
Preliminary and Incomplete 

1 

Structural estimation of sovereign default models:  

The source of financial frictions* 

 

Takefumi Yamazaki 
†
 

 

ABSTRACT 

Emerging market business cycles feature a higher variability of consumption relative to output, a 
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Therefore, we quantitatively evaluate the importance of nonstationary productivity shocks in 

sovereign default models using simulated tempering sequential Monte Carlo. Our main result 
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literature. 
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1. Introduction 

The empirical regularities of the business cycles of emerging economies are excessive volatility 

in consumption, countercyclical current account balance, countercyclical interest rate, and frequent 

default at equilibrium (e.g. Neumeyer and Perri, 2005; Uribe and Yue, 2006; Aguiar and Gopinath, 

2006, 2007; García-Cicco et al., 2010; Uribe and Schmitt-Grohé, 2017). There are two strands of 

literature that explain these stylized facts. The first strand claims that the most important source of 

these characteristics is a permanent productivity shocks. The second strand emphasizes financial 

frictions rather than nonstationary productivity shocks. 

Aguiar and Gopinath (2007) introduce nonstationary productivity shocks into an open-economy 

real business cycle (RBC) model, and successfully replicate the characteristics of emerging 

economies. As the source of nonstationarity, Boz et al. (2011) suggest informational frictions, and 

Naoussi and Tripier (2013) suggest the level of income, quality of institutions, and the size of credit 

markets. 

In contrast, García-Cicco et al. (2010) and Chang and Fernández (2013) emphasize stationary 

financial frictions rather than nonstationary productivity shocks. They add financial frictions to an 

RBC model, and report that it performs much better than frictionless RBC models with nonstationary 

productivity shocks. Especially, without financial frictions, RBC models tend to generate nearly 

random-walk trade balances, and fail to replicate excess volatility in consumption. Furthermore, 

under economies with financial frictions, the persistence and the variance of nonstationary 

productivity shocks are very small, thus play negligible role. Álvarez-Parra et al. (2013) introduce 

nondurable and durable goods, and also report only a minor effect for trend output shocks. 

However, the source of financial frictions may be nonstationary productivity shocks, although 

their direct effect on business cycles is weak. It is possible that the source, nonstationary productivity 

shocks, seem to play a small role where the outcomes, financial frictions, are concurrently evaluated. 
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Sovereign default models are suitable for addressing this issue because financial frictions are 

endogenous, and nonstationary productivity shocks may or may not become the cause of them. 

Financial frictions (e.g. country-risk premium shocks, realistic debt-elasticity of the country 

premium) considered in RBC studies are microfounded endogenous mechanisms in sovereign default 

models. The drivers are productivity shocks which may be stationary or nonstationary or both. The 

model has repeatedly succeeded in replicating the stylized facts of the business cycles of emerging 

economies
1
, but there is no structural estimation works, to the best of our knowledge. 

Aguiar and Gopinath (2006) compare the sovereign default model with stochastic trend, 

nonstationary productivity shocks, and the model with stable trend. They report that the former 

performs better than the latter. Stochastic trend makes the decision to default relatively more 

sensitive to the particular realization of the productivity shocks and less sensitive to the amount of 

external debt. This generates a positive correlation between interest rate and the trade balance, which 

is consistent to data. Their results suggest nonstationary productivity shocks are the important source 

of financial frictions. 

Therefore, we estimate a structural sovereign default model, and evaluate the effects of both 

stationary and nonstationary productivity shocks. Comparing two types of productivity shocks is 

meaningful for the literature. Stationary productivity shocks keep importance in the financial 

frictions in García-Cicco et al. (2010) and Chang and Fernández (2013), whereas nonstationary 

productivity shocks lose importance.  

Our main result indicates that nonstationary productivity shocks are the important sources of 

financial frictions in terms of random-walk components, historical decompositions and parameter 

estimates. The result bridges a gap between two strands of the literature. As García-Cicco et al. 

(2010) and Chang and Fernández (2013) note, financial frictions have a substantial effect on the 

                                                 

1 See, e.g., Arellano (2008), Cuadra and Sapriza (2008), Alfaro and Kanczuk (2009), Hatchondo and 

Martinez (2009), Yue (2010), Boz (2011), Mendoza and Yue (2012), and Durdu et al. (2013). 
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business cycles of emerging economies. On the other hand, nonstationary productivity shocks are the 

important as the sources of financial frictions. 

Another contribution of our study is that we are the first to provide parameter estimates of 

sovereign default models by structural estimation. Calibrations differ between studies (Table 1) 

although all the models examine the Argentine economy, since there is much less agreement on the 

magnitude of default costs
2
. Our result shows domestic costs (decreases in output) and the 

probability of regaining financial market access are relatively small. This is because our estimation 

method measures the length of default periods directly. Low probabilities of reentry are matched to 

the actual length of default in Argentina and Mexico. This makes domestic costs relatively small to 

keep defaults frequent. 

Our estimation strategy is similar to Bayesian estimation on full-nonlinear DSGE models such as 

Gust et al. (2012) since almost all structural sovereign default models are solved by full-nonlinear 

methods
3
. Sovereign default models require particle filters to evaluate likelihood since they have no 

closed form solution.  

We adopt simulated tempering sequential Monte Carlo (SMC) algorithm instead of random-walk 

Metropolis–Hastings algorithm (RWMH). Simulated tempering SMC is proposed by Herbst and 

Schorfheide (2014, 2015), and the algorithm overcomes some weaknesses of RWMH. In the RWMH 

algorithm, parameter draws may have severe autocorrelation, or may get stuck in local mode and fail 

                                                 

2
 In a broad survey of sovereign defaults, Panizza et al. (2009) find that the main costs of sovereign 

defaults are exclusion from international capital markets or trade, interest rate spikes, and large 

reductions in output. Regarding exclusion from international trade, Rose (2005) explains that 

sovereign default decreases bilateral trade by around 8% for 15 years. On the other hand, Gelos et 

al. (2011) report the average exclusion is four years (in the 1980s) or 0–2 years (after 1980). 

Martinez and Sandleris (2011) find a decrease in trade of 3.2% for five years. As for spikes in 

interest rates, Flandreau and Zumer (2004) find that defaults increase spreads by around 90 basis 

points, whereas Borensztein and Panizza (2009) find that the effect is 250–400 basis points. The 

effects of domestic costs and large decreases in output are found to be 0.6% by Chuan and 

Sturzenegger (2005) and 0.6–2.5% by Borensztein and Panizza (2009), respectively. 
3
 See, for example, Arellano (2008), Cuadra and Sapriza (2008), Alfaro and Kanczuk (2009), 

Hatchondo and Martinez (2009), Yue (2010), Boz (2011), Mendoza and Yue (2012), and Durdu et 

al. (2013). 
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to explore the posteriors entirely as Chib and Ramamurthy (2010) and Herbst and Schorfheide 

(2014), Hirose et al. (2017) mention. A simulated tempering SMC propagates particles of the 

parameter vectors to the whole prior space. This feature is very important for our study because there 

is much less agreement on the parameters of sovereign default models. To the best of our knowledge, 

our study is the first application of a simulated tempering SMC to a full nonlinear regime-switching 

DSGE model. 

