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Abstract

We estimate a small-scale macroeconomic model for Japan by taking account of

nonlinearity coming from the zero lower bound (ZLB) of nominal interest rates. To

this end, we apply Sequential Monte Carlo Squared developed by Chopin, Jacob, and

Papaspiliopoulos (2013) and Herbst and Schorfheide (2015) to Japan, where the ZLB

has constrained monetary policy for a considerably long period. Nonlinear estimation

is crucial to draw implications for monetary policy. For example, the Bayesian model

selection suggests that the past experience of recessions to bring the nominal interest

rate down to zero is carried over to today’s monetary policy. Nonlinear estimation,

however, hardly changes the estimate of the natural rate of interest, which has often

been negative since the mid-1990s.
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1 Introduction

In current macroeconomics, dynamic stochastic general equilibrium (DSGE) models are a

workhorse tool for assessing the state of the economy and the effects of policy. However,

the effectively zero lower bound (ZLB) on the nominal interest rate poses a serious technical

challenge. Because of the nonlinearity the ZLB produces, solving a rational expectation

equilibrium is computationally hard. Even harder is estimating the model, because it re-

quires us to repeat the process of solving rational expectation equilibrium for a number

of parameter values. Neglecting the ZLB may generate biased estimates and thus wrong

policy implications, because the ZLB often changes quantitative results, as is pointed by

Fernández-Villaverde et al. (2015), Boneva, Braun and Waki (2016), and Nakata (2017).

The problem of the ZLB is particularly larger for Japan because the Japanese economy has

been trapped at the effective ZLB for about two decades since 1995.

In this study, we estimate a DSGE (New Keynesian) model for Japan, where the model

is nonlinear and stochastic. To facilitate computations, we use one of the simplest New

Keynesian models that abstracts many important features in the standard DSGE models

such as consumption habit, capital formations, and wage stickiness. However, we incorporate

nonlinearity and stochastic shocks which make the ZLB occasionally binding. Through the

estimation, we aim to investigate mainly two things. First, we analyze Japan’s monetary

policy. Although many central banks conducted commitment (forward guidance) policy

under the ZLB in the aftermath of the financial crises, estimating such policy is difficult

because we have to embed the ZLB in a model. We address a question which variable

a central bank refers to when its monetary policy has an inertia and depends on a past

variable. One may think that the monetary policy rule refers to the actual nominal interest

rate in the previous period that takes either zero or above, while another possibility is that

it refers to the notional interest rate in the previous period that can take values lower than

zero. Other thins being equal, the latter type of monetary policy rule is considered to have

a larger effect on the economy at the ZLB, because today’s interest rate is likely to be lower

due to a negative notional interest rate. Therefore, identifying a true monetary policy rule

as well as estimating its parameters by fully taking account of nonlinearity coming from

the ZLB is inevitable to assess the effects of monetary policy. However, most empirical

studies are unable to do this because they often neglect the ZLB, and even if they consider

the ZLB, their models often rest on either of the two monetary policy rules. For example,

Aruoba, Cuba-Borda, and Schorfheide (2017) assume the former, while Gust et al. (2017)

and Richter and Throckmorton (2016) assume the latter.1 In addition, we investigate impulse

1Reifschneider and Williams (2000) propose monetary policy under the ZLB similar to the latter type

of monetary policy rule. Some recent studies such as Del Negro, Giannoni, Patterson (2015) and McKay,

Nakamura and Steinsson (2016) cast a doubt on the power of commitment policy, because the theoretical

power of forward guidance is too strong.
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response functions to shocks given various kinds of monetary policy specifications as well as

the probability that the ZLB constrains monetary policy.

The second main thing we study is the natural rate of interest. The natural rate of

interest is the real interest rate that would lead to price stability (Wicksell (1936)). It plays

a pivotal role in New Keynesian models as in Woodford (2003). For example, when the

actual real interest rate exceeds the natural rate of interest, the real economic activity is

dampened and the inflation rate decreases. Krugman (1998) points out a possibility that

an equilibrium real interest rate fell in Japan, although he does not use the term of the

natural rate or estimate it quantitatively. By estimating the natural rate of interest, we aim

to elucidate Japan’s stagnant recessions, so-called the lost decades, since the early 1990s.

To estimate the model with the ZLB, we adopt mainly two novel approaches. First, we

use the method developed by Richter, Throckmorton, and Walker (2014): a time iteration

method with linear interpolation to solve a rational expectation equilibrium. This method

is within the class of policy function iterations, and as they argue, it is flexible, accurate,

and speedy. Second, we estimate parameters using Sequential Monte Carlo Squared (SMC2),

which is developed by Chopin, Jacob, and Papaspiliopoulos (2013) and applied to DSGE

models by Herbst and Schorfheide (2015). There, we evaluate the likelihood of a nonlinear

model given a certain parameter set by generating particles of endogenous variables (often

called the particle filter). In addition, by sampling the particles of parameter sets, we

draw the posterior distribution of parameters (often called the Sequential Monte Carlo or

SMC).2 As Chopin, Jacob, and Papaspiliopoulos (2013), Herbst and Schorfheide (2015)

and Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide (2016) argue, compared to the

particle Markov chain Monte Carlo (MCMC) technique, the SMC2 leads to a more reliable

posterior inference and we do not need big measurement errors.

Our key findings are as follows. First, we show that nonlinear estimation is crucial to

draw implications for monetary policy. For example, the Bayesian model selection chooses a

model in which today’s monetary policy depends on the notional interest rate that can take

negative values in the previous period. This suggests that the past experience of recessions

to bring the nominal interest rate down to zero is carried over to today’s monetary policy,

preventing the Bank of Japan from tightening monetary policy even if the economy picks up.

Such a carry-over policy is interpreted as a forward guidance (commitment) policy. That is,

the Bank of Japan has been conducting forward guidance policy at the ZLB by committing

2Before the development of SMC2, the use of the SMC for parameter estimation is limited to linear

state space models, where the Kalman filter can be applied to evaluate the likelihood. See, for example,

Chopin (2002) and Herbst and Schorfheide (2014). Alternatively, when estimating nonlinear state space

models, past studies use the particle filter by combining the Markov chain Monte Carlo (MCMC) technique

(e.g., Metropolis–Hastings (MH) algorithm), which is developed by Andrieu, Doucet, and Holenstein (2010)

and often called the particle MCMC technique. See also Kitagawa (1996) and Fernandez-Villaverde and

Rubio-Ramirez (2005) for the particle filter.
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to continuing the zero rate policy for a long time. Impulse response functions to a monetary

policy shock are very different depending on the model for a monetary policy rule as well as

a sign of the shock.

Second, we find that the ZLB does not produce a bias for the estimated natural rate of

interest. Although the ZLB produces considerable biases for parameter estimates and thus

changes policy implications, the effect of biased parameters on the natural rate of interest is

canceled out by the effect of biased shocks on it. The natural rate of interest has often been

negative since the mid-1990s, which is caused mainly by weak demand shocks.

We are not the first attempt to estimate a nonlinear DSGE model with the ZLB.3 Two

closest papers are Gust et al. (2017) and Richter and Throckmorton (2016). Compared with

them, there are mainly three differences. First, they use data for the United States, where

the ZLB matters only for several years, while the nominal interest rates have been almost

zero for two decades in Japan. For the reason, the constrained linear model, in which the

model is linear except for the ZLB, performs very poorly for Japan unlike the finding by

Richter and Throckmorton (2016). Second, we use the SMC2 by generating particles for

not just model variables (shock processes) but also parameters, while these two papers use

the MCMC to estimate the model. Like their papers, we generate particles for endogenous

variables to compute the likelihood, because the model is nonlinear and thus we cannot

employ the Kalman filter. In addition, in the SMC2, we draw the posterior distribution

of parameters by sampling the particles of parameter sets. As we explain in details, the

SMC2 enables us to obtain reliable posterior inference. We do not need to assume large

measurement errors for feasibility, unlike Gust et al. (2017) and Richter and Throckmorton

(2016). Third, Gust et al. (2017) estimate a far richer medium-sized DSGE model than

Richter and Throckmorton (2016) and we do.

