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Abstract

We explore foreign exchange and stock market networks in 48 countries from
1999 until 2012 and propose a model, based on complex principal component
analysis, for extracting significant lead-lag relations between these networks,
by constructing currency-equity synchronization network. In addition to the
analysis for the whole period, we divide the total time period into “mild crisis,”
(1999-2002), “calm,” (2003-2006) and “severe crisis” (2007-2012) periods and
find that the severe crisis period behavior dominates the dynamics in the foreign
exchange-equity interdependent network. We observe that in general the foreign
exchange market has predictive power for the global stock market performance.
Also, the United States, German and Canadian markets have forecasting power
for the performances of other global equity markets.
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I. Introduction

OUR DAILY LIVES are strongly affected by various complex systems such as com-
munication, financial transactions, transportation, just to name a few. The devel-
opment of modern societies relies on the proper functioning and reliability of these
underlying infrastructures. The real world does not function as a set of independent
systems but rather of many interdependent systems that interact with each other.
Needless to say, our world is becoming more interconnected and any progress or
development in one part of the world can be seamlessly exported to another.

Complexity science has been utilized for analyses of interconnectedness in various
systems concerning our global world, not the least of which is the international
financial and economic complex system. Interdependent network studies (Buldyrev
et al. (2011), Gao et al. (2011)) have found that coupled networks are more vulnerable
to shocks in the system than single isolated networks, and that damage propagates
more rapidly in coupled networks than in isolated networks. Thus adverse effects in
a coupled system are more severe than in an isolated system.

A large body of literature studying stock markets and currency markets from var-
ious perspectives has emerged as financial markets have changed and cross-border
capital flow has increased. The majority of the capital flow increase has been in form
of equity investments, with a much smaller portion allocated to overseas loans and
fixed income investments. For example, Gagnon and Karolyi (2006) report that the
total gross capital flows (gross capital purchases and sales between U.S. and foreign
investors of U.S. and foreign assets) have increased from less than $100 billion in
1977, corresponding to 1% of U.S. Gross Domestic Product, to over $3.5 trillion,
or approximately 30% of U.S. GDP. This significant increase in foreign equity pur-
chases and sales indicates the importance of understanding the relationship between
stock markets and foreign exchange markets. Previous studies have investigated
the comovements and dependency structures between stock markets and foreign ex-
change rates (Dornbusch and Fischer (1980), Dooley and Isard (1982), Granger et al.
(2000), Morley (2002), Nieh and Lee (2002), Bae et al. (2003), Cappiello and De San-
tis (2005), Gagnon and Karolyi (2006) Pan et al. (2007), Ning (2010), Zhao (2010),
Katechos (2011), Lin (2012)).

Bae et al. (2003) study international market returns and foreign exchange changes
and propose an approach to evaluate contagion in financial markets based on coinci-
dental return shocks in different countries. They use multinominal logistic regression
and find that contagion is predictable and depends on interest rates, exchange rate
changes, and conditional stock return volatilities. Gagnon and Karolyi (2006) sug-
gest that the co-movements in international financial markets are a by-product of
increased international cross-border capital flow. According to this study, Interna-
tional markets seem to depend more on other international markets than on country’s
domestic fundamentals.

Other studies have focused on stock return predictability in the United States
(Fama and French (1988, 1989), Breen et al. (1989), Cochrane (2008)) and globally
(e.g. Harvey (1991), Bekaert and Hodrick (1992), Ferson and Harvey (1993), Patro
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and Wu (2004), Rapach and Wohar (2006), Ang and Bekaert (2007), Hong et al.
(2007), Cohen and Frazzini (2008), Welch and Goyal (2008), Bekaert et al. (2009),
Hjalmarsson (2010), Menzly and Ozbas (2010), Ferreira and Santa-Clara (2011),
Bollerslev et al. (2012), Rapach et al. (2013), Dahlquist and Hasseltoft (2013)) re-
porting mixed results, finding positive or negative correlations, stable or non-stable
causality relations between markets, and regional and temporal diversity.

Rapach et al. (2013) found that lagged U.S. market returns have been power-
ful predictor of returns for many other industrialized countries, forecasting returns
better than these countries’ economic indicators shedding new light on international
predictability. This study uses predictive regression models, pairwise Granger causal-
ity tests, and an empirical news diffusion model to analyze how return shocks in one
country affect returns in another country. Finally, they also examine the out-of-
sample predictive power of lagged U.S. returns and find that out-of-sample gains for
numerous non-U.S. countries tend to concentrate during business cycle recessions.
These gains have been particularly strong during the most recent Global Financial
Crisis (GFC).

The GFC, considered by many to be the worst crisis since the great depression
of the 1930s, threatened major financial institutions with the possibility of systemic
collapse, propagated value deterioration to financial markets around the world, and
involved national governments in bailing out systemically important financial insti-
tutions. The crisis also adversely affected housing markets and real estate prices
globally and contributed to increased unemployment rates and prolonged workforce
unemployment. Ultimately, the global financial meltdown contributed to the Eu-
ropean sovereign debt crisis with consequences still lingering in the global financial
system. The increased interconnectedness of the financial system up to a certain
level could bring stability to the system; however, above a critical point, the system
could rapidly become extremely vulnerable, prone to a first-order-like abrupt phase
transition (Acemoglu et al. (2013), Huang et al. (2013), Dehmamy et al. (2014))

Using a network science approach to study the dynamics of financial and eco-
nomic systems reveals important relationships and defining characteristics within
real-world influences that may be overlooked by approaches that do not take into
consideration the relationships among the connected parts of the complex finan-
cial system. Previous studies related to financial systems (Billio et al. (2010), Gai
et al. (2011), Huang et al. (2011), Haldane and May (2011), Battiston et al. (2012),
Aoyama et al. (2013), Huang et al. (2013)) have shed light not only on the topology
of financial networks, i.e., the monetary and information flow within economic and
governance networks, but have also examined systemic risk propagation. Acemoglu
et al. (2012) argue that macroeconomic shocks that originate in one sector may not
necessarily be contained close to the origin, but rather could spill over to other parts
of the economy affecting other sectors’ outputs generating significant aggregate ef-
fect. This study illuminates the often ignored cascading failure effect that could
contribute to disastrous consequences in the entire economic system.

The objective of this paper is to study the complex interdependencies and their
increasingly interrelated nature of the coupled global economic and financial net-

3



works, by the use of the latest concepts and methodology from statistical physics
and complexity science, to reveal the intrinsic relations in interacting networks. Un-
derstanding the interconnectedness and lead-lag relations in the economic complex
system could be useful for forecasting the effect of one part of the system on another
and potentially offering efficient strategies for system recovery (Majdandzic et al.
(2015)).

Unlike previous studies, which have focused on relatively small groups of countries—
e.g., G-5, G-7, or the emerging Asian countries, we examine a truly global set of 48
countries, including large and small countries in Europe, the Americas, Asia, and
the Middle East. Although we find aspects of regional domination in some local eco-
nomic communities, using a non-trivial global analysis we also find that these local
“economic regions” display network characteristics that are shaped by forces that
extend far beyond the local “geographic regions” explored in previous research. The
value of our study lies in its use of a novel methodology based on a Complex Prin-
cipal Component Analysis (CPCA) applied to a broad range of economic networks
that encompasses more than one world region and more than one characteristic time
period.

More specifically, we present a new approach to study the causal relationships
between stock and foreign exchange markets. The cross-market relationships that we
investigate have significant implications for international risk management and global
portfolio management. Understanding the dynamics of the relationship between
currency and stock markets is also essential for policy makers. For instance if most
of the spillover effects between stock and currency markets are caused by stock
market shocks that transfer into currency markets, the policy implications of this
phenomenon suggest that a focus on stock-market-centered stability policies might
help prevent currency crises. If however shocks propagate from currency to stock
markets stabilizing policies for currencies might prove useful in halting or localizing
stock market crashes.

In building our analysis we use the CPCA approach, utilizing the Hilbert trans-
formation and the Rotational Random Shuffling (RRS) methods to identify true
comovements, free from contamination of noises, to study the lead-lag relationships
between foreign exchange and equity market returns. Our paper offers three method-
ological advantages over the previous studies: (i) CPCA enables us to detect beyond-
pairwise lead-lag relations as compared with the traditional Granger causality and
cross-correlation analysis; (ii) CPCA is able to extract dynamical correlations simul-
taneously, while this is difficult to accomplish withl PCA; and (iii) RRS provides us
with a sound null hypothesis to identify statistically meaningful correlations.

The rest of this paper is organized as follows: In section II we describe the data
and the methodology, namely, CPCA and RRS. In section III we present the results
obtained by the analysis of dominant and significant eigenmodes. In addition to
identifying and analyzing the three largest eigenvalues, we also take into account the
importance of smaller but still significant eigenvalues that shed light on the effect of
important global economic developments. In section IV we analyze the community
structure of the currency-equity synchronization network and explore the lead-lag
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relationships between communities. We obtain stable lead-lag relationships for the
majority of the network communities with one community emerging as an exception.
In section V we discuss our results and offer concluding remarks.

II. Data and Methodology

We study daily pricing data for foreign exchange quotes and major stock market
indices for 48 countries (see Table 1) for the 14-year period from Jan. 1, 1999 to
Dec. 31, 2012 (5,114 calendar days with 3,652 trading days). We obtain the data
from Boston University’s Bloomberg database, which provides financial data for use
in academic research.

The time-designation “day” will differ in different parts of the world because of
differences in world time zones. Weekends are also missing from the data. However,
our methodology is suitable for overcoming these issues, as we discuss later in this
section.