The remainder of this paper is organized as follows. In Section 2, we construct a sovereign 

default model. Section 3 proposes an estimation strategy tailored to sovereign default models. We 

present the estimation results in Section 4, and provide sensitivity analysis in Section 5. Section 6 

provides concluding comments. 
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Table 1 

Calibration of previous studies on structural sovereign default models 

  

Aguiar and 

Gopinath 

(2007) 

Arellano 

(2008), 

Cuadra and 

Sapriza (2008) 

Alfaro and 

Kanczuk 

(2009) 

Hatchondo 

and Martinez 

(2009) 

Yue (2010) Boz (2011) 
Mendoza and 

Yue (2012) 

Durdu et al. 

(2013) 

𝛽 Discount factor 
0.410 0.825 0.5 0.815 0.269 0.885 0.600 0.825 

𝜎 Risk aversion 
2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 

𝑟 Risk-free interest rate 
4.0% 6.8% 4.0% 4.0% 4.0% 4.0% 4.0% 6.8% 

𝜌𝑧 Persistence of transitory 

shocks 0.9 0.945 0.85 0.9 0.41 0.91 0.95 0.945 

𝜎𝑧 SD of transitory shocks 
0.034 0.025 0.044 0.027 0.0253 0.0192 0.017 0.015 

𝜃 Probability of reentry 
34.4% 73.4% 50.0% － － 29.3% 29.3% 73.4% 

(1 − 𝜆𝛼) Asymmetric domestic cost 

－ 3.1% － － － － － 3.1% 

(1 − 𝜆𝛽) Proportional domestic cost 
2.0% － 10% 

10%, 20%, 

50% 
2.0% － － − 

Note: Discount factor, risk-free interest rate, and probability of reentry are annualized. 
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2. The model 

2.1. The model economy 

We consider a sovereign default model with both stationary and nonstationary shocks similar to 

that utilized by Aguiar and Gopinath (2006) and Arellano (2008). Unlike these two studies, however, 

our model has both proportional and asymmetric domestic costs. Aguiar and Gopinath (2006) have 

only proportional domestic costs and Arellano (2008) has only asymmetric ones. We discuss this in 

Section 2.2. 

We assume that there is a single tradable good. The economy receives a stochastic endowment 

stream given by: 

 

𝑌𝑡 = 𝑒𝑍𝑡Γt,  (1) 

 

where Γt denotes the trend, and 𝑧𝑡 is a transitory shock. Trend and transitory shocks are discussed 

in Section 2.4. Households are identical, and maximize their utility according to: 

 

𝐸0 ∑𝛽𝑡

𝑥

𝑡=0

𝑢(𝐶𝑡),  (2) 

 

where 0 < 𝛽 < 1 is the discount factor, 𝐶 is consumption, and 𝑢(∙) is an increasing and strictly 

concave utility function. The utility function is assumed to display a constant coefficient of relative 

risk aversion σ as follows: 

 

𝑢(𝐶) =
(𝐶)1−𝜎

1 − 𝜎
,  (3) 
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A benevolent government maximizes the present expected discounted value of future utility flows of 

households in equation (2). The government utilizes international borrowing to smooth consumption 

and alters its time path. The government buys one-period discount bonds 𝐵′ at price 𝑞(𝐵′, 𝑌), 

which is endogenously determined depending on the government’s incentives to default, the total 

amount of sovereign debt and endowment. Positive values of 𝐵′ indicate that the government 

purchases bonds, and negative values of 𝐵′  indicate that the government issues bonds in 

international financial markets. Earnings on the government portfolio are distributed as lump sums to 

households. The resource constraint of the economy when the government chooses to repay the debts 

is: 

 

𝐶 = 𝑌 + 𝐵 − 𝑞(𝐵′, 𝑌)𝐵′.  (4) 

 

The government is excluded from international financial markets when it chooses to default. The 

resource constraint in the default state is: 

 

𝐶 = 𝑌𝑑𝑒𝑓 , (5) 

 

where 𝑌𝑑𝑒𝑓 is the endowment when in the default state. The definition of 𝑌𝑑𝑒𝑓 is discussed in 

Section 2.2. 

Foreign investors are assumed to evaluate defaultable bonds in a risk-neutral manner. In every 

period, risk-neutral investors lend 𝐵′ to maximize expected profits 𝜙 as follows: 

 

𝜙 = 𝑞𝐵′ −
1 − 𝛿(𝐵′, 𝑌)

1 + 𝑟
, (6) 
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where 𝛿(𝐵′, 𝑌) is the default probability depending on the debt accumulation and aggregate shocks. 

2.2. Domestic costs 

Our model is equipped with both proportional and asymmetric domestic costs. Aguiar and 

Gopinath (2006) use only proportional costs, whereas Arellano (2008) adopts only asymmetric costs. 

Similarly, other structural models have proportional costs only or asymmetric costs only. However, 

adopting both costs is important because the effects on business cycles differ between them. 

Proportional costs are incurred immediately at default, while asymmetric costs are incurred only if 

output fluctuates above the mean level. This means that proportional costs always reduce the default 

incentive; however, asymmetric costs do not inhibit default incentives when output is much lower 

than the mean level. 

Regarding the estimation of domestic costs, structural estimation has a significant advantage 

over reduced-form estimation. Panizza et al. (2009) note that regressions containing domestic costs 

cannot avoid two biases. First, defaults could be endogenous to decreases in output. Second, it is 

possible that output does not fall because of defaults. Structural estimation overcomes these 

problems. In structural estimation, the effects of productivity shocks and domestic costs are 

explicitly identified, and asymmetric costs are one of the determinants of the default decision of the 

government. 

Asymmetric costs are adopted by Arellano (2008), Cuadra and Sapriza (2008), and Cuadra et al. 

(2010). The asymmetric costs are expressed as: 

 

𝑌𝑑𝑒𝑓 = {
 𝑌           𝑖𝑓 𝑌 < (1 − 𝜆𝛼)𝐸[𝑌]

(1 − 𝜆𝛼)𝐸[𝑌]  𝑖𝑓 𝑌 ≥ (1 − 𝜆𝛼)𝐸[𝑌]
. (7) 

 

Proportional costs are adopted by Aguiar and Gopinath (2006), Alfaro and Kanczuk (2009), 
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Hatchondo and Martinez (2009), and Yue (2010). The proportional costs are given as: 

 

𝑌𝑑𝑒𝑓 = (1 − 𝜆𝛽)𝑌. (8) 

 

In our model, two types of domestic costs are combined. Through estimation, we test which of these 

two costs is most appropriate for our model. 

𝑌𝑑𝑒𝑓 = {
(1 − 𝜆𝛽)Y       𝑖𝑓 (1 − 𝜆𝛽)Y < (1 − 𝜆𝛼)𝐸[𝑌]

(1 − 𝜆𝛼)𝐸[𝑌]    𝑖𝑓 (1 − 𝜆𝛽)Y ≥ (1 − 𝜆𝛼)𝐸[𝑌]
. (9) 

 

2.3. Recursive formulation 

Let 𝑉𝑜(𝐵, Y) denote the government’s value function before the default or repayment decision. 

