.3 Proportional labor tax rate U.S. average labor-income tax (OECD)
η 1.5 Taylor rule parameter Taylor (1993)

∆r 2% Credit spread
s̄ −12w (u) Credit limit

Table 2: Parameter Values
Note: The table lists the calibrated values of parameters and the corresponding reference/target of calibration.

The debt limit s̄ is set to −12w (u) to produces a debt-to-income ratio of 12 for the poorest house-
holds, a number in line with the literature. The borrowing limit s̃ is set to s̄ so it is active only when
we study a credit crunch.

A standard way to calibrate the unemployment-to-employment and empoloyment-to-unemployment
rates is to directly use the transition rates as in Shimer (2005) which estimates values for {νeu, νue}
of {0.4, 5.4}. However, we want our calibration to acknowledge that there is much more labor
income risk and, actually, consumption income risk in the data. Thus, we focus on values for
{νeu, νue} that allow us to generate a good fit for the fraction of agents in debt, and the fraction of
agents at their debt limit.

Steady-state Moments. To get a sense of quantitative fit, we report steady-state moments in Table
3. The model produces a 0.0% share of agents at their debt limit and a 45.9% share that hold positive
debt. The CB’s operational profits are 5.6% of output. In the US, the transfers of the Federal Reserve
to the Federal Government are similar to corporate tax revenues, about 1.8% of GDP. Since the model
does not have operational costs for banks nor the CB, this figure, which is three times as high as in
the data, is reasonable. The interest expense on the CB’s position is 1.4% of GDP. Finally, we report
levels of wealth over GDP measured as wealth divided by per-capita income, at different quantiles.
The model misses the return shocks needed to produce the concentration ratios at the top, but does
a fair job at the bottom of the distribution. Since, as we show, most of the dynamics stem from the
behavior of the poor, missing the wealth concentration at the top should not have an important effect
on the quantitative responses.

Logistic Shocks. All of the shocks in this section will follow a logistic path.

[TBA]
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Moment Value
Fraction of households at debt limit 0.0%
Fraction of households in debt 45.9%
CB operational revenue / GDP 5.6%?
CB interest rate expense / GDP 1.4%?

Table 3: Additional Moments (Not-Targeted)
Note: The table reports the untargetted moments of the calibrated model.

4.1 A Floor System and the Fisherian Channel

We begin with a policy that neutralizes the spread, but nonetheless can attain a nominal rate target,
i.e., a floor system. We begin explaining the effects in a flexible price economy.

Flexible Prices and Steady State. Consider the flexible price version of the economy. We have the
following corollary of Proposition 5:

Corollary 2 [Floor System] Let the CB set im
t ≥0 and Λt ≥ δ. Then, the spread is zero, ∆rt = 0, and the

evolution of {ra
t , f (s, t)} is unaffected by policy. Inflation is controlled by im

t as given by (22).

Corollary 2 is a special case of Proposition 5. Under flexible prices, if the CB satiates banks with
reserves or eliminates the policy corridor, monetary policy is operates through the Fisher equation.
That is, the CB controls inflation as it effectively resets the unit of account every period, simply in-
creases the money supply (and the private sector increases it nominal liabilities) every period. The re-
sult showcases that the CB can control nominal rates, without the need of OMO.19 The ability to con-
trol inflation with a single instrument connects with three, well-traveled transmission mechanisms:
the New-Keynesian channel, the inflation-tax, and debt deflation, which we reviewed above.20 Nat-
urally, in the flexible price economy, changes in the rate of reserves are entirely neutral, but this is
not the case once we have price rigidity.

Rigid prices. Next, we return to the effects of changes in im
t under price rigidity. We reproduce

similar effects to new-Keynesian models with incomplete markets, (Guerrieri and Lorenzoni, 2017;
Kaplan et al., 2016; Auclert, 2016). In Figure 4, we consider an the exercise that deviates from a
constant Taylor rule by inducing a change in the the discretionary component of the Taylor rule īm

t ,
(15). In this experiment, the central bank chooses the initial value īm

0 of the discretionary component

19Without a policy corridor, the CB controls inflation even if there are no reserves. Woodford (2001) advocates for this
policy and labels it a Wicksellian doctrine.

20One can also incorporate sporadic currency transactions as in Rocheteau et al. (2016), that would produce an interest-
ing interaction between currency holdings, the distribution of wealth, and productive efficiency that would be affected
by the inflation tax channel. One can also lengthen loan terms so that unexpected changes in im

t are not neutral. As dis-
cussed in Gomes et al. (2016); Auclert (2016); Nuno and Thomas (2017), with long-term loans, surprise inflation which
would compresses the distribution of real wealth and affect productive efficiency.
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īm
t and lets īm

t evolve as follows:

īm
t = im

∞ +
(
īm
0 − im

∞
)
· exp

(
−ζ̄LRt

)
+
(
im
0− − īm

0
)
· exp

(
−ζ̄SRt

)
.

This exponential path allows the CB to smoothly deviate from a constant Taylor rule: In the expres-
sion, ζ̄SR governs the speed of adjustment to toward a target īm

0 and then ζ̄LR to its long-run value
(see Appendix xxx). Likewise, must modify (15) such that for a period time, the policy rate does not
respond to inflation:

ηt = η∞ + (η̄0 − η∞) · exp
(
−ζ̄LRt

)
+ (η0− − η̄0) · exp

(
−ζ̄SRt

)
.

We must limit the response of the Taylor rule to shocks because the promise of lower rates in the
future, can lead to an increase in im

t as response of the increase in the inflation rate. Thus, we must
induce a reduction in η to issolate the transition. Without this modification, the promise of moving
īm
t may lead to a short-run increase to inflation that takes im

t in the opposite direction—see Werning
(2016) and Uribe Schmidt-Grohe (2018).

We produce comparisons for the transition paths for different values of κ ∈ {0.0001, 0.1, 5}. Re-
ductions in the policy rate, lead to reductions in all nominal rates, which produce a decline in real
rates together with a corresponding increase in the inflation rate, as in the standard new-Keynesian
model. The reduction in real rates, given that production is demand determined, produces an in-
crease in output which is obtained through a decrease in job separations. Interestingly, the volume
of credit declines. The reason behind this effect is that the poor can repay their debts faster as they
earn more income. The effect goes in the opposite direction of greater consumption smoothing.

4.2 Corridor System and the Credit Channel

Flexible Prices and Steady State. In a flexible price economy, output is determined by the job
flows. However, the spread has an effect on insurance, along a transition. Here, we consider the
effects of a spread target, ∆r on the steady state. The effects apply to the steady state of the econ-
omy with price rigidity. Figure 3 reports the real wealth distribution (panel a) and output and real
interests (panel b) for different values of ∆r. Wider spreads compress the distribution of wealth. The
reason for this effect is that the spread acts like a a tax on intermediation. Like any tax, the spread
may have a different incidence on borrowers and lenders, depending on the interest-rate elasticity
of their savings. A wider spread reduces the real deposit rate and raises the real loans rates. As a
result, the spread makes saving less attractive to both borrowers and savers. This is an indication
that wider spreads produce worse risk sharing.

Note that although there is monetary neutrality and super-neutrality in the model, monetary pol-
icy can affect long-term interest rates. Namely, by supplying scant reserves, the CB can increase
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the spread by adding more frictions to financial intermediation. This effect induces worse micro-
economic insurance.
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Figure 3: Steady State Effects of Real Spreads.
Note: This figure depicts the real wealth distributions, real deposit and loan rates for different values of spreads. In panel (a) and (b), the measure of
households with assets s̄ is in mass probability (left scale), and the measure of households with s > s̄ is in probability density (right scale). In panel (c),
deposit and loan rates are expressed in annual percentage terms. For all panels, the real spread is expressed in annual percentage terms.

Transitions after changes in ∆r. Next, we consider a transition after a reduction ∆rt. Again, the
policy is announced at time zero and lasts for a year. The policy eliminates the spread and then
lets the spread converge to steady states smoothy. As explained earlier, the policy has a direct effect
through the reduction in spreads and an indirect, fiscal effect by increasing transfers. However, the
Ricardian effect is small. Because in the New-Keynesian model, the Taylor rule tends to undo the
effects of other shocks, we keep im

t constant during the length of the exercise, by feeding in a shock
to η.

Once the reduction in spreads takes place, the easing of credit spreads reverses the effects. The
reduction in the spread has an incidence on both, the real loan and deposit rate. In a flexible price
economy, both rates would sandwich together at some point in the middle of their initial values.
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Here, the nominal rate is fixed, so the inflationary effect reduces the real deposit rate. Lower real
loans rate allows borrowers to abandon their debt limit faster and therefore stimulates aggregate
demand. Likewise, for savers, the reduction in rates stimulates their consumption. The expectation
of higher future borrowing rates is an offsetting force because there is a desire to reduce debt. The
overall effect is an output expansion that is produced by a decline in job separations.

4.3 Negative IOR and the activation of the DZLB

In this section we present the responses for various levels of reductions in IOR, including the one
where IOR goes beyond DZLB. The objective is to show that reduction im

t beyond the point DZLB
is induces a contraction, even though the it is possible to reach negative interest on reserves. When
this is the case, the reduction in im

t has the effect of a reduction in im
t , as in the standard Taylor rule.

At the same time, it has the effects of increasing spreads.

Figure 6 reports the dynamic responses in the model corresponding to three values for the reduction
the policy rate, the rate īm

0 . One value leaves the interests in positive territory, the second the interest
rate exactly to the point where the DZLB is activated, but not beyond that point. The final response,
takes the value beyond the DZLB. The main insight is that the reduction in the policy rate, seizes to
be expansionary beyond the point that triggers the DZLB.