Studies on developments in the natural rate of interest include Krugman (1998), Laubach

and Williams (2003, 2016), Neiss and Nelson (2003), Andrés, López-Salido, and Nelson

(2009), Hall (2011), Barsky, Justiniano, and Melosi (2014), Ikeda and Saito (2014), Cúrdia

(2015), Cúrdia et al. (2015), Bank of Japan (2016), Del Negro et al. (2017), Hirose and

Sunakawa (2017), and Holston, Laubach, and Williams (2017) among many. Except for the

very recent paper by Hirose and Sunakawa (2017), no study in the above rests on the DSGE

model with the explicit consideration of the ZLB. Hirose and Sunakawa (2017) evaluate the

natural rate of interest using the DSGE model with the ZLB for the United States, but do

not estimate the model with the ZLB. Instead, they estimate the model without the ZLB

for the periods before the ZLB constrains the economy and then evaluate the natural rate

3Hirose and Sunakawa (2015), Hirose and Inoue (2016), and Aruoba, Cuba-Borda, and Schorfheide (2017)

estimate a model without the ZLB, although they generate data or make simulation considering the ZLB.

By assuming that the duration of ZLB, τt, is perfectly foresighted in each period t, Kulish, Morley, and

Robinson (2017) estimate τt and time-varying policy functions given estimated τt. Aoki and Ueno (2012)

and Kim and Pruitt (2017) make use of forward rate curves and forecasters’ survey, respectively.
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of interest using the estimated parameters for the extended periods.

The remaining part of this paper is structured as follows. After Section 2 briefly explains

our model, Section 3 outlines our estimation methods. Sections 4 and 5 discuss our estimation

results regarding monetary policy and the natural rate of interest, respectively. Section 6

concludes.

2 Model

Our model is one of the simplest New Keynesian models. The economy consists of a repre-

sentative household, firms, and a central bank. Firms consist of intermediate-good producers

who are monopolistically competitive and final-good producers who are perfectly compet-

itive. We consider three types of monetary policy, including one that abstracts the ZLB.

The economy is subject to three types of exogenous shocks: discount factor, technology, and

monetary policy.

2.1 Household

A representative household maximizes welfare:

Et

[
∞∑
j=0

βjZb
t+j

{
C1−σ
t+j

1− σ
−

(At+j)
1−σ χl1+ωt+j

1 + ω

}]
, (1)

subject to the budget constraint Ct +Bt/Pt ≤ Wtlt +Rt−1Bt−1/Pt +Tt, where Ct, lt, Pt, Wt,

Rt and Tt represent consumption, labor services, the aggregate price level, the real wage, the

nominal rate of return, and lump-sum transfer in period t, respectively, and Bt represents

the holding of one-period riskless bonds at the end of period t. Parameter β ∈ (0, 1) is

the subjective discount factor, σ > 0 measures the inverse of the intertemporal elasticity of

substitution of consumption, ω > 0 is the inverse of the labor supply elasticity, and χ > 0

is the scale factor. Finally, Zb
t represents a stochastic shock to the discount factor with its

unit mean and obeys the AR(1) process:

log(Zb
t ) = ρblog(Zb

t−1) + εbt , (2)

and At represents a stochastic shock to technology, which is specified below.

2.2 Firms

The final-good firm faces perfect competition and produces output Yt by choosing a com-

bination of intermediate inputs Yf,t (f ∈ [0, 1]) so as to maximize profits subject to the

Dixit-Stiglitz form of aggregations Yt =
{∫ 1

0
Y

ε−1
ε

f,t df
} ε
ε−1

, where ε > 1 represents the elas-

ticity of substitution between intermediate goods.
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Intermediate-good firm f produces output Yf,t with the production function Yf,t = Atlf,t.

The technology shock At obeys the I(1) process with the non-zero growth rate of γa, where

µat ≡ log(At/At−1)− γa is given by

µat = ρaµat−1 + εat . (3)

Intermediate-good firm f maximizes its firm value by setting the optimal price Pf,t in period

t in the presence of Rotemberg-type price adjustment cost:

Et

[
∞∑
j=0

βj
Λt+jZ

b
t+j

ΛtZb
t

(
Pf,t+j
Pt+j

− Wt+j

At+j
− φ

2

(
Pf,t+j
Pf,t+j−1

− π∗
)2
)
Yf,t+j

]
(4)

subject to downward-sloping demand, where Λt and π∗ represent the stochastic discount

factor and the target inflation rate, respectively, and φ captures the degree of Rotemberg-

type price adjustment cost.

2.3 Central Bank

In this study, we consider three types of models regarding monetary policy. Models 1 and 2

incorporate the ZLB as

Rt = max (1, R∗t ) , (5)

where R∗t represents the notional interest rate that can take values lower than one. The

actual interest rate Rt cannot be below one. The third model, Model without the ZLB,

neglects the ZLB constraint. Models 1 and 2 are characterized by the following monetary

policy rule

R∗t =
(
R∗t−1

)ρr (
r∗π∗

( πt
π∗

)ψπ ( Yt/At
Y ∗t /At

)ψy)1−ρr

eε
r
t , (6)

and

R∗t = (Rt−1)
ρr

(
r∗π∗

( πt
π∗

)ψπ ( Yt/At
Y ∗t /At

)ψy)1−ρr

eε
r
t , (7)

respectively, where ρr, ψπ, and ψy capture monetary policy responses to the past interest

rate, the inflation rate, and the output gap, respectively. Models 1 and 2 differ only in which

interest rate the central bank refers to. In Model 1, it is the notional interest rate, whereas

it is the actual interest rate in Model 2. We denote the steady-state natural rate of interest,

the natural level of output, and the inflation rate by r∗, Y ∗t , and πt, respectively, while εrt
represents a stochastic i.i.d. shock to the monetary policy with zero mean.

Compared to Model 2, Model 1 involves stronger commitment for future policy. Because

R∗t can be below zero and depends on R∗t−1, the experience of adverse shocks in the past tie

the hands of the central bank for long periods. In other words, the central bank compensates

for its inability to lower the policy rate below zero by continuing the zero interest rate policy

longer, other things being equal.
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2.4 Closing the Model

The goods market is cleared as

Yt = Ct + φ (πt − π∗)2 Yt/2. (8)

In addition, the flexible-price equilibrium is defined as that without Rotemberg-type price

adjustment cost.

The natural rate of interest r∗t in the model equals the real rate of return in this flexible-

price economy. Similarly, the natural level of output Y ∗t equals output in the flexible-price

economy.

3 Solution, Econometric Inference, and the Advantage

of the SMC2

In this section, we outline how we solve and estimate the nonlinear DSGE model with the

ZLB. See Appendix for the details. We then explain the data we use and prior specifications

including the size of measurement errors. Finally, we discuss the advantage of our estimation

methodology, particularly, SMC2.

3.1 Model Solution

We solve the rational expectation equilibrium of our model using the time iteration method

with linear interpolation (TL). This is within the class of policy function iteration methods,

and Richter, Throckmorton, and Walker (2014) report that the TL provides the best balance

between speed and accuracy.

To be more precise, we solve a rational expectation equilibrium or policy function given

parameters θ. Note that, in our model, the policy function of any variable Xt is expressed

as Xt = X(µat , Z
b
t , ε

r
t , R

∗
t−1), because there are three shocks and one state variable R∗t−1.