Define 𝑉𝑐(𝐵, Y) as the value associated with not defaulting, and denote 𝑉𝑑(𝑌) as the value 

associated with default. 𝑉𝑜(𝐵, Y) satisfies: 

 

𝑉𝑜(𝐵, Y) = max
{𝑐,𝑑}

{𝑉𝑐(B, Y), 𝑉𝑑(𝑌)}. (10) 

 

The decision is featured by: 

 

𝐷(𝐵, 𝑌) = { 1   𝑖𝑓 𝑉𝑐(B, Y) < 𝑉𝑑(𝑌)

0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. (11) 

 

The economy becomes an autarky when the government chooses default. The value function is given 

by the equation: 

 



Preliminary and Incomplete 

11 

𝑉𝑑(𝑌) = 𝑢(𝑌𝑑𝑒𝑓) + β∫ [𝜃𝑉𝑜(0, 𝑌′) + (1 − 𝜃)𝑉𝑑(𝑌′)]𝑓(𝑌′, 𝑌)
𝑌′

𝑑𝑌′, (12) 

 

where 𝜃 is the probability that the economy regains access to international financial markets. When 

the government decides to repay, the value function is given by: 

 

𝑉𝑐(𝐵, 𝑌) = 𝑚𝑎𝑥
(𝐵′)

{𝑢(𝑌 − 𝑞(𝐵′, 𝑌)𝐵′ + 𝐵) + 𝛽 ∫ 𝑉𝑜(𝐵′, 𝑌′)𝑓(𝑌′, 𝑌)𝑑𝑌′

𝑦′

}. (13) 

 

Therefore, the default probabilities 𝛿(𝐵′, 𝑌) are given by: 

 

𝛿(𝐵′, 𝑌) = ∫ 𝑓(𝑌′, 𝑌)𝑑𝑌′

𝐷(𝐵′)

. (14) 

 

The bond price that satisfies the lender’s zero-profit condition is: 

 

𝑞(𝐵′)𝐵′ =
1 − 𝐹 (𝑌∗(𝐵′))

1 + 𝑟
𝐵′.  (15) 

 

2.4. Stationary and nonstationary productivity shocks and detrending 

In equation (1), the endowment stream is comprised of stationary and nonstationary productivity 

shocks. The transitory productivity shock is: 

 

𝑧𝑡 = 𝜌𝑧𝑡−1 + 𝜀𝑡
𝑧 .    (16) 
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The stochastic trend is formulated as: 

 

Γ𝑡 = 𝑔𝑡Γ𝑡−1,   (17) 

ln 𝑔𝑡 = (1 − 𝜌𝑔) (ln 𝜇𝑔 −
1

2

𝜎𝑔
2

(1 − 𝜌𝑔
2)

) + 𝜌𝑔 ln 𝑔𝑡−1 + 𝜀𝑡
𝑔
. (18) 

 

The state vector is unbounded because the endowment stream has a trend. We normalize the 

nonstationary element following Aguiar and Gopinath (2006). We normalize the variable 𝑋 by 

𝜇𝑔Γ𝑡−1 and denote 𝑋/𝜇𝑔𝛤𝑡−1 by x, whereas Aguiar et al. (2016) normalize their variables by Γ𝑡 

as in DSGE studies such as Smets and Wouters (2007) and Chang and Fernández (2013). 

Importantly, the method of Aguiar and Gopinath (2006) enables us to analyze the effect of trend 

shocks on cycles. The logged and detrended endowment streams of equation (1) are expressed as: 

 

ln𝑌𝑡 − (𝑙𝑛𝜇𝑔 + 𝑙𝑛Γ𝑡−1) = 𝑧𝑡 + 𝑙𝑛Γ𝑡 − (𝑙𝑛𝜇𝑔 + 𝑙𝑛Γ𝑡−1),  

ln𝑦𝑡 = 𝑧𝑡 + 𝑙𝑛g𝑡 − 𝑙𝑛𝜇𝑔. (19) 

 

Thus, the detrended endowment stream is composed of both stationary and nonstationary 

productivity shocks: 

 

𝑐 = 𝑦 + 𝑏 − 𝑞(𝑏′, 𝑦)𝑏′.  (20) 

 

The detrended value functions become: 

 

𝑉𝑑(𝑦) = 𝑢(𝑦𝑑𝑒𝑓) + β∫ [𝜃𝑉𝑜(0, 𝑦′) + (1 − 𝜃)𝑉𝑑(𝑦′)]𝑓(𝑦′, 𝑦)
𝑦′

𝑑𝑦′,  (21) 
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𝑉𝑐(𝑏, 𝑦) = 𝑚𝑎𝑥
(𝑏′)

{𝑢(𝑐) + 𝛽 ∫ 𝑉𝑜(𝑏′, 𝑦′)𝑓(𝑦′, 𝑦)𝑑𝑦′

𝑦′

}.  (22) 

 

The model is solved using value function iterations based mainly on Aguiar and Gopinath (2007) and 

Arellano (2008) (see Algorithm 1). 

3. Estimation strategy 

3.1. Data 

The target economies are Argentina and Mexico following the studies of Aguiar and Gopinath 

(2006), García-Cicco et al. (2010), and Chang and Fernández (2013). Furthermore, almost all 

structural sovereign default models investigate the Argentinean economy. We use data of real GDP 

per capita, external debt stock, interest rates, and default states. External debt stocks are deflated by 

dollar expected inflation rates, and divided by total population. We use deposit rate provided by 

World Bank as country specific interest rate since they have longer data than EMBI + spread. We 

offer the estimation result using EMBI + spread for the robustness check. Interest rates are also 

deflated by dollar expected inflation rates. The default states are defined by Standard & Poor’s.  

3.2. State space representation 

The state transition equation is 𝑠𝑡 = Φ(𝑠𝑡−1, 𝜖𝑡 ; 𝜗), where 𝜖𝑡 ~𝐹𝜖(∙ ; 𝜗). The measurement 

equation is 𝑡 = Ψ(𝑠𝑡, 𝑡; 𝜗) + 𝑢𝑡, where 𝑢𝑡~𝐹𝑢(∙ ; 𝜗). After solving for the state transition equation, 

we map the variables computed in our model to the observables. 

The measurement equations include the one-period lag of the growth of technology. We assume 

balanced growth as in most studies on DSGE models such as Smets and Wouters (2007) and Chang 

and Fernández (2013), although they add the current growth of technology to their measurement 

equations, not that of the one-period lag. The reason is we detrend the model using 𝜇𝑔Γ𝑡−1, whereas 
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they detrend the model using present level of technology corresponding to Γ𝑡  in this paper. 