4.4 Credit Crunch

Borrowing and Debt Limits. We now study the benefits of relaxing spreads during a credit
crunch. To introduce a credit crunch, we modify the model. In addition to the debt limit s̄, we
introduce a potentially time-varying borrowing limit, s̃t. The borrowing limit is triggered before the
household reaches its debt limit, s̄ ≤ s̃t ≤ 0. The idea is that if households reach their borrow-
ing limit, they cannot take on more debt principal, but they can roll it over. That is, in s ∈ [s̄, s̃t] ,
households can refinance their interest payments, but not take more debt. Formally, this means that
dst ≥ rtstdt in s ∈ [s̄, s̃t]. Thus, the earlier constraint now reads ctdt ≤ rtstdt + dwt in s ∈ [s̄, s̃t] and
thus, the safe endowment ut = L is forced in s ∈ [s̄, s̃t]. The household’s Hamilton-Jacobi-Bellman
(HJB) equation is modified to take into account these new constraints.

Intuitively, s̃t triggers the inefficient choice earlier. We interpret an increase in s̃t as a credit crunch.
This distinction between borrowing and debt limits has technical and economic motivations. The
technical motivation is that it allows us to study an unexpected credit crunch—an unexpected jump
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in the debt limit is now well-defined mathematically.21 The economic motivation is that if banks
wants to cut back on credit, it is convenient to tighten the borrowing limit, but not necessarily the
debt limit.22

A Credit Crunch. Lets first discuss the transitions produced by a credit crunch, for now holding a
fixed spread. We introduce a temporal expected increase in s̃t, starting from s̃ss = s̄. The borrowing
limit is known to tighten to s̃t = 0.8 · s̄ in a year, and the effect will lasts two years. Figure ?? shows
the dynamics after the crunch. The anticipation of the crunch leads to a reduction in credit because
it is known that being in debt in the future will be painful. Naturally, borrowers want to pay off
their debts, but then savers must hold less deposits. Panel (b) shows how both real deposits and
loans fall during the transition. As a result, real deposit rates must fall to discourage savers from
savings. The borrowing rate also falls, because the spread is constant, and borrowers are less interest
rate sensitive—Panel (c). In the ex ante phase, output actually expands as the mass of agents in the
debt limit falls. Once the crunch takes place, a large mass of agents is suddenly in the borrowing-
constrained region, st ∈ [s̄, s̃t]. This forces households in that region to the inefficient choice. The
consequence is an immediate output collapse. Output falls continuously as more households are
dragged into the borrowing constrained region. The expectation of a recovery produces an increas-
ing path of real interest rates—because borrowing-constrained households roll over a greater stock
of debt. Credit continues to decrease until it reverses as the end of the crunch approaches.

The following figures plot the transition paths of a credit crunch shock.

5 Normative Analysis: Optimal use of the Credit Channel

Spread Management during a Credit Crunch We simulate the model to investigate the impacts of
four policy choices during credit crunch: (1) Close spread to 0; (2) Reduce IOER to DZLB such that
the nominal deposit rate is zero during credit crunch, and the credit spread is constant over time;
(3) Reduce IOER to DZLB and close spread to 0 such that the IOER im

t , the nominal deposit rate ia
t

21Suppose we want to study a credit crunch by an unexpected tightening of the debt limit. If there is an unexpected
change in the debt limit, there would be a positive mass of households violating their debt limits because income flows
continuously. This inconvenience does not apply when the borrowing limit s̃t moves unexpectedly. In the latter case,
households now face a problem insuring risk, but are not forced to reduce their debt stock immediately. This is a technical
assumption to circumvent an issue faced by models with debt limits. For example, Guerrieri and Lorenzoni (2017) must
study a gradual shock to debt limits precisely to leave agents enough time to abandon their borrowing limits.

22When a bank extends a loan principal, it increases its liabilities. This is not true about a rollover. In the case of a
rollover, banks earn interest that increases equity, but not liabilities. During financial crises, banks will want to roll over
debt, although they are unwilling to extend principal because the latter consumes regulatory capital. In addition, if loan
repayment is suddenly forced, it can trigger default. Defaults are costly for banks, because they lead to underwritings
that also subtract regulatory capital. The formulation here is motivated by these observations, although their explicit
modeling is outside the scope of the paper. This phenomenon is called evergreening. We do not model this explicitly,
but we are guided by this economic interpretation. Our constraint is consistent with the interpretation. Caballero et al.
(2008) present a model of evergreening.
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and the spread ∆rt are all equal to 0 during credit crunch; (4) Reduce IOER below DZLB such that
we reduce IOER to 0.5% below the level in policy choice (2), so there is an increase in spread during
credit crunch.

In all cases below, we consider four scenarios: the economy starts with a steady state with the same
IOER, im

ss = 1%, and a different value of spread ∆rss ∈ {0.5%, 0.75%, 1%, 1.25%}. Due to the su-
perneutrality of money, all the aggregate real variables except the real credit (borrowing and saving)
have same values across the four scenarios. This provides us a consistent benchmark for comparing
the impacts of different policy choices. In all simulations, the policy choices mentioned above only
take place during credit crunch, and return back to steady-state values outside the credit crunch.

The main conclusion of the simulations: (1) Starting with a higher steady-state spread is always good
to offset the decline of output during credit crunch, no matter which policy we use. (2) Going below
DZLB does no good to the real economy, since it simply raises the spread that contracts credit. (3)
The ex ante welfare of the transition path is non-monotonic in the spreads. We measure the welfare
loss as the percentage deviation of the time-0 aggregate certainty equivalence from the steady-state
total output. Among all the policy scenarios, the welfare loss is minimized at ∆rss = 0.75%. This
implies a welfare trade-off of opening spread ex ante: with a higher steady-state spread, the steady-
state welfare loss is larger, while the welfare loss during credit crunch is smaller due to the power of
spread to offset the shock of credit crunch.

The following table compares the transition path welfare loss across the policy responses:

Table 10: Welfare Loss of Policies During Credit Crunch (% deviation of CE from Yss)

Steady-State Spread ∆rss
Transition Path Welfare Loss

0.5% 0.75% 1% 1.25%

Close Spread 0.0872 0.0841 0.0851 0.0865
Reduce IOER to DZLB 0.0806 0.0780 0.0795 0.0811

Reduce IOER Below DZLB 0.0808 0.0784 0.0800 0.0811
Reduce IOER to DZLB and Close Spread 0.0793 0.0760 0.0769 0.0783

Steady-State Welfare Loss 0.0245 0.0292 0.0335 0.0376

Discount Factor Shocks. Appendix xxx studies the effects of a discount factor shock.

Ancticipated Shocks: The Risky Steady State. We can conduction the same exercises, allowing
the shock to be anticipated. The following table reports the welfare loss (in terms of certainty equiv-
alence) at time 0 and the following figure plots the transition paths of all scenarios.

Table 5: Welfare Loss of Closing Spread During Credit Crunch in Risky Steady State Scenario

31



Scenario of ∆r 0.5% 0.75% 1% 1.25%

Transition Path Welfare Loss (% deviation of CE from Yss) 0.0481 0.0479 0.0497 0.0512

Steady State Welfare Loss (% deviation of CE from Yss) 0.0227 0.0271 0.0311 0.0349

6 Conclusion

In the final paragraph of the introduction to his collected works on monetary economics, Lucas
(2013), Robert E. Lucas writes: “Now, toward the end of my career as at the beginning, I see myself
as a monetarist. My contributions to monetary theory have been to incorporate the quantity theory
into modern modeling. For the empirically well established predictions —long-run links— this job
has been accomplished. On the harder questions of monetary economics — the real effects of mon-
etary instability, the roles of inside and outside money, this work contributes examples but little in
empirically successful models. It is understandable that in the leading operational macroeconomic
models today— the RBC and the New Keynesian models—money as a measurable magnitude plays
no role at all, but I hope we can do better than this in the future.”

This paper is one of the many attempts to let money play the role that Lucas refers to. The model
here is actually a descendant of one of Lucas’s early monetary models, Lucas (1980). Here, outside
money (reserves) is an input for inside money creation (deposits and loans). The current attempt
tries to be explicit about the implementation of MP. The novelty is that MP operates by controlling
spreads. If we are open to accepting that idea, we may challenge some traditional views. For ex-
ample, we may challenge the idea that MP is long-run neutral23 and that inflation and monetary
aggregates are tied together, which represents two working restrictions in conventional empirical
work. The model rationalizes several empirical regularities. For example, the model rationalizes
the presence of a liquidity effect and a higher loan than deposit rate elasticity to policy changes. A
normative message is that managing spreads is desirable: although spreads limit risk sharing, they
may improve efficiency. In the case of a credit crunch, countercyclical spreads implemented via open
market operations are a desirable policy that does not compromise inflation. Hence, the advice to
remain with active corridor systems.

23This feature is also true in other incomplete market economies with money; the reason is not the spread, but the
effect of real monetary balances on credit markets.
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Figures for Normative Analysis
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īm 0

=
−

1 2
[χ

+ ss
+
(1
−

δ )
χ
− ss
]a

nd
do

no
tc

ha
ng

e
∆

r t
du

ri
ng

cr
ed

it
cr

un
ch

.I
n

th
e

pa
ne

ls
on

th
e

ri
gh

tc
ol

um
n,

w
e

se
tī

m 0
=
−

1 2
[χ

+ ss
+
(1
−

δ )
χ
− ss
]-

∆
i 0

an
d

ch
an

ge
s

∆
r t

su
ch

th
at

ia t
do

es
no

tf
al

lb
el

ow
ze

ro

du
ri

ng
cr

ed
it

cr
un

ch
.T

he
va

lu
e

of
∆

i 0
=

m
in
{ 0.

5%
,1 2

[χ
+
(+

∞
)
−

χ
+ ss
+
(1
−

δ )
(χ
−
(+

∞
)
−

χ
− ss
)]
} .A

ll
pa

ne
ls

re
po

rt
th

e
pa

th
s

un
de

r
fo

ur
le

ve
ls

of
in

it
ia

ls
pr

ea
ds

:∆
r s

s
=

0.
5%

,0
.7

5%
,1

%
,1

.2
5%

.
In

al
lt

he
sc

en
ar

io
s,

th
e

si
ze

of
cr

ed
it

cr
un

ch
is

99
%

,i
.e

.
s̃
=

0.
01
·s̄

.
Fo

r
th

e
lo

ng
-r

un
m

on
et

ar
y

po
lic

y
w

e
se

t.
In

pa
ne

ls
(3

.a
)a

nd
(3

.b
),

th
e

ag
gr

eg
at

e
ou

tp
ut

is
ex

pr
es

se
d

in
pe

rc
en

ta
ge

de
vi

at
io

ns
fr

om
th

e
st

ea
dy

st
at

e.

