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An ordinary differential equation (ODE) gives the mean dynamics that govern the con- 
vergence to self-confirming equilibria of self-referential systems under discounted least squares 
learning. Another ODE governs escape dynamics that recurrently propel away from a self- 
confirming equilibrium. In a model with a unique self-confirming equilibrium, the escape 
dynamics make the government discover too strong a version of the natural rate hypothesis. 
The escape route dynamics cause recurrent outcomes close to the Ramsey (commitment) 
inflation rate in a model with an adaptive government. 

"If an unlikely event occurs, it is very likely to occur in the most likely way." 
Michael Harrison 

1. INTRODUCTION 

Building on work by Sims (1988) and Chung (1990), Sargent (1999) showed that a gov- 
ernment that adaptively fits an approximating Phillips curve model will recurrently escape 
from the suboptimal time-consistent (or Nash) inflation rate and for many periods will set 
inflation near the optimal time-inconsistent outcome. However, later the government's 
view of the world changes in ways that induce it to make inflation gradually return to the 
time-consistent suboptimal outcome of Kydland and Prescott (1977). The time consistent 
outcome is a self-confirming equilibrium and a limit point of the system under least 
squares learning. The superior outcomes during recurrent escapes from the time-consistent 
outcome emerge because the government temporarily learns an approximate version of the 
natural rate hypothesis. These temporary escapes from the time-consistent outcome reflect 
a remarkable type of escape dynamics from a self-confirming equilibrium. These dynamics 
promote experimentation and are induced by unusual shock patterns that interact with the 
government's adaptive algorithm and its imperfect model. 

The escapes from Nash inflation lead to dramatic changes in the government's 
inflation policy as it temporarily overcomes its inflationary bias. Some simulated time 
paths of inflation for different specifications of the model are shown in Figure 1. Inflation 
starts and remains near the high time-consistent value for a while, is rapidly cut to zero, 
but then gradually approaches the time-consistent high value again. This paper explains 
the dynamic forces that drive these outcomes; the "mean dynamics" that govern the return 
to self-confirming equilibrium and the "escape dynamics" that expel the system away from 
the self-confirming equilibrium. 
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2 REVIEW OF ECONOMIC STUDIES 
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Simulated time paths of inflation for different specifications of the model 

Escape dynamics from self-confirming equilibria can occur in a variety of models with 
large agents who use adaptive algorithms to estimate approximating models.' For con- 
creteness, this paper focuses on the Phillips curve model studied by Sargent (1999). The 
model has the following features: (1) the monetary authority controls the inflation rate, 
apart from a random disturbance; (2) the true data generating mechanism embodies a 
version of the natural rate hypothesis in an expectational Phillips curve; (3) as in Kydland 
and Prescott (1977), a purposeful government dislikes inflation and unemployment and a 
private sector forecasts inflation optimally; but (4) the monetary policy makers do not 
know the true data generating mechanism and instead use a good fitting approximating 
model.2 The fundamentals in the economy are fixed, including the true data generating 
mechanism, preferences, and agents' methods for constructing behaviour rules. Changes in 
the government's beliefs about the Phillips curve, and how it approximates the natural rate 
hypothesis, drive the inflation rate. 

The self-confirming equilibrium concept is a natural one for analysing behaviour 
induced by an approximating model.3 In a self-confirming equilibrium, beliefs are correct 
about events that occur with positive probability in equilibrium. The approximating model 
is "wrong" only in describing events that occur with zero probability in equilibrium. 

1. See Williams (2001) and Bullard and Cho (2001) for some additional examples. 
2. Inspired by econometric work about approximating models by Sims (1972) and White (1982), we 

endow the monetary authority, not with the correct model, but with an approximating model that it nevertheless 
estimates with good econometric procedures. 

3. See Fudenberg and Levine (1993), Fudenberg and Kreps (1995), and Sargent (1999). 
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CHO, WILLIAMS & SARGENT ESCAPING NASH INFLATION 3 

Among the objects determined by a self-confirming equilibrium are the parameters of the 
government's approximating model. While the self-confirming equilibrium concept differs 
formally from a Nash (or time consistent) equilibrium,4 it turns out that the self-con- 
firming equilibrium outcomes are the time-consistent ones. Thus, the suboptimal time 
consistent outcome continues to be our benchmark. 

Like a Nash equilibrium, a self-confirming equilibrium restricts population objects 
(mathematical expectations, not sample moments). Our adaptive models are cast in terms 
of sample moments. We add adaptation by requiring the government to estimate its model 
from historical data in real time. We form an adaptive model by having the monetary 
authority adjust its behaviour rule in light of the latest model estimates. Thus, we attribute 
"anticipated utility" behaviour (see Kreps (1998)) to the monetary authority. Following 
Sims (1988), we study a "constant gain" estimation algorithm that discounts past obser- 
vations. Called a "tracking algorithm", it is useful when parameter drift is suspected (see 
e.g. Marcet and Nicolini (1997)). 

Results from the literature on least squares learning (e.g. Marcet and Sargent (1989a), 
Woodford (1990), Evans and Honkapohja (1998)) apply and take us part way, but only 
part way, to our goal of characterizing the dynamics of the adaptive system. That lit- 
erature shows how an ordinary differential equation called the "mean dynamics" describes 
the limiting behaviour of systems with least squares learning. The mean dynamics describe 
the (unconditionally) average path of the government's beliefs, in a sense that we shall 
describe precisely. For our model, the mean dynamics converge to the self-confirming 
equilibrium and the time consistent outcome. Thus, the mean dynamics do not account for 
the recurrent stabilizations in the simulations of Sims (1988), Chung (1990), and Sargent 
(1999). We show that these stabilizations are governed by another deterministic compo- 
nent of the dynamics, described by another ODE, the "escape" dynamics. They point 
away from the self-confirming equilibrium and toward the Ramsey (or optimal-under- 
commitment) equilibrium outcome. So two sorts of dynamics dominate the behaviour of 
the adaptive system. 

1. The mean dynamics come from an unconditional moment condition, the least 
squares normal equations. These dynamics drive the system toward a self- 
confirming equilibrium.5 

2. The escape route dynamics propel the system away from a self-confirming 
equilibrium. They emerge from the same least squares moment conditions, but 
they are conditioned on a particular "most likely" unusual event, defined in terms 
of the disturbance sequence. This most likely unusual event is endogenous. 

The escape route dynamics have a compelling behavioural interpretation. Within the 
confines of its approximate model, learning the natural rate hypothesis requires that the 
government generate a sufficiently wide range of inflation experiments. To learn even an 
imperfect version of the natural rate hypothesis, the government must experiment more 
than it does within a self-confirming equilibrium. The government is caught in an 
experimentation trap. The adaptive algorithm occasionally puts enough movement into 
the government's beliefs to produce informative experiments. 

4. It is defined in terms of different objects. 
5. But as Evans and Honkapohja (2001) point out, the route can be circuitous. In Figures 8 and 9, we 

indicate how for our model the mean dynamics point in the same direction as the escape dynamics along much of 
the escape route. 
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4 REVIEW OF ECONOMIC STUDIES 

1.1. Related literature 

Evans and Honkapohja (1993) investigated a model with multiple self-confirming equili- 
bria having different rates of inflation. When agents learn through a recursive least squares 
algorithm, outcomes converge to a self-confirming equilibrium that is stable under the 
learning algorithm. When agents use a fixed gain algorithm, Evans and Honkapohja 
(1993) demonstrated that the outcome oscillates among different locally stable self-con- 
firming equilibria. They suggested that such a model can explain wide fluctuations of 
market outcomes in response to small shocks. 

In models like Evans and Honkapohja (1993) and Kasa (1999), the time spent in a 
neighbourhood of a locally stable equilibrium and the escape path from its basin of 
attraction are determined by a large deviation property of the recursive learning algo- 
rithm. As the stochastic perturbation disappears, the outcome stays in a neighbourhood of 
a particular locally stable self-confirming equilibrium (exponentially) longer than the 
others. This observation provided Kandori, Mailath and Rob (1993) and Young (1993) 
with a way to select a unique equilibrium in evolutionary models with multiple locally 
stable Nash equilibria. 

An important difference from the preceding literature is that our model has a unique 
self-confirming equilibrium. Despite that, the dynamics of the model resemble those for 
models with multiple equilibria such as Evans and Honkapohja (1993). With multiple 
locally stable equilibria, outcomes escape from the basin of attraction of a locally stable 
outcome to the neighbourhood of another locally stable equilibrium. The fact that our 
model has a globally unique stable equilibrium creates an additional challenge for us, 
namely, to characterize the most likely direction of the escape from a neighbourhood of 
the unique self-confirming equilibrium. As we shall see, the most likely direction entails the 
government's learning a good, but not self-confirming, approximation to the natural rate 
hypothesis. 

1.2. Organization 

Section 2 describes the model in detail. Section 3 defines a self-confirming equilibrium. 
Section 4 describes a minimal modification of a self-confirming equilibrium formed by 
giving the government an adaptive algorithm for its beliefs. Section 5 uses results from 
the theory of large deviations developed in Williams (2001) to characterize convergence 
to and escape from a self-confirming equilibrium. Section 6 shows that numerical 
simulations of escape dynamics, like those in Sargent (1999), are well described by the 
numerically calculated theoretical escape paths. For the purpose of giving intuition 
about the escape dynamics, Section 7 specializes the shocks to be binomial, then adduces 
a transformed measure of the shocks that tells how particular endogenously determined 
unusual shock sequences drive the escape dynamics. Section 8 concludes. The remainder 
of this introduction describes the formal structure of the model and findings of the 
paper. 

1.3. Overview 

The government's beliefs about the economy are described by a vector of regression 
coefficients y. It chooses a decision rule h( y) that makes the stochastic process 4 for the 
economy be t( y). But for the stochastic process 4( y), the best fitting model of the economy 
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CHO, WILLIAMS & SARGENT ESCAPING NASH INFLATION 5 

has coefficients r = T(y). A self-confirming equilibrium is a fixed point of T(y). The 
orthogonality conditions pinning down the best fitting model can be expressed 

Eg(y, )=(y) = 0,(1.1) 

where E is the mathematical expectation with respect to the distribution of 4( y). We shall 
show that 

g(y) = M(T(y) -y), 

where M is the second moment matrix of the right side variables in the government's 
model. Thus, a self-confirming equilibrium solves 

g( y) = 0. (1.2) 

A self-confirming equilibrium is a set of population regression coefficients. We form 
an adaptive model by slightly modifying a self-confirming equilibrium. Rather than using 
population moments to fit its regression model, the government uses discounted least 
squares estimates from historical samples. We study how the resulting adaptive system 
converges to or diverges from a self-confirming equilibrium. Each period the government 
uses the most recent data to update a least squares estimate yn of its model coefficients y, 
then sets its policy according to h( y,). This is what Kreps (1998) calls an anticipated utility 
model. The literature on least squares learning in self-referential systems (see Marcet and 
Sargent (1989a), Marcet and Sargent (1989b), Woodford (1990), and Evans and Honka- 
pohja (1998)) gives conditions under which the limiting behaviour of the government's 
beliefs are nearly deterministic and approximated by the following ordinary differential 
equation (ODE): 

y = R-1(y) (1.3) 

R= M-R. (1.4) 

Equations (1.3), (1.4) define the mean dynamics. A fixed point 
- 

of the ODE (1.3), (1.4) is a 
self-confirming equilibrium (g(y) = 0 with R = M). The least squares learning literature 
describes how the convergence of yn to 

- 
is governed by the uniqueness and stability of the 

stationary points of the ODE. 
Our model has a unique self-confirming equilibrium. It supports the high inflation 

time-consistent outcome of Kydland and Prescott (1977). The ODE (1.3), (1.4), is very 
informative about the behaviour of our adaptive model. It is globally stable about the self- 
confirming equilibrium, and describes how the adaptive system is gradually drawn to the 
self-confirming equilibrium.6 

But to understand how the sample paths recurrently visit the better low-inflation 
outcome, we need more than the ODE (1.3), (1.4). 