Log-differenced series are decomposed as follows: 

 

𝑑 ln 𝑌𝑡 = (ln𝑌𝑡 − ln𝜇𝑔 − ln Γt−1) − (ln 𝑌𝑡−1 − ln𝜇𝑔 − ln Γt−2) + ln𝜇𝑔 + ln Γt−1 − ln𝜇𝑔 − ln Γt−2 

 = ln 𝑦𝑡 − ln 𝑦𝑡−1 + ln Γt−1 − ln Γt−2  

 = �̂�𝑡 − �̂�𝑡−1 + ln𝑔𝑡−1.   (23) 

 

Similarly, foreign assets 𝐵𝑡 are detrended. We assume bond prices and default decisions have no 

trend as is assumed in other DSGE model studies. The measurement equations are: 

 

[
 
 
 
 
𝑑𝑙𝑛𝑌𝑡

𝑜𝑏𝑠

𝑑𝑙𝑛𝐵𝑡
𝑜𝑏𝑠

𝑞𝑡
𝑜𝑏𝑠

𝑑𝑒𝑓𝑡
𝑜𝑏𝑠 ]

 
 
 
 

=

[
 
 
 
�̂�𝑡 − �̂�𝑡−1

�̂�𝑡 − �̂�𝑡−1

𝑞𝑡

𝑑𝑒𝑓𝑡 ]
 
 
 
+ [

𝑙𝑛𝑔𝑡−1

𝑙𝑛𝑔𝑡−1

0
0

] + [

𝑢𝑦,𝑡

𝑢𝑏,𝑡

𝑢𝑞,𝑡

𝑢𝑑𝑒𝑓,𝑡

].  (24) 

 

Our measurement equations have measurement errors. The main reason for adding measurement 

error is to avoid stochastic singularity, which arises when there are more observables than shocks in 

the model. The shocks in our model are two productivity shocks, but there are three observables in 

our model. According to Schmitt-Grohé and Uribe (2012), adding measurement error is a way to 

circumvent stochastic singularity of the model. García-Cicco et al. (2010) and Chang and Fernández 

(2013) also adopt measurement error for the same reason. Measurement errors are restricted to a 

maximum of 20% of the empirical standard deviation to avoid measurement errors absorbing 

variability as discussed by An and Schorfheide (2007) and García-Cicco et al. (2010). 

We add a default decision to the measurement equations since the definition of sovereign default 

by Standard & Poor’s is very clear, and we can easily observe the state of the sovereign. Similarly, 

some studies applying a state space model add default decisions or crises to the measurement 
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equations, such as Schwaab et al. (2016) and Rose and Spiegel (2010, 2011, and 2012). Standard & 

Poor’s defines default as the failure to meet a principal or interest payment on the due date contained 

in the original terms of a debt issue. 

3.3. Simulated tempering SMC–SMC algorithm 

The simulated tempering SMC–SMC algorithm is an estimation strategy that is combined with 

particle filtering. We use the simulated tempering SMC algorithm proposed by Herbst and 

Schorfheide (2014, 2015) (see algorithms 2–4 in the Appendix), as well as their particle filter to 

evaluate likelihood, hence the label SMC–SMC. This paper is the first attempt to apply this 

estimation method to a full nonlinear regime-switching DSGE model.  

The most important feature of the SMC algorithm for this paper is that it explores entire prior 

ranges propagating particles of parameter vectors. It prevents parameter draws from getting stuck in 

the local mode. 

All priors are uniform to secure objectiveness such as in Fernández-Villaverde and 

Rubio-Ramírez (2005) and García-Cicco et al. (2010). The ranges cover all calibration values of the 

referenced studies of structural sovereign default models (see Tables 1 and 2). 

Table 2 

Priors. 

Parameters Distributions 
Hyperparameters 

of uniform distribution 

𝛽 Discount factor Uniform (0.0, 1.0) 

𝜎 Risk aversion Uniform (0.0, 10.0) 

𝑟 Risk-free interest rate Uniform (0.0, 1.0) 

𝜌𝑧 Persistence of stationary productivity shock Uniform (0.0, 1.0) 

𝜎𝑧 SD of stationary productivity shock Uniform (0.0, 10.0) 

𝜃 Probability of reentry Uniform (0.0, 1.0) 

(1 − 𝜆𝛼) Asymmetric domestic costs Uniform (0.0, 1.0) 

(1 − 𝜆𝛽) Proportional domestic costs Uniform (0.0, 1.0) 

𝜇𝑔 Gross mean growth Uniform (1.0, 1.3) 

𝜌𝑔 
Persistence of nonstationary productivity 

shock 
Uniform (0.0, 1.0) 

𝜎𝑔 SD of nonstationary productivity shock Uniform (0.0, 10.0) 
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The hyperparameters of the SMC algorithm are N = 2000,𝑁𝜙 = 100, 𝜆 = 2.1, 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 =

6, 𝑀 = 1 𝑎𝑛𝑑 𝛼 = 0.9. These are the number of particles for the parameter vectors, the number of 

stages, the parameter for the tempering schedule, the number of blocks, the number of MH steps at 

each stage, and parameter controls for the weight of the proposals’ mixture components. The number 

of particles for the likelihood evaluations, 𝑁𝑓𝑖𝑙𝑡𝑒𝑟, is 20,000. The chain is initialized by priors. The 

tempering schedule {𝜙𝑛}
𝑛=1

𝑁𝜙
 is determined by the equation: 

 

𝜙𝑛 = (
𝑛 − 1

𝑁𝜙 − 1
)

𝜆

.  (25) 

 

As the number of stages increases, each stage requires additional likelihood evaluations. The scale 

parameter is adjusted by approximately 25–40% along with the tempering schedule. 𝑁𝑓𝑖𝑙𝑡𝑒𝑟 is large 

enough to obtain robust results efficiently according to Amisano and Tristani (2010) and Malik and 

Pitt (2011). 

The total number of likelihood estimations in the SMC algorithm is equal to 𝑁 × 𝑁𝜙 ×

𝑁𝑏𝑙𝑜𝑐𝑘𝑠 × 𝑀 = 3.6 million, which is sufficiently large. In our experience, the draws in an MCMC 

estimation of a DSGE model are rarely more than one million.
4
  

4. Results 

4.1. The importance of nonstationary productivity shocks 

The random-walk component suggests that nonstationary productivity shocks are the important 

sources of financial frictions (Table 3). A historical decomposition also indicates that nonstationary 

                                                 

4
 García-Cicco et al. (2010) used two million iterations in their MCMC estimation, but their model 

has substantially more parameters than in this paper. Log-linearized DSGE model estimation studies 

that use a basic Kalman filter for likelihood evaluation often conduct 500,000 MCMC iterations. 

DSGE model studies that use a particle filter have fewer iterations than the Kalman filter case. 
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productivity shocks are as important as stationary ones (Fig. 1). The random-walk component is a 

criterion for the importance of trend shocks proposed by Aguiar and Gopinath (2007). The equation 

for the random-walk component is given by: 

 

𝜎Δ𝜏
2

𝜎Δ𝑠𝑟
2 =

𝛼2𝜎𝑔
2/(1 − 𝜌𝑔)

2

[2/(1 + 𝜌𝑧)]𝜎𝑧
2 + [𝛼2𝜎𝑔

2/(1 − 𝜌𝑔
2)]

,  (26) 

 

where α is the labor exponent used in an RBC model; however, our model and most other structural 

sovereign default models do not use this parameter. Instead, we calibrate α = 0.32 or α = 0.68, 

which are the same values as used by Aguiar and Gopinath (2007), García-Cicco et al. (2010), and 

Chang and Fernández (2013).  

 

Table 3 

Random-walk component. 