46



0
20

40
60

80
10

0

0.
9

0.
92

0.
94

0.
96

0.
981

(1
)I

O
ER

im t

0
20

40
60

80
10

0

0

0.
51

1.
52

2.
53

3.
5

(2
)R

ea
lD

ep
os

it
R

at
e

ra t

0
20

40
60

80
10

0

1

1.
52

2.
53

3.
54

4.
5

(3
)N

om
in

al
D

ep
os

it
R

at
e

ia t

0
20

40
60

80
10

0

-1
.5-1

-0
.50

0.
51

(4
)I

nfl
at

io
n

R
at

e
π

t

0
20

40
60

80
10

0
-1

.4

-1
.2-1

-0
.8

-0
.6

-0
.4

-0
.20

(5
)O

ut
pu

t(
%

D
ev

ia
ti

on
fr

om
St

ea
dy

St
at

e)

0
20

40
60

80
10

0
-8

0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0010

(6
)J

ob
Se

pa
ra

ti
on

R
at

e
φ

t

0
20

40
60

80
10

0

0.
03

5

0.
04

0.
04

5

0.
05

0.
05

5

(7
)C

re
di

tB
t

(L
ev

el
)

0
20

40
60

80
10

0

-1
2

-1
0-8-6-4-20

(8
)C

re
di

tB
t

(%
D

ev
ia

ti
on

fr
om

St
ea

dy
St

at
e)

Fi
gu

re
12

:T
ra

ns
it

io
n

Pa
th

s
of

C
re

di
tC

ru
nc

h
an

d
C

lo
si

ng
Sp

re
ad

in
R

is
ky

St
ea

dy
St

at
e

N
ot

e:
Th

e
fig

ur
e

re
po

rt
s

th
e

pa
th

s
of

IO
ER

,r
ea

la
nd

no
m

in
al

de
po

si
t

ra
te

,i
nfl

at
io

n,
ou

tp
ut

,j
ob

se
pa

ra
ti

on
ra

te
an

d
cr

ed
it

af
te

r
an

un
an

ti
ci

pa
te

d
cr

ed
it

cr
un

ch
an

d
cr

ed
it

sp
re

ad
re

du
ct

io
n.

Th
e

cr
ed

it
cr

un
ch

ar
ri

ve
s

as
a

Po
is

so
n

sh
oc

k
fo

r
on

ly
on

ce
.T

he
cr

ed
it

sp
re

ad
is

re
du

ce
d

to
ze

ro
du

ri
ng

cr
ed

it
cr

un
ch

,a
nd

in
cr

ea
se

s
ba

ck
to

pr
e-

sh
oc

k
le

ve
la

ft
er

th
at

.A
ll

pa
ne

ls
re

po
rt

th
e

pa
th

s
un

de
r

fo
ur

le
ve

ls
of

in
it

ia
ls

pr
ea

ds
:∆

r s
s
=

0.
5%

,0
.7

5%
,1

%
,1

.2
5%

.I
n

al
lt

he
sc

en
ar

io
s,

th
e

si
ze

of
cr

ed
it

cr
un

ch
is

99
%

,i
.e

.s̃
=

0.
01
·s̄

.F
or

th
e

lo
ng

-r
un

m
on

et
ar

y
po

lic
y

w
e

se
ti

m ss
=

1%
fo

r
al

ls
ce

na
ri

os
.

Fo
r

th
e

m
on

et
ar

y
po

lic
y

du
ri

ng
cr

ed
it

cr
un

ch
,w

e
se

t∆
r t

=
0

an
d

do
no

tc
ha

ng
e

im t
.

In
pa

ne
ls

(5
)a

nd
(8

),
th

e
ag

gr
eg

at
e

ou
tp

ut
an

d
cr

ed
it

ar
e

ex
pr

es
se

d
in

pe
rc

en
ta

ge
de

vi
at

io
ns

fr
om

th
e

st
ea

dy
st

at
e.

In
pa

ne
l(

7)
th

e
cr

ed
it

is
ex

pr
es

se
d

in
ab

so
lu

te
va

lu
es

.I
n

al
lo

th
er

pa
ne

ls
th

e
va

ri
ab

le
s

ar
e

ex
pr

es
se

d
in

an
nu

al
pe

rc
en

ta
ge

s.

47



Online Appendix

A Accounting in the Model

A.1 Balance Sheets

Household Balance Sheet. The household’s balance sheet in in nominal terms is structured as:

Assets Liabilities
mh

t lh
t

ah
t Ptst

.

Bank Balance Sheet. The balance sheet of an individual bank is structured as:

Assets Liabilities
mb

t ab
t

lb
t

.

CB Balance Sheet. The balance sheet of the CB is structured as:

Assets Liabilities

L f
t Mt

Et

Accounting of OMO. To interpret OMO as purchases of government debt, consider Ft as an outstanding amount of
nominal bonds issued by a fiscal authority. Let Fcb

t < Ft be the stock of bonds held at the CB. In that case, the balance
sheet of the consolidated government is

Assets Liabilities
Fcb

t Mt + Ft

Et

=

Assets Liabilities
Fcb

t − Ft Mt

Et

.

Thus, L f
t = Fcb

t − Ft < 0 is the stock of government bonds held by banks and Et is the stock of government liabilities
net of CB purchases. A conventional open-market operation is simply an increase in Fcb

t funded with an increase in
Mt. From the government’s income flow, we can see that this operation would yield profits to the CB if there’s a spread
il
t > im

t . Figures A.1 and A.1 present the consolidated balance sheets.

Monetary Aggregates. The monetary aggregates are given by, Mt, the monetary base, M0t, the currency and M1t ≡
Ab

t + M0t, the highest monetary aggregate.

Timeline of Interbank transactions. Figure A.1 presents the accounting for banks, within a ∆ time interval. Unlucky
banks get hit by negative withdrawal shocks, which can lead them to a negative balance of reserves in the period. That
bank mus cover the position by the end of the interval by borrowing funds from other banks, or from the discount
window.



Money Mt

Deposits At =´ ∞
0 s f (s, t)dsLoans Lt =´ 0
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Et = −Mt

HH’s Net Asset Position

Figure 13: Baseline Bank Balance Sheet
.
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All Loans´ 0
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by Banks Lb
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L f
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´ ∞
0 s f (s, t)ds
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Figure 14: Bank Balance Sheet under ZLB/OMO
.
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A.2 Flow of Funds Identities

Lemma 1 If the deposit, loans and money markets clear, then:

Pt

ˆ ∞

0
s f (s, t)ds = −Pt

ˆ 0

s̄
s f (s, t)ds− Et. (23)

Proof. The deposits and loans markets clearing condition requires:

Ab
t =

ˆ ∞

0
ah

t (s) f (s, t)ds (24)

Lb
t + L f

t =

ˆ 0

s̄
lh
t (s) f (s, t)ds, (25)

and clearing in the money market requires:

Mb
t + M0t = Mt (26)

We also have that the budget constraint (balance sheet) of banks satisfies the following identity:

Ab
t = Lb

t + Mb
t . (27)

Real household assets are held as nominal deposits or currency, hence:

Pt

ˆ ∞

0
s f (s, t)ds =

ˆ ∞

0
ah

t (s) f (s, t)ds + M0t. (28)

and, similarly for liabilities:

−Pt

ˆ 0

s̄
s f (s, t)ds =

ˆ 0

s̄
lh
t (s) f (s, t)ds. (29)

Once we combine (24), (25) and (27), we obtain a single condition:

ˆ ∞

0
ah

t (s) f (s, t)ds =
ˆ 0

s̄
lh
t (s) f (s, t)ds− L f

t + Mb
t . (30)

This condition can be expressed in terms of real household wealth, with the use of (28) and (29):

Pt

ˆ ∞

0
s f (s, t)ds = −Pt

ˆ 0

s̄
s f (s, t)ds− L f

t + Mb
t + M0t.

If we use the money market clearing-condition, (16), and employ the definition of net-asset position of the CB, we obtain
(23). QED.
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B Interbank-Market Equilibrium and Implementation Figures

The parameter λ captures the matching efficiency of the interbank market.24 According to Bianchi and Bigio (2017b), the
corresponding trading probabilities for surpluses and deficit positions along a trading session are:

ψ+ (θ) ≡

1− e−λ if θ ≥ 1

θ
(
1− e−λ

)
if θ < 1

, ψ− (θ) ≡

 1−e−λ

θ if θ > 1

1− e−λ if θ ≤ 1
.

The resulting average interbank market rate is determined by the average of Nash bargaining over the positions and is
given by:

i f
(θ, im, ι) ≡


im + ι−

((
θ̄(θ)

θ

)η
− 1
) (

θ
θ−1

) (
ι

eλ−1

)
if θ > 1

im + ι(1− η) if θ = 1

im + ι−
(

1−
(

θ̄(θ)
θ

)η) ( θ/θ̄(θ)
1−θ

) (
ι

eλ−1

)
if θ < 1

, (31)

and the average liquidity-yield functions are

χ+ (θ, ι) = ι

(
θ̄ (θ)

θ

)η
(

θη θ̄ (θ)1−η − θ

θ̄ (θ)− 1

)
and χ− (θ, ι) = ι

(
θ̄ (θ)

θ

)η
(

θη θ̄ (θ)1−η − 1
θ̄ (θ)− 1

)
, (32)

where η is a parameter associated with the bargaining power of banks with reserve deficits, and θ̄ (θ) is the end-of-day
market tightness:

θ̄ (θ) =


1 + (θ − 1) exp (λ) if θ > 1

1 if θ = 1(
1 +

(
θ−1 − 1

)
exp (λ)

)−1 if θ < 1

. (33)

Thus, the path for
{

ψ+
t , ψ−t , ī f

t , χ+
t , χ−t

}
is given by ψ+

t ≡ ψ+ (θt) , ψ−t ≡ ψ− (θt), ī f
t ≡ ī f (θt, im

t , ιt), χ+
t ≡ χ+ (θt, ιt) and

χ−t ≡ χ− (θt, ιt). In the paper, we set η = 1/2. By replacing θ̄ (θ) with (33) and setting θ < 1, equations (31) and (32)
reduce to (2) and (3).