6. Let x = b(x) be an ordinary differential equation with stationary solution x = x*. We say that x* is 
locally stable if there exists an open neighbourhood A of x* such that for any compact set G c A and any 8 > 0, 
there exists r* < oo such that all trajectories of the ordinary differential equations originating in G are in a 8 
neighbourhood of x* for all r > ir*. If the same condition holds for any open neighbourhood of x*, then we say 
that x* is globally stable. (cf. Dupuis and Kushner (1989).) 
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6 REVIEW OF ECONOMIC STUDIES 

Before now, "escape dynamics" have been simulated and their causes described 
informally (see Sargent (1999)), but they have not been completely characterized analy- 
tically. This paper shows that they are governed by an ODE of the form 

y R-1g( y) + v (1.5) 

R=M-R (1.6) 

v=v(y,R). (1.7) 

We display a model approximation problem whose solution generates (1.5) and use it to 
interpret v as a continuous time limit of the orthogonality conditions (1.1) under a twisted 
distribution for the shock process. This twisted distribution is the "most likely unlikely" 
shock process. Twisting the orthogonality conditions results in "endogenous experi- 
mentation" that makes the government learn an approximate version of the natural rate 
hypothesis. Thus, like the mean dynamics, the escape dynamics are deterministic. We 
verify that these deterministic dynamics do a good job of describing the simulations. 

As Sims (1988) and Sargent (1999) emphasize, the evolution of beliefs during an 
escape is economically interesting. During escapes, the government discovers a good 
enough approximate version of the natural rate hypothesis to cause it to pursue superior 
policy. The policy is supported by beliefs that are "wrong" in the sense that they are not a 
self-confirming equilibrium. Nevertheless, in another sense those beliefs are more "cor- 
rect" than those in a self-confirming equilibrium because they inspire the government to 
leave the "experimentation trap" that confines it within a self-confirming equilibrium. 

2. SETUP 

In the model, time is discrete and indexed by n. Let W' = [W1n W2A] be an i.i.d. sequence 
of (2 x 1) random vectors with mean zero and covariance matrix I. Let U, 7r, x, x, 
respectively, be the unemployment rate, the rate of inflation, the public's expected rate of 
inflation, and the systematic part of inflation determined by government policy. The 
government sets x, the public sets xi, then nature chooses shocks W that determine 7r and 
U. The economy is described by the following version of a model of Kydland and Prescott 
(1977): 

Un = U -0(7rn - Xn) + OJl Wln, U > O, 0 > O (2.8) 

Tn = Xn + U2 W2n (2.9) 

Xn=Xn (2.10) 

Xn = h( y)'Xn-l (2.11) 

where 

Xn-= [Un-1 Un-2 7Tn-1 7n-2 1] (2.12) 

Equation (2.8) is a natural rate Phillips curve; (2.9) says that the government sets inflation 
up to a random term; (2.10) imposes rational expectations for the public; (2.11) is the 
government's decision rule for setting the systematic part of inflation xn. The decision rule 
h( y) is a function of the government's beliefs about the economy, which are parameterized 
by a vector y. 
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CHO, WILLIAMS & SARGENT ESCAPING NASH INFLATION 7 

2.1. The government's beliefs and control problem 

The government's model of the economy is a linear Phillips curve with parameters 

y=[yl yQ1]': 

Un = Y17rn + Y-1iXn-1 + 77n, (2.13) 

where the government treats ij as a mean zero, serially uncorrelated random term beyond 
its control.7 We shall eventually restrict y, but temporarily regard it as arbitrary. The 
government's decision rule (2.11) solves the problem: 

{mXi}n E EZ??%8 An(U2 + ?2) (2.14) 
{xn} 

= 

where E denotes the expectations operator induced by (2.13) and the minimization is 
subject to (2.13) and (2.9). 

We call problem (2.14) the Phelps problem. Versions of it were studied by Phelps 
(1967), Kydland and Prescott (1977), Barro and Gordon (1983), and Sargent (1999). We 
identify three salient outcomes associated with different hypothetical government's beliefs: 

* Belief 1. If Yi = -0, y-I = [0 0 0 0 u], then the Phelps problem tells the 
government to set xn = Ou for all n. This is the Nash outcome of Sargent (1999), i.e. 
the time-consistent outcome of Kydland and Prescott (1977). 

* Belief 2. If Yi = 0, y-I = [0 0 0 0 u*] for any u*, the government sets xn = 0 
for all n. This is the Ramsey outcome, i.e. the optimal time-inconsistent outcome of 
Kydland and Prescott (1977). 

* Belief 3. If the coefficients on current and lagged 7rn's sum to zero, then as 8 -- 1 
from below, the Phelps problem eventually sends xn arbitrarily close to 0. 

Under the actual probability distribution generated by (2.8), (2.9), (2.10), the value of the 
government's objective function (2.14) is larger under the outcome xn = 0 than under 
Xn = Ou > 0. Under Belief 1, the government perceives a trade-off between inflation and 
unemployment and sets inflation above zero to exploit that trade-off. Under Belief 2, the 
government perceives no trade-off, sets inflation at zero, and accepts whatever unem- 
ployment emerges. Under Belief 3, the government thinks that although there is a short- 
term trade-off between inflation and unemployment when Yi < 0, there is no "long-term" 
trade-off. An "induction hypothesis" opens an avenue by which the government can 
manipulate the future positions of the Phillips curve (see Cho and Matsui (1995) and 
Sargent (1999)). The Phelps problem then tells the government eventually to set inflation 
close to zero when 8 is close to 1. 

In a common-knowledge model in which (2.13) is dropped and replaced by the 
assumption that the government knows the model, the outcome xn = uO emerges as what 
Stokey (1989) and Sargent (1999) call the Nash outcome, and xn = 0 emerges as the 
Ramsey outcome. In the common-knowledge model, these varying outcomes reflect dif- 
ferent timing protocols and characterize a time-consistency problem analysed by Kydland 
and Prescott. The mapping from government beliefs to outcomes is interesting only when 
the government's beliefs might be free. Our equilibrium concept, a self-confirming equi- 

7. For expository purposes, we shall also consider the simpler model in which the government estimates a 
static regression of unemployment on inflation and a constant (i.e. Xn-l = 1). We call this the static model. Since 
there is no temporal dependence in (2.8), (2.9), all of the temporal dependence in the model comes through the 
government's beliefs. For the static model, the government's control rule can be calculated explicitly, allowing 
some of our characterizations to be sharper. 
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8 REVIEW OF ECONOMIC STUDIES 

librium, restricts those beliefs, and thereby narrows the outcomes relative to those 
enumerated above. However, the mapping from beliefs to outcomes play a role during 
escapes from self-confirming equilibria. 

3. SELF-CONFIRMING EQUILIBRIUM 

3.1. Restrictions on government's beliefs 

Define t = [WI, W2, X-l]' and 

g( Y, )= n[7 . (3.15) 
Xn-I1 

Notice that g( y, t") is the time n value of the object whose expectation is set to zero by the 
following orthogonality conditions: 

0 = E( Xl 1)n (3.16) 

Equations (3.16) are the orthogonality conditions that make y in (2.13) a least-squares 
regression. Condition (3.18) thus renders the government's beliefs consistent with the data. 

Let Wn denote the history of the joint shock process [Wln] up to n. Evidently, from 
(2.8), (2.9), (2.10), (2.11), X,_I and therefore the tn process are both functions of y: 

tn = t(y, W ). (3.17) 

Definition 3.1. A self-confirming equilibrium is a y that satisfies 

Eg(y, W) = 0. (3.18) 

The expectation in (3.18) is taken with respect to the probability distribution generated by 
(2.8), (2.9), (2.10), (2.11). 

Condition (3.18) can be interpreted as asserting that y is a fixed point in a mapping 
from the government's beliefs about the Phillips curve to the actual Phillips curve. Thus, 
let 

Mn = , M = EMn (3.19) 
_ Xn-I J _ Xn-I J 

Let F = T(y) be the least squares regression coefficients in Un = F'[xl] + vn where vn is a 
least squares residual orthogonal to the regressors. We write F = T(y) because via the 
government best response mapping h( y), F depends on y through the moment matrices M 
and EUn[n_l]. Then notice that 

Un ~ ~ ~ ~ ~~? 

Eg(y, )E) E E (Un-[7rn Xn-1]Y) (3.20) 
Xn-J 

E( [U ] My) (3.21) 

= M(r - y). (3.22) 
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CHO, WILLIAMS & SARGENT ESCAPING NASH INFLATION 9 

Given a government model in the form of a perceived regression coefficient vector y and 
the associated government best response function h(y), F = M-1EUn[x l] = T(y) is the 
actual least squares regression coefficient induced by h(y). Thus, T maps government 
model y to a best fitting model T(y). Equation (3.22) shows that (3.18) asserts that 
T(y) = y, so that the government's model is the best fitting model. See Marcet and 
Sargent (1989a) for a discussion of the T operator in a related class of models. 

Elementary calculations show that there is a unique self-confirming equilibrium. It 
corresponds to Belief 1 mentioned above and supports the Nash equilibrium outcome in 
the sense of Stokey (1989) and Sargent (1999). 

4. ADAPTATION 

4.1. Discounted least squares updating of y 

We modify the model now to consist of (2.8), (2.9), (2.10) as before, but replace (2.11) with 

Xn = h( yn)'Xn-l (4.23) 

where h( y) remains the best-response function generated by the Phelps problem, and yn is 
the government's time n estimate of the empirical Phillips curve. The government estimates 
y by the following recursive least squares algorithm: 

Yn+l =yn+sR nlg( yn, n) (4.24) 

R+l = Rn + S(Mn-Rn) (4.25) 

where E is a gain parameter that determines the weight placed on current observations 
relative to the past. In this paper we consider the case in which the gain is constant. We 
want to study the behaviour of system formed by (2.8), (2.9), (2.10), (4.23), (4.24) and 
(4.25). 

4.2. Mean dynamics 

We find the first important component of dynamics by adapting the stochastic approxi- 
mation methods used by Woodford (1990), Marcet and Sargent (1989a), and Evans and 
Honkapohja (2001). We call this component the mean dynamics because it govertis the 
(unconditionally) expected evolution of the government's beliefs. While previous applica- 
tions of stochastic approximation results in economics have generally considered recursive 
least squares with decreasing gain, we consider the case where the gain is constant.8 Broadly 
similar results obtain in the constant and decreasing gain cases, but there are important 
differences in the asymptotics and the sense of convergence that we discuss below. 

To present convergence proofs, it helps to group together the components of the 
government's beliefs into a single vector. Define 

Yn R A ( Yn4 . 