We denote this data as Sα(t), where the node index α = 1, 2, · · · , 48 are the stock-
market indices of the 48 countries, α = 49, · · · , 96 (= N) the currencies of the 48
countries in the same order as in Table. 1, and t = 1, 2, · · · , 3652 the date-numbers.
The time series we analyze are the log-returns (the logarithm of the growth-rate)
rα(t) defined by

rα(t) := log10

[
Sα(t+ 1)

Sα(t)

]
×

{
+1 for 1 ≤ α ≤ 48

−1 for 49 ≤ α ≤ 96
(1)

where t runs from 1 to 3651 (≡ T ).
The currency quotes that we analyze are expressed as currency/SDR.1 So when

the price thus expressed increases, it means that the currency has depreciated and
more “currency” is needed for one SDR. For example, if the USD/SDR price in-
creases, this means that the US Dollar has depreciated.

To avoid confusion and to allow a comparison between the increases (or decreases)
in stock market values and the appreciation (or depreciation) of currencies, we trans-
form our original data series from currency/SDR into SDR/currency by multiplying
the currency log-returns by (−1).

1Special drawing right (SDR) is defined as a basket of four major currencies (Japanese Yen, US
Dollar, Pound Sterling, and the Euro). The composition of the SDR basket is reviewed every five
years by the Executive Board of the International Monetary Fund to ensure that it reflects relative
importance of currencies in the global financial and trading systems. The last SDR revision took
place in November 2010, and the changes became effective on January 1, 2011. The next SDR
review will take place in 2015.
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Table 1: List of 48 countries with their stock-market indices and curren-
cies (with gray hexagonal background). These markers (symbols) are used in
the subsequent figures throughout the paper. For the top ten countries (2012 GDP,
less China), the markers are given individually with flag motifs, while for others the
markers reflect their regionality.

No. Country Stock Index Currency

1 UK UKX Pound Sterling
2 Austria ATX Euro
3 Belgium BEL20 Euro
4 Finland HEX25 Euro
5 France CAC Euro
6 Germany DAX Euro
7 Ireland ISEQ Euro
8 Italy FTSEMIB Euro
9 Netherlands AEX Euro

10 Portugal PSI20 Euro
11 Spain IBEX Euro
12 Greece ASE Drachma, then Euro since Jan. 2001
13 Malta MALTEX Maltese Lira, then Euro since Jan. 2008
14 Slovakia SKSM Slovak Koruna, then Euro since Jan. 2009
15 Norway OBX Norwegian Krone
16 Sweden OMX Swedish Krona
17 Iceland ICEXI Icelandic Krona
18 Switzerland SMI Swiss Franc
19 Czech PX Czech Koruna
20 Denmark KFX Danish Krone
21 Hungary BUX Forint
22 Poland WIG Zloty
23 Russia INDEXCF Ruble

24 USA SPX US Dollar
25 Canada SPTSX Canadian Dollar
26 Mexico MEXBOL Mexican Peso
27 Brazil IBOV Real
28 Argentina MERVAL Argentine Peso
29 Chile IPSA Chilean Peso
30 Peru IGBVL Nuevo Sol
31 Venezuela IBVC Bolivar

32 India SENSEX Indian Rupee
33 Sri Lanka CSEALL Sri Lankan Rupee
34 Indonesia JCI Indonesian Rupiah
35 Japan NKY Yen
36 South Korea KOSPI South Korean Won
37 Malaysia FBMKLCI Ringgit
38 Thailand SET Baht
39 Philippine PCOMP Philippine Peso
40 Hong Kong HSI Hong Kong Dollar
41 Australia AS51 Australian Dollar

42 Israel TA-25 Shekel
43 Pakistan KSE100 Pakistani Rupee
44 Saudi Arabia SASEIDX Saudi Riyal
45 South Africa TOP40 Rand
46 Oman MSM30 Rial
47 Qatar DSM Riyal
48 Mauritius SEMDEX Mauritian Rupee
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Table 2: Summary Statistics for the log−returns. Here µ is the mean in
units of 10−5, σ the standard deviation in units of 10−3, γ1 the skewness (the third
standardized moment), and β2 the kurtosis (the fourth standardized moment, equal
to three for normal distribution).

Stock Index Currency
No. Country µ σ γ1 β2 µ σ γ1 β2

1 UK 0.03 5.50 −0.14 8.79 −1.30 2.45 −0.21 5.56
2 Austria 9.06 6.34 −0.31 10.64 0.39 2.70 0.09 4.31
3 Belgium −4.17 5.73 0.06 8.79 0.39 2.70 0.09 4.31
4 Finland 4.71 7.01 −0.07 5.92 0.39 2.70 0.09 4.31
5 France −0.95 6.65 0.03 7.66 0.39 2.70 0.09 4.31
6 Germany 4.99 6.89 0.00 7.18 0.39 2.70 0.09 4.31
7 Ireland −4.59 6.22 −0.56 10.66 0.39 2.70 0.09 4.31
8 Italy −9.25 6.63 −0.05 7.82 0.39 2.70 0.09 4.31
9 Netherlands −5.37 6.63 −0.09 8.92 0.39 2.70 0.09 4.31

10 Portugal −7.91 5.04 −0.14 10.63 0.39 2.70 0.09 4.31
11 Spain −2.21 6.65 0.11 8.15 0.39 2.70 0.09 4.31
12 Greece −13.13 7.80 0.03 7.09 −0.07 2.67 0.10 4.37
13 Malta 11.60 3.59 1.35 18.92 0.72 2.65 0.20 18.54
14 Slovakia 8.51 5.45 −1.08 19.05 4.70 2.80 0.13 4.36
15 Norway 16.59 7.05 −0.55 9.33 2.65 3.23 −0.13 6.17
16 Sweden 5.41 6.95 0.07 6.10 1.60 3.32 0.02 5.34
17 Iceland −5.16 9.10 −37.38 1838.72 −8.31 4.32 0.54 65.35
18 Switzerland −0.58 5.32 −0.03 9.24 3.80 3.00 −0.52 11.96
19 Czech 11.52 6.45 −0.44 14.70 4.44 3.38 0.05 5.45
20 Denmark 9.71 5.66 −0.22 8.61 0.41 2.70 0.09 4.31
21 Hungary 12.59 7.16 −0.04 8.94 −1.34 3.97 −0.39 7.37
22 Poland 14.04 5.97 −0.36 6.62 0.44 3.81 −0.15 7.14
23 Russia 41.42 10.45 −0.03 13.82 −5.72 2.43 −1.31 38.95

24 USA 1.77 5.70 −0.15 10.48 −1.04 1.34 −0.08 6.04
25 Canada 7.74 5.16 −0.64 11.67 4.15 2.69 −0.12 4.97
26 Mexico 28.56 6.26 0.10 7.32 −4.14 3.14 −0.64 11.72
27 Brazil 26.12 8.46 0.76 19.30 −7.34 4.97 −0.23 14.26
28 Argentina 22.51 9.06 −0.08 8.52 −19.98 4.11 −14.14 468.30
29 Chile 20.21 4.55 0.08 11.70 −1.18 2.87 −0.18 6.08
30 Peru 32.56 6.19 −0.52 14.99 1.50 1.74 −0.04 7.56
31 Venezuela 54.59 6.38 −0.29 25.79 −25.18 6.41 −30.25 1420.36

32 India 13.74 6.29 −0.50 9.85 −4.07 1.76 0.32 7.28
33 Sri Lanka 26.71 5.19 0.36 33.00 −8.46 1.92 −2.52 58.49
34 Indonesia 28.35 6.49 −0.36 9.57 −3.18 3.98 0.27 16.24
35 Japan −3.41 6.52 −0.39 10.17 2.17 2.94 0.03 7.02
36 South Korea 8.24 7.03 −0.49 9.85 0.43 3.20 0.09 27.03
37 Malaysia 12.59 4.14 −0.52 11.95 1.54 1.55 −0.11 6.36
38 Thailand 16.23 6.44 −0.36 12.04 1.01 1.70 −0.12 8.22
39 Philippine 12.88 5.83 0.40 18.48 −1.68 2.16 3.34 75.49
40 Hong Kong 9.67 6.90 −0.05 10.38 −1.05 1.32 −0.05 6.08
41 Australia 6.39 4.41 −0.50 9.16 5.29 3.66 −0.25 12.06

42 Israel 15.84 5.66 −0.26 6.10 0.17 2.19 −0.12 7.86
43 Pakistan 34.31 6.37 −0.25 6.48 −9.03 2.14 −0.10 12.50
44 Saudi Arabia 18.58 6.60 −1.04 13.6 −1.05 1.36 −0.06 5.93
45 South Africa 24.43 5.94 −0.11 6.56 −5.35 4.82 −1.08 16.79
46 Oman 10.69 4.36 −0.54 20.96 −1.04 1.39 0.00 6.62
47 Qatar 21.59 7.96 −0.25 23.25 −1.06 1.34 −0.07 6.09
48 Mauritius 15.63 3.67 −0.46 191.26 −3.56 3.72 −0.36 12.03
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Table 2 displays an overview of the summary statistics for each country’s stock
market performance and currency returns. Note that while Pakistan, Russia, and
Venezuela show daily stock market returns of over 0.079%, 0.095%, and 0.12%, re-
spectively, European countries such as Greece, Italy, and Portugal show negative
daily stock market returns of over −0.03%, −0.02%, and −0.018%, respectively, be-
tween 1999 and 2012. Almost all of the American, Asian, and the Middle Eastern
stock markets show positive returns, with the exception of Japan with a −0.008%
return. Russia, Iceland, and Argentina show the highest stock market volatilites,
while Malta, Malaysia, and Mauritius appear to have the lowest. Iceland exhibits
the largest positive skew, significantly different from all the other countries, and the
highest kurtosis, followed by Mauritius showing the next highest stock market kurto-
sis, approximately 10 times lower than Iceland. European and Asian countries show
mixed currency returns, while the American and the Middle Eastern countries show
primarily negative currency returns. Currencies display lower volatilites than stock
markets. Venezuela and Argentina exhibit the largest positive skews and kurtosis,
with the magnitude for Venezuela being approximately three times the magnitude
for Argentina for both skewness and kurtosis.