24This can be shown very easily using a differential form.
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B.1 Additional Implementation Figures: CB Income
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6

10-3

Figure 15: Composition of CB profit margins given Λ
Note: This figure plots the components of CB’s profits over deposits as a function of liquidity ratio.

B.2 Additional Implementation Figures: Spread and Negative Interest on Re-

serves
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(a) Equilibrium Rates
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(b) Equilibrium Spread

Figure 16: Negative Interest on Reserves and the DZLB.
Note: This figure depicts the equilibrium rates and spread as a function of interest on reserves under DZLB. All the rates and spread are expressed in
basis points.
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B.3 Fisher Equation Decomposition

0 20 40 60 80 100 120
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Inflation
Nominal Deposit Rate
Real Deposit Rate
Inflation Target

(a) Decomposition of Fisher Equation

Figure 18: Transition Dynamics of Fisher Equation Components under the Implementation of a
Spread Reduction via OMO
Note: This figure reports the responses of inflation, nominal deposit rate, real deposit rate and inflation target according to Fisher equation decompo-
sition, after the credit spread reduction implementation via OMO in Section 4.2.
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C Properties of Modified Taylor Rule

This section discusses the modified Taylor rule used in the draft. We need to work with a Taylor rule that allows for
both, a short-term choice of how the policy rate reacts to the credit crunch, but also respects long-run zero inflation, and
the Taylor principle. For that we specify the following rule:

im
t = īm

t + ηt · (πt − πss)

where ηt is time-varying. The path īm
t is a path for a discretionary rate that satisfies:

īm
t = im

∞ +
(
īm
0 − im

∞
)
· exp

(
−ζLRt

)
+
(
im
0− − īm

0
)
· exp

(
−ζSRt

)
.

In this Taylor rule, the value im
∞ is chose to guarantee an inflation target πss. The term īm

d captures the attraction point
of the policy rate chosen by the CB upon a shock. The rate im

t− is the policy rate, the instant before a shock. Finally, the
term exp

(
−ζSR

t t
)

captures a degree of responsiveness to the shock: the speed at which the discretionary policy kicks,
whereas exp

(
−ζLR

t t
)

the speed of reversal of the discretionary policy, to the long-run target. In what follows we assume
ζLR < ζSR. This choice has several desirable properties:

1. First, observe that for any finite pair
{

ζSR, ζLR} we have the following:

lim
t→∞

īm
t = im

∞.

2. Consider that for any finite pair
{

ζSR, ζLR} we have the following:

lim
t→0+

īm
t = im

0− .

3. Consider that for any finite pair
{

ζLR} we have the following:

lim
t→0+

lim
ζSR→∞

īm
t = īm

0 ,

meaning that the adjustment is immediate.

4. Consider that for any finite pair
{

ζSR} we have the following:

lim
t→∞

lim
ζLR→∞

īm
t = īm

0 ,

meaning that the attraction point is the discretionary point.

5. Consider the limit, ζLR/ζSR → ∞, then speed of responsiveness is immediate and

lim
t→∞

lim
ζSR/ζLR→∞

īm
t = lim

t→∞
lim

ζSR/ζLR→∞
im
∞ + exp

(
−ζSRt

) [(
īm
0 − im

∞
)
· exp

(
−
(

ζLR − ζSR
)

t
)
+
(
im
0− − īm

0
)]

= im
∞ +

(
īm
0 − im

∞
)

lim
t→∞

lim
ζSR/ζLR→∞

exp
(
−ζSRt

) [
exp

(
−
(

ζLR − ζSR
)

t
)]

= im
∞ +

(
īm
0 − im

∞
)

lim
t→∞

lim
ζSR/ζLR→∞

exp
(
−ζSRt

) [
exp

(
ζSR

(
1− ζLR/ζSR

))
t
]

= īm
0 .

Where the last line follows by L’Hospital rule.
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6. Monotonicity of īm
t . Let’s assume im

∞ > īm
0 and im

0− > īm
0 , which is the scenario in our simulation.

If ζLR < ζSR, then

∂īm
t

∂t
T 0 iff t T

1
ζSR − ζLR ln

(
ζSR

ζLR ·
im
0− − īm

0

im
∞ − īm

0

)
.

This means the path of īm
t first decreases over time from im

0− , then increases back to im
∞, which motivates our choice.

If instead, ζLR > ζSR, then

∂īm
t

∂t
T 0 iff t S

1
ζLR − ζSR ln

(
ζLR

ζSR ·
im
∞ − īm

0
im
0− − īm

0

)
.

This means the path of īm
t first increases over time from im

0− , then decreases back to im
∞. Not a desired property.

Path of ηt. Upon a shock, the path of ηt satisfies:

ηt = ηt− · exp
(
−ξLRt

)
+ ηss

(
1− exp

(
−ξLRt

))
We use the equation ?? as the path of ηt based on the following observation: To implement a nominal rate ia

t , we have
the following equation:

ia
t = im

t +
1
2
[
χ+

t + (1− δ) χ−t
]

.

Combining the above equation with the Taylor Rule 15 and the Fisher equation ia
t = ra

t + πt, we can rewrite πt and im
t as

follows:

πt = πss +
1

ηt − 1

{
ra

t −
1
2
[
χ+

t + (1− δ) χ−t
]
+ πss − īm

t

}
,

and

im
t = − 1

ηt − 1
īm
t +

ηt

ηt − 1

{
ra

t −
1
2
[
χ+

t + (1− δ) χ−t
]
+ πss

}
.

Therefore, if ηt > 1, a reduction in the discretionary rate īm
t directly increases both πt and im

t . However, we want to
obtain that a discretionary rate īm

t directly increases πt and decreases im
t . Moreover, if ηt > 1, we are not able to reduce

im
t to DZLB by decreasing īm

t .
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D Solution Algorithm

The computational method follows (Achdou et al., 2019) closely. The main differences are the presence of the net asset
position and the spread. Propositions 1, ?? and ?? are the objects we need to solve the model. They allow us to solve the
model entirely by solving for the equilibrium path of a single price. For example, we can solve the model by solving the
path for a real deposit rate ra

t . The spread ∆rt follows immediately from Proposition 1 if we know the path for ιt and
Λt set by the CB. The real spread gives us rl

t. To solve the household’s problem, we need the path for
{

ra
t , rl

t, Tt

}
. The

path for Tt is must be consistent with (20) and this yields a path for real government liabilities, Et. Then, Et together with
the evolution of f (s, t) obtained from the household’s problem, yield two sides of one equation enters (21). The rate
equilibrium rate ra

t must be the one that solves (21) implicitly.

Note that given the real credit spread ∆r and government’s net-asset position E , the HJB equation (??), KF equation (13)
and the real market clearing condition (21) imply that the equilibrium solution to the real markets is independent of
implementation variables. Thus we divide the solution algorithm into two parts: the part of real market and the part
of implementation. For the part of real market, the path of credit spread is taken as given. For the part of implemen-
tation, we simply use the equations (8) in Proposition 1 to show that the target credit spread is within the range of our
calibration. Our algorithm closely follows the finite difference in Achdou et al. (2017).

D.1 Solution Algorithm: Stationary Equilibrium in Real Markets

We need to compute the value of deposit rate that satisfies the real market clearing condition (21) in steady state. We use
an iteration algorithm that proceeds as follows. First, we take the real credit spread ∆r as given, consider an initial guess
of deposit rate ra,0, total output Y, and fiscal transfer T, and set the iteration index j, l := 0. Then:

1. Individual household’s problem. Given ra,l , Y j,l and T j,l , solve the household’s value function V j,l (s) from HJB
equation (??) using a finite difference method. Calculate the consumption function cj,l (s) and production technology
choice uj,l (s).

2. Aggregate distribution. Given µj,l (s) and cj,l (s), solve the KF equation (13) for f j,l (s) using a finite difference
method.

3. Fiscal transfer and total output. Given cj,l (s), f j,l (s), calculate aggregate output

Y j+1,l =

ˆ ∞

s̄
y
(

uj,l (s)
)

f j,l (s) ds

and fiscal transfer

T j+1,l = ra,l · e f ·
ˆ ∞

0
s f j,l (s) ds− ∆r ·

ˆ 0

s̄
s f j,l (s) ds.

If
{

Y j+1,l , T j+1,l
}

is close enough to
{

Y j,l , T j,l
}

, proceed to 4. Otherwise, set j := j + 1 and proceed to 1.

4. Equilibrium deposit rate. Given f j,l (s), compute the net supply of real financial claims

S
(

ra,l
)
=

ˆ ∞

s̄
s f j,l (s) ds + e f ·

ˆ ∞

0
s f j,l (s) ds

and update the interest rate: if S
(

ra,l
)
> 0, decrease it to ra,l+1 < ra,l and vice versa. If S

(
ra,l
)

is close enough to 0, stop.
Otherwise, set l := l + 1 and j = 0, and proceed to 1.
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D.1.1 Solution to the HJB equation

The household’s HJB equation is solved using an upwind finite difference scheme similar to Achdou et al. (2017). It
approximates the value function V (s) on a finite grid with step ∆s : s ∈ {s1, ..., sI}, where si = si−1 +∆s = s1 + (i− 1)∆s
for 2 ≤ i ≤ I. The bounds are s1 = s̄ and sN = smax, such that ∆s = (smax − s̄) / (I − 1). The upper bound smax is an
arbitrarily large number such that f (s, t) = 0 for all s > smax. We use the short-hand notation Vi ≡ V (si), and similarly
for the policy function ui and ci.