O9n =X Zn = (4.26) 
col (Rn)_ col (Mn -Rn)J 

8. See Evans and Honkapohja (2001) for extensive discussion of constant gain algorithms. 
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10 REVIEW OF ECONOMIC STUDIES 

Then the updating equations (4.24), (4.25) can be written 

0,n+i = fin + eZ. (4.27) 

Now break the "update part" Zn into its expected and random components. Define 
Vn = Zn - b(On) where b is the mean of Zn defined as 

R-1g(y) 
b(O) = EZn = (4.28) 

col (Mf y) -R) 

where 

g(y)=Eg(y,?), M(y)=EMn (4.29) 

Then we can write the composite dynamics as 

0n+1 = O,n + eb(On) + Evn (4.30) 

To determine the expected evolution of the government's estimates, we study the 
asymptotic behaviour of the difference equation (4.30). Our convergence theorem is 
about sequences of economies where the gain goes to zero. This differs from typical 
applications of least squares learning, in which the gain sequence decreases (usually as 
l/n) over time. As in the decreasing gain case, we can show that the asymptotic beha- 
viour of (4.30) is governed by an ODE, but the estimates converge in a weaker sense. 
Specifically, decreasing gain algorithms typically converge with probability one along a 
sequence of iterations as n -> oo, but constant gain algorithms converge weakly (or in 
distribution) as E -> 0 across sequences of iterations, each of which is indexed by the 
gain. 

Note that we can rewrite (4.30) as 

On+1n (n=b(On) +?Vn (4.31) 

This equation resembles a finite-difference approximation of a derivative with time step e, 
but is perturbed by a noise term. The convergence argument defines a continuous time 
scale as t = ns, and interpolates between the discrete iterations to get a continuous process. 
Then by letting E -> 0, the approximation error in the finite difference goes to zero, and a 
weak law of large numbers insures that the noise term vn becomes negligible. We are left 
with the ODE: 

y R-1g(y) (4.32) 

R= M(y)-R. (4.33) 

We need the following set of assumptions. For reference, we also list the original number 
in Kushner and Yin (1997). To emphasize the asymptotics, we include the superscript 8 on 
the parameters On' denoting the gain setting. 
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CHO, WILLIAMS & SARGENT ESCAPING NASH INFLATION 11 

Assumptions A. 

A8.5.0. The random sequence (O'; 8, n} is tight.9 
A8.5. 1. For each compact set D, IZE I1{oED}; 8, n}I is uniformly integrable.10 
A8.5.3. For each compact set D, the sequence (b(0g)1{oED}; 8, n} is uniformly 

integrable. 
A8.5.4a. The ODE 0= b(0) has a point 0 that is asymptotically stable. 
A8.1.6. The function b(0) is continuous. 
A8.1.7. For each 8 > 0, there is a compact set Ds such that inf",8 P(vE E Da) _ 1 - 8. 

The following theorem is based on results in Kushner and Yin (1997). 

Theorem 4.1. Under Assumptions A, as E -> 0 the parameter sequence On converges 
weakly to the process 0(t) that solves the ordinary differential equations (4.32, 4.33). Further, 
Assumptions A holdfor our model when the shocks Wn are i.i.d. normal. 

Proof. See Appendix A. II 

The theorem shows that the trajectories of the estimates converge to the trajectory of 
the ODE system. Since the ODE has a unique stable point 0 that is the self-confirming 
equilibrium, the estimate sequence converges weakly to the self-confirming equilibrium. 
Therefore, with high probability, as 8 -> 0 and n -> oo we would expect the government's 
beliefs to be near their self-confirming values, and the economy to be near the Nash 
outcome. However, in the next section we shall see that the beliefs can recurrently escape 
the self-confirming equilibrium. Although the impact of noise terms goes to zero with the 
gain, for a given positive 8, "rare" sequences of shocks can have a large impact on the 
estimates and the economy. 

5. ESCAPE 

In this section we determine the most likely rare events and how they push the govern- 
ment's beliefs away from a self-confirming equilibrium. To this end, we first present some 
general results from the theory of large deviations, a general method for analysing small 
probability events. 

5.1. Escape dynamics as a control problem 

Throughout, we will only be interested in characterizing the escape problem for the 
Phillips curve coefficients y. This motivates the following definition. 

9. A random sequence {An} is tight if 

lim sup P(IAn I _ K) = 0. 
K-#o 00 

10. A random sequence {An} is uniformly integrable if 

lim sup E(An I {IAnl>K}) =0- 

K-#00 
n 

11. x is asymptotically stable for an ODE if any solution x(t) x- as t -+ oo, and for each 3 > 0 there exists 
an E > 0 such that if Ix(O) - _ I , then |x(t) - _ ?3 for all t. 
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12 REVIEW OF ECONOMIC STUDIES 

Definition 5.1. An escape path is a sequence of estimates solving (4.24) that leave a set 
G containing the limit point y: 

{Yn}"=, E G(y E G), yn 0 G for some n_N < oo. 

Following a convention in the large deviation literature, we set the initial point of an 
escape path to be the stable point y. Given a gain s > 0 and a compact neighbourhood G 
of the stable point y, let B8(G) be the set of all escape paths. For each {yn} E B8(G), define 

ir = Einf In: yo = Y,Yn G} 

as the (first) exit time out of G. Because the exit time varies across different escape paths, 
B8(G) induces a probability distribution over the exit times. We want to understand the 
probability distribution over B8(G) and the probability distribution of exit times when 
8 > 0 is sufficiently small. In particular, we want to identify the most likely escape paths in 
B8(G). Let aG be the boundary of G. 

Definition 5.2. Let TQ({ynJ) be the (first) exit time associated with escape path 
{yn} E B8(G). An absolutely continuous trajectory cp is a dominant escape path if cp(0) = y, 
~O(T*) E aG, andfor all p > 0: 

limPr (Yn < TQ({Yn})/s, 3/' <T*, Ip) - yInI < p: B(G)) = 1. (5.34) 

Roughly speaking, (5.34) states that as the gain 8 > 0 converges to 0, the set of escape 
paths converges to a small neighbourhood of p. An escape from 

- 
will occur along p with 

very high probability, if an escape ever occurs. 
To analyse the escape dynamics, we adapt the general results of Dupuis and Kushner 

(1989), which are themselves extensions of the theory of Freidlin and Wentzell (1984) to 
stochastic approximation models. After presenting some general results, we apply results 
of Williams (2001), who obtains explicit characterizations of the escape dynamics in a class 
of models. In our setting, these results can be used to interpret the simulations calculated 
earlier by Sims (1988), Chung (1990), and Sargent (1999). Given the recursive formula 
(4.30), for a vector a, define the H-functional as: 

H(y, a; R) = lim log Eo exp (a, En I R 1g( y, ti)) (5.35) 
n-*oo n= 

where (., ) is the inner product of two vectors, and the expectation is conditioned on an 
arbitrary initial state to. This function averages over the time dependence in the shocks tn 
to determine the large deviation properties of the yn parameter sequence. Note that it 
depends implicitly on the matrix R. We then define the Legendre transform of H as: 

L( y, fi; R) = sup [(a, fi-H( y, a; R)]. (5.36) 
a 

The action functional is defined over absolutely continuous trajectories y = (y(t))0' by: 

rT 
S(T, y) = JL( y, y; R)ds (5.37) 

with y(O) = y, and with the evolution of R following the mean dynamics conditional on y. 
(We let S = +oo for trajectories that are not absolutely continuous.) In the context of 
continuous time diffusions, Freidlin and Wentzell (1984) characterized the dominant 
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CHO, WILLIAMS & SARGENT ESCAPING NASH INFLATION 13 

escape path as a solution of a variational problem. Their results have been extended to 
discrete time stochastic approximation models by Dupuis and Kushner (1985) and Dupuis 
and Kushner (1989). We adapt these results in the following theorem, whose main object is 
the solution of the following variational problem: 

S = min S(t, ) (5.38) 

subject to 

R= M(y)-R 

Y(O) = y, R(O) = R, y(t)OG for some 0 < t < T. 

The minimized value S is the rate function that determines the (exponential) bound for 
the large deviation estimates. The following theorem compiles and applies results from 
Dupuis and Kushner (1989), Kushner and Yin (1997), and Dembo and Zeitouni (1998). In 
the following theorem, we let y8(t) be the piecewise linear interpolation of the estimate 
sequence. 

Theorem 5.3. Suppose that Assumptions A hold. 

1. Suppose that the shocks Ware i.i.d. and unbounded but that there exists a a-algebra 
F,2 D ( yi, i ?n) and constants K > 1, B < oo such that for all n and s > 0O 

P(|R- g(ynq tn) | > sl.Fn) < B exp (-s") a s. 

Then we have: 

lim sup Elog P( y8(t) 0 G for some 0 < t _ T Iy'(0) = Y) -S. 

2. If the shocks W are i.i.d. and bounded, and S is continuous as afunction of the radius 
of the set G then we have: 

lim E log P( y8(t) # G for some O < t < Ty8(0) =)=-S. 

3. Under the assumptions of part 2, for any escape path with gain , let r' be the time of 
first escape from G. Then for all 3 > 0: 

lim P(exp ((S + 3)/e) > ir > exp ((S - 8)/e)) = 1 

and 

lim E log E(r8) = S. 

4. Under the assumptions of part 2, let x = y(Tr) be the terminalpoint of the dominant 
escape path. Then for any y8Q(c) and 3 > 0: 

lim P(|y8(tD-xI <3)=1. 

Proof See Appendix B. 11 

This theorem establishes the precise sense in which the solution of the control problem 
determines the most likely escape path. In particular, part (1) shows that the probability of 
observing an escape episode is exponentially decreasing in the gain, with the rate given by 
the minimized value of the cost function S. The next three parts establish stronger results 
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14 REVIEW OF ECONOMIC STUDIES 

under the assumption that the errors are bounded. Part (2) shows that under bounded 
errors, the asymptotic inequality in part (1) becomes an asymptotic equality. Part (3) shows 
that for small E the time it takes beliefs to escape the self-confirming equilibrium becomes 
close to exp (S/e). Finally, part (4) shows that with probability approaching one, if the 
beliefs escape, they escape along the dominant escape path. 

5.2. Characterizing the escape dynamics 

While Theorem 5.3 offers a characterization of the dominant escape path, it is difficult to 
derive useful insights from the minimization problem itself. Additionally, because of the 
complicated nature of H and S, analysis of the escape dynamics and determination of the 
exponential rate of convergence appear to be daunting tasks. However Williams (2001) 
draws on the recent results of Worms (1999) to simplify the problem and to provide both 
an analytic characterization of the escape dynamics and a numerical solution. The key step 
is to recognize that although (5.35) is a complicated function, we can use some additional 
results from the applied probability literature to simplify the analysis. 

In particular, Varadhan's theorem (see Dembo and Zeitouni (1998)) shows the duality 
between moments of exponential functions and large deviations. Since the H-functional in 
(5.35) is an asymptotic exponential moment, if we can identify a large deviation rate 
function for the g( y, t) process, we can identify H. The large deviation results of Worms 
(1999) identify this rate function in terms of the solution of the Poisson equation asso- 
ciated with g( y, t). It is known (see Benveniste, Metivier and Priouret (1990) for example) 
that the asymptotic distribution of Markov processes can be characterized by the Poisson 
equation, so it is natural that it appears here. This analysis then leads to a representation 
of the H-functional as a quadratic form in the vector a, with a normalizing matrix Q that 
depends on the solution of the Poisson equation associated with g( y, t). In general solving 
the Poisson equation can be difficult because it is a functional equation. However in the 
important linear-quadratic-Gaussian case (which includes our model), the problem can be 
solved in the space of quadratic functions. Therefore the Poisson equation reduces to some 
matrix Lyapunov equations. This provides a tremendous simplification, as there are effi- 
cient numerical methods for solving Lyapunov equations. We summarize these arguments 
in the following theorem and remark. 

