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Abstract

This paper presents a dynamic general equilibrium model with hetero-
geneous firms and entrepreneur’s portfolio choice. We analytically show
that this model generates the Pareto distribution of top income earners
and Zipf’s law of firm at the steady state. The differential equation for
the probability density distribution of income is derived and numerically
evaluated. In the model, CEOs respond to a tax cut by increasing their
share of stocks of their own firms, thereby increasing the diffusion of their
wealth. The calibrated model shows that the transition path matches
with the decline of the Pareto exponent of the income distribution and
the trend of top 1% income share in the U.S. in recent decades. We argue
that the low marginal income tax at the top bracket of income could lead
to the higher dispersion of income among the top income earners, which
results in the higher concentration of income in the top income group.

JEL Codes: D31, L11, O40
Keywords: income distribution, wealth distribution, Pareto exponent,

firm size distribution, top income share

1 Introduction

There has been a secular trend towards the concentration of income on top
earners in the U.S. economy for the last three decades. According to Alvaredo
et al. (2013), the income share of top 1% earners was stable at around 8% of
national income during the 1960s and 70s, but this pattern was broken in the
1980s. Since then, the top 1% share has grown to 18% by 2010. Piketty and
Saez (2003) found that this trend is particular in the very top percentile, while
the concentration on the lesser percentile group has been much milder.

Along with the increasing trend of the top income share, a widening dis-
persion of income within the top income group has been also observed over the
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same periods. It is known that the tail part of income follows a Pareto distri-
bution very well. When income follows a Pareto distribution with exponent λ,
the ratio of the number of people who earn more than x1 to those who earn
more than x2, for any income levels x1 and x2, is (x1/x2)

λ. Thus, the Pareto
exponent λ is a measure of equality among the riches. The estimated Pareto
exponent shows a close connection with the top income share historically. It
declined from 2.46 in 1975 to 1.6 in 2010 along with the secular increase in the
top 1% share.

In this paper, we argue that the concentration of income in the last three
decades was driven by the economic force that caused income dispersion of top
earners. Among the driving forces of dispersion among the rich, we pay special
attention to the decrease in the marginal income tax rate, the importance of
stock-related income through the widespread use of employee stock options for
CEOs or founding entrepreneur’s share ownership, and the changing volatility of
firm’s risk environment. We present a model of portfolio choice by CEOs, who
can invest in their own firms’ risky stocks or in risk-free assets. The dispersion
of CEO’s income is determined by the extent of the risk taken in their after-tax
returns of portfolio.

We develop a dynamic general equilibrium model with heterogeneous firms
and the CEO’s portfolio choice. In this type of model, the distribution of CEO’s
pay can be strongly affected by the distribution of firm size. It is known that the
firm size distribution follows a Zipf’s law, a special case of Pareto distribution
with exponent λ = 1. As a discipline for our approach, we require our model to
generate the Zipf’s law of firms, while our main focus is the Pareto distribution
of income.

The contribution of the paper is summarized as follows. First, this paper
presents a parsimonious neoclassical growth model that generates Zipf’s law of
firms and Pareto’s law of incomes. The model is simple enough to allow the ana-
lytical derivation of the stationary distributions of firms and income. Second, we
obtain an analytical expression for the evolution of probability density distribu-
tion of income in the transition path. Using this expression, we can implement
numerical computation of the transition dynamics of income distribution after
an unanticipated and permanent cut in top marginal income tax rate. Third,
we calibrate the model parameters and show that the transition path matches
the decline of the Pareto exponent of the income distribution and the trend of
increasing top income share in the last three decades. Hence, we argue that the
calibrated analysis of our model predicts that the tax cut and CEOs’ response to
tax in their portfolio can explain the widening dispersion and more concentra-
tion of income. The numerical exercises show that the change in firm’s volatility
explains little dispersion of top income, since the portfolio choice responds to
mitigate the impact of the firm’s volatility on the risk of CEO’s portfolio. The
calibrated model brings out testable implications on CEO portfolios and future
development of inequality under the current tax rate level.

Much has been debated about the causes of the concentration of income in
recent decades. Among them, Piketty and Saez (2003) argues that a cut in top
marginal income tax rate is one of the plausible interpretations, compared with
other interpretations such as skill-biased technical change. While our paper
shares the view with theirs that a tax cut is an important factor, there is also
a difference. In our model, unlike theirs, a cut in top marginal income tax rate
itself does not matter, while a cut in top marginal income tax rate relative to
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other taxes, such as capital gains and corporate taxes, does matter.1

Recently, several papers have built models to understand why income distri-
bution follows a Pareto distribution. There are two types of approaches in the
literature. The one is the approach that explains Pareto’s law of incomes from
assuming other distributions that follow certain types of distributions. Gabaix
and Landier (2008) take this approach. They construct a model of the CEO
pay, which assumes that the firm size distribution follows Zipf’s law and that
the CEO’s talent follows a certain distribution. Under the settings, they show
that the CEO pay distribution follows a Pareto distribution. An advantage of
their model is that their model is consistent with the two stylized facts, i.e.,
Zipf’s law of firms and Pareto’s law of incomes. Jones and Kim (2012) extend
the model to be consistent with the decreasing Pareto exponent of the income
distribution, which is assumed to be constant in Gabaix and Landier (2008).
Compared with the papers taking this approach, our paper’s contribution is to
build a model that generates the Zipf’s law and the Pareto’s law both from the
productivity shocks of firms without assuming certain types of distributions.