Note that the HJB involves the first and second derivatives of the value function, V′i = V′ (si) and V′′i = V′′ (si). The
first derivative is approximated with either a forward (F) or a backward (B) approximation,

V′i ≈ ∂FVi ≡
Vi+1 −Vi

∆s
, (34)

V′i ≈ ∂BVi ≡
Vi −Vi−1

∆s
. (35)

The second-order derivative is approximated by a central difference:

V′′i ≈ ∂ssVi ≡
Vi+1 − 2Vi + Vi−1

(∆s)2 . (36)

Let the superscript n be the iteration counter. The HJB equation is approximated by the following upwind scheme,

Vn+1
i −Vn

i
∆

+ ρVn+1
i = U (cn

i ) + ∂FVn+1
i ·

(
µn

i,F
)+

+ ∂BVn+1
i ·

(
µn

i,B
)−

+
1
2
(σn

i )
2 ∂ssVn+1

i , (37)

where

µn
i,F = r (si) · si − (∂FVn

i )
−1/γ + y (un

i ) + T, (38)

µn
i,B = r (si) · si − (∂BVn

i )
−1/γ + y (un

i ) + T, (39)

and
(
σn

i
)2

= σ2 (un
i
)
.

The optimal consumption is set to

cn
i = (∂Vn

i )
−1/γ , (40)

where

∂Vn
i = ∂FVn

i 1µn
i,F>0 + ∂BVn

i 1µn
i,B<0 + ∂V̄n

i 1µn
i,F≤01µn

i,B≥0.

In the above expression, ∂V̄n
i =

(
c̄n

i
)−γ where c̄n

i is the consumption level such that µn
i = 0, i.e.,

c̄n
i = r (si) · si + y (un

i ) + T.

The choice of production technology un
i is such that un

i = H if and only if

U (cn
i (H)) + ∂FVn+1

i ·
(
µn

i,F (H)
)+

+ ∂BVn+1
i ·

(
µn

i,B (H)
)−

+
1
2
(σn

i (H))2 ∂ssVn+1
i (41)

≤U (cn
i (L)) + ∂FVn+1

i ·
(
µn

i,F (L)
)+

+ ∂BVn+1
i ·

(
µn

i,B (L)
)− ,

where cn
i (H) denotes the optimal consumption choice given u = H, and the other variables are defined in a similar way.
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Substituting the definition of the derivatives (34), (35) and (36), equation (37) is

Vn+1
i −Vn

i
∆

+ ρVn+1
i = U (cn

i ) +
Vn+1

i+1 −Vn+1
i

∆s
·
(
µn

i,F
)+

+
Vn+1

i −Vn+1
i−1

∆s
·
(
µn

i,B
)−

+
1
2
(σn

i )
2 Vn+1

i+1 − 2Vn+1
i + Vn+1

i−1

(∆s)2 .

Collecting terms with the same subscripts on the right-hand side

Vn+1
i −Vn

i
∆ + ρVn+1

i = U
(
cn

i
)
+ αn

i Vn+1
i−1 + βn

i Vn+1
i + ζn

i Vn+1
i+1

αn
i = − (µn

i,B)
−

∆s +
(σn

i )
2

2(∆s)2

βn
i = − (µn

i,F)
+

∆s +
(µn

i,B)
−

∆s − (σn
i )

2

(∆s)2

ζn
i =

(µn
i,F)

+

∆s +
(σn

i )
2

2(∆s)2

(42)

Note that α1 = 0, and we set ζ I = 0 for the stability of the algorithm. Equation (42) is a system of I linear equations
which can be written in the following matrix form:

1
∆

(
Vn+1 −Vn

)
+ ρVn+1 = Un + AnVn+1

where

An =



βn
1 ζn

1 0 0 · · · 0
αn

2 βn
2 ζn

2 0 · · · 0
0 αn

3 βn
3 ζn

3 · · · 0
...

. . . . . . . . . . . .
...

0 0
. . . αn

I−1 βn
I−1 ζn

I−1
0 0 · · · 0 αn

I βn
I


, Vn+1 =



Vn+1
1

Vn+1
2

Vn+1
3
...

Vn+1
I−1

Vn+1
I


, Un =



U
(
cn

1
)

U (cn
2 )

U
(
cn

3
)

...
U
(
cn

I−1
)

U
(
cn

I
)


. (43)

The system in turn can be written as

BnVn+1 = dn (44)

where Bn =
(

1
∆ + ρ

)
I−An and dn = Un + 1

∆ Vn.

The algorithm to solve the HJB is as follows. We take the interest rate {r (si)}I
i=1, total output Y and fiscal transfer T as

given and begin with an initial guess
{

V0
i
}I

i=1. Set n = 0. Then:

1. Compute
{

∂FVn
i , ∂BVn

i
}I

i=1 using (34) and (35).

2. Compute
{

cn
i , un

i
}I

i=1 using (40) and (41) and
{

µn
i,F, µn

i,B

}I

i=1
using (38) and (39).

3. Find
{

Vn
i
}I

i=1 solving the linear system of equations (44).

4. If
{

Vn+1
i

}
is close enough to

{
Vn

i
}

, stop. Otherwise set n := n + 1 and proceed to step 1.

D.1.2 Solve KFE in Stationary Equilibrium

The stationary distribution of real wealth satisfies the Kolmogorov Forward equation:

0 = − ∂

∂s
[µ (s) f (s)] +

1
2

∂2

∂s2

[
σ2

s (s) f (s)
]

, (45)
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1 =

ˆ ∞

s̄
f (s) ds. (46)

We also solve the equation using a finite difference scheme. We use the notation fi ≡ f (si) .The system can be expressed
as

0 = −
fi

(
µn

i,F

)+
− fi−1

(
µn

i−1,F

)+
∆s

−
fi+1

(
µn

i+1,B

)−
− fi

(
µn

i,B

)−
∆s

+
1
2

(
σn

i+1
)2 fi+1 − 2

(
σn

i
)2 fi +

(
σn

i−1
)2 fi−1

(∆s)2 ,

or equivalently

fi−1ζi−1 + fiβi + fi+1αi+1 = 0.

The linear equations system can be written as

ATf = 0, (47)

where AT is the transpose of A = limn→∞ An. Notice that An is the approximation of the operator A and AT is the
approximation of the adjoint operator A∗. In order to impose the normalization constraint (46) we replace one of the
entries of the zero vector in equation (47) by a positive constant. We solve the system (47) and obtain a solution f̂. Then
we renormalize as

fi =
f̂i

∑I
i=1 f̂i∆s

.

The algorithm to solve the stationary distribution is as follows.

1. Given the interest rate {r (si)}I
i=1, total output Y and fiscal transfer T, solve the HJB equation to obtain an estimate of

the matrix A.

2. Given A find the aggregate distribution f.

D.2 Solution Algorithm: Transition Dynamics

The equilibrium transition path is solved in finite horizon [0, T], assuming that the terminal state of the economy is
steady state. We use an iterative algorithm as follows. Given the initial distribution of real wealth f0 (s) and the path of
exogenous shocks (e.g. equation (??) for a fiscal transfer shock, or the path of real credit spread ∆rt), guess a function
ra,0

t , total output Yt, and fiscal transfer Tt, and set the iteration index j, l := 0. Then

0. The asymptotic steady state. The asymptotic steady-state value function and real wealth distribution are calculated
from Section D.1.

1. Individual household’s problem. Given ra,l
t , Y j,l

t and T j,l
t , and the terminal condition V j,l (s, T) = Vss (s), solve the HJB

equation (??) backward in time to compute the path of V j,l (s, t). Calculate the production technology choice uj,l (s, t)
and consumption policy function cj,l (s, t).

2. Aggregate distribution. Given cj,l (s, t) and uj,l (s, t), solve the Kolmogorov Forward equation (13) with initial condi-
tion f j,l (s, 0) = f0 (s) forward in time to compute the path for f j,l (s, t).
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3. Fiscal transfer and total output. Given cj,l (s, t), f j,l (s, t), calculate the path of aggregate output,

Y j+1,l
t =

ˆ ∞

s̄
y
(

uj,l (s, t)
)

f j,l (s, t) ds,

and the path of fiscal transfer

T j+1,l
t = ra,l

t · Et − ∆rt ·
ˆ 0

s̄
s f j,l (s, t) ds.I f

{
Y j+1,l

t , T j+1,l
t

}T

t−0

is close enough to
{

Y j,l
t , T j,l

t

}T

t=0
, proceed to 4. Otherwise, set j := j + 1 and proceed to 1.

4. Equilibrium deposit rate. Given f j,l (s, t), calculate

S
(

ra,l
t , t

)
=

ˆ ∞

s̄
s f j,l (s, t) ds + Et

and update ra,l+1
t = ra,l

t − ξ
∂S
(

ra,l
t ,t
)

∂t for each t, where ξ > 0 is a parameter of update. If maxt

{∣∣∣S (ra,l
t , t

)∣∣∣} is close
enough to 0, stop. Otherwise, set l := l + 1 and j = 0, and proceed to 1.

D.2.1 Solution to the HJB Equation

The dynamic HJB equation (??) can be approximated using an upwind scheme as

ρVn = Un+1 + An+1Vn +
1

∆t

(
Vn+1 −Vn

)
,

where An+1 is defined in an analogous fashion to (43), and ∆t = T/N denotes the time length of each discrete period.
We start with the terminal condition VN = Vss and solve the path of value function backward, where Vss denote the
solution to stationary equilibrium obtained from Section D.1. For each n = 0, 1, ..., N− 1, define Bn =

(
1

∆t + ρ
)

I−An+1

and dn+1 = Un+1 + 1
∆ Vn+1,and we can solve

Vn = (Bn)−1 dn+1.