Theorem 5.4. Suppose that Assumptions A hold, that tn follows a stationary functional 
autoregression with a unique stationary distribution and Lipschitz continuous mean and 
variance functions, and that the function g( y, t) is Lipschitz continuous in t. Then there is a 
matrix-valuedfunction Q( y, R) such that the dominant escape path and rate function can be 
determined by solving the following variational problem: 

S = inf - J t(s)'Q(y(s), R(s))-lf(s)ds (5.39) 
2 0 

subject to 

y=R-1 (y) + b(5.40) 

R= M(y)-R (5.41) 

y(O) = y, R(O) = R, y(t) 0 G for some 0 < t < T. (5.42) 

Proof. See Williams (2001). 11 
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CHO, WILLIAMS & SARGENT ESCAPING NASH INFLATION 15 

Remark 5.5. In our model, 4, follows a linear autoregression, the Win are i.i.d. normal, 
and g( y, t) is a quadratic function of $. Then Q( y, R) is a fourth moment matrix that can be 
calculated explicitly by solving the matrix Lyapunov equations described in Appendix C. 

This theorem provides a clearer interpretation and analysis of the variational pro- 
blem. The escape dynamics perturb the mean dynamics by a forcing sequence b. Then S is 
a quadratic cost function that measures the magnitude of the perturbations during the 
episode of an escape. In particular, we can think of (5.39) as a least squares problem, 
where Q plays the role of a covariance matrix. If we had =_ 0 then the beliefs adhere to 
the mean dynamics, and the cost would be zero. For the beliefs to escape from y-, we 
require nonzero perturbations. To find the most likely escape path we want to perturb the 
evolution as little as possible. In other words, it takes a sequence of unusual events to push 
y away from the self-confirming equilibrium. The control problem (5.39) says that to find 
the dominant escape path, we need to look for a least cost sequence of shocks that will 
push beliefs away from y. 

To find the dominant escape path, we solve the control problem in (5.39). We form 
the Hamiltonian with co-states (a, A) for the evolution of (y, R): 

X= a R-1g(y)+ a'Q(y,R)a-X M(y). 

It is easy to verify that the Hamiltonian is convex, so the first-order conditions are 
necessary and sufficient for a minimum. Taking the first-order conditions, we see that the 
dominant escape path is characterized by the following set of differential equations: 

yR-'g(y) +Q(y, R)a 

R= M(y)-R 

I __(_) 
1 aQ(y, R) (5.43y ti a- R 

?+ al a?X.My(y) (.3 

= R - . I, 

subject to the boundary conditions (5.42), and where HR is the derivative of the Hamil- 
tonian with respect to the R matrix. 

We have reduced the problem of determining the dominant escape path from a 
probabilistic problem on a function space of time trajectories to a variational control 
problem. Further, we have represented the solution of the control problem as a two-point 
boundary value ODE problem with given initial state conditions and terminal state con- 
straints for an arbitrary time t < T. In other words, if we solve (5.43) as a two-point 
boundary problem with the given initial conditions for y and R, a terminal condition 
y( e) = y ~EaG, for some Te < T, we will have an escape path to y. We can then evaluate 
the cost function (5.39) for the arbitrary (re, ) to obtain a value (abusing notation 
slightly) of S(ve, y). To find the dominant escape path, we minimize this function over 

e (0, T) and over E aG: 

S = inf inf S(T e,?) (5.44) 
PEBaG -reE(O,I1) 

The path that achieves the minimum is the dominant escape path. This path characterizes 
the evolution of the parameters on the most likely path away from the stable point. The 
minimized value S determines the exponential rate of convergence. 
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16 REVIEW OF ECONOMIC STUDIES 

6. NUMERICAL ANALYSIS 

6.1. Numerical results 

In this section we apply the analytic methods from Section 5 to determine the dominant 
escape paths. We analyse both dynamic and static versions of the model, the distinction 
being in the specification of X,_1 in the government's model. In the static version of the 
model (2.12) does not contain the lagged variables. For the numerical analysis and 
simulations, we set the parameters of the Phillips curve to 0 = 1, u = 5, and the govern- 
ment's discount factor to 8 = 0.98. We assumed Gaussian disturbances, and set 
(orl, or2) = (O 3, 0- 3). A simple calculation shows that the self-confirming equilibrium is the 
intersection of the line Yi = 0 with the parabola determined by u - (y-1)/(1 + y2) = 0. 
There is a unique self-confirming equilibrium, which is depicted in Figure 2. It has 
Y-i = 10, Yi = -1. 

As we describe in Appendix E, to compute the dominant escape path numerically, it 
helps to recast the boundary value problem as an initial value problem. In the ODE system 
(5.43) and boundaries (5.42), the only components left undetermined are the initial con- 
ditions for the co-states. We can solve the problem by minimizing over these initial con- 
ditions, and determine the escape times and escape points endogenously. For the escape set 
G, we take circles of varying radius centred on y. In Appendix E we briefly describe the 
numerical techniques used to calculate the dominant escape paths. In order to conserve on 
dimensionality, in our calculations for the dynamic model we ignore the cross-effects of the 

25 , , 

20 

15 

10 

5 

-2 -1.5 -1 -0.5 0 0.5 1 

FIGURE 2 

Self-confirming equilibrium with u 5, 0 1 
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covariance matrix R. We enforce this by setting the second co-state vector A in (5.43) 
identically to zero. The parameter vector y is six-dimensional, which means that we 
optimize over the six-dimensional co-state vector a. Additionally, we track the evolution 
of the upper-triangular elements of R, which is a 21 x 1 vector. Including the cross-effects 
would entail optimizing over these additional 21 dimensions which is numerically 
intractable. In the static model we did allow for the cross-effects, which only slightly 
changed the dynamics in the time domain. 

We turn now to the numerical results. In Figure 3 we report the dominant escape path 
from the dynamic model, setting the radius of G at 7 Euclidean units. Here we clearly see 
that along an escape path, the sum of the coefficients on inflation rises from its self- 
confirming equilibrium value of -1 to (nearly) the induction hypothesis level of zero. By 
activating the induction hypothesis, the results of Phelps (1967) described above apply and 
it is optimal for the government to set inflation to (near) zero. Thus, along an escape path 
the government temporarily learns a version of the theory of the natural rate. 

In Figure 4 we plot the escape paths from the static model under the assumptions that 
the shocks W are distributed normally and binomially, respectively. The escape paths are 
nearly identical under the two error distributions. This suggests that for the static model it 
is interesting to consider the simple binomial distribution, which motivates the calculations 
to be reported in Section 7. In addition, the paths from the static model have many of the 
qualitative properties of the dynamic model. The escape paths for all of the parameters are 
characterized by a long period of very slow movement, followed by a rapid change in the 

Dominant Escape Paths from Dynamic Model 
05 .I, I I I I I 

Sum of Coefficients on Inflation 
- - - Current Inflation Coefficient 

- - Sum of Coefficients on Unemployment 

0 

-05 

-1 ~ ~ ~ ~~~~ ---------- 

II I I I I . 

0 05 1 1-5 2 25 3 35 4 

FIGURE 3 

Dominant escape path from the dynamic model 
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Dominant Escape Paths from Static Model 
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FIGURE 4 

Dominant escape path from the static model 

same direction. This illustrates the nonlinearity of the differential equations that determine 
the dominant escape path. 

In order to determine the frequency of escapes, we need to consider not only the 
escape paths, but also the minimized value S. From Theorem 5.3 above, we know that the 
value of S determines the exponential rate of decay of the probability of an escape. Table 1 
presents the rate of convergence S and the maximum value along the path of the sum of 
the coefficients on inflation for different specifications of the model. The table includes 
estimates of convergence rates for the dynamic model with different size escape sets and 
for the static model with different error distributions. 

TABLE 1 

Results for the escape problem 

Radius Sum of Rate of 
of set coefficients on .7 convergence (S) 

Dynamic model 6.50 -0-0783 9.691 x 10-6 
7 00 -0-0084 9 706x 10-6 
7 15 -0 0032 1-040 x 10-5 
7 25 -0 0032 2-566x 10-4 

Static model: normal 5.00 -0-0254 4.987x 10-4 
Static model: Binomial 5.00 -0 0257 4.985x 10-4 
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A feature of Table 1 that draws immediate notice is that in all specifications the rate 
of convergence is very slow, which is shown by the low values of S. This slow convergence 
rate captures the fact that in our simulations, for any gain setting (no matter how small) 
we always observed an escape. Also note that, as expected, the rate of convergence 
increases as we increase the size of the escape set. Clearly the larger the escape set, the less 
often do we expect escapes. However note that the rate of convergence is nearly the same 
until the radius is about 7 units, after which it increases dramatically. This reflects the 
difficulty of pushing beliefs past the Ramsey point, which we discuss more below. Addi- 
tionally, we see that in the static model not only are the escape paths in the two cases 
(normal and binomial) nearly identical as in Figure 4, but they also converge at a nearly 
identical rate. 

6.2. Mean escape times in static and dynamic models 

In the figures and the table, we also note some important differences between the dynamic 
and the static model. Although the two specifications share the same self-confirming 
equilibrium, they differ out of equilibrium along an escape path. In the table we see that 
the rates of convergence differ by an order of magnitude between the dynamic model and 
the static model. This suggests that by allowing more flexibility in the specification of the 
government's beliefs, we enable policymakers more rapidly to detect the induction 
hypothesis. The importance of the lags in the escape paths can also be seen by comparing 
the paths for the sum of the coefficients on inflation with the coefficient on current 
inflation. In Figure 4, we see that the escape paths in the static model cause the govern- 
ment's perceived Phillips curve to become vertical. This specification trivially satisfies the 
induction property, and it would be possible that the same dynamics would recur in the 
full dynamic model. However in Figure 3 we see that in the dynamic model, along an 
escape most of the movement in the sum of the coefficients on inflation is due to the 
coefficients on the lags. Thus in the dynamic model, even on an escape there is still a short- 
run Phillips curve, but the government comes to believe that the long-run Phillips curve is 
vertical, and thus it sets inflation to zero. 

6.3. Escape time distributions 

Next we compare our predictions on the escape problem to some additional results from 
simulations, and we see that our calculations provide an accurate description of the escape 
problem. Theorem 5.3 above suggests that the asymptotic distribution of escape times is 
exponential, and this appears to be roughly borne out by the empirical distribution that we 
plot in the top panel of Figure 5. The figure shows a histogram of the distribution of the 
time of first escape from the self-confirming equilibrium in the dynamic model for 1000 
simulated paths, with the gain set at the very low value e = 0.001. Here we see that the 
distribution is clearly skewed and has a long tail, resembling an exponential distribution. 
We have also seen that the mean escape times increase (at least) exponentially as the gain 
decreases, and this is shown in the bottom panel of Figure 5. The figure plots the mean 
time of first escape from the self confirming equilibrium for 1000 simulated paths in both 
the static model and the dynamic model for different gain settings.12 We have also seen in 
Table 1 that the rate of convergence is much slower in the dynamic model, and this is also 

12. We set the radii of G so that the boundary of G is close to the Ramsey point. Thus we use a radius of 5 
units in the static model and 7 units in the dynamic model. 
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Distribution of Escape Times, Dynamic Model, Gain = 0001 
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FIGURE 5 

Simulation results from the dynamic and static models 

clear from the figure. As the gain decreases, the escapes become exponentially more rare, 
but occur much more frequently in the dynamic model. 