Table 3 displays the summary statistics for periods 1, 2, and 3. In period 2 (2003–
2006) we see the highest positive global stock market returns of 0.09−0.13% and a
relatively low volatility of 0.01−0.013%. The currency results for the same period
are mixed. The stock markets on average are not significantly skewed. The Middle
Eastern stock markets show the highest kurtosis in period 2, while the European
stock markets exhibit highest kurtosis in period 3. Currencies on average show
mixed returns with relatively low volatility. American currencies exhibit positive
skewness and significant kurtosis in all 3 periods.

We analyze the co-movements of these time series for both equal-time and pos-
sible time-delays by applying CPCA, which consists of the following steps:

A. We construct a complex time series by adding the Hilbert transform of the
time series as the imaginary component.

B. We do a correlation analysis to obtain the eigenmodes for the period of interest.

C. We do a rotational random shuffling (RRS) simulation to identify which eigen-
modes are significant, i.e., which represent co-movements between time series.

This methodology is suitable for efficiently extracting significant lead-lag rela-
tionships among currencies and financial markets. The CPCA efficiently identifies
significant lead-lag relationships in the global financial network that occur due to
the difference of a “day” in different parts of the world as well as lead-lag rela-
tionships due to real time-delay in the reactions of one country to economic phe-
nomena in other countries. Computational efficiency is especially important since
we analyze a large dataset consisting of 96 time-series. One may apply ordinary
cross-correlation analysis by shifting each time-series and maximizing the correla-
tion coefficients as functions of time-shifts. However, doing so for all the possible
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Table 3: Summary Statistics for the log-returns in each period. Here µ is
the mean in units of 10−5, σ the standard deviation in units of 10−3, γ1 the skewness,
and β2 the kurtosis. A bar above a symbol indicates that it is the average over all
the countries in each geographic region, where “Europe” contains countries #1–#23,
“America” #24–#31, “Asia” #32–#41, and “Middle East” #42–#48 in Table 1.

Stock Index Currency
Region µ̄ σ̄ γ̄1 β̄2 µ̄ σ̄ γ̄1 β̄2

Period 1 (1999–2002)

Europe −3.72 6.48 0.03 6.41 −2.48 2.82 −0.09 8.36
America 8.46 6.94 0.43 9.96 −18.25 3.54 −1.89 41.12

Asia −2.57 6.47 0.57 15.84 −3.47 2.51 −0.03 25.08
Middle East 15.02 5.51 0.17 12.20 −2.87 2.23 −0.18 7.66

Period 2 (2003–2006)

Europe 38.89 4.48 −0.23 7.4 5.11 2.63 0.07 4.23
America 54.41 4.88 −0.08 6.02 0.02 2.73 −0.42 31.08

Asia 33.22 4.81 −0.52 10.77 −0.42 1.8 −0.02 5.05
Middle East 46.01 5.58 −0.46 44.78 −4.20 2.17 −0.17 4.88

Period 3 (2007–2012)

Europe −13.61 7.46 −1.37 50.53 −1.16 3.17 −0.01 7.96
America 14.68 6.91 −0.52 15.13 −3.38 3.49 −4.84 190.62

Asia 10.22 6.06 −0.53 11.34 0.72 2.61 −0.10 10.56
Middle East 6.35 5.79 −0.41 11.17 −2.26 2.65 −0.33 10.59

pairs and for only several possibilities for the trial time-shift values will be quite a
daunting task. For example, allowing a six-day delay between a pair will require us
to examine 6N(N − 1)/2 ' 2.7× 104 cases. Granger causality methodology reduces
the complexity of calculations by including more than one lag at one time in its
regression analysis, but is still characterized as a pairwise analysis. Besides the issue
of computational efficiency, furthermore, those methodologies are not appropriate
for our targeted network in which nodes are strongly coupled to each other. For
instance, one is not able to fully understand the three-body problem by shedding
light only on binary relations. To elucidate the multiple relationships in a simulta-
neous manner, one may think of applying the conventional PCA to time-series each
shifted, e.g. with 6 possible time shifts as our pairwise example above. Such an
analysis, however, would bring about 6N ' 5× 1074 cases, an astronomical amount
of calculations! In contrast, the CPCA offers tremendous efficiencies, identifying
significant lead-lag relationships with just one calculation, as demonstrated in the
next section. In addition, the eigenvectors associated with significant eigenvalues,
offer insight into different comovement modes in the overall network, not limited to
pairwise relationships.
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A. Hilbert transformation and the complexified time series

We first carry out a discrete Fourier expansion of a time series r(t) (t = 1, 2, · · ·T ),

r(t) =
1√
T

T∑
k=1

r(F)(k) e−i
2π
T
kt, r(F)(k) =

1√
T

T∑
t=1

r(t) ei
2π
T
kt, (2)

from which it follows that r(F)(k) = r(F)(T − k), and that r(F)(T ) =
∑T

m=1 r(t)/
√
T

is real.
For even T the Fourier expansion is written as

r(t) =
1

T

T∑
t′=1

(
1 + (−1)t+t

′
)
r(t′) +

2√
T

Re

T/2−1∑
k=1

r(F)(k) e−i
2π
T
kt

 , (3)

where the first term in the left-hand side comes from the k = T and k = T/2 terms.
The Hilbert transform is defined so that it provides the imaginary component of the
oscillating part, i.e., the second term on the right-hand side of Eq. (3),

r(H)(t) :=
2√
T

Im

T/2−1∑
k=1

r(F)(k) e−i
2π
T
kt

 . (4)

By adding this to the original time series as the imaginary part we obtain a complex
time series r̃(t),

r̃(t) := r(t) + ir(H)(t) =
1

T

T∑
t′=1

(
1 + (−1)t+t

′
)
r(t′) +

2√
T

T/2−1∑
k=1

r(F)(k) e−i
2π
T
kt. (5)

Similarly we obtain the following equations for odd T :

r(t) =
1

T

T∑
t′=1

r(t′) +
2√
T

Re

(T−1)/2∑
k=1

r(F)(k) e−i
2π
T
kt

 , (6)

r̃(t) :=
1

T

T∑
t′=1

r(t′) +
2√
T

(T−1)/2∑
k=1

r(F)(k) e−i
2π
T
kt. (7)

Note that both Eqs. (5) and (7) rotate clockwise in the complex plane.

B. Complex Correlation Matrix

The normalized log-return w̃α for the complex time series r̃α(t) is defined by

w̃α(t) :=
r̃α(t)− 〈r̃α〉t

σα
, (8)
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where 〈·〉t is the average over time t = 1, . . . , T (〈·〉t := (1/T )
∑T

t=1 ·), and σα(≥ 0)
is the standard deviation of r̃α over time,

σ2α :=
1

T

T∑
t=1

| r̃α(t)− 〈r̃α〉t|2 = 〈|r̃α|2〉t − |〈r̃α〉t|2. (9)

The complex correlation matrix C̃ is an N × N (N = 96) Hermitian matrix
defined as

C̃αβ := 〈w̃αw̃∗β〉t, (10)

whose diagonal elements are 1 by definition of the normalized log-return w̃α (Eq. (8)).
The eigenvalues λ(n), which are non-negative due to the chirality of the Hermitian

matrix C̃, and the corresponding eigenvectors V (n) of the matrix C̃ satisfy the
following relations,

C̃ V (n) = λ(n)V (n), (11)

V (n)∗ · V (m) = δnm, (12)

N∑
n=1

λ(n) = N, (13)

C̃ =
N∑
n=1

λ(n)V (n)V (n)†. (14)

The superscripts in parentheses such as (n) denote the indices of different eigenval-
ues and eigenvectors, having the range n = 1, . . . , N . We order the eigenvalues in
descending order λ(n) ≥ λ(n−1), for any n. Here δnm is the Kronecker delta, i.e.,
δnm = 1 if n = m, δnm = 0 if n 6= m. Eigenmodes with large eigenvalues are the key
to uncovering co-movements in this set of time series. This is the case because when
the time series are expanded in terms of the eigenvectors,

w̃α(t) =

N∑
n=1

a(n)(t)V (n)
α , (15)

the mode-signals a(n)(t) satisfy

〈a(n)∗a(m)〉t = δnmλ
(n), (16)

which can be proven using Eqs. (10), (11), and (12). Equation (16) shows that the
larger the eigenvalue the larger will be the presence of the eigenvector, with their
mean strength proportional to the square root of the eigenvalues. The next question
is how to determine which eigenmodes (with large eigenvalues) are significant, i.e.,
which are free from noise.

Because in our case T is odd, we expand the normalized log-return w̃α as

w̃α(t) =
2√
T

(T−1)/2∑
k=1

w(F)
α (k) e−i

2π
T
kt, (17)
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in a way similar to that in Eq. (7). Substituting this into Eq. (10), we find that

C̃αβ :=
4

T

(T−1)/2∑
k=1

w(F)
α (k)w

(F)
β (k)∗ =

4

T

(T−1)/2∑
k=1

∣∣∣w(F)
α (k)w

(F)
β (k)∗

∣∣∣ ei(δα(k)−δβ(k)),
(18)

where δα(k) is the phase of w
(F)
α (k). Thus when there is only one Fourier-component

in either w̃α(t) or w̃β(t), the phase of the complex correlation coefficient C̃αβ is
equal to T/(2πk) times the amount of delay of the time series w̃α(t) relative to
w̃β(t) (in that Fourier mode). If there are multiple Fourier components, the phase
of the complex correlation coefficient C̃αβ is a weighted (non-linear) average of the
time-delay as in Eq. (18). When T is even, a similar relation holds.