The other is the approach that explains Pareto’s law of incomes from idiosyn-
cratic shocks. Using a household model with a consumption function, Nirei and
Souma (2007) show that idiosyncratic shocks on the household asset returns
generate Pareto’s law of assets and incomes. Benhabib et al. (2011) show a
similar result in the household problem in which households optimally make
saving and bequest decisions. These models are not dynamic general equilib-
rium models because they only consider the household side problem and do not
consider the firm side. Nirei (2009) extend the framework to a Bewley-type
model and derive the Pareto’s law in dynamic general equilibrium environment.
Toda (2012) also builds a similar but more analytically tractable dynamic gen-
eral equilibrium model and derive the Pareto’s law. Our paper belongs to this
approach.

Perhaps, the closest paper to ours is Kim (2013), who following the latter ap-
proach, builds a model of human capital accumulation with idiosyncratic shocks
that generates the Pareto’s law of incomes. Using the model, she analyzes how
a cut in top marginal income tax in recent decades affects the Pareto exponent
of income distribution. Compared with her paper, our paper’s contribution is
to build a model that also explains Zipf’s law of firms from the same shocks
that generate the Pareto’s law of incomes. In addition, because the mechanism
through which a tax cut affects top incomes is different between hers and ours,
the predictions of the models are also different. For example, in her model,
an income tax cut encourages human capital accumulation among top income
earners, which would result in the labor productivity increase in the U.S. in
recent decades compared with the previous periods and other countries such
as France. In contrast, in our model, a tax cut does not directly affect capital
accumulation.

The organization of the paper is follows. Section 2 sets up a dynamic general
equilibrium model. Section 3 discusses the firm side properties of the model and
derives Zipf’s law of firms. Section 4 defines the equilibrium of the model and
how to solve the model. After defining the equilibrium, Section 5 illustrates
how in the steady state the household asset and income distribution follows a

1The reason that a cut in top marginal income tax rate itself does not matter in our model
is that top marginal income tax in our model plays the same role as dividend tax in the “new
view” of dividend taxation (Sinn, 1991; McGrattan and Prescott, 2005).
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Pareto distribution. Section 6 analyzes how a tax cut affects top incomes in our
model and contrasts the results with data. Finally, Section 7 concludes.

2 Model

It is well-known that the distribution of certain types of stochastic processes
follows a Pareto distribution. The purpose of the model presented here is to
incorporate the types of stochastic processes into otherwise standard general
equilibrium model and to replicate Pareto distributions observed as stylized
facts. Key assumptions that generate Zipf’s law of firms are that firm’s pro-
ductivity is affected by multiplicative idiosyncratic shocks and that there is a
lower bound for the firm size. Similarly, key assumptions that generate Pareto’s
law of household’s assets and incomes are that household’s asset is affected
by multiplicative idiosyncratic shocks and that each household faces a constant
probability of death (i.e., the perpetual youth assumption). In the next sections,
we discuss how these properties generate these laws.

2.1 Household’s problem

There is a continuum of households with a mass L. As in Blanchard (1985), each
household is discontinued by a Poisson hazard rate ν. Households participate
in a pension program. If a household dies, all of his (non-human) wealth is
distributed to living households. Instead, if a household does not die, he obtains
a part of the capital of the dead. The amount he gets is proportional to his
wealth. ν is the pension premium rate on his wealth.

The households consist of entrepreneurs and workers. A mass N of house-
holds are entrepreneurs (referred to as entrepreneurs) and can hold the shares
of his firm si,t and risk-free market portfolio bi,t. The remaining L − N of
households are workers and can only hold risk-free assets bi,t (therefore, for
them, si,t = 0). Each entrepreneur leaves the firm by a Poisson hazard rate pf ,
and becomes a worker (referred to as a former entrepreneur). These households
maximize expected discounted utility by choosing sequences of consumption and
asset portfolio.

Let qi,t and di,t be the price and dividend of the risky asset. The return by
holding the risky asset is described by the following stochastic process:

((1− τe)di,tdt+ dqi,t)/qi,t = µq,tdt+ σq,tdBi,t,

where τ e is the tax rate on risky asset and Bi,t is the Wiener process. We inter-
pret τe as top marginal tax rate on ordinary income in the numerical analysis.
Risk-free assets yield a net return rft with certainty. The sum of the two asset
holdings constitutes a financial wealth si,tqi,t + bi,t.