The dominant escape paths that we have derived and calculated in this paper also 
describe the escape dynamics from simulations like those of Sims (1988), Chung (1990), 
Sargent (1999). In Figure 6, we see that our calculations match very closely the direction in 
which the government's beliefs escape the self-confirming equilibrium. In the figure, we 
project the escape paths onto a subset of the parameter space and plot the sum of the 
coefficients on inflation vs. the constant coefficient. The dominant escape path is shown by 
the nearly straight line that leads from the self-confirming values (10, -1) in the upper left 
of the figure downward to the lower right. Also shown is the simulated path from Figure 5 
that has the escape time closest to the sample mean. The figure clearly shows that the mean 
simulated path lies within a small neighbourhood of the dominant path. Indeed all of the 
simulated paths are within a small neighbourhood of the dominant path. 

In addition to our quite accurate results in the parameter space, our calculations 
provide a good description of the escape dynamics in the time domain. In Figure 7 we 
plot the dominant path escape paths for the static model, with the time axis scaled to 
log (tIe). We also plot some results from the 1000 simulated escape paths with gain 
e = 0-0025. Here we show the escape paths with the minimum, maximum, and mean 
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Predicted and Simulated Escape Paths, Dynamic Model 
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Dominant and simulated escape paths from the dynamic model 

Predicted and Simulated Escape Paths, Static Model, (gain = 00025) 
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Dominant and simulated escape paths from the static model 
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escape times. Also for reference, we plot the escape path that results from the analysis of 
Section 7, in which we transform probability measures. The figure clearly shows that the 
dominant path lies within the band of simulated outcomes, and that the dominant escape 
path is quite close to the mean observed path. As we shall discuss, the analysis of Section 
7 leads to the same direction of escape, but the time dynamics are distorted by the 
change in measures. In the figure we see that this escape path is shorter than even the 
shortest of the 1000 simulated paths. As the gain decreases, the band of outcomes 
narrows further and the mean path gets closer and closer to the dominant path. Thus the 
numerical implementations of the analytic characterizations provide very accurate esti- 
mates of the convergence and escape properties of monetary policymakers' beliefs. 

6.4. Directions of mean dynamics along the escape path 

Because the mean dynamics are locally stable around the unique self-confirming equili- 
brium, the escape dynamics are essential in starting departures from the self-confirming 
equilibrium y. However, for our model the mean dynamics themselves have features that 
promote rapid movements toward the Ramsey outcome after the escape dynamics have 
initiated an escape from a neighbourhood of y. Thus, while the mean dynamics are both 
locally and globally stable around the self-confirming equilibrium, beyond a particular 
neighbourhood of a self-confirming equilibrium, they point toward the beliefs supporting 
the Ramsey outcome. For the static (Xn-l = 1) model, we illustrate this feature in Figures 
8 and 9, which show both the mean dynamics and the escape dynamics v along the 
dominant escape path. In Figure 8 we plot the dynamics over the entire dominant escape 

Force of Escape (i) Mean Dynamics Along Escape Path 
10 10. 

9.5 ~ -0 9.5 

9 \9 

8-5 8-5 

~ 8 ~F 8 

.h 7f5 a7.5 

7 7 

6-5 6-5 

6 6 

5.5 5.5 

5 5 
-0-5 -0-5 

Slope Coefficient Slope Coefficient 

FIGURE 8 
The force of escape and mean dynamics along the dominant escape path, static model 
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Force of Escape (iv) Mean Dynamics Combined Force 

10 10 10 

9.95 9.95 - 9.95 

-0 980 -0 
~985 ~985 +-~9-85 

9-8 - 9-8 - 9-8 

9.75 9.75 - 9.75 

-0-98 -0-96 -0-98 -0-96 -0-98 -0-96 
Slope Coefficient Slope Coefficient Slope Coefficient 

FIGURE 9 

Detail of the force of escape, mean dynamics, and combined force in a neighbourhood of the 
self-confirming equilibrium 

path, and Figure 9 shows a closeup of the escape, mean, and total dynamics in a neigh- 
bourhood of the self-confirming equilibrium. As Figure 9 shows, near the self-confirming 
equilibrium, the mean dynamics point toward the self-confirming equilibrium and the 
escape dynamics v point away (toward beliefs that support Ramsey). In this neighbour- 
hood, the mean dynamics and escape dynamics oppose each other. The mean dynamics 
prevail under the natural distribution of shocks. However, outside of this neighbourhood, 
the mean dynamics reinforce the escape dynamics by pointing toward Ramsey, as Figure 8 
further illustrates. This figure shows that the magnitude of v essentially falls to zero after 
the first instants, and the mean dynamics start to push toward Ramsey with greater force. 
Thus, if we were to initiate government beliefs along the escape path sufficiently far from 
the self-confirming equilibrium, the mean dynamics themselves would sweep beliefs 
toward the beliefs that support the Ramsey outcome. The right panel of Figure 8 also 
shows the mean dynamics from the Ramsey outcome to the self-confirming equilibrium. 
They complete the circuitous path of the mean dynamics which (starting along the escape 
path) send the system to the Nash outcome by travelling near the Ramsey outcome.13 

13. Evans and Honkapohja (2001) had noted such behaviour of the mean dynamics for this model. 
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6.5. Escaping the experimentation trap 

Within the confines of the government's approximating model, detecting the natural rate 
hypothesis requires that there be sufficient dispersion in the public's expected rate of 
inflation. But within a self-confirming equilibrium, there is no variation in the expected 
rate of inflation because the government does not vary its setting of the systematic part of 
inflation xt. Though the outcome is the same, the structure of this experimentation trap 
differs from the trap in Kydland and Prescott's time consistent equilibrium. Here the 
government fails to generate the range of experiments needed to detect the natural rate 
hypothesis within its approximating model. But only if it detects something approximating 
the natural rate hypothesis will it want to generate those experiments. 

Along the escape route the government generates those experiments. The experiments 
are initiated by an unusual shock process encoded in b, to be analysed in more detail in 
Section 7. In the static model, any force that causes the government to experiment by 
randomizing xt generates a (yt, Ut) data scatter through (2.8) that steepens (in the (y, U) 
plane) the estimated Phillips curve. Through the government's best response map, any 
steepening of the Phillips curve causes the government to lower inflation, generating 
influential observations that make the Phillips curve steeper. Overweighting recent 
observations helps this process along. This self-reinforcing process comes to a halt when 
the estimated Phillips curve becomes vertical. The system cannot remain at the Ramsey 
outcome forever, because there is in truth a short-run Phillips curve that the government 
will discover and begin to exploit, rekindling the mean dynamics that drive the system 
toward the Nash outcome. 

7. INTERPRETING v VIA ORTHOGONALITY CONDITIONS 

By studying the special case of the static model (Xn-l = 1) and binomial shocks, this 
section identifies the escape route using a different argument than Section 5. The argument 
works directly with the least squares orthogonality conditions that drive the government's 
beliefs, and finds the appropriate conditional distribution of the shocks that gives rise to 
the escape dynamics. 

7.1. Analysing the orthogonality conditions 

The mean dynamics (4.32) come from writing the recursive least squares orthogonality 
condition as 

Yn+I Yn = R n- g( yn) + R n- (g( yn, tn)- yn)), (7.45) 

then using a limiting argument and a law of large numbers to replace the term 
(g( yn, n) - ( yn)) with its unconditional mean of 0 while driving E to zero. The escape 
dynamics also originate from (7.45). However, problem (5.39) induces a different average 
"forcing function" than the identically zero R1- (Eg( yn, n) - -( yn)). Instead, problem 
(5.39) averages not with respect to the unconditional distribution of tn but with respect to 
a distribution whose conditional expectation we denote E. This makes the limiting escape 
dynamics come from 

Yn+I Yn- R yg(n) + R -(g( Yn, ng( Yn)) (7.46) 
n8 
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or 

=R-kg(y)+i (7.47) 

where 

v t R -'k(g( Yn, W- -g( Yn))- 
(7.48) 

We want to shed light on the probability distribution of shocks inducing E. For a W 
that is jointly binomial, we can find a transformed measure that gives us a very convenient 
interpretation of v in (7.47). Our method is to work directly with the time n orthogonality 
conditions (4.24), (4.25) that dictate the movement of yn. 

Throughout this section, we assume that Win has the binomial distribution with 
variance 1 for i = 1, 2: 

1 with probability I 
Win = 2(7.49) 

-I with probability 2 ( 

For simplicity, we examine the static model in which 

Xn-I = 1 Vn> 1 

so that the best response mapping of the government is 

h( yl, y-1) =- +Yi 
Y- 

Under this specification, we shall find a transformed measure that describes the escape 
point14 and according to which 

b -1 UlU 

We obtain this representation by finding a most likely unlikely shock sequence that moves 
the government's beliefs a given distance away from a self-confirming equilibrium. Our 
method of analysis is basically to study the different possible unlikely sequences of shocks 
that move the government's beliefs a given distance away from the self-confirming equi- 
librium y, and among these to find the most likely sequence. The static model with the 
binomial shocks15 is simple enough to let us get our hands on these sequences of shocks. 
The heart of the argument is to notice that the most likely of such unlikely sequences has 
the property that each realization of the shocks must push the learning algorithm in the 
same direction away from y. 

The mean dynamics and the escape dynamics both originate from the same stochastic 
difference equation system (4.24), (4.25). Above, we have defined i1n as the residual in the 
government's Phillips curve for regression coefficients y and shock vector Wn. Recall that 

(Yn, 
r 

17n ab ns : A - n -I I 

14. The transformed measure underestimates the time to escape, as indicated in Section 6. 
15. And more generally, the static model with multinomial shocks analysed by Cho and Sargent (1999). 
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where r1 is the forecasting error. To emphasize the link between the dynamics of yn and 
the original perturbation W, we write 

k( Yn, cr Wn) = A( Yn, Wn) 

and 

t1n = 1( Yn, c( Wn) 

where Cy Wn = (Col WI, n, oY2 W2,n). Let w E {-1, 1}2 be a particular realization of Wn. Since 
Wn can take four different values, for any y E 912, {g( y, a Wn)} consists of four vectors. Let 
Rn = [Ry,n] and Dn be the determinant of Rn. We can write 

YI,n+I Y1,n F 1 8 -R21,n + (Xn + J2 W2,n) 
[ 1-11?-~~~ I7n . (7.50) 
Y-l,n+l Y-,n Dn L RI I, - R21,n(xn + U2 W2,n) J 

For each realization w e {- 1, 1}2 of Wn it is useful to depict the contour of y satis- 
fying i7(y, c Wn) = 0: 

{y E 912 : TI(y, aW) = 01. 

A self-confirming equilibrium is a point that in effect is the unconditional average over 
these contours. As depicted in Figure 10, yl e is the intersection of 

Y y: n1( Y, (C71 , CO2) = ? 