Argentina Our model García-Cicco et 

al. (2010) 

Capital income share α = 0.32 α = 0.68 α = 0.32 
Random-walk component 1.25 3.46 0.07 

Mexico Our model 
Aguiar and 

Gopinath (2007) 

García-Cicco et 

al. (2010) 

Chang and 

Fernández (2013) 

Capital income share α = 0.32 α = 0.68 α = 0.68 α = 0.32 α = 0.68 
Random-walk component 1.15 3.19 0.88–1.13 0.01 0.88 

 

The reason for the high random-walk component is the high persistency of trend shock 𝜌𝑔 

(Table 4). Higher persistency of output means that positive shocks are expected to persist over time 

causing the economy to default less frequently in good states. The economy can borrow relatively 

more, resulting in relatively high levels of debt when booms. Similarly, negative income shocks are 

expected persist long time, thus the economy cannot support high debt. These properties are 

consistent to data of Argentina and Mexico, the external debt stock just prior to default is large, but 
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defaults occur frequently
5
. 

The effect of higher persistency is similar between stationary and nonstationary productivity 

shocks. The difference is that nonstationary productivity shocks support or reduce external debt not 

only through business cycle fluctuations, but also through trend growth, whereas stationary 

productivity shocks drive debts only through the former. 

On the other hand, historical decompositions show, at the start of default, harsh negative 

stationary productivity shocks reduce output in both Argentina and Mexico. This suggests that the 

particular realization of stationary productivity shock is the dominant factor of default. 

 

Table 4 

Posteriors (mean). 

Argentina Priors Mean 
Standard 

Deviation 

𝛽 Discount factor Uniform 0.80 0.050 

𝜎 Risk aversion Uniform 1.88 0.12 

𝑟 Risk-free interest rate Uniform 0.038 0.0023 

𝜌𝑧 
Persistence of transitory 

shock 
Uniform 0.85 0.051 

𝜎𝑧 SD of transitory shock Uniform 0.024 0.0014 

𝜃 Probability of reentry Uniform 0.21 0.013 

(1 − 𝜆𝛼) Asymmetric domestic costs Uniform 0.0068 0.0060 

(1 − 𝜆𝛽) Proportional domestic costs Uniform 0.0033 0.0030 

𝜇𝑔 Gross mean growth Uniform 1.015 0.017 

𝜌𝑔 Persistence of trend shock Uniform 0.75 0.044 

𝜎𝑔 SD of trend shock Uniform 0.024 0.0014 

Marginal data density -72.45  

   

Mexico Priors Mean 
Standard 

Deviation 

𝛽 Discount factor Uniform 0.81 0.051 

𝜎 Risk aversion Uniform 1.86 0.11 

𝑟 Risk-free interest rate Uniform 0.037 0.0022 

                                                 

5 The stylized facts are observed not only in our sample periods, but throughout a longer period of 

history. Uribe and Schmitt-Grohé (2017) show that the debt-to-GNP ratio in default years is 

approximately 14% higher than average, and in Argentina default occurred five times and in Mexico 

default occurred eight times from 1824 to 2014. 
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𝜌𝑧 
Persistence of transitory 

shock 
Uniform 0.83 0.051 

𝜎𝑧 SD of transitory shock Uniform 0.022 0.0015 

𝜃 Probability of reentry Uniform 0.21 0.014 

(1 − 𝜆𝛼) Asymmetric domestic costs Uniform 0.010 0.0048 

(1 − 𝜆𝛽) Proportional domestic costs Uniform 0.013 0.0066 

𝜇𝑔 Gross mean growth Uniform 1.015 0.020 

𝜌𝑔 Persistence of trend shock Uniform 0.73 0.046 

𝜎𝑔 SD of trend shock Uniform 0.023 0.0015 

Marginal data density -317.55  
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Fig. 1. Historical decompositions. Notes: Observables are log-differenced. Fluctuations in output can 

be fully decomposed, but external debt and bond prices cannot be decomposed because they are 

endogenously determined by numerical nonlinear policy functions. 

 

4.2. Stylized facts of emerging economies 

The second moments demonstrate that our model replicates well the empirical regularities of 

emerging economies (Table 5). Our model satisfactorily exhibits volatile output, excess volatility of 

consumption, countercyclical trade balance, and countercyclical interest rate (procyclical bond 

price). Autocorrelations of the trade balance–output ratio are low, and do not exhibit random-walk 

behavior, which García-Cicco et al. (2010) observe in a frictionless RBC model. Our models show 

negative correlations between the trade balance and interest rate, that is, a positive correlation 

between the trade balance and bond prices as in Aguiar and Gopinath (2006).  
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Table 5 

Second moments. 

Argentina Data Our model  Mexico Data Our model 

𝜎𝛥𝑦 5.74 5.40  𝜎𝛥𝑦 3.38 3.11 

𝜎𝛥𝑐/𝜎𝛥𝑦 1.50 1.16  𝜎𝛥𝑐/𝜎𝛥𝑦 1.28 1.6 

𝜎𝑡𝑏/𝑦 3.87 2.80  𝜎𝑡𝑏/𝑦 3.29 2.84 

𝐶𝑜𝑟𝑟(𝛥𝑦, 𝑡𝑏/𝑦 ) −0.17 −0.18  𝐶𝑜𝑟𝑟(𝛥𝑦, 𝑡𝑏/𝑦 ) −0.45 −0.71 

𝐶𝑜𝑟𝑟(𝛥𝑦, 𝑞) 0.50 0.34  𝐶𝑜𝑟𝑟(𝛥𝑦, 𝑞) 0.32 0.41 

𝐶𝑜𝑟𝑟(𝑡𝑏/𝑦, 𝑞) −0.17 −0.051  𝐶𝑜𝑟𝑟(𝑡𝑏/𝑦, 𝑞) −0.78 −0.3 

𝑆𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑟𝑟(𝑡𝑏/𝑦) 0.67 0.13  𝑆𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑟𝑟(𝑡𝑏/𝑦) 0.75 0.17 

Note: Standard deviations are reported in percentage points. 

 

4.3. The costs of sovereign default in Argentina and Mexico 

Our estimates of the probability of reentry and domestic costs are relatively low among 

preceding studies (Tables 1 and 4). The reason for these differences is that the default period is 

measured to be matched to observables in our Bayesian estimation, whereas previous studies 

matched the moments of the data. The observed long default period makes the probability of reentry 

low. This inhibits default; hence, domestic cost becomes relatively small to keep default frequent. 

Domestic costs seem to be small, but they are amplified by the low probability of reentry when 

calculating the value in equation (12). 

 

5. Sensitivity analysis 

5.1. Another interest rate data: EMBI + spread and U.S. interest rate 

We use deposit rate as the country-specific interest rate since longer data are available. However, 

many studies on emerging economies create interest rate series with EMBI + spread and U.S. interest 

rate. We present robustness check for our main result estimating the sovereign default model using 

EMBI + spread and U.S. interest rate. 

As for Mexico, EMBI + spread during default period, 1982-1990, is not available. Thus, we 
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estimate and analyze only Argentine economy. Regarding Argentina, EMBI + spread during default 

period, 2001-2004, is available. We construct the country-specific interest rate as the sum of the 

EMBI + spread for Argentina and the 90-day Treasury-Bill rate deflated by expected dollar inflation. 