C. Rotational Random Shuffling (RRS) method

As explained in detail in Iyetomi et al. (2011), several methods can be used to
establish which eigenmodes are important when extracting significant information
from related time series. Random matrix theory (RMT) results for the spectrum of
iid (independent, identically distributed) time series (Marčenko and Pastur (1967))
clearly indicate that a time series that is truly random induces a nontrivial spectrum
of eigenvalues. The RMT method is not suitable for our purpose, however, (i) because
there are many autocorrelations in each of the time series analyzed and (ii) because 12
European countries (#2 through #11 in Table 1) adopted the Euro in Janunary 1999
and their currency time series is thus identical by definition. Because the drachma
was closely related to the Euro before Greece (#12 in Table 1) adopted the Euro in
2001, its currency time series are very close to those of the other European countries.
Because of these characteristics in our data, there are eleven zero eigenvalues and
one eigenvalue close to zero, and there are a number of artificially large eigenvalues
due to the constraint in Eq. (13).

We thus use the RRS simulation proposed in Arai and Iyetomi (2013), not RMT,
to extract a meaningful spectrum of significant eigenvalues. In this simulation we
first randomly rotate each time series (with the currencies of 11 European countries
from Austria to Greece in Table 1) as

w̃α(t)→ w̃α(Mod(t− τα, T ) + 1), (19)

where

τα =

{
0, for α = 50, · · · 60,

(pseudo-)random integer ∈ [0, N ], otherwise.
(20)

We then obtain eigenvalues λ(n) from the rotated time series. In this way we keep the
autocorrelation of individual time series intact but cancel out co-movements between
the time series (except the trivial co-movements among the 11 European countries
that use the common Euro currency). Thus by comparing the resulting shuffled
eigenvalue spectrum with the original eigenvalue set we can identify the important,
non-random co-movements within the equity-currency coupled network.
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Figure 1. Significant eigenvalues identified by the CPCA with RRS results. The blue
dot denoted “n” shows the n-th largest CPCA eigenvalue (x-axis) and the CPCA eigenvalue rank
(y-axis). The gray small dots and the lighter gray area show the average RRS and the 99% range.
The six largest eigenvalues are clearly outside of their RRS ranges, and show significant relationships
in the interdependent network.

III. Interdependent Network Analysis

The eigenvalues obtained using CPCA (the large dots with numbers and the blue
line) and the RRS results (the small dots and the dashed line) are plotted in Fig. 1
and displayed in Table 4. The first six eigenvalues, #1–#6, lie outside the RRS 99%
error-range and thus are clearly identifiable. These six largest eigenvalues can be
used to explain the significant co-movements in the system. For periods 1–3, similar
analyses show that 5 CPCA eigenvectors are significant (see Appendix A, Fig. A1).

As discussed above, because CPCA is able to detect cross-correlations with lead-
lag relations in multivariate time series it should, in theory, be superior to a conven-
tional PCA-based analysis. Figure 2 shows that, in practice, CPCA is in fact superior
to PCA and that the cumulative sum of the CPCA eigenvalues is consistently larger
than that of the PCA eigenvalues.

A. Properties of the dominant eigenmodes

Using CPCA analysis we identify the dynamics of the eigenvector components of the
six largest eigenvalues, we plot the first three in Figs. 3-5, and observe the following;

Figure 3 shows the causal relationship between the stock markets and the curren-
cies in the 48 countries we analyze in this study during the entire 1999–2012 period.
The behavior of the eigenvector components corresponding to the largest eigenval-
ues indicates that currency performance usually leads or influences stock market

13



Table 4: List of CPCA Eigenvalues, their 99% RRS Range, and the mean
contribution rate

√
λ(n)/λ(1) as in Eq. (16). Although the seventh eigenmode

is outside the RRS range, we exclude this mode as insignificant as it is very close to
the boundary.

n λ(n) 99% RRS range
√
λ(n)/λ(1)

1 23.74 7.79 +0.17
−0.02 1

2 16.35 1.56 +0.54
−0.12 0.83

3 6.76 1.46 +0.22
−0.05 0.53

4 2.69 1.42 +0.09
−0.03 0.37

5 2.33 1.40 +0.05
−0.03 0.31

6 1.69 1.38 +0.03
−0.02 0.27

7 1.41 1.36 +0.03
−0.02 0.24

8 1.35 1.35 +0.02
−0.02 0.24

Figure 2. Comparison between the PCA and CPCA eigenvalues. In each case, the partial
sum of the eigenvalues,

∑K
n=1 λ

(n) (y-axis) versus K (x-axis), for PCA (blue and dashed) and for
CPCA (green and solid). The fact that the CPCA sums of eigenvalues are always above PCA-based
eigenvalue sums shows that CPCA is a stronger analytic tool in identifying important co-movements.
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performance in each of the countries.
The US financial market is clearly a leader or indicator of the future performance

of other global financial markets. The US equity markets, closely followed by German
and UK equity markets, are predictive of the performance of equity markets in
the other countries of our study. During the 1999–2002 mild crisis period the US,
Germany, and UK equity markets are also leaders in forecasting currency returns.

During the calm 2003–2006 period financial markets do not exhibit strong corre-
lations but currency markets do. Asian and South American currencies as well as the
US dollar are predictive of the performance of the Euro, British Pound, Canadian
Dollar, and Japanese Yen.

The severe 2007–2012 crisis period strongly resembles the entire 1999–2012 pe-
riod, indicating that this period strongly influences market trends and currency
market-equity market interdependencies throughout the period. Findings based on
largest-eigenvalue analysis agree with the importing firm (or country) theory, i.e.,
that an appreciation in a local currency lowers the price of imported goods to the firm
or country and increases profits realized in future payables to the firm or country—
the payables being denominated in foreign currency—and thus increases the equity
value of the importing firm or country. This in turn has a positive impact on equity
markets.

Figure 4 shows the behavior of the eigenvector components corresponding to the
second largest eigenvalue. Equity markets and currency markets exhibit an equal-
time (concurrent) negative correlation, and this is particulary strong in the US,
German, UK, and Canadian markets. There are also strong geographical positive
correlations in which separate clusters are formed by the European and Asian equity
markets. Note also that Asian equity markets are predictive of their corresponding
currency markets.

During the 1999–2002 mild crisis period currency markets are predictive of eq-
uity market performance. During the calm 2003–2006 period this predictive power
of currency markets is somewhat diminished. The severe 2007–2012 crisis period
exhibits behavior similar to the entire analyzed period, once again dominating the
equity-currency causal relationship that we observe for the entire 1999–2012 period.

We see that positive performances in the US, UK, German, and Canadan financial
markets are frequently linked to a simultaneous depreciation of the nation’s currency.
Although we would expect a local currency to be in higher demand when an equity
market increases and thus to appreciate, increases in the equity market can also
be driven by domestic (not international) investors. Other factors can also affect
equity and currency markets, including quantitative easing, inflation, and fluctuating
interest rates. Coupling a weaker currency with a strong equity market is a tactic
advocated by the trade-dominant theory in which a government protects its currency
by artificially depreciating it in order to boost exports and maintain stability in the
foreign exchange market.

The results for Asia and South America indicate that when the performance of
a country’s financial markets is positive, the country’s currency appreciates (with
a time lag) because the desirable investment climate has increased demand for the
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currency by investors following a balanced portfolio strategy Pan et al. (2007).
Figure 5 shows the third eigenvector components. There are two large clusters,

one containing most of the European currencies and the other the Asian, South
American, and Middle Eastern currencies, largely dominated by the US dollar. Note
that here the correlation among stock market indices is almost non-existent, and that
the causal relationships for the entire period and the three subperiods are similar.
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(a) Entire period (1999-2012) (b) Period 1 (1999-2002)

(c) Period 2 (2003-2006) (d) Period 3 (2007-2012)

Figure 3. The 1st eigenvector (whose eigenvalue is the largest) components on a com-
plex plane. The flags without the gray background represent the equity markets, while the dark
gray hexagons behind the flags represent the currencies as shown in Table 1. The nodes with ab-
solute value larger than 0.04 (which is indicated with a dashed circle) are grouped so that nodes
with phase gap greater than 0.2 [rad] are classified to separate groups. Plot (a) for the entire period
shows that currencies lead by the US dollar precede the global stock markets, among which the US,
German and Canadian markets are leaders of other countries’ equity markets. While these features
are also seen in the sever crisis period (Period 3), during other calmer periods, we observe lower
correlation between stock markets.
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(a) Entire period (1999-2012) (b) Period 1 (1999-2002)

(c) Period 2 (2003-2006) (d) Period 3 (2007-2012)

Figure 4. The components of the 2nd eigenvector (corresponding to the second largest
eigenvalue λ(2)), multiplied (scaled) by the ratio of the corresponding mode-signals,

√
λ(2)/λ(1)

reflecting the fact that the strength of the contribution of the n-th eigenmode to the time series is
proportional to the

√
λ(n) (see Eq. (16)). For the entire period, the currency markets are distributed

to the left of the origin, mainly close the negative real axis, while equity markets are along the
positive real axis and also in the first quadrant, indicating negative equal-time correlation between
the equity and foreign exchange markets. Again, these features are almost the same for Period 3,
the severe crisis period, and differs in other periods.
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(a) Entire period (1999-2012) (b) Period 1 (1999-2002)

(c) Period 2 (2003-2006) (d) Period 3 (2007-2012)

Figure 5. The 3rd eigenvector components, multiplied by
√
λ(3)/λ(1). We observe two

clusters, one of consisting of European currencies, and the other being dominated by the US dollar
and Asian, South American and Middle Eastern currencies. The two clusters have negative equal-
time correlation. Curiously, this behavior is universal, i.e., is common for all the periods.
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Figure 6. The 6th eigenvector components, multiplied by
√
λ(6)/λ(1), with names for the

nodes that have large absolute values for the entire period. We observe that this eigenmode has the
largest contribution of Iceland’s stock market, followed by the Icelandic Krona. Closely following
Iceland, are Polish and Russian stock markets with positive correlation and oil-stocks with negative
correlation.