77 , 1( u-all2)) = 0 

1(y,(u1 u2)) = 0 

I \' U I \'\t3, 

I \ 1, 

I \ I ' 

-e-_S -u -e+t= r(,-,-2)) 0 r4e 1 

0 (y2 0 -0 + 2 

FIGURE 10 

The horizontal axis is Yi, and the vertical axis is Y-I 
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and 

{ Y: ij(y, (-C1i, -OY2)) = 0}. 

Note that the stable point 
- 

is surrounded by the four curves. 
For convenience, we choose the area surrounded by the four curves (including its 

boundary) as G. Note that aG is formed by the union of the segments of the four curves 
conditioned on four different realizations of W,. The characterization of the most likely 
exit point with respect to a general compact convex neighbourhood of 

- 
follows from the 

same logic. 
Since F is induced by the probability distribution over the set of escape paths, we need 

to examine the probability distribution of the exit points along the boundary of the 
neighbourhood of y. However, the entire set of escape paths from the stable point to a 
boundary of G is too complicated to be characterized directly, because there are numerous 
ways to escape from the stable point to a fixed point in aG as indicated (5.44). Thus, we 
proceed by constructing a subset of escape paths that are analytically manageable, while 
inducing a probability measure that is absolutely continuous with respect to the original 
probability measure over the set of all exit points. Theorem 5.3 indicates that the prob- 
ability distribution over exit points collapses to the exit point from the dominant escape 
path as the gain E converges to 0. Thus, if we can construct an absolutely continuous 
probability measure over the set of exit points, then the new measure must converge to the 
same exit point. 

To construct a transformed measure with the desired property, we begin by noting 
that from (7.50) 

dY-1,n+l R1,n - R21n(xn + oY2 W2,n) (7.51) 

dyl,n+l -R21,n + (Xn + Co2 W2,n) 

is independent of Wl,n, which implies that for any Wn, {R -lg(yn,, rWn)} consists of two 
pairs of linearly dependent vectors, each pair being indexed by one of the two possible 
values for U2 W2n. Thus in (7.50), the evolution of Yl,n and Y-1,n is influenced by a common 
scalar factor r1n. By (7.51), the vector field {R -k(y, crWn)} around the stable point 

- 

consists of two pairs of linearly dependent vectors. In particular, (7.51) implies that 

po 0, such that R'-l(y, (l, 2)) = pR'-l(y, (-oi,, r2)) (7.52) 

Ip' '0, such that Rng(y,j (crj,-c2)) = p'R n (y, (-crj, -C2)). (7.53) 

Under the "usual" event, each element Wn E {- 1, 1}2 is realized with probability 1/4. 
Because 

- 
is the stable point of the (unconditional) mean dynamics, 

EZws{-l1,12 - R lg(y, SW) = 0. 

Therefore, the two pairs of linearly dependent vectors must point to opposite directions: 

p<0 and p' <0. (7.54) 

Otherwise, the mean dynamics cannot be zero as required at y. 
Since we can uniquely identify the sequence of perturbations for each escape path, it 

makes sense to say that an escape path is generated by the sequence of perturbations. 
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Definition 7.1. We say that w, w' E {-1, 1}2 satisfies the same half-space condition if 
R -lg( yn, aw) and R -lk( yn, aw') are located in the same open half space. We say that an 
escape path with exit time -re satisfies the same half-space condition, if it is generated by 
perturbations that satisfy the same half-space condition for all r E (0, re). 

The same half-space condition requires that the two vectors R nk( yn, aw) and 
R -lk(yn, aw') are pointing in the "same" direction. In the case of binomial distributions, 
w and w' satisfy this condition unless R (-l(yn,,w) and R (-l(yn,,w') are linearly 
dependent vectors that point in opposite directions. 

The law of large numbers says that under the "usual" events, each element in 
w E {-1, 112 occurs with 1/4 of frequencies over (0, -r) for any -r > 0. If so, v must be 0 over 
the same interval of time and y moves toward y. Thus, any move away from the stable 
point 

- 
requires a sequence of "unusual" events of Wn, whose probability is strictly less 

than 1. In order to maximize the probability of escape through a particular point at the 
boundary of G, the escape path must minimize the number of "unusual" events to reach 
the neighbourhood of the exit point. In order to reach a particular point on the boundary 
in the most economical way, the adjustment term R -l(yn, w) associated with each 
realization w of Wn must point to the same "direction". Recall that {R -l( yn,, aw)} are 
two pairs of linearly dependent vectors and that the two vectors in each pair point in 
opposite directions. If the same half-space condition is violated, then some moves cancel 
others, wasting precious time to escape. Therefore, using the same logic as in (5.44) above, 
if y(r) is an escape path through a particular point y E aG with exit time . e: 

()= and y(, e) EaG y(0) =y ady )=y EA 

that takes the minimum amount of time among all escape paths through y, then the escape 
path should be generated by sequence of perturbations satisfying the same half-space 
condition for all r E (0, re). 

Lemma 7.2. Fix ^ E aG, and let y be the escape path through y that minimizes the exit 
time among all escape paths through jy. 

1. y must be generated by a sequence of perturbations that satisfy the same half-space 
condition. 

2. If an escape path y satisfies the same half-space condition, then no more than two 
perturbations can be realized along y. 

Proof. See Appendix D. II 

Let D' be the set of all escape paths when the gain is s > 0. Instead of all escape paths, 
let us consider the set D' of all escape paths that satisfy the same half-space condition. 
Because Wn can take four different values, we can make six different pairs of the realized 
values of Wn. Among the six pairs, {(1, 1), (-1, 1)} and {(1, -1), (-1, -1)1 induce a pair 
of R ,- 1( yn,) that are linearly dependent. The remaining four pairs, namely (1) 
{(1, 1), (-1, -1)1, (2) {(1, -1), (-1, 1)1, (3) {(1, 1), (1, -1)1 and (4) {(-1, 1), (-1, -1), 
satisfy the same half-space condition. 

The next result is crucial. 

Proposition 7.3. Fix a measurable A c aG. If lim,,0 Pr (A: D') = 0, then 

lim Pr (A: D') = 0. 
8-)> 0 
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Proof. See Appendix D. II 

Because we know that Pr (: D') is concentrated on the exit point of the dominant 
escape path, Proposition 7.3 allows us to find the most likely exit point by using D' instead 
of D'. 

Recall that D' admits an escape path that is generated by {(1, 1), (-1, -1), for 
example, in which (1, 1) is realized with frequency p and (-1, -1) with frequency 1 - p for 
p E [0, 1]. As s -+ 0, the law of large numbers implies that the most likely frequency of 
(1, 1), conditioned on that path is generated by {(1, 1), (-1, -1)1, is 

Pr (Wn = (1, 1): W, E {(1, 1), (-1,-1)}) = . 

Thus, if the probability distribution over D' is collapsed to a single point, then the point 
should be the exit point of the escape path generated by one of the above four combi- 
nations of perturbations, in which each element is realized with probability one half. By 
using the standard result of the stochastic approximation, we can represent these four 
escape paths in terms of an ODE calculated with respect to the conditional probability 
distribution of W,. 

7.2. A "race" of four ODEs 

We construct four ODEs associated with the four conditional distributions satisfying the 
same half-space condition. The one that heads toward the boundary most quickly cor- 
responds to the dominant escape path. First, if W, Ee {(1, 1), (-1, - 1)1, then the associated 
conditional ordinary differential equation is 

1 
/- 

YI 
U /1 2)(o + YO)U2 + UlU2 ( 5 

R-1 ~ ~ ~ >)(7.55) 
Y-1 

U 1?+ y 

which has the stable point 

1y = -0 +- Up 
u-0 +- )X I r 

\x2 L O2J 

depicted in Figure 10. It is important to note that the R matrix also evolves along the 
candidate escape paths. It's differential equation is in general given by the conditional 
expectation of Mn as in (3.19), conditioned on the half space shock realizations. However, 
in the static case, Mn is independent of Wi,, and along the four candidate paths the 
marginal distribution of W2, is equal to its unconditional distribution. Therefore we have 
that, as in the analysis in Section 5, along the escape paths R follows the mean dynamics 
(4.33) conditional on y. Because our focus is on the escape properties of y, we shall 
suppress the evolution of the covariance matrix. 
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If W, E {(1, -1), (-1, 1)}, then the associated conditional ordinary differential 
equation is 

*=R1[: l+Z (-+y (0?Y1)H-OlT2j (7.56) Y-i Yi 2Y- 

R L 7.5U 1?y6 

which has the stable point 

2,e R-1 u I1 + [ 0 Ul]2 -0 -ai) 

If W, E {(1, 1), (1, -1)1, then the associated conditional ordinary differential equation is 