Intuitively speaking, the TL begins with making a time iteration for a policy function until

intertemporal equations that describe relations between Xt and Et(Xt+1) are satisfied at

every node. Compared to the fixed-point iteration, it is costly to call a nonlinear solver on

each node, but more stable exactly because the policy function is optimized on each node. We

then locally approximate the policy functions with linear interpolation. Compared to global

approximation methods such as the projection method using the Chebyshev polynomial

basis, linear interpolation is considered to perform better in an environment where the ZLB

produces kinks in the policy functions.
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3.2 Estimation

We estimate the nonlinear DSGE model with the ZLB in a Bayesian manner. We estimate

parameters using the SMC2 developed by Chopin, Jacob, and Papaspiliopoulos (2013) and

Herbst and Schorfheide (2015). It takes the following four steps. Step 1 is initialization. We

draw Nθ particles for parameters θ. Step 2 is correction. Given θ, we compute the likelihood

p̂(Yt|θ) and incremental weight w. Step 3 is selection. We resample θ and w based on w.

Step 4 is mutation. We propagate θ and w using the MH algorithm. We repeat Steps 2 to

4 for Nφ stages.

In Step 2, we solve the model given θ using the TL. Then, after drawing NS particles

for shock processes (µat , Z
b
t , ε

r
t ), we generate the path of variables Ŷt, compare it with actual

observable variables Yt, and compute the likelihood p̂(Yt|θ) using the measurement error of

Yt. Note that, because the model is nonlinear, we cannot apply the Kalman filter. We use

the particle filter, where we replace p(Yt|θ) by p̂(Yt|θ) using a sufficiently large number of

particles NS with respect to shocks.

In our benchmark estimation, we use the particles of NS = 40, 000 and Nθ = 1, 200 and

Nφ = 10 stages. One estimation takes about a week using a 32-core (Intel Xeon E5-2698v3)

computer.

3.3 Data

We use data for Japan from 1983:2Q to 2016:2Q. The beginning period is chosen to coincide

with that for the output gap data, which we will use for a robustness analysis. In the

benchmark estimation, we use three variables: the real per-capita GDP growth rate (∆logYt),

the CPI inflation rate (πt), and the overnight call rate (Rt). Figure 1 shows time-series

changes in these variables. In obtaining ∆logYt, we divide the real GDP by the population

aged 15 years old or over. For πt, we exclude the effects of consumption tax changes using

X12ARIMA. These two variables are quarterly changes from the previous quarter, so Rt is

divided by four to make it quarterly. As an alternative to ∆logYt, we later use the output

gap (log (Yt/Y
∗
t )) constructed by the Bank of Japan.

3.4 Prior Specifications

We choose parameter values based on Smets and Wouters (2007) and Sugo and Ueda (2008).

We fix some of the parameters as β = 0.995, χ = 1, and ε = 6. Table 1 shows the prior

distribution of parameters, where κ is defined by (ε−1) (ω + σ) /(φπ∗). Note that, to enhance

readability, we express the parameters of γa and π∗by 100γa and 100(π∗ − 1), respectively.

We also discuss the natural rate of interest r∗t by deducting one.

As for the measurement errors of ∆logYt, πt, and Rt, we assume that their sizes are 0.5%,

0.5%, and 0.25% of their actual standard deviations, respectively. Their sizes are far smaller
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than those in Gust et al. (2017) and Richter and Throckmorton (2016), where they are√
0.25 ∼ 50% and

√
0.1 ∼ 30%, respectively. We assume that the measurement error of Rt

is lower than those of ∆logYt and πt, but this difference is minor and hardly changes our

following results.

3.5 Advantage of the SMC2 over the MCMC

We use the SMC2 by generating particles for not just shock processes (µat , Z
b
t , ε

r
t ) but also

parameters θ by NS and Nθ, respectively, while Gust et al. (2017) and Richter and Throck-

morton (2016) use the MCMC to estimate the model by generating particles only for shock

processes. As Chopin, Jacob, and Papaspiliopoulos (2013), Herbst and Schorfheide (2015)

and Fernández-Villaverde, Rubio-Ramı́rez, and Schorfheide (2016) argue, the SMC2 can lead

to a more reliable posterior inference than the particle MCMC technique. Furthermore, we

do not need big measurement errors for observable variables unlike Gust et al. (2017) and

Richter and Throckmorton (2016).4

To understand these advantages better, let us use our estimation result (discussed in

the next section) as an illustrative example. Figure 2 shows a scatter plot where each dot

represents a particle for the value of parameter σ (horizontal axis) and its posterior likelihood

(vertical axis). The dots are dense around σ = 1.4. Their median lies around this level, as

is shown in the big circle in red. Interestingly, the likelihood becomes the largest when

σ is around 1.5, as is shown in the big circle in green at the top of the graph. However,

this circle seems to be an outlier for three reasons. Particles are sparse around this circle;

the likelihood drops when σ slightly deviates from the value; and the computation of the

likelihood is subject to errors. The last point arises because the model is nonlinear and thus

the Kalman filter cannot be applied. We thus need to use particles for shock processes and

introduce measurement errors for observable variables to approximate the likelihood. Figure

2 shows that our estimation is not trapped at this outlier.

What will happen if we use the MCMC in this example? In the MCMC, we compare only

two parameter candidates, for example, new candidate σ1 and previously selected σ0. Thus,

once the aforementioned circle in green is selected as either σ1 or σ0, our estimation is likely

to be trapped at this point, because the likelihood at its neighborhood is discontinuously

lower. In other words, the acceptance probability of new parameter values falls to zero.

This problem becomes more serious when measurement errors for observable variables are

smaller, because the likelihood becomes more sensitive to parameter changes. Therefore, we

need to assume big measurement errors to keep the acceptance probability of 25% when we

use the MCMC. For the same reason, the MCMC is considered to be sensitive to the shape of

modes. If distribution is close to bimodal, the posterior inference becomes unstable between

4In addition, the SMC2 can be easily paralleled.
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the two.5

The SMC2 can resolve this problem. Because the SMC2 uses more than two particles for

parameter candidates and allocates weight w on each particle corresponding to its likelihood,

particles are much less likely to be stuck at the outlier. Posterior distribution becomes

diverse, as is shown in the graph.6

4 Evaluating Japan’s Monetary Policy during the Low

Inflation Period

In this section, after we briefly report parameter estimates, we discuss monetary policy for

Japan.

4.1 Parameter Estimates

In the following discussions, we report results mainly of Model 1, because the marginal

likelihood is the highest. We hereafter call Model 1 the baseline model. The estimates of

structural parameters such as σ and ω are within a range reported in earlier studies. The

inflation target π∗ is 0.36% quarterly, that is, 1.44% annually. This value lies between the

Bank of Japan’s formal target, 2%, and the mean of the actual inflation rates in the sample

period, 0.44%. The trend component of the technology shock At, γ
a, is −0.028% quarterly,

which renders the steady-state natural rate of interest r∗ − 1 = eσγ
a
/β − 1 to be 0.46%

quarterly.

4.2 Comparing Monetary Policy Rules

In the following two subsections, we discuss differences among Model 1, Model 2, and Model

without the ZLB. It is not obvious which model is better between Model 1 and Model 2.

In this respect, it is important to compare the performance of two models by Bayesian

estimation by fulling taking account of the ZLB and using data at the ZLB.