These households earn a constant labor income flow wt and obtain govern-

ment transfers tr t. The human asset is defined by ht =
∫∞
t

(wu+tru)e
−

∫ u
t
(ν+rfs )dsdu.

The labor income flow is expressed as an annuity payment

wt =(ν + rft )ht − dht/dt. (1)

4



Let ai,t = si,tqi,t + bi,t + ht denote total wealth of a household. The accu-
mulation of total wealth grows according to the following process:

dai,t = (ν(si,tqi,t + bi,t) + µq,tsi,tqi,t + rft bi,t + (ν + rft )ht − ci,t)dt

+σq,tsi,tqi,t

= µa,tai,tdt+ σa,tai,tdBi,t. (2)

where µa,tai,t ≡ νai,t + µq,txi,tai,t + rft (1− xi,t)ai,t − ci,t, σa,tai,t ≡ σq,txi,tai,t,
and xi,t is the share of ai,t invested in the risky asset. Note that dBi,t is a
multiplicative shock to the asset accumulation in that the shock is multiplied
by the current asset level ai,t.

Household’s dynamic programming problem is specified as follows.

V i(ai,t, t) = max
ci,t,xi,t

ln ci,tdt+ e−(β+ν)dt
Et[V

i′(ai,t+dt, t+ dt) | ai,t] (3)

subject to (2), where V i(ai,t, t) denotes value functions with household charac-
teristics i: if the household is an entrepreneur i = e, if worker i = w. Note that
if the household is an entrepreneur, household characteristics in the next period,
denoted by i′, can be both entrepreneur and worker, while if the household is a
worker, denoted by i′, is also worker.

The household problem is a variant of Merton’s (1969) dynamic portfolio
problem (see Appendix A for derivations), whose solution is

xi,t =

{
µq,t−rft
σ2
q,t

, if i = e,

0, otherwise,
(4)

vi,t =ν + β, (5)

where vi,t is the consumption-wealth ratio.

2.2 Firms and the financial market

A continuum of firms with a mass N produces differentiated goods. As in Mc-
Grattan and Prescott (2005), each firm issues shares, and owns and self-finances
capital kj . The entrepreneur of the firm can directly own the shares of his firm.
Financial intermediaries also own the shares of the firm and by combining the
shares, issue risk-free market portfolio to households, which diversifies the id-
iosyncratic shocks of the firms. The financial intermediaries incur ι per dividend
dj,t as transaction costs. We assume that financial intermediaries possess the
majority shares, or that when an entrepreneur possesses his firm’s shares, they
are preferred stocks without voting rights. We make these assumptions to sim-
plify the analysis. These assumptions prevent the entrepreneurs from choosing
the dividend and investment plans in order to suit their own stochastic discount
factors rather than the market’s.

2.2.1 Financial intermediary’s problem

A financial intermediary maximizes the residual profit:

max
sfj,t

Et

[(∫ N

0

{
(1− τf − ι)dj,tdt+ dqj,t

}
sfj,tdj

)]
− rft dt

(∫ N

0

qj,ts
f
j,tdj

)
,
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where sfj,t is the shares of firm j owned by the financial intermediary and τf is

the tax on the dividend. We interpret τf in the numerical analysis as the com-
bination of capital gains and corporate income taxes. Note that τf is different
from τe, the tax on risky assets received by entrepreneurs. The solution of the
problem leads to

rft qj,tdt = Et[(1− τf − ι)dj,tdt+ dqj,t]. (6)

2.2.2 Firm’s problem

There are heterogeneous firms in the economy. The production function of firm
j is

yj,t = zj,tk
α
j,tℓ

1−α
j,t .

The productivity of the firm evolves as

dzj,t = µzzj,tdt+ σzzj,tdBj,t.

Note that dBj,t is a multiplicative shock to the productivity growth because the
shock is multiplied by its productivity level zj,t.

In order to derive the property that the firm size distribution is a Pareto
distribution, we impose the following assumptions on the minimum level of firm
size. We assume that there is a minimum level of employment ℓmin, i.e.,

ℓj,t ≥ ℓmin. (7)

A firm whose optimal employment size is less than ℓmin is restructured. More
precisely, we define the productivity level zmin as the one at which, when the
firm optimally chooses labor (following (8) below), ℓj,t = ℓmin. We assume that
the firm whose productivity zj,t is less than zmin has to be restructured in the
way that the firm buys productivities and accompanying capitals from other
firms at the market price to increase the firm size (we will discuss how the deal
is conducted in the next section).