Y--i Yi ( -1Y 22(l-(+ l 

Y-i L u _ 
~~~1 ? )"i1 

which has the stable point 

y3,e = ((U + cl)(I + 02), -0). 

If W, E {(-1, 1), (-1, -1)1, then the associated conditional ordinary differential equation 
is 

R= 
1 

(7.58) 

1? 

which has the stable point 

y4,e = ((U- _ri)(I + 02), -0). 

Notice the relationship between yj,e (j= 1, ... , 4) and the perturbations that generate 
each ordinary differential equation. For example, (7.55) is generated by W, E 

{(1, 1), (-1, -1)1 which has yl,e as its stable point, where yl e is the intersection of 

{Y: ?7(Y, (1, o2)) = 01 

and 

{y: r (y, (-0i, -o2)) = 01. 

Our remaining task is to identify the most likely exit point among {y]e j = 1, .. , 41, 
each of which is located on the boundary of G that is surrounded by the four curves 
depicted in Figure 10. Notice that each curve is generated by exactly two perturbations, 
each of which has the same probability 1/4 of realization. Thus, if it takes T(8) periods for 
the escape path to reach the boundary of G, then the probability that the exits occurs 
through the point is proportional to 4-T(e). Moreover, T(s) increases as s -? 0. Thus, the 
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exit point that can be reached in the shortest periods is the most likely exit point among 
{yi,e :j = 1, .. . , 4}. A simple numerical analysis reveals that yl,e is the most likely exit 
point, because the velocity vector of (7.55) is substantially larger than that of the other 
three ODEs. Then, by invoking Proposition 7.3, we conclude that this is the point through 
which the dominant escape exits G. See Cho and Sargent (1999) for additional details. 

In conclusion, under the binomial assumption on W, the "unconditional" ODE for y 
is 

_(y) -_R- 1 + yl ( + Yl2 0+Y) 

- ? Y-1 

which implies that (7.55) can be written as 

Y ( y) + R-1 
lU 

and 

v=R-l 
0 l 

8. CONCLUDING REMARKS 

Fudenberg and Levine (1993), Fudenberg and Kreps (1995), and Fudenberg and Levine 
(1998) have recommended the self-confirming equilibrium concept partly because of its 
status as the limit point of a class of what Fudenberg and Kreps (1995) call "asympto- 
tically myopic" learning schemes. We believe that self-confirming equilibria are useful 
tools for macroeconomics, where there have always been controversies about whether the 
government's model is specified properly, and where there is a long tradition of academics 
trying to improve the government's model specification. The Phillips curve example of 
Kydland and Prescott (1977) is just one example in this tradition. 

Macroeconomic examples of self-confirming equilibria typically have the structure 
that the beliefs of a large player (namely, the government) influence stochastic processes of 
outcomes significantly. Where the beliefs of large players matter, adaptive learning 
schemes, like those analysed here and in Fudenberg and Kreps (1995) and Sargent (1999), 
let escape dynamics have big and recurrent effects on outcomes. In addition to developing 
some of the analytic results applied in this paper, Williams (2001) provides examples of 
escape dynamics in adaptive models of oligopoly and growth with production external- 
ities. Also see Bullard and Cho (2001). 

In this paper, we have shown that the escape dynamics exhibit the same "near 
determinism" (in the sense of Whittle (1996)) as the mean dynamics already familiar from 
the literature on least squares learning. Our numerical calculations of escape probabilities 
closely fit numerical simulations of our model. An interesting feature of the calculations 
is how the escape probabilities are larger when the government's model is more richly 
specified, permitting it to discover the subtler "induction-hypothesis" version of the 
natural rate hypothesis, despite the fact that the generality of this model relative to the 
"static" model adds nothing within the self-confirming equilibrium. 
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APPENDIX A. PROOF OF THEOREM 4.1 

The result follows directly from Theorem 8.5.1 in Kushner and Yin (1997), under Assumptions A above. The 
theorem requires the additional assumptions (A8.1.9), (A8.5.2), (A8.5.3) and (A8.5.5) which hold trivially here, 
since EnZn = b(0,) . This implies that the limit in (A8.1.9) is identically zero, that the PB: terms in (A8.5.2) and 
(A8.5.5) are also identically zero, and that (A8.5.3) is equivalent to (A8.5. 1). The theorem is also stated under the 
weaker condition (A8.5.4), which is implied by (A8.5.4a) above. 

We now verify that Assumptions A hold when the shocks Ware i.i.d. normal. For the normal case, (A8. 1.6) 
clearly holds by inspection. It is clear that there is a unique locally stable point of the ODE, and furthermore it 
can be shown that the domain of attraction of the ODE is the entire space, so (A8.5.4a) holds. For (A8.5.0), 
notice that by the independence of the shocks, we can write 

P(| |O > K Pff(w) _ K )P(g(w) > K), 

where w has a standard normal distribution and f and g are some quadratic functions. Denoting the roots of 
f(w) - K and g(w) - K as (fi f2) and (g1, g2) respectively, we have 

P(|O| > K) = (cD(fi) + 1 - D(f2))(c(g) + 1 - (D(g2)), 

where D is the standard normal c.d.f. Tightness follows by noting that the absolute values of the roots are 
increasing in K and taking limits as K - 0 oo. For (A8.5.1) and (A8.5.3), note that 1Z12consists of normally 
distributed random variables up to the fourth order, and so have finite expectation, which implies the uniform 
integrability. Finally (A8.1.7) holds because v consists of normally distributed random variables up to the second 
order, and thus can be bounded to arbitrary accuracy on an appropriate compact set. 11 

APPENDIX B: PROOF OF THEOREM 5.3 

B.i. Part 1. The result follows from Dupuis and Kushner (1989), Theorem 3.2, which requires that paper's 
assumptions 2.1-2.3 and 3.1. Their assumption 2.2 is satisfied by Assumptions A, and 2.3 is not necessary in the 
constant gain case, as we restrict our analysis to a finite time interval. Assumption 3.1 is satisfied by our definition 
of S above. All that remains is 2.1. Under the exponential tail condition given in Part 1, Dupuis and Kushner 
(1989) Theorem 7.1 (with special attention to the remarks following it) and their Example 7.1 show that 2.1 holds. 

B.2. Part 2. The result is a simple application of Kushner and Yin (1997) Theorem 6.10.1, whose 
assumptions follow directly under the boundedness assumption. The identification of the H function follows from 
Dupuis and Kushner (1989) Theorems 4.1 and 5.3. 

B.3. Parts 3 and 4. After establishing part 2, these results follow directly from Dembo and Zeitouni (1998) 
Theorem 5.7.11. 11 

APPENDIX C: CONSTRUCTING THE Q MATRIX 

Recall that in the full dynamic model, the government's regression equation includes current inflation, two lags of 
inflation and unemployment, and a constant. Therefore y is a (6 x 1) vector, and so Q is a (6 x 6) matrix. The 
matrix has the form: 

Q(y, R) = R-1Q(y)R-1 

where we specify Q( y) below. 
To begin, note that for a fixed vector y, we can write each row of g( y, 4) as a quadratic function: 
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where the Vi matrices can be written in block form: 

0 U1U2 0 

Po = ? 2i(y, + 0) ? 

Lclh' 2(d-h(yl +0))' h'dj 

Vyj= 0 0 0 j I=1, .,5 

_ a ej -2(y, + O)ej ejd] 

where ej is a (5 x 1) vector with a 1 in row j and zeros elsewhere, and 

d=u[0,0,0,0, 1]-ylh(y)-Y 1y 

Note that because of the linearity of our model, we can write the evolution of the vector 4n as a (linear) 
vector autoregression. We then normalize the variable components of 4 to be mean zero, but we retain the 
constant term. We therefore define the vector z = 4 - E(4) + e7. We can then rewrite each row of g as 
gi = z' Viz + ki for normalized matrices Vi and mean vectors ki for i = 0, . 5. Furthermore, we can write the 
evolution of the vector z as 

z+ = Az, + BWn 

for some matrices A and B. 
In general, the Q matrix depends on the solution of a Poisson equation which can be difficult to solve. 

However Williams (2001) shows that when the Wi shocks are normally distributed, 4n follows a linear VAR, and 
the g function is quadratic, the (i,j ) element of Q is given by: 

Qij = E [(Z'Liz)(z'Ljz) - (z'A'LiAz + tr (LiBB'))(z'ALjAz + tr (LjBB'))], (C.59) 

where the Li matrices solve the matrix Lyapunov equations: 

Vi = Li-A'LjA. 

APPENDIX D. PROOF OF LEMMA 7.2 AND PROPOSITION 7.3 

Kushner (1984) pointed out that the large deviation properties of a discrete time recursive stochastic system may 
not converge to the continuous time approximation of the same discrete time recursive process, unless the 
associated H-functional of the discrete time process converges to that of the continuous time process. In this 
application, one can show that the H-functional induced by a multinomial distribution of the perturbation 
converges as the perturbation converges in distribution to the Gaussian perturbations. Thus, one can approx- 
imate the large deviation parameters associated with this recursive system with Gaussian perturbations by 
another process with a multinomial distribution. 

The general characterization of the large deviation parameters presented in the text assumes that Wn has the 
Gaussian distribution. In order to show how the calculation of the most likely escape point can be derived from 
the orthogonality condition of the optimal forecasting problem, we shall prove Lemma 7.2 and Proposition 7.3 
stated in terms of the multinomial distribution. 

To simplify notation, we define a new random variable Win satisfying aiWin = Win: there exist 

< a)il < ..< a)i i= 1,2 

such that 

Pr (Win = cik) = Pr (Wj',n -ik) = Pik k = 1,.. ., 1 (D.60) 

and 

k lPik = 2 vi E {1, 21. 

Let 

0i E {-(Oil -i,(ilC . coil} 
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be a generic element in the support of Wi. Let co = (NI, ao2) be a realization of W,. Since Wi, (i = 1, 2) takes one 
of 21 different values, Wn = (Wln, W2n) can take one of 412 different values. We use Win in place of aiWin 
throughout this proof. 

Given bl . bL E R2, let 

C({bl,..., bLI) 

be the cone spanned by bi, . . ., bL. Given b E 912, let 

H(b) = {x: b - x = 01 

be the hyperplane with directional vector b. Let H +(b) be the open half space above H(b). 
Let Fr[ be the integer part of r E 91. Let 

f8(c) =#H{n: F[/81 _ n _ [(T + s)/l1, Wn = (D} (D.61) 

be the empirical frequency of co in time interval [r, r + s). Define 

fs,(w) = lim f S'(w) (D.62) 

and 

fM() = lim fs (w). (D.63) 
s-*O 

Given that Wn = (Wln, W20) has the multinomial distribution, let V be the set of all realized values of Wn. 
For each r, define a subset of V as 

V(H+(b)) = {la E V: C({R-lg(y(v), a)) :fs,,(ao) > 01) c H+(b)) (D.64) 

as the set of perturbations that induce {R-lg( y(r), co)} contained in an open half space. 
We state the same half space condition for the multinomial distribution. 

Definition D.1. If a), a)' E V(H+(b)), then a and a)' satisfy the same half space condition at r. We say that y 
satisfies the same half space condition, if there exists b E 912 such that y(r) is generated by perturbations in V(H+(b)) 
for all T. 

Note that V contains exactly 412 elements and each hyperplane divides V into 2 subsets, each of which has 
212 elements. For Vr > 0, we can choose bl, . . ., b212 such that 

H(bk) if k ' 212 
Hk = 

H(-bk-212) if k > 212 

and 

UbE912 V(H(b)) = Uk VHk 

and each V(Hk) contains 212 elements. 

Lemma D.2. If ye is a dominant escape path with exit time te < oo, then the same half-space condition must 