4.2.1 Marginal Likelihood and Posterior Probability

Table 2 shows the parameter estimates and marginal likelihood for three types of models

regarding monetary policy: Model 1, Model 2, and Model without the ZLB. The marginal

5Herbst and Schorfheide (2015) report that they cannot estimate a Smets and Wouters-type (2007)

medium-scale DSGE model by using the MCMC with the particle filter.
6The likelihood tempering approach in the SMC2 is another reason why the SMC2 performs well. In the

mutation step at each stage, a scaling factor is revised to keep the acceptance probability around 25%. This

enables us to obtain smooth posterior distribution of parameters around modes, as the number of stages

increases.
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likelihood is the highest for Model 1, supporting Model 1 with the posterior probability of

one over Model 2 and Model without the ZLB. Because the nominal interest rate has been

almost zero for the recent two decades, the fit of Model without the ZLB is the worst.

This suggests that the past experience of recessions such that they bring the nominal

interest rate down to zero prevents the Bank of Japan from tightening monetary policy

today even if the economy picks up. In other words, the Bank of Japan was conducting

forward guidance policy at the ZLB by committing to continuing the zero rate policy for a

long time.

4.2.2 Parameter Estimates and the Notional Interest Rate

We investigate the effects of neglecting the ZLB constraint in the estimation of the DSGE

model by comparing parameter estimates between Model 1 and Model without the ZLB.

A big difference is observed in the inverse of the intertemporal elasticity of substitution of

consumption σ, the trend component of the technology shock γa, the inflation target π∗, and

the inertia of the monetary policy rule ρr. For these four parameters, Model without the

ZLB yields smaller values than Model 1. In particular, smaller γa and π∗ suggest that the

steady-state nominal interest rate is lower, because it equals eσγ
a
/β − 1 + π∗. It is −0.38%

in Model without the ZLB, while it is 0.82% in Model 1. Model without the ZLB seems to

require a low and negative steady-state nominal interest rate to explain the prolonged zero

interest rate that occurred in Japan.

Figure 3 shows developments in the notional nominal interest rate R∗t − 1 in Models 1

and 2, whereas it coincides with actual nominal interest rate Rt − 1 in Model without the

ZLB. In Model 1, it has been around −4% annually since 1995. This contributes to lowering

future interest rates. On the other hand, the notional nominal interest rate is around −2%

annually in Model 2, but it does not constrain the future monetary policy.7

4.3 Comparing Impulse Response Functions under Different Mon-

etary Policy Rules

Nonlinear estimation is crucial to draw implications for monetary policy. To show this, we

calculate impulse response functions (IRFs) to a monetary policy shock and demonstrate

that the IRFs are very different among Model 1, Model 2, and Model without the ZLB.

Because the model is nonlinear, impulse response functions differ depending on the state

of the economy (µat , Z
b
t , ε

r
t , R

∗
t−1). For illustration, we thus express IRFs conditioning actual

states in the two historical periods, 1985:1Q and 2010:1Q in Figure 4. The former is a period

7In Models 1 and 2, the notional interest rate R∗t does not necessarily coincide with the actual interest

rate Rt even when the latter became positive. This difference is explained by the measurement error we

introduce when we estimate the model.
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when the nominal interest rate is well over zero, while the ZLB constrains the economy in

the latter period. Further, because the model is nonlinear mainly owing to the ZLB, IRFs

are asymmetric to the sign of the shock. We thus show IRFs to both positive (tightening)

and negative (easing) monetary policy shocks. For comparison, we give the same size of the

monetary policy shocks, that is, 0.01. The left panels in the figure are IRFs in 1985:1Q, while

the right panels are those in 2010:1Q. The top panels represent the IRFs of the inflation rate

πt, while the bottom panels represent those of the nominal interest rate Rt.

As for 1985:1Q, the bottom-left panel of Figure 4 shows that the IRFs of the nominal

interest rate are similar among Model1, Model 2, and Model without the ZLB. However,

because Model without the ZLB has the smallest inertia (ρr) in its policy rule, the nominal

interest rate converges to zero most quickly. Therefore, as the top-left panel shows, the IRFs

of inflation is the smallest. We also find that the IRFs are symmetric to positive (Pos in the

graph) and negative (Neg in the graph) monetary policy shocks.

In 2010:1Q, the IRFs come to differ a lot depending on models as well as the sign of the

monetary policy shock. First, in Model without the ZLB, the IRFs are almost symmetric,

because the nominal interest rate can be below zero. The negative monetary policy shock

increases the inflation rate and decreases the nominal interest rate, as the top- and bottom-

right panels show, respectively. Second, in Model 2, the negative monetary policy shock has a

small effect on the inflation and nominal interest rates, although a slight effect exists because

there is a slight probability that the ZLB does not constrain the economy around 2010:1Q in

our simulation. On the other hand, the positive monetary policy shock has almost the same

effect in Model 2 as in Model without the ZLB. This is because, in Model 2, monetary policy

in period t is influenced by history only through the actual nominal interest rate in t − 1.

Thus, the experience of prolonged recessions does not tie the hand of the central bank, and

hence, the positive monetary policy shock leads to an immediate rise in the nominal interest

rate, as shown in the bottom-right panel.

Third, we examine the IRFs in Model 1. The negative monetary policy shock has a

bigger effect on inflation in Model 1 than in Model 2, while it is smaller than in Model

without the ZLB. This result stems because Model 1 involves strong commitment for future

policy. Monetary policy in period t depends on R∗t−1, which can take negative values. The

negative monetary policy shock in period t decreases R∗t , which functions to lower future

nominal interest rates in the future. Therefore, the nominal interest rate becomes lower

than otherwise three to six quarters ahead. Such commitment increases today’s inflation

rate. The positive monetary policy shock, on the other hand, has a smaller effect on inflation

in Model 1 compared with both Model 2. Because monetary policy in period t depends on

R∗t−1, the positive monetary policy shock induces a smaller increase in the nominal interest

rate, as is shown in the bottom-right panel.

It is impossible to know without estimation which model is close to reality. We argued

that our estimation supports Model 1, as is shown in Table 2. This suggests the commitment
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effect of monetary policy or the power of forward guidance.

4.4 How Often Does the ZLB Constrain Monetary Policy?

Table 3 shows the probability that the nominal interest rate equals zero after h = 1, 2, 4,

and 8 quarters given the natural rate of interest. To calculate this, we generate the path of

nominal interest rates from t + 1 conditioning the level of the natural rate of interest r∗t in

period t. We count the number of events by Monte Carlo simulation. The probability of the

ZLB is considerably high, that is, around 60% and 40% for h = 1 and 8, respectively, when

r∗t is around 0%. This is significantly higher comparing with 7.1% reported by Gust et al.

(2017) for the United States.8

Such a high probability of the ZLB is associated with a high (low) probability of deflation

(inflation). We calculate the probability that the inflation rate πt+h reaches 2%, which is the

target of the Bank of Japan, or falls below 0% for at least a certain h (1 ≤ h ≤ 8, i.e., within

two years). If r∗t is around 0%, the inflation rate can reach 2% only with the probability of

15%. Although we do not show here, this probability is even lower for Model 2 and Model

without the ZLB, because the estimated π∗ is lower. On the other hand, the probability of

deflation is considerably high. Even if r∗t is as high as 3% quarterly, the probability is higher

than 75%.

4.5 Validity of Using the (Un)Constrained Linear Model

Estimating nonlinear DSGE models with the ZLB consumes a lot of time. It takes almost

one week for one estimation even in such a simple model as ours. In this regard, Richter and

Throckmorton (2016) argue that a constrained linear model performs well, while it mitigates

computational burden. To examine if their finding holds true for Japan, we estimate the log-

linearized DSGE model expressed by equations (9) to (11) but continue to impose the ZLB

constraint properly.9 We call it the constrained linear model. Moreover, we also estimate the

unconstrained linear model, where we estimate the log-linearized DSGE model by neglecting

the ZLB. That is, the unconstrained linear model corresponds to the constrained linear model

without the ZLB.