The result shows that parameter estimates are similar to main analysis. Random-walk 

components show that nonstationary productivity shocks are also important in this robustness check. 

 

Table 6 

Posteriors (mean). 

Argentina Priors Mean  

𝛽 Discount factor Uniform 0.82 0.06 

𝜎 Risk aversion Uniform 1.92 0.14 

𝑟 Risk-free interest rate Uniform 0.038 0.0026 

𝜌𝑧 
Persistence of transitory 

shock 
Uniform 0.88 0.06 

𝜎𝑧 SD of transitory shock Uniform 0.024 0.0017 

𝜃 Probability of reentry Uniform 0.21 0.015 

(1 − 𝜆𝛼) Asymmetric domestic costs Uniform 0.0050 0.00034 

(1 − 𝜆𝛽) Proportional domestic costs Uniform 0.0025 0.00018 

𝜇𝑔 Gross mean growth Uniform 1.026 0.029 

𝜌𝑔 Persistence of trend shock Uniform 0.77 0.055 

𝜎𝑔 SD of trend shock Uniform 0.024 0.0017 

Marginal data density -95.20  

Random-walk component 
1.47 

(α = 0.32) 

3.97 

(α = 0.68) 

 

5.2. Another detrending method: HP-filter 

Many studies on sovereign default models use an HP filter such as Aguiar and Gopinath (2006) 

and Mendoza and Yue (2012), whereas we use log-differenced series assuming balanced growth. Due 

to the difference of detrending methods, our parameter estimates may be different from conventional 

literature. Thus, we provide the estimation using HP-filter to detrend the data. We test whether 

parameter estimates in this case show similar tendency to our main results. 

The measurement equation is different from our main analysis. In the literature on DSGE model 
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estimation with particle filtering, Fernández-Villaverde and Rubio-Ramírez (2005, 2007) and Malik 

and Pitt (2011) also use an HP filter to detrend their data. The measurement equations of the 

HP-filter approach are as follows. The tilde denotes deviations from trend.  

[
 
 
 
 

�̃�𝑡
𝑜𝑏𝑠

�̃�𝑡
𝑜𝑏𝑠

𝑞𝑡
𝑜𝑏𝑠

𝑑𝑒𝑓𝑡
𝑜𝑏𝑠]

 
 
 
 

=

[
 
 
 

�̃�𝑡

�̃�𝑡

𝑞𝑡

𝑑𝑒𝑓𝑡]
 
 
 
+ [

𝑢𝑦,𝑡

𝑢𝐵,𝑡

𝑢𝑞,𝑡

𝑢𝑑𝑒𝑓,𝑡

].  (27) 

 

The result is provided by table 7. Probability of reentry and domestic costs are relatively small 

comparing to the preceding studies (Table 1, Table 7). Thus, we confirmed that the tendency of 

parameter estimates is similar to our main result (Table 4). 

Table 7 

Posteriors (mean). 

Argentina Priors Mean Standard Deviation 

𝛽 Discount factor Uniform 0.68 0.11 

𝜎 Risk aversion Uniform 1.82 0.67 

𝑟 Risk-free interest rate Uniform 0.038 0.014 

𝜌𝑧 
Persistence of transitory 

shock 
Uniform 0.74 0.11 

𝜎𝑧 SD of transitory shock Uniform 0.033 0.0071 

𝜃 Probability of reentry Uniform 0.12 0.049 

(1 − 𝜆𝛼) Asymmetric domestic costs Uniform 0.017 0.0072 

(1 − 𝜆𝛽) Proportional domestic costs Uniform 0.00015 0.00 

Marginal data density  -400.01  

   

Mexico Priors Mean Standard Deviation 

𝛽 Discount factor Uniform 0.71 0.11 

𝜎 Risk aversion Uniform 1.51 0.36 

𝑟 Risk-free interest rate Uniform 0.033 0.0070 

𝜌𝑧 
Persistence of transitory 

shock 
Uniform 0.67 0.11 

𝜎𝑧 SD of transitory shock Uniform 0.023 0.0043 

𝜃 Probability of reentry Uniform 0.11 0.024 

(1 − 𝜆𝛼) Asymmetric domestic costs Uniform 0.023 0.0051 

(1 − 𝜆𝛽) Proportional domestic costs Uniform 0.0002 0.00 

Marginal data density  -208.08  
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5.3. Application to longer data 

García-Cicco et al. (2010) point out that the period 1980–2005 only contains between one and a 

half and two cycles that are deviations from a cubic trend, and this may make nonstationary 

productivity shocks more important than actual. Using 100 years of data, we could not conduct the 

estimation same as main analysis because such long historical data for external debt and interest rates 

are unavailable. Instead, under the parameter estimates of our main analysis, we apply a particle filter 

to the data for the Argentinean and Mexican economies used in García-Cicco et al. (2010), in 

particular, output and trade balance data over the period 1900–2005. Then, we check whether 

nonstationary productivity shocks are important throughout this period. The measurement equations 

are as follows: 

 

[

𝑑𝑙𝑛𝑌𝑡
𝑜𝑏𝑠

(𝑡𝑏/𝑦)𝑡
𝑜𝑏𝑠

𝑑𝑒𝑓𝑡
𝑜𝑏𝑠

] = [

�̂�𝑡 − �̂�𝑡−1

(𝑡𝑏/𝑦)𝑡

𝑑𝑒𝑓𝑡

] + [
𝑙𝑛𝑔𝑡−1

0
0

] + [

𝑢𝑦,𝑡

𝑢𝑡𝑏/𝑦,𝑡

𝑢𝑑𝑒𝑓,𝑡

].  (28) 

 

As a result, the historical decompositions show that nonstationary productivity shocks are as 

important as stationary productivity shocks over the period 1905–2005 (Fig. 2). The second moments 

of the model also replicate the excess volatility of consumption, countercyclical interest rate, and 

trade balance (Table 8). The model also predicts default periods accurately, although we use trade 

balance data instead of external debt data. Stationary shocks also play an important role at the start of 

default periods. 
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Fig. 2. Historical decomposition in the period 1905–2005. 
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Table 8 

Second moments in the period 1905–2005. 

Argentina Data Model  Mexico Data Model 

𝜎𝛥𝑦 5.37 4.79  𝜎𝛥𝑦 4.26 4.20 

𝜎𝛥𝑐/𝜎𝛥𝑦 1.41 1.38  𝜎𝛥𝑐/𝜎𝛥𝑦 1.45 1.36 

𝜎𝑡𝑏/𝑦  5.14 2.70  𝜎𝑡𝑏/𝑦  4.22 2.25 

𝐶𝑜𝑟𝑟 (𝛥𝑦, 𝑡𝑏/𝑦 ) −0.05 −0.44  𝐶𝑜𝑟𝑟 (𝛥𝑦, 𝑡𝑏/𝑦 ) −0.18 −0.39 

𝐶𝑜𝑟𝑟 (𝛥𝑦, 𝑞 ) – 0.21  𝐶𝑜𝑟𝑟 (𝛥𝑦, 𝑞 ) – 0.31 

𝐶𝑜𝑟𝑟 (𝑡𝑏/𝑦, 𝑞) – −0.16  𝐶𝑜𝑟𝑟 (𝑡𝑏/𝑦, 𝑞) – −0.15 

𝑆𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑟𝑟 (𝑡𝑏/𝑦) 0.58 0.38  𝑆𝑒𝑟𝑖𝑎𝑙 𝑐𝑜𝑟𝑟(𝑡𝑏/𝑦) 0.72 0.23 

Note: Standard deviations are reported in percentage points. 