A firm chooses the investment level dkj,t and employment ℓj,t to maximize
the profit:

rft qj,tdt =Et

[
max

dkj,t,ℓj,t
(1− τf − ι)dj,tdt+ dqj,t

]
, (8)

The dividend dj,t consists of

dj,tdt = (pj,tyj,t − wtℓj,t − δkj,t) dt− dkj,t,

where pj,t and yj,t are the price and quantity of the good produced by the firm,
kj,t is the capital, wt is the wage rate, and δ is the depreciation rate.

By solving the firm’s problem, we obtain the conditions (see Appendix B for
details):

MPKt ≡ rft + δ =
∂pj,tyj,t
∂kj,t

, (9)

wt =
∂pj,tyj,t
∂ℓj,t

. (10)
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There are two remarks about the firm’s problem. First, in the model, the MPK
becomes the same among firms because the stochastic discount factor of those
who own diversified bonds is not correlated with the shock of firm j. Second,
as mentioned in the “new view” literature of dividend taxation (Sinn, 1991;
McGrattan and Prescott, 2005), because the taxes in the model are imposed on
dividends, they do not affect the marginal product of capital (MPK).

2.3 Aggregation and market conditions

We consider the market conditions for the aggregate economy. Goods that a
mass N of firms produce are aggregated according to

Yt =

(∫ N

0

(
1

N

)1−ρ

yρj,tdj

) 1
ρ

. (11)

(Throughout the paper, we denote the aggregate variables by upper case letters.)
We assume that the aggregate good Y is produced competitively.

The market clearing condition for final goods is

Ct +
dKt

dt
− δKt + ι

(
1− Ae,txe,t

Ft

)
Dt =Yt, (12)

where Ae,t is the total assets of entrepreneurs and Ft is aggregate financial asset.
(Since ι is real transaction cost, this term should also be subtracted.) The labor
market clearing condition is ∫ N

0

ℓjdj = L. (13)

The market clearing condition for the shares of firms is

sj + sfj =1, (14)

where sj is that owned by the entrepreneur and sfj is that owned by financial
intermediaries. We assume that government transfers are adjusted so that tax
revenues equal government transfers period by period.

3 Firm-side Properties

Before defining and solving the model, we review the following firm-side prop-
erties of the model. First, in this model, given rft , the firm side variables such
as ℓj,t, kj,t, and dj,t can be obtained as the closed-form expressions. These
variables can be written as a product of the components common across firms
and the heterogeneous component. Second, the distribution of firm’s produc-
tivity is obtained independently of other variables and is a Pareto distribution
whose exponent is close to unity when the minimum employment level ℓmin is
sufficiently small.
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3.1 Firm-side variables

Employing firm’s FOCs (9) and (10) together with the aggregate condition (11)
and the labor market condition (13), the firm’s variables can be written as
follows (for the derivations, see Appendices B.2 and B.3):

ℓj,t = ℓt z
ρ

1−ρ

j,t , where ℓt ≡

 L/N

E
{
z

ρ
1−ρ

j,t

}
 , (15)

pj,tyj,t = pytℓt z
ρ

1−ρ

j,t , where pyt ≡
(

αρ

MPKt

) α
1−α

E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

1
1−α

, (16)

kj,t = ktℓtz
ρ

1−ρ

j,t , where kt ≡
(

αρ

MPKt

) 1
1−α

E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

1
1−α

, (17)

dj,tdt = dtℓtz
ρ

1−ρ

j,t dt−
(

ρ

1− ρ

)
σzktℓtz

ρ
1−ρ

j,t dBj,t, (18)

where dt ≡ (1− (1− α)ρ)pyt − (δ + µk,t) kt,

qj,t = qtℓtz
ρ

1−ρ

j,t , where qt ≡ (1− τf − ι)dt

∫ ∞

t

exp

{
−
∫ u

t

(rfs − µd,s)ds

}
du.

(19)

Note that µk,t and µd,t is the expected growth rate of kj,t and dj,t.
In the above equations, each variables have the common components such

as ℓt and pyt and the heterogeneous component, z
ρ

1−ρ

j,t . Therefore, the firm size
distribution depends only on the heterogeneous component.

3.2 Restructuring

In each small time interval some firms decrease their productivities from t and

t+dt to zj,t+dt < zmin. Then, these firms have to pay qt+dtℓt+dt

(
z

ρ
1−ρ

min − z
ρ

1−ρ

j,t+dt

)
as the restructuring cost to increase the firm size to. We denote the total
payment of the restructured firms in the economy as Qrestructuring,t+dt. Here,
we analyze how the firm values needed for restructuring are collected from other
firms.

We assume that from at each instant, a fraction m
(

ρ
1−ρ

)
dt of each firm’s

value qj,t, whose value comes from underlying productivity and capital, is sold

to firms whose employment is less than ℓmin at the market price m
(

ρ
1−ρ

)
qj,tdt.