Table 4 shows estimation results. Although we are able to estimate these two models

with reasonable parameter values, we find a big change for γa and π∗, which matters for the

steady-state natural rate of interest and inflation rate. The marginal likelihoods in these

models are significantly lower than that in Model 1.

8Richter and Throckmorton (2016) do not calculate the probability. Instead, they calculate the expected

duration of the zero interest rate, whose mode and mean are 1 and 3.2 quarters, respectively.
9The constrained linear model in Richter and Throckmorton (2016) may be different because they explain

that they “impose the constraint in the filter but not the solution.”
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5 Evaluating Japan’s Natural Rate of Interest

Next we turn to our second objective: the natural rate of interest for Japan. After we explain

the mathematical expression of the natural rate of interest in our model, we discuss how our

nonlinear estimation influences the estimate of the natural rate of interest, how much the

natural rate of interest has declined during Japan’s lost decades, and why.

5.1 Natural Rate of Interest in the Log-Linearized Model

Our model can be expressed by three key log-linearized equations. Although we do not make

use of them in our nonlinear estimation, they illustrate a role played by the natural rate of

interest, r∗t .
10 They are

πt − π∗ = βe(1−σ)γ
a

Et [πt+1 − π∗] +
(ε− 1) (ω + σ)

φπ∗
(yt − y∗t ), (9)

yt − y∗t = Et

[
yt+1 − y∗t+1 −

1

σ

(
Rt − r∗π∗

r∗π∗
− πt+1 − π∗

π∗
− r∗t − r∗

r∗

)]
, (10)

and

r∗t = r∗
[
1 + σρaµat + (1− ρb)logZb

t )
]
. (11)

Here, we define the log-linearized variables of {Yt, Y ∗t } by {yt, y∗t } around their non-zero

trends. Note that the steady-state natural rate of interest r∗ equals eσγ
a
/β.

This suggests that the natural rate of interest r∗t plays an important role. When r∗t
decreases, both output gap yt− y∗t and the inflation rate πt decrease, unless monetary policy

is strong enough to offset this. The decrease in r∗t also causes the nominal interest rate to

decrease, so the possibility of reaching the ZLB increases.

The above equations also suggest that output gap and the inflation rate depend only on

the natural rate of interest r∗t and the actual real interest rate (Rt−r
∗π∗

r∗π∗ − πt+1−π∗

π∗ ). We do

not need to know µat and Zb
t , separately. These shocks influence output gap and the inflation

rate only through a change in r∗t . Moreover, equation (11) shows that the monetary policy

shock εrt is irrelevant to the natural rate of interest.

5.2 Developments in the Natural Rate of Interest

We show in the left panel of Figure 5 the time-series path of the natural rate of interest r∗t .

The figure shows a decline in the natural rate of interest. Although it stayed positive until

the late 1990s and its steady-state value is 0.46% quarterly, the natural rate of interest often

10Moreover, they serve as an initial value of equilibrium when we solve the model nonlinearly.
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became negative in the 2000s and 2010s. It often fell to around −0.5% quarterly, and at

worst, to −2%.

Behind this development, discount factor shock Zb
t is the most important culprit. In the

left panel of the figure, we show how much of the model’s fit is attributable to individual

shocks (µat , Z
b
t , ε

r
t ). Similar to Gust et al. (2017), we decompose the variable by calculating

the model’s dynamics by assuming only one of the three shocks is present. Because of the

nonlinearity, their sum is not necessarily equal to the natural rate of interest. The right panel

of Figure 5 shows the time-series paths of the three types of shocks (µat , Z
b
t , ε

r
t ). It shows that

discount factor shock Zb
t explains most of the changes in the natural rate of interest in our

estimation periods. The technology shock µat hardly explains the change in the natural rate

of interest, while the monetary policy shock εrt does not explain it at all, which is consistent

with equation (11).

This result is in line with past studies. Gust et al. (2017) find that the risk premium

shock as well as the marginal efficiency of investment shock are important in explaining

the Great Recession in the United States, while the technology and monetary policy shocks

explain little. For Japan, Sugo and Ueda (2008) estimate the medium-scale DSGE model

for Japan, although they estimate a log-linearized model without the ZLB using the sample

until 1995, when the ZLB did not constrain the Japanese economy. They also find that

the investment shock is the most important. Although our model is far simpler than their

models, the discount factor shock in our model is considered to be in the same class with

these shocks.

5.3 Comparisons of the Natural Rate of Interest

5.3.1 Different Monetary Policy Specifications

In the previous section, we showed that nonlinear estimation greatly modifies implications

for monetary policy. Is this true for the natural rate of interest as well? Figure 6 shows how

much the estimated natural rate of interest changes depending on the type of the models we

estimate. Somewhat surprisingly, the natural rate of interest in Model 2 as well as Model

without the ZLB hardly changes from that in Model 1, although Model 2 and Model without

the ZLB yield biased estimates as was shown in Table 2. In particular, during the period of

the ZLB since 2000, the natural rate of interest is almost identical, although it deviates in the

1980s and 1990s. This result is in sharp contrast with that of Hirose and Sunakawa (2017).

Instead of estimating a DSGE model with the ZLB, they estimate the model without the

ZLB for the periods before the ZLB constrains the economy and then evaluate the natural

rate of interest using the estimated parameters for the extended periods. They then find

that the natural rate of interest is substantially higher when considering the ZLB than when

neglecting the ZLB, particularly during the ZLB period.

To understand why the estimated natural rate of interest hardly differs in our study,
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we separate three types of differences between Model 1 and Model without the ZLB. They

are (1) the presence of the ZLB, (2) estimated parameters, and (3) estimated shocks. More

concretely, we simulate the natural rate of interest in Model without the ZLB by changing

one of the three differences: (1) using estimated parameters and shocks in Model without

the ZLB but now explicitly taking account of the ZLB, (2) using estimated parameters in

Model 1, and (3) using estimated shocks in Model 1. The above (2) is analogous to Hirose

and Sunakawa (2017).

Figure 7 shows the paths of the counterfactual natural rate of interest. As for type (1),

it is shown that the presence of the ZLB does not influence the natural rate of interest per

se. Because the natural rate of interest rests on the flexible-price economy by definition, the

ZLB per se does not matter for its movements. As for types (2) and (3), the graph suggests

that the parameter difference has almost the same-sized but opposing effect on the natural

rate of interest as the shock difference. Type (2) increases the natural rate of interest, as in

Hirose and Sunakawa (2017). This stems from the fact that the estimate of the steady-state

natural rate of interest r∗ in Model 1 is higher than that in Model without the ZLB as shown

in Table 2. However, type (3) decreases the natural rate of interest by the same size, because

the estimated shocks of (µat , Z
b
t ) are lower for Model 1. This result suggests that we should

estimate parameters and shocks simultaneously.

5.3.2 Laubach-Williams (2003) and Hodrick–Prescott Filter

Next, we compare the natural rate of interest based on our model with that based on Laubach

and Williams (2003) and that based on the Hodrick–Prescott (HP) filter. Laubach and

Williams (2003) and Holston, Laubach, and Williams (2017) estimate the backward-looking

IS and Phillips curves jointly and calculate the natural rate of interest using the Kalman

filter, where they calculate the ex ante real interest rate by estimating the one-year ahead

inflation expectation from a univariate AR(3) model. In their model, the natural rate of

interest is given by

r∗t = gt + zt, (12)

where gt and zt capture the trend growth rate of the natural output and other determinants

such as demand disturbances, respectively. Therefore, gt and zt in their model correspond to

log(At/At−1) = µat +γa and logZb
t in our model, respectively. However, we can point out one

important difference. Laubach and Williams (2003) and Holston, Laubach, and Williams

(2017) assume that both gt and zt obey an I(1) process (i.e., the natural output is I(2)),

while both log(At/At−1) and logZb
t in our model obey to an I(0) process.