6. Conclusions 

The major character of the business cycles of emerging economies are excessive volatility in 

consumption, countercyclical current account balance, countercyclical interest rate, and frequent 

default at equilibrium. There are two strands of literature that explain these stylized facts. The first 

strand claims that the most important source of these characteristics is a permanent productivity 

shocks. The second strand emphasizes financial frictions rather than nonstationary productivity 

shocks. However, the former may be the source of the latter. We estimate sovereign default models, 

and examine this hypothesis.  

To obtain robust and accurate results efficiently, we adopt simulated tempering SMC–SMC as 

the estimation strategy. It explores parameter estimates using whole prior spaces. Furthermore, we 

adopt a uniform distribution as priors for all parameters to obtain objective results. 

The results indicate that nonstationary productivity shocks are the important sources of financial 

frictions in terms of random-walk components, historical decompositions, second moments, and 

parameter estimates. Therefore, we bridge a gap between Aguiar and Gopinath (2007) and 

García-Cicco et al. (2010).  

A natural extension to this paper is to add other important shocks in emerging economies such as 

interest rate shocks, terms of trade shocks and so forth. Uribe and Yue (2006) show that one of the 
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major drivers of interest rate fluctuations in emerging economies is the monetary policy of the 

United States. Schmitt-Grohé and Uribe (2016) and Na et al. (2014) introduce downward nominal 

wage rigidity into a model, and replicate defaults with large currency devaluations. Our estimation 

framework is applicable to these important issues. 
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Appendix: Algorithms in detail 

Most of our algorithms follow Herbst and Schorfheide (2014, 2015). 

 

Algorithm 0 

Policy function iteration. 

1. Guess a value function 𝑉𝑜(𝑏𝑡, 𝑦𝑡) and bond price 𝑞(𝑏𝑡+1, 𝑦𝑡) 

2. At each (𝑏𝑡+1, 𝑦𝑡), update 𝑣𝑑(𝑦𝑡) and 𝑣𝑐(𝑏𝑡, 𝑦𝑡) 

3. Update 𝑉𝑜(𝑏𝑡, 𝑦𝑡), the default rule, the implied ex ante default probability, and the bond price 

function 

4. Iterate step 2 and step 3 until convergence occurs 

 

Algorithm 1 

Simulated tempering SMC. 

1. Initialization  

 Draw 𝜃1
𝑖 , ⋯𝜃1

𝑁 from the prior π(𝜃1) and set 𝑤1
𝑖 = 𝑁−1, i = 1,⋯N. 

 

2. Recursion  For n = 2,⋯ ,𝑁𝜙 

 (a) Correction  

  Reweight the particles from stage n − 1 by defining the incremental and normalized 

weights by calculating incremental and normalized weights �̃�𝑛
𝑖 = (𝑝( |𝜃𝑛−1

𝑖 ))
𝜙𝑛−𝜙𝑛−1

 

and �̃�𝑛
𝑖 =

�̃�𝑛
𝑖 𝑊𝑛−1

𝑖

1

𝑁
∑ �̃�𝑛

𝑖 𝑊𝑛−1
𝑖𝑁

𝑖=1

. 

𝐸𝜋𝑛
[ℎ(𝜃)] is approximated to ℎ̃𝑛,𝑁 =

1

𝑁
∑ ℎ(𝜃𝑛−1

𝑖 )𝑁
𝑖=1 𝑊𝑛

𝑖 
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 (b) Selection  

  Compute the effective sample size 𝐸𝑆𝑆𝑛 =
𝑁

(
1

𝑁
∑ (�̃�𝑖

𝑛)
2𝑁

𝑖=1 )
. 

  If �̂�𝑛 = 1, where �̂�𝑛 = ℒ{𝐸𝑆𝑆𝑛 < 0.5𝑁} 

   Resample the particles by multinomial resampling, { 𝜃 ̂}
𝑖=1

𝑁
= {𝜃𝑛−1

𝑖 , �̃�𝑛
𝑖}

𝑖=1

𝑁
. Let 

𝑊𝑛
𝑖 = 1. 

 

  If �̂�𝑛 = 0 

   Let 𝜃𝑛
𝑖 = 𝜃𝑛−1

𝑖  and 𝑊𝑛
𝑖 = �̃�𝑛

𝑖. 𝐸𝜋𝑛
[ℎ(𝜃)] is approximated to 

ℎ̂𝑛,𝑁 =
1

𝑁
∑ ℎ(𝜃𝑛

𝑖 )𝑁
𝑖=1 𝑊𝑛

𝑖. 

 

 (c) Mutation  

  Propagate the particles {𝜃i,𝑊𝑛
𝑖} using the Metropolis–Hastings algorithm with transition 

density 𝜃𝑛
𝑖 ~𝐾𝑛(𝜃𝑛|𝜃𝑛

𝑖 ; 𝜉𝑛) and stationary 𝜋𝑛(𝜃) (see Algorithm 2). 𝐸𝜋𝑛
[ℎ(𝜃)] is 

approximated to ℎ̅𝑛,𝑁 =
1

𝑁
∑ ℎ(𝜃𝑛

𝑖 )𝑁
𝑖=1 𝑊𝑛

𝑖. 

3. Final importance of sampling approximation of 𝐸𝜋[ℎ(𝜃)] 

 When n = 𝑁𝜙 , ℎ̅𝑁𝜙,𝑁 = ∑ ℎ (𝜃𝑁𝜙

𝑖 )𝑊𝑁𝜙

𝑖𝑁
𝑖=1  

 

Algorithm 2 

Particle mutation; Prior to executing Algorithm 1. 

1. Generate blocks randomly 

 Generate a sequence of random partitions {𝐵𝑛}
𝑛=2

𝑁𝜙
 of 𝜃𝑛 into 𝑁𝑏𝑙𝑜𝑐𝑘𝑠 equally sized blocks, 

denoted by 𝜃𝑛,𝑏. Let 𝜃𝑛,𝑏
∗  and Σ𝑛,𝑏

∗  be the partitions of 𝜃𝑛
∗ and Σ𝑛

∗  that correspond to the 
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subvector 𝜃𝑛,𝑏
∗ . 