B. Insights from smaller significant eigenmodes

In the previous section we examined the dominant relationships between stock mar-
kets and currencies within the first, second, and third eigenvectors. In our network
analysis, however, we have identified a total of six significant eigenvalues. The last
column of Table 4 shows that the smaller eigenvalues (4–6) contribute much less
(approximately 30% of the first eigenmode) to explaining currency-equity network
dynamics. Thus on average the fourth, fifth, and six eigenmodes are much less
important than the first three.

Note the proximity of the fourth and fifth eigenvalues, which means that these
eigenmodes are approximately degenerate and that any linear combination of these
two eigenvectors are close to being one eigenvector. Thus a separate examination of
the fourth and fifth eigenvectors may produce no useful results.

Figure 6 shows the sixth eigenvector components that dominate the dynamics of
the stock and foreign exchange market behavior, including the Icelandic Krona and
the Icelandic, Polish, and Russian stock markets on one side and the Middle Eastern
stock markets on the other.

Figure 6 also shows that on October 13, 2008, the day when the Icelandic financial
crisis hit, this sixth eigenmode has a stronger influence than even the first eigenmode.
Figure 7(b) shows that the log-return of the Icelandic stock market (the green line
with the shaded gray area) dips sharply. On this day the Icelandic stock market
lost over 90% of its market capitalization and contributed to the collapse of all three
of Iceland’s major financial institutions, creating unprecedented social unrest and
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initiating a major economic and political crisis. According to The Economist of
December 11, 2008, relative to the size of its economy Iceland’s collapse was the
largest in economic history (The Economist (2008)).

This demonstrates the strength of our CPCA and RRS based analysis and its
sensitivity to such world events as the Icelandic financial crisis. Although it was
localized in time and occurred in only a couple of time series out of 96, our analysis
did not exclude this occurrence as noise and was able to identify this Icelandic stock
market event as a signal of importance in the sixth eigenmode.
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(a)

(b)

Figure 7. Log-returns and mode-signals of the 6th eigenvector selected components (a)
Absolute values of the mode-signals for the eigenmodes 1 to 6 from September 1st to December
1st of 2008 (The ticks for the x-axis are given only for Mondays). The red dots connected with
red dash-dot lines show that the 6th eigenmode, which is evidently significant on October 13th,
exceeds the contribution of the 1st eigenmode. As we saw in Fig. 6, the 6th eigenmode is singular
in the sense that while its average contribution to the whole set of the time series is small (as√
λ(6)/λ(1) ' 0.24 in Table 4), it has a limited number of nodes with large absolute values lead by

Iceland’s stock market and the Icelandic Krona. In this plot we observe that this 6th eigenmode
has large contribution in the time-signal at the time of Iceland’s financial crisis, even exceeding that
of the first eigenmode. (b) Behavior of the log-returns of the time series that have large absolute
values in the 6th eigenvector. This plots shows that in fact the actual time series of the dominant
nodes in the 6th eigenmode has significant signal at the Iceland’s banking crisis, which is consistent
with the large mode-signal observed above.
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IV. Community Analysis

An alternative way of studying the time-averaged aspects in the collective behaviors
of the financial constituents is to construct a network based on our CPCA analysis
and explore the formation of distinct network communities. For this purpose, we
study the filtered complex correlation coefficients,

C̃
(Ns)
αβ =

Ns∑
n=1

λ(n)V (n)
α V

(n)†
β = rαβ e

iθαβ , (21)

where C̃
(Ns)
αβ is a correlation coefficient obtained by retaining only the Ns (Ns = 6

for the entire period and period three and Ns = 5 for periods one and two domi-
nant eigenvalues and their associated eigenvectors in the spectral decomposition of
Eq. (14), while rαβ and θαβ are the magnitude and phase of the correlation coefficient,
respectively.

We consider the correlation matrix C̃(Ns) as an adjacency matrix, and construct a
network of the financial nodes linked to each other with the corresponding correlation
coefficients as (complex) weights.

The network thus constructed is in principle a complete graph in which all pairs
of nodes are connected. However the coupling strength between nodes α and β varies
with their associated magnitude rαβ ranging from 0 to 1. Note that the linkage has
direction depending on the lead-lag relation between the two nodes: β (α) leads α
(β) if θαβ takes a positive (negative) value. Here we define the directed links of each
pair to be between the leader and the follower. The in-degree kinα and the out-degree
koutα of node α are hence calculated as

koutα =
∑

β(θαβ<0)

rαβ . (22)

kinα =
∑

β(θαβ>0)

rαβ , (23)

By calculating
∆kα = koutα − kinα , (24)

we can single out four typical cases for nodes with different lead-lag relations,
(i) koutα � kinα , (ii) koutα � kinα (see the first and second half of Table 5 respectively),
(iii) koutα ' kinα 6' 0, and (iv) koutα ' kinα ' 0 (see Table 6). The stock markets and
currencies satisfying condition (i) lead the world economy. Those satisfying condition
(ii) follow the leaders. Those satisfying condition (iii) are sometimes leaders and
sometimes followers. Those satisfying condition (iv) are nodes that are for the most
part isolated from the rest of the world.

Table 5 shows that the US and the German stock markets and the Mexican
Peso and the Australian Dollar are the strongest leaders in the stock market-foreign
exchange coupled network during the 1999–2012 period. Note that the Mexican Peso
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Table 5: Top 10 and bottom 10 nodes by kout − kin for the entire period
(1999-2012). Note that node indices larger than 48 are for currencies; for example,
node index 74 is the currency for Mexico, or country #26 (= 74− 48) in Table 1.

Node
Index

Marker Node Name kout kin kout−kin

24 USA 22.6 2.0 20.6
74 Mexican Peso 22.7 3.2 19.5
6 Germany 20.6 4.8 15.8

89 Australian Dollar 22.3 7.1 15.2
73 Canadian Dollar 21.8 6.8 15.0
75 Brazilian Real 17.4 3.3 14.1
92 Saudi Riyal 18.5 4.5 14.0
93 South African Rand 19.2 5.3 13.8
1 UK 20.7 6.9 13.8

26 Mexico 18.2 4.5 13.6

37 Malaysia 1.4 12.7 −11.4
41 Australia 4.4 16.5 −12.2
61 Maltese Lira–Euro 4.6 17.2 −12.6
35 Japan 3.0 15.9 −12.8
39 Philippines 1.2 14.1 −12.8
19 Czech 5.0 18.1 −13.2
63 Norwegian Krone 6.9 22.4 −15.5
60 Greek Drachma–Euro 6.3 22.6 −16.3
62 Slovak Koruna–Euro 4.8 22.3 −17.5
2 Austria 4.5 22.5 −17.9

co-moves closer to the US market than the US dollar because during this entire period
the Mexican Peso and the US stock market are peripheral to their communities, while
the US dollar is a core node of the community to which the Mexican Peso belongs. In
period 3, the Mexican Peso and the US market are identified as members of the same
community. During this period the Euro and some of the other European currencies
are the ones most influenced by the rest of the global stock markets and currencies.

Table 6 shows that the extent to which the Italian, Dutch, and Finish stock
markets are influenced by other markets and currencies are similar to the extent to
which they influence other stock markets and currencies. The Slovakian, Indian, and
South Korean markets are the most isolated from the rest of the world, and neither
significantly affect other markets nor are influenced by them. For a more elaborate
listing of leaders and followers in the coupled forex-stock market network for the
entire period (1999–2012) and the three subperiods (1999–2002), (2003–2006), and
(2007–2012), see Vodenska et al. (2014).

During the 1999–2002 and 2003–2006 periods the US and German stock markets
exhibit the largest ∆k values and lead the world economy. During the 2007–2012
period, however, they are replaced by the currencies of such developing countries as
Mexico, South Africa, and Brazil. On the other hand, during the 1999–2002 and
2003–2006 periods the European currencies are followers that exhibit large negative
∆k values, the most affected during 1999–2002 being the Greek Drachma (prior to
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Table 6: Stock markets and currencies with the lowest absolute differences∣∣kout − kin∣∣ for the entire period (1999-2012). We have ordered the components
in descending order of (kout +kin) to show the relative position of stock markets and
currencies in the coupled network.