D.2.2 Solution to the KF Equation

Let {An}N−1
n=1 be the solution obtained from Section D.2.1. It is the approximation to the operator A. Using a finite

difference scheme similar to the one we employed in Section D.1.2, we obtain:

fn+1 − fn

∆t
= (An)T fn+1,

which implies

fn+1 =
(

I− ∆t (An)T
)−1

fn, n = 0, 1, ..., N − 1. (48)

We start from the initial period condition f0 = f0 and solve the KFE forward using (48).
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E Supplementary Section - Alternative Implementations

Components of Fisher Equation - Implementation of a Spread via OMO. Figure 18 shows the decomposition of infla-
tion and the real and nominal deposit rates produced by the implementation of the spread in Figure ??. The increase
in real rates follows from the dynamics of the real credit spread. Deposit rates are constant until the OMO is actually
carried out. Inflation follows the difference between both paths. The rate on reserves is set to implement a zero inflation
target in the long-run.

Implementation of a Spread via Reduction in Corridor Rates. Figure 19 describes the details of a reduction in ι that
implements the same spread as the OMO in Figure ??. The figure also reports the decomposition in Figure 18. The
qualitative pattern is almost identical, although the quantities are not the same. Since real spreads are independent of
inflation, the real deposit rate is the same. However, the nominal deposit rate decreases by slightly more than with an
OMO. Notice how in Panel (b) there is no increase in the quantity of reserves.

Implementation of a Spread via Increase of im at the DZLB. Figure 20 describes the details of an increase in im that
implements the same spread as the OMO in Figure ?? and the reduction in ι in Figure 19. The qualitative pattern is now
different. First, for the implementation to work at all, the economy must be at the DZLB, because only in this region do
changes in im that keep ι constant have real effects. At the DZLB currency holdings—Panel (b)—are positive. Since im is
negative, but deposit rates are positive, as in the previous example, this implementation features steady-state deflation.

Here, the increase in the interest on reserves, once on negative territory, also produce a deflation since the pattern for
real rates is the same. Different from the previous examples, at the DZLB, the deposit rate is flat at zero. The increase in
interest on reserves reduces the loans rate, because it acts like a reduction the tax-like effect of negative reserve rates. We
see also that the currency ratio of the economy falls.
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F Proofs

F.1 Proof of Proposition 1

The individual bank takes {Λ, χ+, χ−} and all rates as given. Consider an individual bank’s problem:

πb = max
{l,m,a}∈R3

+

(
il l + imm− iaa + E [χ (b; θ, ι)]

)
subject to the budget constraint l + m = a and the law of motion for reserve balances:

b (a, m) =

{
m with probability 1/2

m− δ · a with probability 1/2
.

If we substitute out l from the budget constraint, the objective function becomes

π (m, a) ≡
((

im − il
)
·m +

(
il − ia

)
· a + 1

2
χ+m +

1
2

(
χ+ · I[ m

a >δ] + χ− · I[ m
a ≤δ]

)
(m− δ · a)

)
.

This problem is piece-wise linear. Let’s consider the derivatives of the objective function, away from m/a = δ. The
derivatives of the objective with respect to the portfolio choices {m, a} are

∂π (m, a)
∂m

=
(

im − il
)
+

1
2

χ+ +
1
2

(
χ+ · I[ m

a >δ] + χ− · I[ m
a ≤δ]

)
and

∂π (m, a)
∂m

=
(

il − ia
)
− δ

2

(
χ+ · I[ m

a >δ] + χ− · I[ m
a ≤δ]

)
.

We know that χ− > χ+ if Λ < δ and that χ− = χ+ = 0 if Λ ≥ δ. We break the proof into two cases, depending on this
condition.

• Assume that Λ < δ at the aggregate level. Then,
(

im − il
)
+ χ+ < 0,because otherwise, ∂π(m,a)

∂m > 0, for any a, and

this means that banks demand infinite reserve balances. Similarly, it must be that
(

im − il
)
+ 1

2 (χ
+ + χ−) ≥ 0,

because otherwise, banks would demand no real balances in equilibrium. In particular,
(

im − il
)
+ 1

2 (χ
+ + χ−) =

0, because if the inequality is strict, banks would demand reserves balances equal to m/a = δ, but at the aggregate
level, this would contradict the condition that Λ < δ. Similarly, it must be that

(
il − ia

)
> δ

2 χ+, for otherwise

banks would not issue deposits. Then, to guarantee a finite amount of deposits, given m,
(

il − ia
)
≤ δ

2 χ−. In

particular, it must be that
(

il − ia
)
≤ δ

2 χ−, because if the inequality were strict, banks would decrease there
issuance of deposits up to any point where m/a > δ.

• Assume that Λ ≥ δ at the aggregate level. Then, the problem becomes linear, as opposed to piece-wise linear.
Since the objective is linear, then, it must be that banks earn zero profits, and that requires im = il = ia.

Thus, taken together, these observations imply that a necessary condition for a positive and finite supply of loans and
deposits are conditions (6) and (7). Since in equilibrium the demand of deposits and loans is finite, the result follows.
Once we substitute (6) and (7), we obtain that banks earns zero expected profits from any choice of {a, m, l}. QED.

A18



F.2 Proof of Proposition ??

1. We first prove that if (21) holds, then the goods market clears, which verifies Walras’s law for a continuous time
setting. Observe that if condition (21) holds, then taking time derivatives we obtain:

0 =
∂

∂t

[ˆ ∞

s̄
s f (s, t)ds

]
+

∂

∂t
[Et] ,

Then, we have:

0 =

ˆ ∞

s̄
s

∂

∂t
[ f (s, t)] ds +

∂

∂t
[Et] ,

but recall that if the KFE equation holds, then:

0 =

ˆ ∞

s̄
s
[
− ∂

∂s
[µ (s, t) f (s, t)] +

1
2

∂2

∂s2

[
σ2

s (s, t) f (s, t)
]]

ds +
∂

∂t
[Et] .

Now, observe that, if we employ the integration by parts formula:

−
ˆ ∞

s̄
s

∂

∂s
[µ (s, t) f (s, t)] ds = −sµ (s, t) f (s, t)|∞s̄ +

ˆ ∞

s̄
µ (s, t) f (s, t) ds.

We know that

−sµ (s, t) f (s, t)|∞s̄ = 0

and that
ˆ ∞

s̄
µ (s, t) f (s, t) ds =

ˆ ∞

s̄

[
rt (s)

(
s−mh (s, t) /Pt

)
− Ṗt/Pt ·mh (s, t) /Pt − c (s, t) + h (u (s, t) , t)

]
f (s, t) ds.

First, note that:

ˆ ∞

s̄
rt (s) s f (s, t) ds =

ˆ ∞

s̄
rl

t · s f (s, t) ds−
ˆ ∞

0
∆rt · s f (s, t) ds.

Second, the household’s problem solution implies ia
t ·mh (s, t) = 0 for any (s, t), and mh (s, t) = 0 for any s ≤ 0. Then we

have
ˆ ∞

s̄

(
rt (s) + Ṗt/Pt

) (
mh (s, t) /Pt

)
f (s, t) ds

=il
t

ˆ 0

s̄

mh (s, t)
Pt

f (s, t) ds + ia
t

ˆ ∞

0

mh (s, t)
Pt

f (s, t) ds

=0.

Third, by definition,

ˆ ∞

s̄
(−c (s, t) + h (u (s, t) , t)) f (s, t) ds = Yt − Ct + Tt.
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Finally, the term:

1
2

ˆ ∞

s̄
s · ∂2

∂s2

[
σ2

s (s, t) f (s, t)
]

ds =
1
2

s · ∂

∂s

[
σ2

s (s, t) f (s, t)
]∣∣∣∣∞

s̄
− 1

2

ˆ ∞

s̄

∂

∂s

[
σ2

s (s, t) f (s, t)
]

ds

= 0− 1
2

σ2
s (s, t) f (s, t)

∣∣∣∞
s̄
= 0.

Thus, we are left with:

rl
t

ˆ ∞

s̄
s f (s, t) ds− ∆rt

ˆ ∞

0
s f (s, t) ds + Yt − Ct + Tt +

∂

∂t
[Et] = 0.

But then, given the law of motion for real equity (20),

∂

∂t
[Et] + rl

t

ˆ ∞

s̄
s f (s, t) ds− ∆rt

ˆ ∞

0
s f (s, t) ds + Tt = 0.

This implies the goods market clearing condition.

2. Next, we proof that if (21) holds, the deposit and loans market must clear. The accounting identities in Section 2.2 and
Lemma 1, show that if all markets clear, the real market clears. Then, by dividing (23) by the price level, we obtain:

−
ˆ 0

s̄
s f (s, t)ds =

ˆ ∞

0
s f (s, t)ds + Et, for t ∈ [0, ∞).

The proposition establishes that if this condition holds, all asset markets clear. To proceed with the proof, argue that if
the condition holds, but one of the markets doesn’t clear, we reach contradiction.

To see that, observe that real household’s assets position equations (28) and (29), and (23) imply

ˆ 0

s̄
lh
t (s) f (s, t)ds =

ˆ ∞

0
ah

t (s) f (s, t)ds + M0t + L f
t −Mt, for t ∈ [0, ∞). (49)

Re-arranging terms leads, and using the money-market clearing condition, we obtain:

Mb
t +

ˆ 0

s̄
lh
t (s) f (s, t)ds− L f

t =

ˆ ∞

0
ah

t (s) f (s, t)ds.

Now, recall that Mb
t = −Lb

t + Ad
t . Thus,(ˆ 0

s̄
lh
t (s) f (s, t)ds− L f

t − Lb
t

)
=

ˆ ∞

0
ah

t (s) f (s, t)ds− Ad
t .

This equation guarantees that if there is no clearing in the loans market, there is no clearing in the deposit market by that
same amount. Assume there is a deviation from market clearing in the amount ε. Then, an income ∆r · ε would not be
accounted. However, since all the spread is earned by the CB, it must be that ε = 0. QED.

F.3 Proof of Proposition ??