2. MH steps: For i = 1 to M: 

 For b = 1 to 𝑁𝑏𝑙𝑜𝑐𝑘𝑠: 

 (a) Proposal draw 

  Draw proposal ϑ𝑏 from the mixture distribution 

ϑ𝑏|(𝜃𝑛,𝑏,𝑚−1
𝑖 , 𝜃𝑛,−𝑏,𝑚

𝑖 , 𝜃𝑛,𝑏
∗ , Σ𝑛,𝑏

∗ )~𝛼𝑁 (𝜃𝑛,𝑏,𝑚−1
𝑖 , 𝑐𝑛

2Σ
𝑛,𝑏

∗
) +

1−𝛼

2
𝑁 (𝜃𝑛,𝑏,𝑚−1

𝑖 , 𝑐𝑛
2𝑑𝑖𝑎𝑔(Σ𝑛,𝑏

∗ )) +
1−𝛼

2
𝑁 (𝜃𝑛,𝑏

∗ , 𝑐𝑛
2Σ

𝑛,𝑏

∗
)  

 

 (b) Solve the model and evaluate the proposal 

  Solve the model (see section) 

  Evaluate the likelihood  

 (c) Accept or reject 

  Calculate 

α(ϑ𝑏|𝜃𝑛,𝑏,𝑚−1
𝑖 , 𝜃𝑛,−𝑏,𝑚

𝑖 , 𝜃𝑛,𝑏
∗ , Σ𝑛,𝑏

∗ )

= 𝑚𝑖𝑛 {1,
𝑝𝜙𝑛( |ϑ𝑏, 𝜃𝑛,−𝑏,𝑚

𝑖 )𝑝(ϑ𝑏 , 𝜃𝑛,−𝑏,𝑚
𝑖 )/𝑞(ϑ𝑏|𝜃𝑛,𝑏,𝑚−1

𝑖 , 𝜃𝑛,−𝑏,𝑚
𝑖 , 𝜃𝑛,𝑏

∗ , Σ𝑛,𝑏
∗ )

𝑝𝜙𝑛( |𝜃𝑛,𝑏,𝑚−1
𝑖 , 𝜃𝑛,−𝑏,𝑚

𝑖 )𝑝(𝜃𝑛,𝑏,𝑚−1
𝑖 , 𝜃𝑛,−𝑏,𝑚

𝑖 )/𝑞(𝜃𝑛,𝑏,𝑚−1
𝑖 |ϑ𝑏 , 𝜃𝑛,−𝑏,𝑚

𝑖 , 𝜃𝑛,𝑏
∗ , Σ𝑛,𝑏

∗ )
} 

and let 

𝜃𝑛,𝑏,𝑚
𝑖 = {

ϑ𝑏   𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 α(ϑ𝑏|𝜃𝑛,𝑏,𝑚−1
𝑖 , 𝜃𝑛,−𝑏,𝑚

𝑖 , 𝜃𝑛,𝑏
∗ , Σ𝑛,𝑏

∗ ) 

𝜃𝑛,𝑏,𝑚−1
𝑖   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑒𝑠𝑒 

 

3. Final step 

 Let 𝜃𝑛,𝑏=
𝑖 𝜃𝑛,𝑏,𝑀

𝑖  
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Algorithm 3 

Adaptive particle mutation; Prior to Step 1 of Algorithm 2. 

1. Importance of sampling approximation 

 Calculate the importance of the sampling approximations �̃�𝑛 and Σ̃𝑛 of 𝐸𝜋𝑛
[𝜃] and 𝑉𝜋𝑛

[𝜃] 

according to particles {𝜃𝑛−1
𝑖 , �̃�𝑛

𝑖}
𝑖=1

𝑁
. 

2. Adjusting the scaling factor 

   Calculate the average rejection rate �̂�𝑛−1(𝜉𝑛−1), based on the mutation step in iteration n − 1, 

across 𝑁𝑏𝑙𝑜𝑐𝑘𝑠. 

Adjust the scaling factor following �̂�2 = 𝑐∗ and �̂�𝑛 = �̂�𝑛−1𝑓 (1 − �̂�𝑛−1(𝜉𝑛−1)),  

where 𝑓(𝑥) = 0.95 + 0.10
𝑒16(𝑥−0.25)

1+𝑒16(𝑥−0.25) 

3. Replacement 

 
Replace 𝜉𝑛 with 𝜉𝑛 = [�̂�𝑛, �̃�𝑛, 𝑣𝑒𝑐ℎ(Σ̃𝑛)

′
]

′

. 

 

Algorithm 4 

Particle filter. 

1. Initialization  

 Draw the initial particles from 𝑠0
𝑗
~𝑝(𝑠0|𝜃) and set 𝑊0

𝑗
= 1. 

 

2. Recursion  For t = 1,⋯ , T 

 (a) Forecasting 𝑠𝑡  

  Propagate the particles {𝑠𝑡−1
𝑗

,𝑊𝑡−1
𝑗

} by simulating the state-transition equation: 

�̃�𝑡
𝑗
= Φ(𝑠𝑡−1

𝑗
, 𝜖𝑡

𝑗
; 𝜃), 𝜖𝑡

𝑗
~𝐹𝜖(∙; 𝜃) 
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 (b) Forecasting  𝑡  

  Calculate the incremental weights: 

�̃�𝑡
𝑗
= 𝑝( 𝑡|�̃�𝑡

𝑗
, 𝜃) 

Approximate the predictive density 𝑝( 𝑡| 1:𝑡−1, 𝜃) as follows: 

𝑝( 𝑡| 1:𝑡−1, 𝜃) =
1

𝑁𝑓𝑖𝑙𝑡𝑒𝑟
∑ �̃�𝑡

𝑗
𝑊𝑡−1

𝑗

𝑁𝑓𝑖𝑙𝑡𝑒𝑟

𝑗=1

 

 (c) Updating  

  Calculate the normalized weights 

�̃�𝑡
𝑗
=

�̃�𝑡
𝑗
𝑊𝑡−1

𝑗

1
𝑁𝑓𝑖𝑙𝑡𝑒𝑟

∑ �̃�𝑡
𝑗
𝑊𝑡−1

𝑗𝑁𝑓𝑖𝑙𝑡𝑒𝑟

𝑗=1

 

 (d) Selection  

  
If �̂�𝑡 = 1, where �̂�𝑡 = ℒ{𝐸𝑆𝑆𝑡 < 0.5𝑁}, where 𝐸𝑆𝑆𝑡 = 𝑀/(

1

𝑁𝑓𝑖𝑙𝑡𝑒𝑟
∑ (𝑊𝑡

𝑗
)
2𝑁𝑓𝑖𝑙𝑡𝑒𝑟

𝑗=1
) 

   
Resample the particles by multinomial resampling, {𝑠𝑡

𝑗
}
𝑗=1

𝑁𝑓𝑖𝑙𝑡𝑒𝑟
= {�̃�𝑡

𝑗
, �̃�𝑡

𝑗
}
𝑗=1

𝑁𝑓𝑖𝑙𝑡𝑒𝑟
. Let 

𝑊𝑡
𝑗
= 1. 

  If �̂�𝑡 = 0 

   Let 𝑠𝑡
𝑗
= �̃�𝑡

𝑗
 and 𝑊𝑡

𝑗
= �̃�𝑡

𝑗
.  

3. Likelihood approximation 

 The approximation of the likelihood function is given by: 

�̂�( 1:𝑇|𝜃) = ∏(
1

𝑁𝑓𝑖𝑙𝑡𝑒𝑟
∑ �̃�𝑡

𝑗
𝑊𝑡−1

𝑗

𝑁𝑓𝑖𝑙𝑡𝑒𝑟

𝑗=1

)

𝑇

𝑡=1

 

 