Node
Index

Marker Country kout kin kout−kin kout+kin

8 Italy 13.6 13.7 −0.1 27.3
9 Netherlands 14.5 12.5 2.1 27.0
4 Finland 13.0 13.5 −0.5 26.5

66 Swiss Franc 12.2 11.2 1.0 23.4
85 Malaysian Ringgit 12.9 10.4 2.5 23.3
77 Chilean Peso 12.0 9.3 2.7 21.3
80 Indian Rupee 10.3 11.1 −0.8 21.3
28 Argentina 9.6 9.7 −0.1 19.4
87 Philippines Peso 10.3 8.9 1.5 19.2
86 Thai Baht 9.2 8.9 0.3 18.1
42 Israel 9.9 7.7 2.2 17.7
82 Indonesian Rupiah 5.6 7.9 −2.3 13.5
47 Qatar 2.5 5.5 −3.0 7.9
33 Sri Lanka 0.6 4.2 −3.6 4.8
43 Pakistan 0.5 3.4 −2.9 4.0
31 Venezuela 2.2 1.4 0.7 3.6
13 Malta 0.4 2.7 −2.4 3.1
36 South Korea 2.3 0.2 2.1 2.6
32 India 0.8 1.4 −0.6 2.2
14 Slovakia 0.7 0.9 −0.2 1.6
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the adoption of the Euro in 2001), the Hungarian Forint, and the Czech Republic
Koruna, and the most affected during 2003–2006 the Slovak Koruna (prior to the
adoption of the Euro in 2009), the Norwegian krone, and the Swedish Krona. During
the 2007–2012 period stock markets generally follow currency markets, with the
stock markets of Austria, Philippines, and Hungary exhibiting the largest negative
∆k values.

To further understand this synchronization in economic relations, we impose the
following condition on each pair of nodes α and β we want to connect:

|θαβ| < θc . (25)

By proposing that the weight of the link between the nodes be given by the magnitude
rαβ we are able to construct a synchronization network in which nodes moving in
phase are linked to each other.

A. Community structure

Community detection, the extraction of of nodes tightly connected as communi-
ties, is widely used to identify clustering structures in complex networks. Here a
community is a collection of co-moving nodes. Setting θc/π = 0.1 in Eq. (25), we
obtain the synchronization networks in the entire period and in the three subperi-
ods. Maximizing the modularity and identifying the network communities, we find
that the network has a meaningful community structure in each period with modu-
larity values of 0.415 (1999–2012), 0.516 (1999–2002), 0.556 (2003–2006), and 0.348
(2007–2012). In practice, modularity values exceeding approximately 0.3 indicate
that community decomposition is significant (Newman and Girvan (2004)). Details
of the community detection algorithm are described in Appendix C, including the
sensitivity of the community structure to different cutoff values for θc.

We can clearly see the community structure in Table 7 and Fig. 8. In the following
sections we will denote the community #n in Table 7 as Cn.

Note that the community structure of the stock market and foreign exchange
coupled network is relatively stable over both the entire period and the three sub-
periods, i.e., the 1999–2002 (mild crisis), 2003–2006 (calm period), and 2007–2012
(severe crisis) periods. We thus classify the financial constituents into four dominant
communities:

1. The stock market community C1, dominated by Europe, South America, the
USA, and Canada as major categories that always appear in this community;

2. The currencies-only community C2, dominated by Europe and Canada;

3. The currency community C3, dominated by Russia, the USA, South America,
Asia, and the Middle East; and

4. The stock market community C4, dominated by Asia (including Japan) and
the Middle East.
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Table 7: Results of the community detection for the entire period (1999-
2012) and in the three characteristic periods (period 1: 1999-2002, period
2: 2003-2006, and period 3: 2007-2012). The stock markets and currencies
of 48 countries are decomposed into four co-moving communities, designated by
numbers (“IN” means an independent node), in each period.
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Figure 8. Geographical distribution of the community structure for the entire period
given in Table 7 including the communities dominated by stock markets with red and orange
colors and communities dominated by mainly currencies with blue and green colors

Table 7 and Fig. 8 show that almost all of the countries of North and South
America belong to one stock-market dominated community, and that the Middle
East, Asia and Australia belong to another stock-market dominated community. In
contrast, there is one currency community that encompasses the US dollar, a number
of Latin American currencies, the Middle East, Russia, India, and several smaller
Asian countries, and another currency community that encompasses the Canadian
dollar, the Brazilian Real, the Australian dollar, the Euro, and the South African
Rand.

We depict the community detection results as an adjacency matrix on the left-
hand side and a graphical representation of the networks on the right-hand side of
Figs. 9-12. The components, given by rαβ, of the adjacency matrix take values be-
tween 0 (no synchronization) and 1 (perfect synchronization). The adjacency matrix
is visualized using a color code based on a temperature map scheme in which the
color changes continuously from blue (rαβ = 0) to red (rαβ = 1) through white
(rαβ = 0.5). We give a detailed account of how we obtained the network layouts
in Appendix C. The community structure does not change significantly if the net-
work is constructed with a larger or smaller cutoff for the phase differences, e.g.,
θc/π = 0.15 or 0.05 (see Appendix C). However the nature of the communities and
the interrelationships between them display different characteristics from period to
period.

The visualized adjacency matrices indicate that community C1 increases its syn-
chronization between periods 1 and 3, especially among the European stock markets.
This is confirmed by calculating the average correlation coefficients within the com-
munities as shown in Table 8, where we observe an increase from 0.25 in period 1
to 0.57 in period 3. The nodes in C2, consisting mainly of the European curren-
cies, are most tightly coupled in period 2. The average correlation coefficient for C2
increases from 0.58 to 0.72 from period 1 to period 2, and consequently decreases
to 0.48 in period 3. Community C3, led by the US dollar, holds approximately the
same synchronization strength throughout the entire period with an average corre-
lation coefficient of 0.35. The community C4, dominated by an Asian stock markets
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Table 8: Magnitude of the complex correlation coefficients averaged over
all pairs of nodes within each of the four communities, C1, C2, C3, and
C4, and across the communities for the entire period (1999-2012) and the
three sub-periods, period 1 (1999-2002), period 2 (2003-2006), and period
3 (2007-2012). These results measure how tightly the communities are synchro-
nized and to what extent residual coupling still remains across the communities.

Community Pair Entire Period Period 1 Period 2 Period 3

C1-C1 0.406 0.246 0.307 0.566
C2-C2 0.621 0.576 0.724 0.482
C3-C3 0.265 0.351 0.371 0.347
C4-C4 0.166 0.127 0.101 0.312

C1-C2 0.094 0.005 0.007 0.158
C1-C3 0.053 0.051 0.039 0.051
C1-C4 0.021 0.034 0.024 0.021
C2-C3 0.030 0.017 0.012 0.022
C2-C4 0.003 0.019 0.010 0.000
C3-C4 0.018 0.038 0.016 0.009

group, is well established with an average correlation coefficient increasing from 0.10
in period 2 to 0.31 in period.

Both the adjacency matrices and the network layouts show that C2 is independent
in periods 1 and 2 but suddenly changes its characteristics in period 3 when it is
strongly connected to C1. On the other hand, C3 is closely related to C1 in the
first two periods, and exhibits a stronger connection with C2 in the last period. The
independence of community C4 from the rest of the network steadily increases. These
findings receive confirmation in the results for the average correlation coefficients
across the communities listed in Table 8.

We note that the US stock market and the yen occupy relatively peripheral
positions in the financial network throughout the entire period. We also find that
the Indian and Korean stock markets do not belong to C4 and remain largely isolated
from the main body of the network irrespective of time period.

Table 7 shows how the community structure of the stock and foreign exchange
co-moving synchronization network is approximately stable over the entire period
and during the three sub-periods, i.e., Period 1, 1999–2002 (mild crisis), Period 2,
2003–2006 (relatively calm), and Period 3, 2007–2012 (severe crisis).

B. Temporal relationships between communities

According to the definition of C̃αβ, the value of θαβ is the lead phase angle of β
against α. We have already identified four communities arising from the coherent
motion of nodes in the equity-currency network. We thus expect that some of them
may have a definite lead-lag relation to each other.
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Figure 9. Community structure for the financial network for the entire period (1999-
2012), constructed with θc/π = 0.1. The left panel shows the adjacency matrix sorted according
to the classification into four communities of synchronizing nodes: the 1st community (C1) is a
group of stock markets mainly in European and American countries; the 2nd community (C2), a
euro-based currency group; the 3rd community (C3), a group of currencies represented by the U.S.
dollar; the 4th community (C4), an Asian stock market group surrounding Japan. The right panel
shows an optimized layout of the network in an spring-electrical model, with boundaries separating
the communities.
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Figure 10. Same as Fig. 9, for period 1 (1999-2002). The network consists of four communities
as it does in the entire period. The major equity community, C1, has the lowest strength of
synchronization in this period while one of the two currency communities, C2, is relatively isolated
from the rest of the network; in contrast, the other currency community, C3, is closely related to
C1; the Asian equity community C4 is not so strongly connected.

Figure 11. Same as Fig. 9, for period 2 (2003-2006). The network is decomposed into
four communities to the largest extent in this period; we especially observe that the formation of
community C2 is very tight.
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Figure 12. Same as Fig. 9, for period 3 (2007-2012). The community structure observed
here is quite similar to that obtained in the entire period. This indicates that the global crisis
brings a profound influence on the global financial network. Community C1 has the highest degree
of synchronization in this period; C2 is now strongly connected to C1 while C3 is further apart from
C1 compared to previous sub-periods; C4 has been well established as a group of synchronizing
nodes.

Figure 13 shows the correlation coefficients calculated between different commu-
nities for the entire period on a complex plane. Note that the distribution of their
phases is significantly polarized for every pair of communities. To quantify such
a lead-lag relation between Cm and Cn, we compute the median for a weighted
distribution of the phase differences between the two communities. We define the
distribution ρmn(x) in terms of Dirac’s δ function δ(x) as

ρmn(x) =
∑

α∈Cm, β∈Cn
rαβ δ(x− θαβ)

/ ∑
α∈Cm, β∈Cn

rαβ , (26)

where the correlation strength is understood in terms of weight. The results are
0.053 for C1-C2, −0.010 for C1-C3, −0.205 for C1-C4, 0.276 for C2-C3, −0.318 for
C2-C4, and −0.045 for C3-C4 in units of 1/π.