(The adjustment term
(

ρ
1−ρ

)
enters because firm-side variables are propor-

tional to z
ρ

1−ρ

j,t .) After the sellout, firm’s capital and productivity decrease by

m
(

ρ
1−ρ

)
kj,tdt, and mzj,tdt respectively. The total value of the sellouts is

m

(
ρ

1− ρ

)
dt

∫ N

0

qj,tdj = Nqt+dtℓt+dtE
{
z

ρ
1−ρ

j,t

}
m

(
ρ

1− ρ

)
dt.

Since the demand of firm values needed for restructuring has to equate the
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supply:

Qrestructuring,t+dt =Nqt+dtℓt+dtE
{
z

ρ
1−ρ

j,t

}
m

(
ρ

1− ρ

)
dt. (20)

Rearranging this equation and taking the limit as dt approaches zero from
above, we obtain (see Appendix B.4 for details)

m =

(
λ− ρ

1− ρ

)
σ2
z

4
. (21)

3.3 Firm size distribution

We detrend the firm’s productivity to derive the invariant productivity dis-
tribution. Let z̃j,t be the firm’s productivity level after sellout detrended by
egzt, where gz is a constant (the value of gz is determined below). The firm’s
detrended productivity growth after sellout is

dz̃j,t = (µz − gz −m) z̃j,tdt+ σz z̃j,tdBj,t,

or, d ln z̃j,t =

(
µz − gz −

σ2
z

2
−m

)
dt+ σzdBj,t. (22)

The Fokker-Planck equation for the probability density fz(ln z̃j,t, t) for firm’s
productivity is

∂fz(ln z̃j,t, t)

∂t
= −

(
µz − gz −

σ2
z

2
−m

)
∂fz(ln z̃j,t, t)

∂ ln z̃j,t
+
σ2
z

2

∂2fz(ln z̃j,t, t)

∂(ln z̃j,t)2
.

In this paper, we assume the invariant distribution for firms, i.e., ∂fz(ln z̃j,t, t)/∂t =
0. When the invariant distribution exists, the Fokker-Planck equation has a so-
lution in exponential form,

fz(ln z̃j,t) = C0 exp(−λ ln z̃j,t), (23)

where the coefficients satisfy:

C0 = λz̃λmin, λ = −2

(
µz − gz −

σ2
z

2
−m

)
/σ2

z . (24)

In this model, the exogenous parameter ℓmin pins down λ and gz. From the
restriction on ℓmin and (15), we obtain the Pareto exponent for z̃j,t as,

λ =
1

1− ℓmin

L/N

(
ρ

1− ρ

)
.

With this λ, we obtain the rescaling parameter gz that assures the existence of
the invariant distribution of z̃j,t.

There are four remarks on the firm size distribution. First, we obtain a

constant rescaled mean E
{
z̃

ρ
1−ρ

j,t

}
for a constant z̃min as follows:

E
{
z̃

ρ
1−ρ

j,t

}
=

∫ ∞

z̃min

z̃
ρ

1−ρ fz(ln z̃)
∂ ln z̃

∂z̃
dz̃ =

C0z̃
−(λ− ρ

1−ρ )
min

λ− ρ
1−ρ

.
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it is shown that when z̃min is a constant E
{
z̃

ρ
1−ρ

j,t

}
is also a constant.

Second, the growth rate of the aggregate output is g ≡ gz/(1− α). We can
confirm this property by detrending and aggregating (16).

Third, the expected growth rate of z̃
ρ

1−ρ

j,t is negative. It means that the ex-
pected growth rate of the detrended firm-side variables is also negative, while the

mean of the detrended firm size distribution, which is proportional to E
{
z̃

ρ
1−ρ

j,t

}
,

is constant. This is a key property that generates a Pareto distribution with a
finite distributional mean.

Fourth, under these assumptions, Zipf’s law of firms holds. For the above
equation shows that λ > ρ/(1 − ρ) and that λ becomes close to ρ/(1 − ρ) if
ℓmin is sufficiently small compared with the average employment level L/N .
Then, Zipf’s law approximately holds for the firm size distribution, e.g., the
distribution of ℓj,t because the firm size distribution, such as the distribution of

ℓj,t, cross-sectionally obeys to z̃
ρ

1−ρ

j,t , whose Pareto exponent is λ
/(

ρ
1−ρ

)
.

4 Equilibrium and Solution of the Model

In this model, because the household policy functions are independent of the
household’s wealth level, the dynamics of aggregate variables are obtained in-
dependent of the heterogeneity within entrepreneurs and workers.

4.1 Definition of a competitive equilibrium

A competitive equilibrium of the model given initial aggregate capitalK0, initial
asset shares of entrepreneurs, innate workers (workers by birth), and former en-
trepreneurs, Ae,0/A0, Aw,0/A0, Af,0/A0, and the stationary detrended firm size

distribution, is a set of variables,
{
Ae,t, Aw,t, Af,t,Ht,Kt, Yt, Ct, dj,t, r

f
t , wt, tr t, vt, xt

}
,

that satisfies the following conditions:

• household’s decisions on the portfolio choice (4) and (5) and the law of
motion for human and total assets (1) and (2),

• firm’s decisions (15)–(19),

• and the market clearing conditions (12) and (14).