We apply their approach to the Japanese data and report both one-sided (filtered) and

two-sided (smoothed) estimates of the natural rate of interest. For the HP filter, we set the

smoothing parameter λ at 1,600 and smooth the same ex ante real interest rate we use to

calculate the natural rate of interest based on Laubach and Williams (2003).
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Figure 8 shows that the one-sided estimate of the natural rate of interest based on

Laubach and Williams (2003) moves very closely to that based on our model. Although

Laubach and Williams’s (2003) approach does not take account of the ZLB, the movements

of the natural rate of interest are similar when the nominal interest rate is effectively at

the ZLB. This result is consistent with our previous finding that the nonlinear estimation

hardly changes the estimate of the natural rate of interest, as shown in Figures 6 and 7.

Furthermore, we confirm that most of the fluctuations of the natural rate of interest based

on Laubach and Williams (2003) are caused by zt, although we do not show here. This

result is again consistent with ours. The fluctuations of the other two variables, that is, the

two-sided estimate of the natural rate of interest based on Laubach and Williams (2003) and

the natural rate of interest based on the HP filter, are much more smooth, although their

means hardly change.

5.3.3 Use of the Output Gap Data

Finally, we check the robustness of our estimation by using an alternative measure of output,

that is, the output gap. We estimate the same model either using the output gap instead of

the growth of the real GDP or using both the output gap and the growth of the real GDP.

Table 5 shows that parameter estimates hardly differ. However, as Figure 9 shows, the path

of the natural rate of interest comes to differ quantitatively. In particular, when we use the

output gap instead of the growth of the real GDP, the natural rate of interest becomes more

volatile. Nevertheless, qualitatively, the three lines are very similar.

6 Concluding Remarks

In this study, we estimated a nonlinear DSGE model with the ZLB using a Bayesian tech-

nique. There are several potential avenues for future research. The first would be to estimate

a richer DSGE model embedding capital, wage stickiness, financial frictions, and so on. We

are aware that an intrinsic persistence in our model is low, which makes the economy go back

to the steady state rather quickly. This could be one reason why we succeeded in estimating

the nonlinear DSGE model with the ZLB even though the duration of the ZLB is consid-

erably long in Japan. However, embedding these features poses a computational challenge

because of the curse of dimensionality. Moreover, we suspect that it becomes harder to find a

determinate equilibrium for a set of parameters, because such stickiness lengthens the dura-

tion of the ZLB further and makes equilibrium indeterminate, as Aruoba, Cuba-Borda, and

Schorfheide (2017) argue. Second, our method could be applied to other types of models,

where nonlinearity plays an important role. Examples include currency and financial crises,

where crises occur as a tail-risk event and cause tremendous impacts on the economy.
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[10] Cúrdia, Vasco (2015) “Why So Slow? A Gradual Return for Interest Rates,” Federal

Reserve Bank of San Francisco Economic Letter, 2015-32, 13 October.
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A Appendix

A.1 Model Solution

We derive the rational expectation equilibrium of our model using the time iteration method

with linear interpolation (TL). The model’s equilibrium conditions are written as a vector-

valued function, f(·), containing the minimum state vector (vt,wt), say

E[f(vt+1,wt+1,vt,wt)|Ωt] = 0,

where v is a vector of exogenous variables, w is a vector of endogenous variables, and

Ωt is an information set of agents, whose elements are the structural model, M, param-

eters of the model, P, and state space, z. In our study, there are three models, M =

{Model 1, Model 2, Model w/o ZLB}, and v =
{
εat , ε

b
t , ε

r
t

}
, w =

{
yt, ct, πt, y

∗
t , Rt, R

∗
t , r
∗
t , µ

a
t , z

b
t

}
and z =

{
R∗t−1, µ

a
t , z

b
t , ε

r
t

}
, where yt ≡ Yt/At, ct ≡ Ct/At, and y∗t ≡ Y ∗t /At.

Given the function, f(·), we can obtain a model’s decision rules (or policy functions),

Φ(�), as a function of the state vector. The TL locally approximates the time-invariant policy

function at each node in the state space, zt, i.e.,

Φ(zt) ' Φ̂(zt).

We choose to iterate on Φ(zt) for { yt, y∗t , πt } and solve a rational expectations equi-

librium by substituting Φ(zt) into future variables of the function f(·). We discretise nine

grid points on each continuous state variables,
{
R∗t−1, µ

a
t , z

b
t

}
, and five grid points on the

exogenous shock of εrt , which implies totally 3, 645(= 9 ∗ 9 ∗ 9 ∗ 5) nodes.

The policy function iteration algorithm takes the following steps. Let i ∈ {0, · · · , I}
denote the iterations of the algorithm and n ∈ {1, · · · , N} denote the nodes of the policy

function, Φ(zt) .

1. For i = 0, we make an initial conjecture of the policy function, Φ0(zt) , from the log-

linearized model without the ZLB. To do so, we use Sim’s (2002) gensys algorithm.

2. For iteration i ∈ {1, · · · , I} and node n ∈ {1, · · · , N}, we execute the following proce-

dures.

(a) Solve for endogenous variables
{
ct, Rt, R

∗
t , r
∗, µat , z

b
t

}
given y(zt−1), y

∗(zt−1), π(zt−1)

under the ZLB.

(b) Approximate future variables { E(πt+1), E(yt+1), E(y∗t+1)} using piecewise linear

interpolation of the policy function Φi−1(zt). Then, substitute the future variables

into E[f(·)|Ωt] conditioning the exogenous variables in the next period, vt+1, equal

to zero.11

11In this respect, our estimated model is not purely stochastic. We tried to estimate the model by
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(c) Use the nonlinear solver, Sims’ csolve, to find the policy function, Φi(zt), which

minimizes the errors in intertemporal equations, that is, E[f(·)|Ωt] = 0.

3. Define maxdist = max( |yin − yi−1n |, |y∗,in − y∗,i−1n |, |πin − πi−1n |). Repeat step 2 until the

policy function converges, say maxdist < 10−4, for all nodes,n.

A.2 Estimation

To obtain draws from the posterior distribution of parameters, θ, of a nonlinear DSGE

model, we use the Sequential Monte Carlo Squared (SMC2) sampler combined with particle

filter, instead of popular methods such as MCMC sampler. Because MCMC samplers cannot

be parallelized for generating the draws, they consume quite a long time. By contrast, the

SMC2 algorithm and particle filter can be easily done and, in addition, may calculate more

accurate approximation of the posterior distribution than the MCMC samplers. We explain

the algorithms of the SMC2 and particle filter following Herbst and Schorfheide (2015) and

Fernandez-Villaverde et al. (2016).

A.2.1 Algorithm of the Sequential Monte Carlo Squared

Suppose φn, forn = 0, · · · , Nφ, is a sequence that slowly increases from zero to one. We

define a sequence of bridge distributions, {πn(θ)}Nφn=0 , that converge to the target posterior

distribution for n = Nφ and φn = 1, as

πn(θ) =
[p(Y |θ)]φnp(θ)∫
[p(Y |θ)]φnp(θ)dθ

, for n = 0, · · · , Nφ, φn ↑ 1,

where p(θ) and p(Y |θ) are the prior density and likelihood function, respectively. We adopt

the likelihood tempering approach that generates the bridge distributions, {πn(θ)}Nφn=0, by

taking power transformation of p(Y |θ) with the parameter, φn, i.e., [p(Y |θ)]φn .