Figure 14 shows that community 2 usually leads community 1 which in turn leads
community 4, and that community 3 does not have a stable position with respect to
the other communities. The distances between communities represent the average
phase differences θαβ weighted by the magnitudes rαβ.

We begin by determining the triangular relationship among C1, C2, and C4 by
minimizing the geometric discrepancy involved in their phase differences. We set the
discrepancy D as

D = (Θ− θ12)2 + (Φ− θ14)2 + (Ψ− θ24)2, (27)
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Figure 13. Scatter plots of the complex correlation coefficients across the four commu-
nities on the complex plane: (a) for C1-C2, (b) for C1-C3, (c) for C1-C4, (d) for C2-C3, (e) for
C2-C4, and (f) for C3-C4. If the correlation coefficients between Cm and Cn have a positive median
in regards to the distribution of their phases weighted by the associated magnitudes, we infer that
Cn leads Cm; if the median is negative, then we infer that Cm leads Cn

where Θ, Φ, and Ψ are variables corresponding to θ12, θ14, and θ24 to be optimized
with constraint Θ − Φ + Ψ = 0. The geometrically consistent phase differences
thus obtained are compatible with the original ones with absolute errors of less than
0.02π (3.6 degrees). This indicates the three communities are interrelated with a
solid causal relation given by C2 → C1 → C4. Note that the relation holds over
both the entire period and in period 3, i.e., the community structure average for the
entire period is very similar to period 3.

Although the C1-C2-C4 triangle is well established, the lead-lag relations de-
termined by the pairs of C1-C3, C2-C3, and C3-C4 give C3 three positions that
significantly differ from each other (see Fig. 14). The phase difference between two
communities only has meaning on average. This is also the case for the notion of
“community of synchronizing nodes.” If the three lead-lag relations indicated in the
C1-C3, C2-C3, C3-C4 diagrams are magnified alternatively in time, the multiphase
behavior of C3 toward the triangular relationship among C1, C2, and C4 appears.

V. Conclusion

In this paper we study the interactions between equity and foreign exchange markets
for 48 countries between 1999 and 2012. We use insights from statistical physics and
network science to model relationships and influences between the foreign exchange
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Figure 14. Lead-lag diagram for the four communities inferred from the results in
Fig. 13. The three communities, C1, C2, and C4, are steadily aligned in the time direction (C2
leading C1 and C4), while C3 has three possible positions depending on which binary correlation is
emphasized, C1-C3, C2-C3, or C3-C4.

and stock markets as two interrelated networks that have corresponding nodes and bi-
directional dependencies. We use Complex Principal Component Analysis (CPCA)
approach to build an interdependent network model for studying the dynamics of
this coupled financial system. We construct complex time series by using the Hilbert
transformation of the time series for the imaginary component. Using Rotational
Random Shuffling (RRS) we find a relatively small number of significant eigenmodes
(5 or 6 our of 96 total eigenmodes) and investigate the results obtained by them. We
closely examine the eigenvector components corresponding to the three largest eigen-
values of the complex correlation matrix and determine the importance of smaller
but significant eigenmodes.

For the entire period between 1999–2012, we observe that in general currency
appreciations lead or contribute to positive equity market returns. We also find that
the US equity market is an indicator of the future performance of other global stock
markets. We also study three distinct sub-periods, the “mild crisis” (1999-2002),
“calm” (2003-2006), and “severe crisis” (2007-2012) periods, and find that under
different macroeconomic conditions the interactions between the foreign exchange
and stock markets vary. We observe that during the mild crisis (1999-2002) sub-
period, global equity markets were most able to forecast currency returns. During
the calm (2003-2006) sub-period, stock markets exhibited weaker correlations than
the foreign exchange markets, which appeared to be more correlated. During the
severe crisis (2007-2012) sub-period the interactions between the forex and equity
markets were very strong, underlining this period’s strong influence on the overall
relationship between currency and stock markets.

We study the intra-relations (within one market) as well as inter-relations (be-
tween the two markets) for the forex and equity networks and find distinct clustering
in the network that persists for the entire period, which is characterized by behavior
that is similiar to that in the three distinct sub-periods. We identify four major
communities that are approximately stable over time and do not change when the
cutoff of the phase differences is changed. The first community (C1) is comprised of
equity markets dominated by Europe, the USA, South America, and Canada, the
second (C2) of the Canadian dollar and mainly European currencies including the
Euro, the third (C3) of the Russian ruble, the US dollar, and selected South Amer-
ican, Asian, and Middle Eastern currencies, and the fourth (C4) of Asian equity

34



markets, including Japan, and the Middle East. We study the lead-lag relationships
between the four communities and find a solid causal relationship for C2 leading
C1 and C4, and C1 leading C4, while C3’s position in the lead-lag diagram is not
settled, but takes three different positions that significantly differ from each another.
The network-based approach to model the dynamic structure of equity and foreign
exchange markets allows us to capture the topology and interdependence of the two
global markets and to find their lead-lag relationships for different macroeconomic
environments.

The main contribution of our model is that CPCA combined with RRS offers
superior approach for discovering multi-dimensional intrinsic relations within the
global financial network of currencies and financial markets. Our approach offers
three methodological advantages compared to previous studies: (i) detecting beyond-
pairwise lead-lag relationships compared to traditional Granger causality and cross-
correlation analysis; (ii) extracting dynamical correlations simultaneously; and (iii)
using RRS to provide a sound null hypothesis for identifying statistically significant
correlations without making any distribution assumptions of the empirical financial
time series that we study.

Another important aspect of our study is the global analysis of “economic re-
gions” rather than “geographical regions.” These economic regions we can see emerge
according to the composition of our network communities. For example, American
stock markets belong to the same community (C1), but American currencies belong
to the same community (C3) as Asian currencies. The Japanese Yen does not belong
to the community dominated by Asian currencies but to the community dominated
by European currencies (C2), where we also find the Australian Dollar and the South
African Rand. Thus we can emphasize that an “economic region” is in fact quite dif-
ferent from a “geographic region” and that studies limited to geographic regions will
not detect the interrelationships among truly global financial and economic trends.

This model could be expanded beyond our study of the interdependencies be-
tween the foreign exchange market and the stock market to include global fixed
income, credit default swaps, interest rates, options, futures, and other financial
markets and instruments. We suggest that this methodology could be useful in the
development of a tool for real-time monitoring of the dynamics of global financial
markets, one that could enable policy makers and regulators to daily monitor sys-
temic risk fluctuations in the global financial system.
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A. Detailed study of the CPCA eigensystem for each period

In this appendix, we give the detailed account of the CPCA eigenvalues and eigen-
vectors for each of the three periods.

The comparisons of the eigenvalues and the RRS eigenvalue distribution are given
in Fig.A1 for periods 1, 2 and 3 from top to the bottom in the manner of Fig.1. From
these, we learn that top 5 eigenvalues for periods 1 and 2, and top 6 eigenvalues for
period 3 are clearly outside of the range of the RRS distribution and are significant.

These eigenvectors of the three periods may be decomposed in terms of the
eigenvectors for the whole period as follows:

V (n)
p =

N∑
m=1

c(n,m)
p V (m), (A1)

where V
(n)
p is the n-th eigenvector for the period p (= 1, 2, 3). Since V and Vp’s

Figure A1. Significant eigenvalues identified by the CPCA with RRS results for periods
1-3. The blue dot denoted ’n’ shows the n-th largest CPCA eigenvalue (x-axis) and the CPCA
eigenvalue rank (y-axis). The gray small dots and the lighter gray area show the average RRS
and the 99% range. The largest 5 eigenvalues in periods 1 and 2, and the largest 6 eigenvalues for
period 3 are clearly outside of each of their RRS ranges. and show significant relationships in the
interdependent network.
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span complete set, the decomposition coefficients c
(n,m)
p satisfies

N∑
m=1

∣∣∣c(n,m)
p

∣∣∣2 = 1. (A2)

The coefficients
∣∣∣c(n,m)
p

∣∣∣2 are given in Fig. A2, with m on the x-axis and n in de-

scending order from top to bottom in each plot (denoted as “No.n”). We observe
the following in these plots:

1. Top 5 (for periods 1 and 2) and 6 (for period 3) eigenvectors are well-approximated
by linear-combinations of the top 6 (significant) eigenvectors of the whole pe-
riod. This confirms that 6 significant eigenmodes of the whole period are
sufficient for looking into specific periods, validating mode-signal analysis by
the top 6 eigenmodes, described in Appendix B.

2. Among all three periods, the eigenvector structure of period 3 most similar to
the structure of the entire period: In the period 3, No.1 eigenvector is mostly
represented by the top eigenvector of the entire period, No.2 and No.3 are mix-
tures of the second and the third eigenvectors of the entire period, while No. 4,
5, and 6 are mostly based on their corresponding counterpart of the entire
period. This confirms the fact that period 3, representing the severe crisis pe-
riod and exhibiting significant co-motion within the synchronization network,
dominates the entire period and plays essential part in the determination of
the eigenmodes of the entire period.
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Figure A2. Decomposition of the eigenvectors in each period in terms of eigenvectors
of the entire period.
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B. Visualization of Significant and Complexified Time-series

In our analysis of complex correlation matrix, the complexified time-series are ex-
panded in terms of the eigenvectors for the complex correlation matrix, namely in
the expansion given by Eq. (15). We found by the RRS method that the number of
significant eigenvalues and corresponding eigenvectors can be estimated to be 6 for
the entire period.