4.2 Solution of the model

Let variables with tilde such as K̃t be the variables detrended by egt. The
aggregate dynamics of the detrended variables can be reduced to the differen-

tial equations of
{
Ãe,t, Ãw,t, Ãf,t, H̃t, K̃t

}
. The evolution of these variables is

computed at each t as follows:

1. Given K̃t,

MPKt =αρE
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ /(K̃t

L

)1−α

.MPKt = αρE
{
z̃

ρ
1−ρ

j,t

} 1−ρ
ρ /(K̃t

L

)1−α

.
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2. C̃t = vÃt and F̃t = Ãt − H̃t. Then,

dK̃t

dt
=Ỹt − δK̃t − C̃t − ι

(
1− Ãe,txt

F̃t

)
D̃t − gK̃t,

D̃t =(1− (1− α)ρ)Ỹt − (δ + g + µE)K̃t −
dK̃t

dt
,

and xe,t are jointly determined.

Note that, here, the expected return and volatility of a risky asset are
jointly determined as follows (see Appendix B.3 for details of the deriva-
tions):

µq,t =


(

1− τe

(1− τf − ι)
− 1

)
1∫∞

t
exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du

+ rft

 ,

σq,t =

(
ρ

1− ρ

)
σz

×

1−
(

1− τe

(1− τf − ι)

)
K̃t

D̃t

1∫∞
t

exp
{
−
∫ u
t
(rfs − µd,s)ds

}
du

 ,

where ∫ ∞

t

exp

{
−
∫ u

t

(rfs − µd,s)ds

}
du =

F̃t

(1− τf − ι)D̃t

.

3. We can compute dÃt/dt by summing the following equations:

dÃe,t
dt

=(µae,t − g) Ãe,t + (ν + pf )NH̃t/L− (ν + pf )Ãe,t,

dÃw,t
dt

=(µaw,t − g) Ãw,t + (νL− (ν + pf )N)H̃t/L− νÃw,t,

dÃf,t
dt

=(µaw,t − g) Ãf,t + pf Ãe,t − νÃf,t.

dH̃t/dt can be computed by

dH̃t

dt
= −(w̃t + t̃r t)L+ (ν + rft − g)H̃t, (25)

where

w̃t =(1− α)ρỸt/L,

t̃r t =

{
Ãe,txe,t

F̃t
τ e +

(
1− Ãe,txe,t

F̃t

)
τf

}
D̃t/L.
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5 Household’s Asset Distributions in the Steady
State

In this model, the steady state household asset distribution can be derived ana-
lytically. We show below that the distributions of entrepreneurs, innate workers,
and former entrepreneurs are all Pareto distributions. The asset distribution of
households is

5.1 Asset distribution of entrepreneurs

Individual entrepreneur’s asset, ãe,t, if he does not die, evolves as

d ln ãe,t =

(
µae,t − g −

σ2
ae,t

2

)
dt+ σae,tdBi,t,

where µae,t and σae,t are the drift and diffusion parts of the entrepreneur’s asset
process. Since they are constants in the steady state, we omit time subscript.

The initial asset of entrepreneurs with age t′ at period t is ht−t′ . The rel-
ative asset of entrepreneurs who are alive at t, relative to their initial asset,
ln(ae,t/ht−t′) = ln ãe,t−(ln h̃t−t′ −gt′), follows a normal distribution with mean
(µae − σ2

ae/2)t
′ and variance σ2

aet
′.

By combining the above property and the constant probability of death
assumption, the asset distribution of entrepreneurs is obtained. As Benhabib
et al. (2012) and Toda (2012) show, the probability density function becomes a
double-Pareto distribution (see Appendix C for the derivations)2

fe(ln ãi) =


fe1(ln ãi) ≡ (ν+pl)N

L
1
θ exp

[
−ψ1(ln ãi − ln h̃)

]
if ãi ≥ h̃,

fe2(ln ãi) ≡ (ν+pl)N
L

1
θ exp

[
ψ2(ln ãi − ln h̃)

]
otherwise,

where

ψ1 ≡µae − g − σ2
ae/2

σ2
ae

(
θ

µae − g − σ2
ae/2

− 1

)
,

ψ2 ≡µae − g − σ2
ae/2

σ2
ae

(
θ

µae − g − σ2
ae/2

+ 1

)
,

θ ≡
√
2(ν + pl)σ2

ae + (µae − g − σ2
ae/2)

2.

The result shows that ψ1 is the Pareto exponent for entrepreneurs at the upper-
tail.