holdfor all T E (0, t e) along the trajectory of ye. Moreover, there exists k E {1, 412} such that 

* e(t) F_ R-f g( y e(), )) Pr (co: V(Hk)) VT E (0, te) (D.65) 

If ye,k is the trajectory induced by (D.65) that has the shortest escape time among 412 escape paths induced by 
(D.65), then ye,ki is a dominant escape path. 

Proof. Fix V(Hk) and calculate the "conditional" ODE ye,k on V(Hk): 

y ek() = y e k(y) + lim n, n) 

where Wn E V(Hk) for Vn = 1., Fr/al and the probability distribution over V(Hk) is the conditional probability 
distribution of V on V(Hk). By the construction of G(r), 

ye,k(t) = xek E aG(v). 
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Fix ye,k, p > 0, and Te. Define 

Np(Ye,k) Y {y E :3T < e, ly e,k(T) <p} 

as the p neighbourhood of the trajectory of ye,k between 0 and Te. Define 

Ae(Hk) = {ye: ye(O) = ye,k 3T < Te y6(T) ?N (ye,k)} 

be the set of sample paths generated by perturbations in V(Hk, T), which move away from the neighbourhood of 
the trajectory sometime between 0 and Te. 

The next result is an extension of Cramer's theorem to the probability distributions over function spaces, 
whose proof can be found in Freidlin (1978) and Dupuis and Kushner (1985) under general conditions. 

Proposition D.3. For Vp > 0, there exists s* > 0 such that 

lim ? log Pr (Ae(Hk) V(Hk)) < - * 
6-*O 

Fix Te and define 

xe,k = ye,k(Ve) 

for each k = 1., 412. Define G(re) as the convex hull of 

xe = {X e,.1 X e,4l2} 

By the construction, G(re) is a convex polyhedra with extreme points selected from Xe. Clearly, if r > re, then 

G(T ) C G(T). 

Since G(Te ) expands as re increases, we can find the first time when some element of Xe crosses over aG: 

T,' = inf {r: Xe \ G 0}. 

If Xe n aG contains more than a single element, we can enumerate them in an arbitrary manner. Let x e,kI be the 
element in Xe n aG when re = re.l. 

Choose p > 0 sufficiently small such that 

Np(Xe,k) n Np(XeMk) =0 Vk = k'. 

Since aG(re) \ Np(Xe) is compact, we can find Yi, . YL E aG(ire) \ Np(Xe) and P1,., PL > 0 such that 

BG(ire) \ Np(Xe) C Uk=, Npk (Yk)- 

It remains to prove that x e,k1 is the most likely exit point through G. To this end, we choose G a convex 
compact neighbourhood of the stable point y, and choose Te = ire,l as defined above. Define G(Te ) as the convex 
hull of Xe. By the construction, 

G(r e) n aG = {X ek.I 

In order to analyse the probability distribution over G induced by the escape paths, it is necessary to "count" the 
escape path through Np(y) n aG for each y E aG and p > 0. 

Divide the "arc" Np(y) n G into smaller pieces, each of which is as long as ? and centred around Yk. There 
are approximately as many as rp/l] such small grids contained in Np(y) n aG. For convenience, we abuse the 
notation by writing the centres of the small grids as Yl . . ., Yrp/el, and N8(yk) as the small grid centred around Yk 

(k =i, rp/li). For each grid N6(Yk), we can find the shortest escape path through N8(Yk). Let A k(y, p, ?) be 
the set of all shortest paths through N6(Yk). Define 

Ao(y, p, ) = Uk1A (y, p, ?) 

For j > 1, let A ' (y, p, ?) be the set of escape paths through N6(yk) that takes j periods more than the shortest 
paths through N6(Yk). Define 

Aj(y, p, 8) = Uw-1 Ak(y, P, ?)- 
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Note that A k(y, p, ?) increases as e -O 0 for a fixed G. But, the rate of increase is asymptotically bounded by a-'. 

Define 

aj(y, p 8) =#Aj(y, p, a) 
#,Ao(y, p, a) 

where #A is the number of elements in A. Again, aj(y, p, ?) increases as ? -? 0 asymptotically at the rate of s-i. 
Let P(y, p, a) be the probability of escape through Np(y) n aG. 

As a -> 0, each element in Ao(y, p, a) is the shortest path around a very small neighbourhood of Yk 
(1 = 1, [p/8]). For this reason, we call each element in Ao(y, p, a) the pointwise dominant path. Define 

p(y, p, ?) = Pr (Ao(y, p, s)) 

as the probability of escaping through the pointwise dominant paths. 
The next proposition shows that any pointwise dominant path must be generated by perturbations that 

satisfy the same half-space condition along its trajectory. 

Proposition D.4. As -O, almost all escape paths in Ao(y, p, s) must satisfy the same half-space condition. 

Proof of Proposition D.4. If the conclusion of Proposition D.4 is false, then with a positive probability, we 
can find an escape path y with 

y(T e) E aG( e), 

t E (0, re) and tsk1% I such that 

Sk . 0 

and VSk > 0, 

C({R1g( y(T), a): fsk.V(a)) > 01) = R2* 11 (D.66) 

Because the next lemma is a straightforward application of linear algebra, we state the result without the 
proof. 

Lemma D.5. (D.66) holds, if and only if there exist w1, Co2 and o- in the support offsk,r such that 

R-'g( y(), o-) E C({-R-k( y(4), c), -R-'( y(), c(2)}). (D.67) 

If YC, w2 and co satisfy (D.67), then any permutation of the three vectors satisfies (D.67). 

Proof of Lemma D.5. See Cho and Sargent (1999) 11 

Fix s = Sk > 0. Let 

E R- 
1 

( y(r), (o) fs,,(a) 

be the mean directional vector at r. By Lemma D.5, we can choose co', w2 and co- such that 

C({R-'k( y(r), cd), R-g( y(r), (c2) R-'g( ,y(r) ,)}) =2 

Rename each vector so that 

_ R- (y(T), c)fs, (o) E C({R-'k( y(r), co'), R-g( y(t) t2)}) (D.68) 

and let o23 = co- so that there exist p'(6o-) > 0 and p2(o-) > 0 such that 

R'lk(y(t), o-) = -p1((o-)R-g( y(r), cvl) - p2(co-)R-'g((r), co2). 

To simplify notation, let us assume that there is only one such o- in the support offs,T. The general case follows 
from exactly the same logic, while the notation becomes significantly more complicated. 

Note that for cl E [0, 1], 

E.R-lk(y(4) o)fs(oa) _=.ZR-'(y(T), a)fs,,(c) + 0(s) 

E JI)= [Z #-Po'(cp)fs,,(oa) + api (o-)fs,r(oF)]RU1 ( y(T)4 coai) 

+ (1 - ca)fs,((o-)R-'g( y(r), oC-) + 0(s) 
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Since 

[E@+@- p'(()fs,r((O)] + p'(&)fS,T() > 0 Vj = 1,2, 

there exists hi E (0, 1) such that 

h3[Z-W0- p3(a)fs,A(a)] + p3(cL-)fs,,(cL-) = 0 

which implies that 

s, 
)=pj(a)-) 

+-i()s(- 

Without loss of generality, assume that 

_ 
1i 

E 
Z -p1(0)fs,(0) < -_ E 

_( 

which implies that 

h >h2. 

Hence, 

h [E@+@- p2(v)f f,(0v)] + p2(cL-)fs(c) 0 

We can write the mean dynamics as 

Z R-yg(y(v), ) fs,T(c)) = [(1 - coh) )E+ R-1g( y2 ), y )f (v)] 

+ [(1 - coh) fs,(c2) + p2(c-)co(h' - h2) fg,(a-)]R-1 ( y(), 02 

+ (1 - ov) f()R1 g( y(T) (-) + 0(s). 

Note that 

r [(1- )hl)EX,7AX,- Sf5 t(@)] + [(1-v)f 
(02)] + < 

( + [(1 - cohl)f,(2) + p2(c-)o(h1 - h2)f,(or)]) 

and that each term inside the bracket is strictly positive for a sufficiently small co E (0, 1). We can generate the 
same mean dynamics through 

[ (1-h1)fs (o) if co?-c L v2 

f(ac))= (1- cohl)fa,-(co2)+p2(oF )co(hl - h2)f,(c-) if a)=wa2 (D.69) 

(1- cv)f,(ao-) if co = cv- 

instead of f,,. Since Ej,f(co) < 1, f is not an empirical frequency. After normalization, we have 

y(v +S)-y(T) =S[ F (i1))+ O(S)] [LW R-1g( y(v), c)] + sO(s). (D.70) 

For a sufficiently small S = Sk > 0, 

>f(a)) + 0(s) < 1 

which implies that we can construct a path from y(r) to y(r + s) which takes s[E jf(c) + 0(s)] instead of s. This 
contracts the hypothesis that y is the pointwise dominant path to Xe E aG. 

For each Wk E V, let 

pk =Pr (ak) > 0 

be the probability of the k-th perturbation. Define 

p = max (p1. 4l2) 
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and 

p = min p.l,p412). 

Then, 

,J=o Ay,p, 8)aj(y, p, a)pi P(y, p, 8) <E2o0p(y, p, s)aj(y, p, s)i3j. 

Note that 

I P(Yk, Pk, 8) _o aj(Yk, Pk,)p < j L .00 P(Yk, Pk, 8) E o alj(Yk, Pk, 8)p 

k O, 8)Zjroaify(xek p 8)p = k= i-? Y-412p(Xek p,k ) (D 7) 

Recall that G(re)(c G) is the convex hull of the points that can be reached in Te by 412 escape paths. Thus, it 
takes an equal time to reach the boundary of G(Tr) as long as the escape path satisfies the same half space 
condition. Since Yk k U4t2 N (x ek), any escape path y through Npk(yk) must be away from yek by at least as 
much as p: 3rt' <', 

y(T )0?Npf ye,) Vk. 

Thus, 

P(Yks Pks ?)_ Pr(nk :3Tc _ T e, y(T ) 0 Np( y e,k)} 

( Pr ({yk: 3Tr' <Te, y() Np(ye.k)}) 

Thus, Proposition D.3 implies that there exists s* > 0 such that 

P(Yk, Pk, 8) < P(Yk, Pk, 8) < 

Ek1 p(Xek, p, 8) = p(Xe ,p,e) = 

for any small a > 0. Thus, (D.71) can be bounded by 

Ek= 105 E 
s 

es/S aj(Yk, Pk, )pi - 

Let 

fa( j k) = e/s* aj(Yk, Pk, 8) 

which converges to 0 pointwise as 8 0. Thus, 

limsupf8(j] k) = 0 Vj,k. 
?-*O 

Since 

EJ'0-O P < 00 

{f,(j: k)}a is a sequence of integrable functions with respect to the finite measure ,u where 

A(j)=fij Vj. 

Hence, 

0_ limsOup E kI-0o e-s* Uj(Yk, Pk, ?)pi j< EZ I O lim sup [ele/-aj(yk, Pk, 8)]pi = 0 

which implies that the probability distribution over G(T e) induced by the escape points is concentrated at Np(Xe). 
Since the only intersection between Xe and aG is x e,k1 this result proves that x e,kj is the most likely escape point 
within Te l real time. 

For Te > Te,l the same logic applies. Proposition D.3 implies that the probability distribution induced by 
the exit points is concentrated at the intersection of the trajectory of y e,k and aG. Note that there are as many as 
412 such trajectories. Among 412 exit points of the trajectories induced by the "conditional" ODE, it takes the 
shortest time to escape through x e,k, along the trajectory y e,ki induced by the conditional ODE. Since the longer 
escape paths requires exponentially more "unusual" perturbations, the probability of escaping through the 
shorter path is exponentially higher than that through the longer path. Thus, the exit probability is concentrated 
at x e, which is the shortest escape paths among the escape paths induced by the conditional ODEs. 11 
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APPENDIX E. NUMERICAL SOLUTION 

As mentioned in Section 6, in order to calculate the dominant escape path numerically, it helps to recast the 
problem as an initial value problem rather than a two-point boundary value problem. For any arbitrary (t, y) 
there may not be a solution to (5.43) such that y(t) = P. However, given initial conditions (a(O), X(O)) = aro, we can 
determine candidate values of t and P endogenously by integrating (5.43) until the system leaves G, which gives 
t = inf{s: y(s) V G}, and P = y(t). So rather than attempting to directly calculate S by minimizing over (t, y), 
which may not be solvable numerically, we can instead define: 

S(ao) = J L( y(s), y(s); R(s))ds, 
JO (E.72) 

s.t. (5.43),y(O) = y, R(O) = R, (a(O), X(O)) = axo 

with t defined as in the previous sentence. Minimizing this quantity over the vector (x0 will then give us S and an 
endogenously determined escape point P and the minimizing path is the dominant escape path. 

In order to compute the dominant escape path, we solve the ODEs using Runge-Kutta methods, and 
minimize over (x0 numerically, where the integrals in S are also calculated numerically with a trapezoidal rule. We 
also compute the derivatives in (5.43) using the central finite differences: 

ag g( y + ejA) - (y y-ejA) 
ayi 2A (E.73) 

aQ Q(y + ejA, R)-Q(y-eeA, R) 
ayi 2A 

for some small A > 0. The dependence of Q and 
- 

on y is complex, as both the conditional and invariant 
distributions change with y, which is why we compute the derivatives numerically. It is straightforward but 
tedious to derive the exact expressions for the derivatives, which can be calculated explicitly up to the solution of 
matrix Lyapunov equations. In practice, the finite difference method proved slightly faster and only very slightly 
less accurate than the explicit calculations. 
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