We are able to select those first Ns = 6 significant terms in the full expansion of
N terms:

w̃(Ns)
α (t) :=

Ns∑
n=1

a(n)(t)V (n)
α , (B1)

regarding the other terms as “noise”. Fig. B1 depicts the absolute values of a(n)(t)
for n = 1, 2, . . . , Ns = 6 (from top to bottom) during the entire period of time.

One can observe that on average, the first mode-signal corresponding to the
largest eigenvalue dominates over the other mode-signals. Recall the relation Eq.
(16) which states that the average of a(1) is greater than that of a(n) for n > 1,
because λ(1) > λ(n). The plots in Fig. B1 show that the first mode-signal dominates
the others, not only in an averaged sense but also for almost all time. Similar
observation holds for the other mode-signals in decreasing order of n. The striking
exception is the n = 6 mode-signal, which becomes as strong as the n = 1 at the
time of the Lehman Brothers crisis, as discussed in subsection IIB.

We can further convert from w̃α(t) to r̃α(t) by using Eq. (8) in the opposite way:

r̃(Ns)α (t) := 〈r̃α〉t + σα · w̃(Ns)
α (t) (B2)

so that we can construct the significant and complexified time-series by using those
6 mode-signals and corresponding eigenvectors.

The resulting time-series r̃
(Ns)
α (t) are significant co-movements that can be visu-

alized by a set of points, equities or currencies of α, on the complex plane at each
point of time t. We provide as a supplementary material a visualization for the
movements of those points from January 1999 to December 2012. Users can manip-
ulate the visualized co-movements of equities and currencies along the time-line to
see how significant co-movements change at epochs; mild crisis, calm period, severe
crisis, and particular dates of interest. See our web page in Vodenska et al. (2014).

How the points of equities and currencies are dispersed on the complex plane can
be quantified by a measure of dispersion at each time t:

D(t) :=

√∑
α

|r̃(Ns)α (t)|2 (B3)

The temporal change of D(t) is shown in Fig. B2. We can observe many bursts of
D(t) at different times, which signal significant changes at the respective periods.
If, in addition, a set of points in the complex plane has a radial line-up, such a set
of points implies a significant co-movements. It should be noted in Fig. B2 that
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Figure B1. Absolute values of the mode-signals a(n)(t) for n = 1, 2, . . . , Ns = 6 during the
entire period of time. Mode-signal a(n) dominates the others a(m) for m > n, not only in the
average sense (as expected from the relation in Eq. (16), that is satisfied by the mode-signals), but
also for all the periods. A striking exception is the n = 6 mode-signal, which becomes as strong as
the first, n = 1, mode-signal at the time of the Lehman Brothers crisis. See also subsection IIB.

the most striking dispersion occurs during the Lehman Brothers crisis in the third
quarter of 2008, which brought about a subsequent volatile period continuing into
the European sovereign debt crisis that followed.
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Figure B2. Dispersion D(t) of the equities and currencies, defined by Eq. (B3), calcu-

lated from the significant and complexified time-series, r̃
(Ns)
α (t). We observe many bursts

with significant signal changes at different time periods. If, in addition to the dispersion, a set of
points in the complex plane has a radial line-up, this implies significant co-movements. The most
striking dispersion corresponds to the Lehman Brothers crisis in the third quarter of 2008 followed
by a subsequent volatile period corresponding to the European sovereign debt crisis.
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C. Methodology used to detect network communities

We identify community structures of the financial networks by maximizing a quality
function known as modularity (Newman and Girvan (2004)). This is a prevailing
method to detect communities in complex networks (Fortunato (2010)). The mod-
ularity Q for an unweighted network with M links which is decomposed into L
communities is defined as

Q =
L∑
s=1

[
es
M
−
(
ds

2M

)2
]
, (C1)

where es and ds are the total number of internal links and the sum of degree of nodes
within community s, respectively. The value of L is also simultaneously determined
through the modularity maximization. The modularity measures the fraction of links
within the given communities of a network in reference to the expected fraction of the
intralinks if the network is randomized with the degree of each node preserved. For
the modularity of weighted networks such as those studied here, one may generalize
Eq. (C1) by replacing the unit weight of each link by its actual weight (Newman
(2004)); for instance, the degree of each node is the total sum of weights of its
connecting links. To carry out maximization of the modularity, in fact, we adopted
the fast unfolding method (Blondel et al. (2008)). Since this is a computational
method of stochastic nature, we repeat the procedure using different series of random
numbers to obtain 10,000 partitions and select the result with the largest modularity.

Visualization is another useful tool to illuminate structural properties of complex
networks. To have an optimized layout for each of our networks, we adopt a spring-
electrical model in which pairs of nodes with direct links are physically connected
with springs and any pairs of nodes repel each other through a repulsive Coulomb
force (Hu (2006)). The attractive force due to the spring keeps tightly connected
nodes close in a space. On the other hand, the repulsive Coulomb force tends to
distribute nodes uniformly over the available space and to prevent entanglement
of the network. The optimization for the network layouts were then obtained by
gradually cooling ”temperature” of the fictitious system to zero temperature through
molecular dynamics simulations (Frenkel and Smit 2002).

The choice of the cutoff angle θc to determine synchronizing nodes (markets and
currencies) needs careful study. Here we demonstrate to what extent the community
structure depends on θc in Figs. C1 and C2 corresponding to Fig. 9 for the entire
period, where the cutoff value one and a half times or half as large as that in Fig. 9
is adopted. The number of links drops from 4,644 for θc/π = 0.15 to 3,890 for
θc/π = 0.1 and to 2,616 for θc/π = 0.05. We see that the four community structure
as has been already identified is stable against such substantial change of θc. This
is also true for all of the results obtained with the varied cutoffs in the three partial
periods with two exceptions. In periods 1 and 2, the two stock market communities
are combined into one group at the largest value of θc. However, one can easily
identify the two sub-communities in the combined community. Therefore, we infer
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Figure C1. Community structure for θc = 0.05. Lowering θc by half decreases the number
of links from 3,890 to 2,616 and hence makes the network considerably sparser. However, the four
community structure resembling to that in Fig. 9 still survives.

that the construction of the synchronization network and its community structure is
robust with respect to the choice of the cutoff value θc.

43



Figure C2. Community structure for θc = 0.15. Raising θc by one and a half increases the
number of links from 3,890 to 4,644, leading to a network in which nodes are more tightly connected.
However, we still observe four communities organized in almost the same way as in Fig. 9.
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Marčenko, V. A., and L. A. Pastur, 1967, Distribution of eigenvalues for some sets
of random matrices, Mathematics of the USSR-Sbornik 1, 457–483.

47



Menzly, Lior, and Oguzhan Ozbas, 2010, Market segmentation and cross-
predictability of returns, The Journal of Finance 65, 1555–1580.

Morley, Bruce, 2002, Exchange rates and stock prices: implications for european
convergence, Journal of Policy Modeling 24, 523–526.

Newman, Mark EJ, 2004, Analysis of weighted networks, Physical Review E 70,
056131.

Newman, Mark EJ, and Michelle Girvan, 2004, Finding and evaluating community
structure in networks, Physical Review E 69, 026113.

Nieh, Chien-Chung, and Cheng-Few Lee, 2002, Dynamic relationship between stock
prices and exchange rates for g-7 countries, The Quarterly Review of Economics
and Finance 41, 477–490.

Ning, Cathy, 2010, Dependence structure between the equity market and the foreign
exchange market–a copula approach, Journal of International Money and Finance
29, 743–759.

Pan, Ming-Shiun, Robert Chi-Wing Fok, and Y Angela Liu, 2007, Dynamic link-
ages between exchange rates and stock prices: Evidence from east asian markets,
International Review of Economics & Finance 16, 503–520.

Patro, Dilip K, and Yangru Wu, 2004, Predictability of short-horizon returns in
international equity markets, Journal of Empirical Finance 11, 553–584.

Rapach, David E, Jack K Strauss, and Guofu Zhou, 2013, International stock return
predictability: what is the role of the united states?, The Journal of Finance 68,
1633–1662.

Rapach, David E, and Mark E Wohar, 2006, In-sample vs. out-of-sample tests of
stock return predictability in the context of data mining, Journal of Empirical
Finance 13, 231–247.

The Economist, 2008, Cracks in the crust, The Economist http://www.economist.

com/node/12762027.

Vodenska, I., H. Aoyama, Y. Fujiwara, Y. Iyetomi, and Y. Arai, 2014, Supple-
mentary information, http://www.econophysics.jp/download/vodenska_et_

al_2014/index.html.

Welch, Ivo, and Amit Goyal, 2008, A comprehensive look at the empirical perfor-
mance of equity premium prediction, Review of Financial Studies 21, 1455–1508.

Zhao, Hua, 2010, Dynamic relationship between exchange rate and stock price: Ev-
idence from china, Research in International Business and Finance 24, 103–112.

48

http://www.economist.com/node/12762027
http://www.economist.com/node/12762027
http://www.econophysics.jp/download/vodenska_et_al_2014/index.html
http://www.econophysics.jp/download/vodenska_et_al_2014/index.html

	Introduction
	Data and Methodology
	Hilbert transformation and the complexified time series
	Complex Correlation Matrix
	Rotational Random Shuffling (RRS) method

	Interdependent Network Analysis
	Properties of the dominant eigenmodes
	Insights from smaller significant eigenmodes

	Community Analysis
	Community structure
	Temporal relationships between communities

	Conclusion
	Detailed study of the CPCA eigensystem for each period
	Visualization of Significant and Complexified Time-series
	Methodology used to detect network communities