2We normalize the probability density functions of entrepreneurs, innate workers, and
former entrepreneurs, fe(ln ãi), fw(ln ãi), and fl(ln ãi) such that∫ ∞

−∞
{fe(ln ãi) + fw(ln ãi) + fl(ln ãi)} d(ln ãi) = 1.
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5.2 Asset distribution of innate workers

Individual worker’s asset, ãw,t, if he does not die, evolves as

d ln ãw,t = (µaw,t − g) dt,

where µaw is the drift part of the worker’s asset process.
Under the asset process, the asset distribution of innate workers is

fw(ln ãi) =

{
νL−(ν+pl)N

L
1

|µaw−g| exp
(
− ν
µaw−g (ln ãi − ln h̃)

)
if ln ãi−ln h̃

µaw−g ≥ 0,

0 otherwise.

Under the parameter values in numerical analysis, the trend growth of worker’s
asset is lower than the trend growth of the economy, i.e., µaw ≤ g. Then, the
detrended asset level of the innate workers becomes less than h̃.

5.3 Asset distribution of former entrepreneurs

The asset distribution of former entrepreneurs depends on the asset distribution
of entrepreneurs, the Poisson rate pf by which each entrepreneur leaves the firm,
and the asset process after he becomes a worker.

Under the settings, we can analytically derive the steady state asset dis-
tribution of the former entrepreneurs. Because under the parameter values in
numerical analysis µaw ≤ g, here, we report the distribution for that case (for
the µaw > g case, see Appendix C):

ff (ln ãi) =


pf

ν−ψ1(µaw−g)fe1(ln ãi) if ln ãi ≥ ln h̃,
pf

ν+ψ2(µaw−g)fe2(ln ãi)−
(

1
ν+ψ2(µaw−g) −

1
ν−ψ1(µaw−g)

)
pffe1(ln h̃)

× exp
(
− ν
µaw−g (ln ãi − ln h̃)

)
otherwise.

This shows that the Pareto exponent for former entrepreneurs at the upper-tail
is the same as that for entrepreneurs.

5.4 Pareto exponents of asset and income distributions for
all of the households

There are two remarks on the household asset and income distribution. First,
the Pareto exponent at the upper-tail for all of the households is that of en-
trepreneurs, whose Pareto exponent is ψ1. This is because the sum of variables
each of which follows Pareto distribution also follows a Pareto distribution at
the upper-tail and the distribution of smallest Pareto exponent dominates (see
e.g., Gabaix, 2009).

Second, in this model, the consumption and income distributions at the
upper-tail are also Pareto distributions with the same Pareto exponent as that
of assets, ψ1. This is because the household’s consumption and income is pro-
portional to the household’s asset level.

13



6 Numerical Analysis

In this section, we suppose that at 1970 a cut in top marginal tax rates suddenly
and permanently in an unexpected way, and numerically analyze how the tax
cut affects top incomes.

In our model, a tax cut affects top incomes by changing entrepreneur’s in-
centive to invest in the risky assets. In the tax parameters calibrated below,
after 1970, the tax rate on risky asset τe becomes relatively lower than the tax
rate on risk-free asset τf , which induces entrepreneurs to increase the share of
risky assets in their asset portfolios. This is why the Pareto exponent declines
and the top income share increases in our model.

6.1 Tax rates

We assume that the tax on risky assets τ e is equal to the ordinary income tax
that is imposed on the CEO pay in the real world. We assume that the tax
on risk-free assets τf is the sum of taxes that are imposed on dividends when
investors buy the equity of the firm. We calculate the tax rate of risk-free assets,
τf by 1− (1− τ cap)(1− τ corp), where τ cap and τ corp are the marginal tax rates
for capital gains and corporate income.

The tax rates are calibrated using top statutory marginal federal tax rates
reported in Saez et al. (2012) (see Figure 1 and Tabletab:taxes). We use the
top marginal tax rates because we focus on inequality at the upper-tail.

Insert Figure 1 here.
Insert Table 1 here.

6.2 Calibration

The parameters are chosen to roughly match the annual data. The first five
parameters at Table 2 are standard values. For example, we assume for ν that
the average length of life after a household begins to work is 50 years.

ρ is set to 0.7, which implies that of the firm’s sales 30% is rent. The value
of ρ is lower than the standard one. There are two reasons for the value. First,
model’s treatment of entrepreneur’s income is different from the data: in our
model, entrepreneur’s income mostly comes from firm’s dividend, while in the
data, the CEO pay is in most situations categorized in the labor income. To
take it into account, we set a lower ρ. Second, if ρ is high, the total value
of entrepreneur’s risky assets exceeds the total value of financial assets in the
economy. To avoid this, a low ρ should be chosen. We assume for pf that the
CEO’s average term of office is 20 years.