The SMC2 with the likelihood tempering takes the following steps. Let i ∈ {1, · · · , Nθ}
denote the particles of the parameter sets, θi, and n ∈ {0, · · · , Nφ} denote the stage of the

algorithm. Herbst and Schorfheide (2015) recommend a convex tempering schedule in the

form of φn = (n/Nφ)λ with λ = 2 for a small-scale DSGE model.

1. Initialize

(a) Set the initial stage as n = 0, and draw the initial particles of parameters, θi0,

from a prior distribution p(θ).

considering that the exogenous variables in the next period, vt+1 obey normal distribution, but could

not obtain reasonable results. We suspect this is because there is no equilibrium or equilibrium becomes

indeterminate or unstable in an economy like Japan where the ZLB constrains the monetary policy for a

long time. See Hills, Nakata, and Schmidt (2016).
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(b) Set the weight of each particle of the initial stage as W i
0 = 1, for i = 1, · · · , Nθ.

2. For stage n ∈ {1, · · · , Nφ} and particle i ∈ {1, · · · , Nθ}, take the following three steps.

(a) Correction Step. Calculate the normalized weight, W̃ i
n, for each particle as

W̃ i
n =

w̃inW
i
n−1

1
N

∑N
i=1 w̃

i
nW

i
n−1

for i = 1, · · · , Nθ,

where w̃it is an incremental weight derived from

w̃in = [p(Y |θin−1)]φn−φn−1 ,

and the likelihood, p̂(Y |θ), is approximated from the particle filter, which is ex-

plained in the next subsection.

We note that the correction step is a classic importance sampling step, in which

particle weights are updated to reflect the stage n distribution, πn(θ). Because this

step does not change the particle value, we can skip this step only by calculating

power transformation of p(Y |θ) with the parameter, φn.

(b) Selection (Resampling) Step.

i. Calculate an effective particle sample size, ÊSSn, which is defined as

ÊSSn = Nθ/

(
1

Nθ

Nθ∑
i=1

(W̃ i
n)2

)
.

ii. If ÊSSn < Nθ/2, then resample the particles, {θ̂n}Nθi=1, via multinomial re-

sampling and set W i
n = 1.

iii. Otherwise, let θ̂in = θin−1 and W i
n = W̃ i

n.

(c) Mutation Step. Propagate the particles {θ̂in, W i
n} via the random walk MH algo-

rithm with the proposal density,

ϑ|θ̂n
i
∼ N

(
θ̂n

i
, c2nΣ

(
θ̂n

))
,

where N(·) is the nominal distribution and Σ
(
θ̂n

)
denotes the covariance matrix

of parameter θ̂n for all particles i ∈ {1, · · · , Nθ} at n-th stage. In order to keep

the acceptance rate around 25%, we set a scaling factor cn for n > 2 as

cn = cn−1f(An−1),

where An represents the acceptance rate in the mutation step at the n-th stage

and the function f(x) is given by

f(x) = 0.95 + 0.10
e16(x−0.25)

1 + e16(x−0.25)
.

24



3. For the final stage of n = Nφ, calculate the final importance sampling approximation

of posterior estimator, Eπ[h(θ)], as

hNφ,Nθ =

Nθ∑
i=1

h(θiNφ)W i
Nφ
.

We note that, in the final stage, the approximated marginal likelihood of the model is

also obtained as a by-product. It can be shown that

PSMC(Y ) =

Nφ∏
n=1

(
1

Nθ

Nθ∑
i=1

w̃inW
i
n−1

)

converges almost surely to p(Y ) as the number of particles Nθ →∞.

A.2.2 Algorithm of the Particle Filter

Suppose that a state space representation for the nonlinear DSGE model consists of

yobst = Ψ(st, θ) + ut, ut ∼ N(0, Σu),

st = Φ(st−1, εt, θ), εt ∼ N(0, Σε),

where yobst and st denote observable and state variables, respectively. In our study, we set

yobst = { ln(yt/yt−1), πt, Rt} and st =
{
yt, ct, πt, y

∗
t , Rt, R

∗
t , r

∗
t , µ

a
t , z

b
t

}
. A measurement

error vector, ut, and an exogenous shock vector, εt =
{
εat , ε

b
t , ε

r
t

}
, follow the normal distri-

bution with covariance matrices, Σu and Σε, respectively. The nonlinear policy functions,

Φ(st, εt, θ), are derived from Appendix A.1, while the function Ψ(st, θ) represents the link-

age between yobst and st.

The particle filter algorithm is shown as follows. Let j ∈ {0, · · · , NS} denote the particles

of the state variables and exogenous shocks.

1. For period t = 0, draw the NS initial particles of the state variables at period 0, say

sj0|0, from the distribution around the steady state derived from the policy functions,

p(s0 | Σε, θ).

2. For period t ∈ {1, · · · , T} and particle j ∈ {1, · · · , NS}, take the following three steps.

(a) Step of forecasting the state variables: sjt|t−1. Generate NS particles of the shock

vector εjt from N(0, Σε). Using the nonlinear policy function, we obtain NS

particles of forecasts of the state variables corresponding to the shocks generated

in the above:

sjt|t−1 = Φ(sjt−1|t−1, ε
j
t |θ).
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(b) Step of forecasting the observable variables. Calculate the approximated predic-

tive density of yobst given by

p(yobst |Y obs
1:t−1, θ) +

1

NS

NS∑
j=1

wjt ,

where wjt is the normal predictive density of the particle j measured from Ψ(sjt|t−1, θ)

and the covariance matrix of the measurement error Σu in period t, say,

wjt = (2π)−n/2|Σu|−1/2exp

{
−1

2
(yobst −Ψ(sjt|t−1, θ))

′Σ−1u (yobst −Ψ(sjt|t−1, θ))

}
,

where n is the dimension of yt.

(c) Step of updating the state variables: sjt|t. Resample NS particles of the state

variables from a multinominal distribution. That is,

sjt|t = resample out of (s1t|t−1, · · · sjt|t−1, · · · sNs

t|t−1) with probabilty (wjt/Σw
j
t ).

3. For the final period of t = T , collect all of the predictive densities of yt from period 1 to

T , calculated in the above. Using those, the log likelihood of the model is approximated

as

ln p(Y obs
1:t |θ) +

T∑
t=1

ln

(
1

NS

NS∑
j=1

wjt

)
.
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Table 1: Prior Distribution

Parameter Mean S.D. Shape

σ 1.5 0.3 Normal

γa 0 0.5 Normal

ω 3 0.5 Normal

κ 0.05 0.006 Normal

π∗ 0 0.5 Normal

Parameter Mean S.D. Shape

ρr 0.5 0.2 Beta

ψπ 1.5 0.15 Normal

ψy 0.125 0.025 Normal

ω 3 0.5 Normal

ρa 0.5 0.2 Beta

σa, σb, σr
√
0.02 5 (d.f.) Inv Gamma

Table 2: Posterior Distribution and Marginal Likelihood

Model 1 Model 2 Model w/o ZLB

Parameter Mean (95% low, high) Mean (95% low, high) Mean (95% low, high)

σ 1.400 (1.289, 1.55) 1.534 (1.472, 1.584) 1.037 (1.004, 1.083)

γa -0.028 (-0.119, 0.05) 0.123 (0.068, 0.172) -0.419 (-0.539, -0.31)

ω 2.477 (2.298, 2.674) 3.163 (2.908, 3.413) 3.188 (3.071, 3.287)

κ 0.055 (0.05, 0.062) 0.053 (0.05, 0.055) 0.047 (0.045, 0.049)