The nominal profits of the CB are given by:

π
f
t = il

tL
f
t − im

t (Mt −M0t) + ιt
(
1− ψ−t

)
B−t .
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Note that the earnings from discount-window loans equal the average payment in the interbank market, and thus:

ιt
(
1− ψ−t

)
B−t = −E [χt (b (At, At − Lt))] . (50)

By Proposition 1, banks earn zero profits in expectation. Thus,

−E [χt (b (At, At − Lt))] = il
tL

b
t + im

t Mb
t − ia

t Ab
t . (51)

Thus, substituting (50) and (51) into the expression for π
f
t above yields:

π
f
t = il

tL
f
t − im

t (Mt −M0t) + il
tL

b
t + im

t Mb
t − ia

t Ab
t .

= il
tL

h
t − ia

t Ah
t ,

where we used the clearing condition in the money market, Mb
t + M0

t = Mt, the deposit market, Ab
t = Ah

t , and the loans
market, Lh

t = Lb
t + L f

t . Now, observe that:

π
f
t = −il

tPt

ˆ 0

s̄
s f (s, t)ds− ia

t

(
Pt

ˆ ∞

0
s f (s, t)ds−M0t.

)
,

but we know from the household’s problem that ia
t M0t=0. Hence, profits are given by:

π
f
t = −il

tPt

ˆ 0

s̄
s f (s, t)ds− ia

t Pt

ˆ ∞

0
s f (s, t)ds.

Divide (23) by the price level to obtain:

−
ˆ 0

s̄
s f (s, t)ds =

ˆ ∞

0
s f (s, t)ds + Et.

and thus:

π
f
t =

(
il
t − ia

t

)
Pt

ˆ ∞

0
s f (s, t)ds + il

tEt = ∆rtPt

ˆ ∞

0
s f (s, t)ds + il

tEt.

Dividing both sides by the price level leads to:

π
f
t

Pt
= ∆rt

ˆ ∞

0
s f (s, t)ds + il

tEt = ∆rt

ˆ ∞

0
s f (s, t)ds +

(
ra

t + ∆rt +
Ṗt

Pt

)
Et. (52)

Then, note that:

dEt =
dEt

Pt
− Ṗt

Pt
Et =

π
f
t

Pt
− Tt −

Ṗt

Pt
Et.

But, a substitution of (52) yields:

dEt =

(
(ra

t + ∆rt)Et + ∆rt

ˆ ∞

0
s f (s, t)ds− Tt

)
dt.
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This proves Proposition ??. QED.

F.4 Proof of Proposition 5

It suffices to show the equations for real credit spread and inflation rate. Along an equilibrium path for {ra
t , Et, ft, ∆rt, Tt}

the set of implementable nominal interbank rates and inflation rates is the set of {Ṗt/Pt, ī f
t } where

Ṗt

Pt
= il

t − (∆rt + ra
t ) = im

t +
1
2

[
χ+(Λt, ıt) + χ−(Λt, ıt)

]
− ∆rt − ra

t (53)

ī f
t = χ+(Λt, ıt)/ψ+(θ(Λt)) + im

t (54)

for any {im
t , ıt,L f

t } such that

∆rt = rl
t − ra

t = il
t − Ṗt/Pt − ia

t + Ṗt/Pt

= ∆it = $
χ+(Λt, ıt) + χ−(Λt, ıt)

2
+ δ

χ−(Λt, ıt)− χ+(Λt, ıt)

2
,

L f
t ≤ −

ˆ 0

s̄
s f (s, t)ds, (ıt, im

t ) ∈ R2
+.

Equations (53) and (54) steams form definitions for nominal, real and interbank rate. The implementation constraint
L f

t ≤ −
´ 0

s̄ s f (s, t)ds simply tells that there must be enough private liabilities to set L f
t . QED.

F.5 Proof of Corollary 2

It suffices to show that ∆rt = 0 when im ≥ 0 and Λ ≥ ρ + δ. Note that the interbank market is satiated with reserves
if Λt ≥ Λ̄ = $ + δ. Then the interbank market tightness is θ(Λt) = 0 for any Λt ≥ Λ̄ = $ + δ. First, we must take the
following limit

lim
θ→0

θ̄(θ)

θ
= lim

θ→0

1
θ[1 + (θ−1 − 1) exp(λ)]

= lim
θ→0

1
θ + (1− θ) exp(λ)

= exp(−λ),

where θ̄(θ) is given by (33) in Appendix B. Then, given (η, λ), for any Λt ≥ Λ̄, (32) implies:

χ+(Λt, ıt) = lim
θ→0

ıtθ

(
θ(θ)

θ

)η(
[θ(θ)/θ]1−η − 1

θ(θ)− 1

)
= 0,

χ−(Λt, ıt) = lim
θ→0

ıt

(
θ(θ)

θ

)η(
θ[θ(θ)/θ]1−η − 1

θ(θ)− 1

)
= ıt exp(−ηλ).

Although χ−t > 0, there are not banks with reserves deficit, thus

E
{

χt[b(a, a− l)]|θt

}
= χ+(Λt, ıt) (a− l − $a) = 0

Hence, the bank’s problem becomes

πb
t = max

a,l
(il

t − im
t )lt − (ia

t − im
t )at

and by FOCs we obtain that im
t = ia

t = il
t = ī f

t . QED.
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F.6 Proof of Proposition 2

1. [Corridor Regime] In this case, Λt = ΛMB
(
Et, ft,L f

t

)
, θ (Λt) ∈ (0, 1),

{
il , ia, ∆r

}
is given by (6), (7) and (8), and

{χ+, χ−} is given by (3). Since ΛMB
(
Et, ft,L f

t

)
is increasing in L f

t , then the proof of Lemma ?? in Appendix ?? implies{
∂il

∂L f
t

, ∂ia

∂L f
t

, ∂∆r
∂L f

t

}
< 0. By (6), (7) and (8) one can observe that ∂il

∂imt
= ∂ia

∂imt
= 1 and ∂∆r

∂imt
= 0. By (3), both χ+ and χ− are

proportional to ι, thus the elasticities of
{

il , im, ∆r
}

with respect to ιt are all equal to 1.

[Floor Regime] In this case, θ (Λt) = 0 and the proof of Corollary 2 establishes all the results.

[DZLB and negative im regime] In this case, the definition of Λzlb implies that ia ≡ 0 and Λt is independent of L f
t . Thus

L f
t has no impact on

{
il , ia, ∆r

}
. The equilibrium

{
il , ∆r

}
are still given by (6) and (8). To prove the effects of {im

t , ιt} on{
il , ∆r

}
, it suffices to show the sign of ∂il

∂im and ∂il
∂ι . We take total differentiation of (7). This gives

0 =dim +
1
2
(1− $ + δ)

(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
+

1
2
(1− $− δ)

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
, (55)

which implies{
∂Λ
∂im ,

∂Λ
∂ι

}
> 0,

and

dil = dim +
1
2

(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
+

1
2

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
=

$− δ

2

(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
+

$ + δ

2

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
.

Let dim > 0 and dι = 0. Then by Lemma ?? we have

∂il

∂im =
$− δ

2
· ∂χ+ (θ (Λ) , ι)

∂Λ
∂Λ
∂im +

$ + δ

2
· ∂χ− (θ (Λ) , ι)

∂Λ
∂Λ
∂im < 0.

Let dim = 0 and dι > 0. The proof of Lemma ?? in Appendix ?? and equation (3) imply that

∂χ+ (θ (Λ) , ι)

∂Λ
<

∂χ− (θ (Λ) , ι)

∂Λ
< 0

and

∂χ− (θ (Λ) , ι)

∂ι
>

∂χ+ (θ (Λ) , ι)

∂ι
> 0.

Then equation (55) implies(
∂χ+ (θ (Λ) , ι)

∂Λ
dΛ +

∂χ+ (θ (Λ) , ι)

∂ι
dι

)
=− 1− $− δ

1− $ + δ

(
∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
<0.
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Therefore,

∂il

∂ι
=

(
$ + δ

2
− 1− $− δ

1− $ + δ

$− δ

2

)
·
(

∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
=

δ

1− ρ + δ
·
(

∂χ− (θ (Λ) , ι)

∂Λ
dΛ +

∂χ− (θ (Λ) , ι)

∂ι
dι

)
> 0.

This concludes the summary of the policy effects. QED.

F.7 Proof of Corollary 1

The discount window profits are equal to ∆rt
´ ∞

0 s f (s, t) ds since banks are competitive and earn zero profits. Given the
same real credit spread ∆rt, the equilibrium real wealth distribution f (s, t) is also same. Thus Corollary 1 is established.
QED.

F.8 Proof of Corollary ??

The proof is established by change of variables. Note that in Problem 2 with ra
t = ra

ss, ∆rt = 0 and Tss = ra
ssEss, the

households’ problem is

ρV (s, t) = max
{c}≥0,u∈{L,H}

U (c) + Vs · (ra
ss · s− c + y (u) + Tss) +

1
2

Vssσ2 (u) + V̇

= max
{c}≥0,u∈{L,H}

U (c) + Vs · (ra
ss · (s + Ess)− c + y (u)) +

1
2

Vssσ2 (u) + V̇

subject to

st ≥ s̄ ⇔ st + Ess ≥ s̄ + Ess.

Denote s(a)
t = st + Ess, s̄(a) = s̄ + Ess and V(a)

(
s(a), t

)
= V

(
s(a) − Ess, t

)
. Then the households’ problem can be written

as

ρV(a)
(

s(a)
t , t

)
= max
{c}≥0,u∈{L,H}

U (c) + V(a)
s(a) ·

(
ra

ss · s
(a)
t − c + y (u)

)
+

1
2

V(a)
s(a)s(a)σ

2 (u) + V̇(a)

subject to s(a)
t ≥ s̄(a). This economy has the same equilibrium allocation as the original one. QED.

F.9 Proof of Proposition ??