π∗ 0.360 (-0.117, 0.619) 0.050 (-0.148, 0.274) -0.447 (-0.728, -0.246)

r∗ 0.464 (0.343, 0.574) 0.691 (0.607, 0.764) 0.067 (-0.055, 0.181)

ρr 0.521 (0.475, 0.611) 0.685 (0.644, 0.721) 0.214 (0.182, 0.24)

ψπ 1.689 (1.627, 1.745) 1.776 (1.739, 1.811) 1.509 (1.453, 1.553)

ψy 0.105 (0.091, 0.123) 0.113 (0.098, 0.125) 0.133 (0.127, 0.141)

ρa 0.254 (0.129, 0.446) 0.201 (0.096, 0.292) 0.122 (0.093, 0.147)

ρb 0.750 (0.693, 0.802) 0.754 (0.728, 0.776) 0.740 (0.689, 0.788)

σa 1.175 (0.906, 1.367) 1.320 (1.146, 1.524) 1.773 (1.675, 1.859)

σb 1.797 (1.435, 2.318) 2.229 (2.018, 2.442) 1.354 (1.191, 1.558)

σr 1.439 (1.14, 1.673) 1.173 (1.022, 1.349) 0.921 (0.809, 1.012)

Likelihood -261.753 -275.9136 -364.815
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Table 3: Probability of the ZLB, 2% Inflation, and Deflation

Natural rate (r∗t ) Prob ( Rt+h = 0% | r∗t ) Prob ( πt+h > 2%|r∗t ) Prob ( πt+h < 0%|r∗t )

for h = 1 for h = 2 for h = 4 for h = 8 ∃h for 1 ≤ h ≤ 8

r∗t ≥ 3% 7.00% 14.35% 23.35% 31.65% 60.20% 76.60%

2% ≤ r∗t < 3% 12.64% 19.59% 26.37% 33.80% 47.16% 81.28%

1% ≤ r∗t < 2% 25.97% 28.62% 32.60% 35.61% 28.44% 88.10%

0% ≤ r∗t < 1% 52.40% 44.56% 39.94% 38.17% 15.36% 94.11%

−1% ≤ r∗t < 0% 61.86% 51.74% 43.58% 39.43% 10.40% 97.48%

r∗t < −1% 69.60% 58.83% 51.60% 41.63% 7.03% 99.70%

r∗t = r∗ 35.12% 36.79% 37.52% 37.29% 15.16% 94.26%

Table 4: Estimation Results of the (Un)Constrained Linear Model

Model 1 Constrained linear Unconstrained linear

(benchmark) (Model 1) (Model w/o ZLB)

Parameter Mean (95% low, high) Mean (95% low, high) Mean (95% low, high)

σ 1.400 (1.289, 1.55) 1.287 (1.237, 1.387) 1.152 (1.039, 1.249)

γa -0.028 (-0.119, 0.05) 0.140 (0.031, 0.22) 0.544 (0.44, 0.633)

ω 2.477 (2.298, 2.674) 2.702 (2.569, 2.936) 2.260 (2.125, 2.377)

κ 0.055 (0.05, 0.062) 0.050 (0.048, 0.052) 0.047 (0.046, 0.048)

π∗ 0.360 (-0.117, 0.619) -0.138 (-0.316, -0.03) 0.844 (0.69, 1.006)

r∗ 0.464 (0.343, 0.574) 0.679 (0.541, 0.792) 1.126 (1.037, 1.207)

ρr 0.521 (0.475, 0.611) 0.386 (0.354, 0.406) 0.414 (0.377, 0.449)

ψπ 1.689 (1.627, 1.745) 1.426 (1.379, 1.476) 1.534 (1.503, 1.563)

ψy 0.105 (0.091, 0.123) 0.127 (0.123, 0.13) 0.124 (0.116, 0.132)

ρa 0.254 (0.129, 0.446) 0.157 (0.115, 0.211) 0.206 (0.183, 0.239)

ρb 0.750 (0.693, 0.802) 0.659 (0.647, 0.682) 0.698 (0.666, 0.727)

σa 1.175 (0.906, 1.367) 1.285 (1.131, 1.412) 1.649 (1.534, 1.773)

σb 1.797 (1.435, 2.318) 1.483 (1.418, 1.565) 1.867 (1.617, 2.066)

σr 1.439 (1.14, 1.673) 1.182 (1.023, 1.41) 1.065 (0.979, 1.154)

Likelihood -261.75 -279.29 -395.65

Post prob 1.000 0.000 0.000
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Table 5: Estimation Results when Using the Output Gap Data

Growth Data Gap instead of growth Gap and growth

(benchmark)

Parameter Mean (95% low, high) Mean (95% low, high) Mean (95% low, high)

σ 1.400 (1.289, 1.55) 1.596 (1.547, 1.686) 1.513 (1.468, 1.586)

γa -0.028 (-0.119, 0.05) -0.056 (-0.088, -0.003) -0.077 (-0.132, -0.041)

ω 2.477 (2.298, 2.674) 3.030 (2.81, 3.137) 2.743 (2.585, 2.841)

κ 0.055 (0.05, 0.062) 0.044 (0.042, 0.046) 0.055 (0.054, 0.056)

π∗ 0.360 (-0.117, 0.619) 0.154 (0.078, 0.186) 0.648 (0.549, 0.714)

r∗ 0.464 (0.343, 0.574) 0.414 (0.364, 0.497) 0.385 (0.292, 0.441)

ρr 0.521 (0.475, 0.611) 0.664 (0.645, 0.675) 0.597 (0.575, 0.631)

ψπ 1.689 (1.627, 1.745) 1.468 (1.458, 1.477) 1.431 (1.407, 1.472)

ψy 0.105 (0.091, 0.123) 0.113 (0.11, 0.116) 0.101 (0.098, 0.103)

ρa 0.254 (0.129, 0.446) 0.202 (0.153, 0.233) 0.222 (0.157, 0.262)

ρb 0.750 (0.693, 0.802) 0.680 (0.673, 0.687) 0.801 (0.794, 0.81)

σa 1.175 (0.906, 1.367) 3.473 (2.988, 4.367) 1.412 (1.202, 1.766)

σb 1.797 (1.435, 2.318) 2.285 (2.225, 2.383) 1.946 (1.623, 2.133)

σr 1.439 (1.14, 1.673) 0.823 (0.773, 0.906) 1.473 (1.424, 1.535)

Figure 1: Data
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Figure 2: Particles for Parameter σ and their Likelihood
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Note: Each dot represents a particle for the value of parameter σ and its posterior likelihood. The big circle in green at the

top indicates the maximum of the likelihoods in all the dots.

Figure 3: Notional Nominal Interest Rate R∗t
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Figure 4: Impulse Responses to a Monetary Policy Shock
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Note: Pos and Neg represent positive (tightening) and negative (easing) monetary policy shocks, respectively.

Figure 5: Natural Rate of Interest and the Contribution of the Estimated Shocks
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Figure 6: Natural Rate of Interest: Model Comparison (1)
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Figure 7: Natural Rate of Interest: Counterfactual Simulation
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Note: “Model 0” represents the natural rate of interest based on the Model without the ZLB. (1) “Model 0 w/ ZLB,” (2)

“Model 0 w/ Model 1 Parameters,” and (3) “Model 0 w/ Model 1 Shocks” represent the simulated natural rate of interest using

(1) estimated parameters and shocks in the Model without the ZLB but now explicitly taking account of the ZLB, (2) using

estimated parameters in Model 1, and (3) using estimated shocks in Model 1, respectively.

Figure 8: Natural Rate of Interest: Model Comparison (2)
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Figure 9: Natural Rate of Interest When Using the Output Gap Data
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