The proof is similar to Corollary ?? and is also established by change of variables. Taking differentiation of h (t) with
respect to t gives us

0 = ḣ (t) = −Tt + ra
t · h (t) ,

which implies Tt = ra
t · h (t). Note that a policy that sets ιt = 0 or satiate banks with reserves imply ∆rt = 0. Thus denote

s(a)
t = st + h (t) ≡ st + Ess, s̄(a)

t = s̄ + h (t) ≡ s̄ + Ess and V(a)
(

s(a), t
)
= V

(
s(a) − Ess, t

)
, the household’s problem 2 with
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∆rt = 0 and Tt = ra
t · h (t) can be written as

ρV(a)
(

s(a)
t , t

)
= max
{c}≥0,u∈{L,H}

U (c) + V(a)
s(a) ·

(
ra

t · s
(a)
t − c + y (u)

)
+

1
2

V(a)
s(a)s(a)σ

2 (u) + V̇(a)

subject tos(a)
t ≥ s̄(a)

t . This economy has the same equilibrium allocation as the original one, and the allocation is inde-
pendent of {Tt, Et}. QED.
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G Additional Exercises

Effects of Changes in the IOR with under alternative Taylor rule. The simulation results in this exercise
are different from the previous exercise. In this exercise, the real variables (output, credit and job separation rate) are
more responsive under a larger κ. However, in this exercise, a reduction inīm

0 always generates a reduction in the IOR
im
t . In Figure 4 we consider the same policy shock to the discretionary component īm

t as Figure 21, except that we use
a new Taylor rule.

Figure 21 compares the transition paths under three different values of κ, i.e. the sensitivity of inflation to unemployment
rate in the Phillips curve: κ = 0.0001, 0.1, 5.

In Figure 21, we consider the exercise that deviates from a constant Taylor rule by inducing a change in the the discre-
tionary component of the Taylor rule īm

t , see (xxx).

In this experiment the central bank sets the initial value īm
0 of the discretionary component īm

t , and controls the path of
īm
t as follows:

īm
t = im

∞ +
(
īm
0 − im

∞
)
· exp

(
−ζ̄LRt

)
+
(
im
0− − īm

0
)
· exp

(
−ζ̄SRt

)
.

Figure 21 compares the transition paths under three different values of κ, i.e. the sensitivity of inflation to unemployment
rate in the Phillips curve: κ = 0.0001, 0.1, 5.

In the following figures, we consider the Taylor Rule such that ηt ≡ η̄, ζLR
t = ζ̄LR and ζSR

t = ζ̄SR, and simulate the paths
under three different values of κ. This exercise is to articulate standard movement in response to an expansionary nomi-
nal policy rate change. The figures confirm the standard movement: with a higher value of κ, the real variables (output,
credit and job separation rate) are less responsive, while the nominal variables (inflation rate) are more responsive. The
only concern is that the policy change is a reduction inīm

0 , but the IOR im
t increases when κ = 5. I
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Effects of IOR beyond the DZLB. In the following figures we consider the following scenario of the Taylor
Rule: ηt ≡ η̄, and the following discretionary rate path:

ζLR
t =

{
0, if t ∈

[
Tpre, Tpost]

∞, otherwise
, ζSR

t ≡ ∞,

This implies the following path of im
t :

im
t =

{
īm
0 + η̄ · πt, if t ∈

[
Tpre, Tpost]

im
∞ + η̄ · πt, otherwise

This scenario is a bang-bang control of īm
t , where DZLB only occurs during

[
Tpre, Tpost]. We do not change the Taylor

Rule, but only uses an aggressive path of discretionary rate. There can be weak indirect GE effect through the path of
inflation.
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H Discount Factor Shocks

H.1 Simulation Results: Closing Spread During Discount Factor Shock

We simulate the model under ∆rss = 0.5%, 0.75%, 1%, 1.25%. Note that the range of spread that can be implemented in
the current calibration is ∆r ∈ [0.44%, 1.26%]. The simulation of ∆r = 0 has some convergence issue, so I did not present
it here. In all the simulations below, the discount factor shock takes the form: e−ρtδ (t), where δ (t) is a U-shape curve
over time, and assume δ (t) = 1 if there is no discount factor shock. Figure 6 plots the path of δ (t). For the long-run
monetary policy we set im

ss = 1% for all scenarios. For the monetary policy during shock, we set ∆rt = 0 and do not
change im

t . The following table reports the welfare loss (in terms of certainty equivalence) at time 0 and the following
figure plots the transition paths of all scenarios.
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Figure 23: The Path of Discount Factor Shock δ (t)
Note: The figure reports the path of discount factor shock δ (t). The shock enters households’ per-period utility in the form of δ (t)U (ct). In steady
state we normalize δ (t) = 1. During the shock, a δ (t) < 1 represents a temporary increase in the discount rate. The values of δ (t) in the figure are
expressed in percentages of the steady state value.

Table 6: Welfare Loss of Closing Spread During Discount Factor Shock

Scenario of ∆r 0.5% 0.75% 1% 1.25%

Transition Path Welfare Loss (% deviation of CE from Yss) 0.5350 0.5339 0.5368 0.5385

Steady State Welfare Loss (% deviation of CE from Yss) 0.0238 0.0284 0.0326 0.0365
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H.2 Simulation Results: Reducing IOER to DZLB During Discount Factor Shock

We simulate the model under ∆rss = 0.5%, 0.75%, 1%, 1.25%. Note that the range of spread that can be implemented in
the current calibration is ∆r ∈ [0.44%, 1.26%]. The simulation of ∆r = 0 has some convergence issue, so I did not present
it here. In all the simulations below, the discount factor shock takes the form: e−ρtδ (t), where δ (t) is a U-shape curve over
time, and assume δ (t) = 1 if there is no discount factor shock. Figure 6 plots the path of δ (t). For the long-run monetary
policy we set im

ss = 1% for all scenarios. For the monetary policy during shock, we set īm
0 = − 1

2 [χ
+
ss + (1− δ) χ−ss] and do

not change ∆rt, so the nominal deposit rate ia
t ≡ 0 during shock. The following table reports the welfare loss (in terms of

certainty equivalence) at time 0 and the following figure plots the transition paths of all scenarios.

Table 7: Welfare Loss of Reducing IOER to DZLB During Discount Factor Shock

Scenario of ∆r 0.5% 0.75% 1% 1.25%

Transition Path Welfare Loss (% deviation of CE from Yss) 0.5366 0.5365 0.5394 0.5426

Steady State Welfare Loss (% deviation of CE from Yss) 0.0238 0.0284 0.0326 0.0365
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H.3 Simulation Results: Reducing IOER to DZLB and Closing Spread During

Discount Factor Shock

We simulate the model under ∆rss = 0.5%, 0.75%, 1%, 1.25%. Note that the range of spread that can be implemented in
the current calibration is ∆r ∈ [0.44%, 1.26%]. The simulation of ∆r = 0 has some convergence issue, so I did not present
it here. In all the simulations below, the discount factor shock takes the form: e−ρtδ (t), where δ (t) is a U-shape curve
over time, and assume δ (t) = 1 if there is no discount factor shock. Figure 6 plots the path of δ (t). For the long-run
monetary policy we set im

ss = 1% for all scenarios. For the monetary policy during shock, we set īm
0 = 0 and ∆rt = 0, so

the nominal deposit rate ia
t ≡ 0 during this period. Out of the shock, ∆rt ≡ ∆rss. The following table reports the welfare

loss (in terms of certainty equivalence) at time 0 and the following figure plots the transition paths of all scenarios.

Table 8: Welfare Loss of Reducing IOER to DZLB and Closing Spread During Discount Factor Shock

Scenario of ∆r 0.5% 0.75% 1% 1.25%

Transition Path Welfare Loss (% deviation of CE from Yss) 0.5361 0.5349 0.5378 0.5308

Steady State Welfare Loss (% deviation of CE from Yss) 0.0238 0.0284 0.0326 0.0365
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H.4 Simulation Results: Going Below DZLB Does No Good

We simulate the model under ∆rss = 0.5%, 0.75%, 1%, 1.25%. Note that the range of spread that can be implemented in
the current calibration is ∆r ∈ [0.44%, 1.26%]. The simulation of ∆r = 0 has some convergence issue, so I did not present
it here. In all the simulations below, the discount factor shock takes the form: e−ρtδ (t), where δ (t) is a U-shape curve over
time, and assume δ (t) = 1 if there is no discount factor shock. Figure 6 plots the path of δ (t). For the long-run monetary
policy we set im

ss = 1% for all scenarios. For the monetary policy during shock, we set īm
0 = − 1

2 [χ
+
ss + (1− δ) χ−ss] and do

not change ∆rt, so the nominal deposit rate ia
t ≡ 0 during shock. This exercise is to answer whether going below DZLB

does any good compared to going to exactly DZLB (the simulation we considered in section 3.2). So we compare the
figures in section 3.2 and in this section, and plot them together as below. The following table reports the welfare loss (in
terms of certainty equivalence) at time 0.

Table 9: Welfare Loss of Reducing IOER Below DZLB During Discount Factor Shock

Scenario of ∆r 0.5% 0.75% 1% 1.25%

Transition Path Welfare Loss (% deviation of CE from Yss) 0.5375 0.5366 0.5394 0.5426

Steady State Welfare Loss (% deviation of CE from Yss) 0.0238 0.0284 0.0326 0.0365

The left column of figures below plot the scenario of reducing IOER to DZLB (section 4.2), and the right column of figures
plot the scenario of reducing IOER below DZLB (this section). One can see that the output decreases more during credit
crunch in the right column compared to the left.
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H.5 Welfare Comparison

The following table compares the transition path welfare loss across policies

Table 10: Welfare Loss of Policies During Discount Factor Shock (% deviation of CE from Yss)

Policy Scenario
Steady-State Spread ∆rss

0.5% 0.75% 1% 1.25%

Close Spread 0.5350 0.5339 0.5368 0.5385
Reduce IOER to DZLB 0.5366 0.5365 0.5394 0.5426

Reduce IOER to DZLB and Close Spread 0.5361 0.5349 0.5378 0.5308
Reduce IOER Below DZLB 0.5375 0.5366 0.5394 0.5426
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