ℓmin is set to unity, which implies that the minimum employment level is one
person. We assume that L = 1.0 and N = 0.05, which implies that the average
employment per a firm is 20 persons, which is consistent with the data reported
in Davis et al. (2007). Under the settings, the Pareto exponent of the firm size
distribution in the model is 1/(1 − 0.05) ≈ 1.0526, which is roughly consistent
with Zipf’s law. Note that under these parameters, for small-sized firms, the
value of an entrepreneur’s risky asset calculated by (4) exceeds the value of his
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firm. To avoid this, we assume that such an entrepreneur jointly runs business
with other entrepreneurs so that the asset value of the entrepreneurs’ risky assets
does not exceeds the value of the joint firms. We assume that the productivity
shocks of the joint firms moves in the same direction.3

For the calibration of the firm-level volatility, we consider the two cases. In
Case A, we use the average firm-level volatility of publicly traded firms. In Case
B, we use the average firm-level volatility of both publicly traded and privately
held firms. These values are taken from Davis et al. (2007). In each case, the
transaction costs of financial intermediaries, ι, is calibrated to match the Pareto
exponent in the pre-1970 steady state with the data that is around 2.4.

Insert Table 2 here.

6.3 Computation of the transition dynamics

We compute the Pareto exponent of household’s asset and income distribution
and the top 1% income share before and after 1970. We assume that before 1970
the economy is in the pre-1970 steady state. In our experiment, taxes change
suddenly and permanently and unexpectedly at 1970, and the economy moves
toward the post-1970 steady state.

We model the transition dynamics after 1970 in the following way. First,
the dynamics of aggregate variables are computed separately. To compute the

dynamics of aggregate variables
{
Ãe,t, Ãw,t, Ãf,t, H̃t, K̃t

}
explained in Section

4.2, we need to pin down their initial values. We suppose that at 1970 when the
tax change occurs, the aggregate capital stock is the same as that in the pre-1970
steady state. We also suppose that asset shares of entrepreneurs, innate workers,
and former entrepreneurs, Ae,1970/A1970, Aw,1970/A1970, Af,1970/A1970, are the
same as those in the pre-1970 steady state. The remaining initial variables,
Ã1970 and H̃1970 are determined by the shooting algorithm by the following
steps:

1. Set Ã1970. Set also the upper and lower bound of Ãt, ÃH and ÃL.

(a) Set H̃1970 and compute the dynamics of aggregate variables as ex-
plained in Section 4.2. Stop the computation if Ãt hits the upper or
lower bound, ÃH or ÃL.

(b) Update H̃1970 by backwardly solving (25) with the terminal condition

H̃T =
(1− α)ρp̃y∗ + t̃r

∗

ν + rf∗ − g
,

where the variables with asterisks are those in the post-1970 steady
state and T = argminT

√
(KT −K∗)2 + (CT − C∗)2.

(c) Repeat until |H̃new
1970 − H̃old

1970| < ε.

3A possible story behind the assumption is that these productivity shocks are caused by
managerial decisions.
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2. If Ãt upwardly diverges, Ãnew
1970 = (Ãold

1970 + ÃL)/2 and redo the procedure.
Otherwise, set Ãnew

1970 = (ÃH + Ãold
1970)/2.

3. Repeat the procedure until |Ãnew
1970 − Ãold

1970| < ε.

Note that since C̃t = vÃt, the above procedure is similar to the standard shoot-
ing algorithm used in growth models. In computation of the variables used
below, we assume that after time T ∗ when the dynamics of Kt and Ct are in
the closest distance to the post-1970 steady state, the economy switches to the
post-1970 steady state.

Next, from the aggregate variables calculated above, we compute the vari-
ables related to entrepreneur’s and worker’s asset processes, µae,t, σae,t, and
µaw,t. Using these variables and the Fokker-Planck equations, we compute the
probability density functions of asset distribution for entrepreneurs and former
entrepreneurs, fe(ln ãi,t, t) and ff (ln ãi,t, t):

∂fe(ln ãi,t, t)

∂t
=−

(
µae,t −

σ2
ae,t

2
− g

)
∂fe(ln ãi,t, t)

∂ ln ãi,t

+
σ2
ae,t

2

∂2fe(ln ãi,t, t)

∂(ln ãi,t)2
− pffe(ln ã, t),

∂ff (ln ãi,t, t)

∂t
=− (µaw,t − g)

∂ff (ln ãi,t, t)

∂ ln ãi,t
+ pffe(ln ã, t).

Here, we compute the asset distribution at the upper-tail, using a numerical
method of partial differential equations.4 We impose boundary conditions that
limãi,t→∞ fi(ln ãi,t, t) = 0 and that at the lower bound of ãi,t, ãLB, which is set

to be higher than h̃ at the pre- and post-1970 steady state, fi(ln ãLB, t) moves
linearly during the 50 years from that of the pre-1970 steady state to that of
the post-1970 steady state.

6.4 Pareto exponent and the top 1% income share

Figures 2 and 3 plot the model predictions of the Pareto exponent and the top
1% share of the income distribution for Case A together with data. Data are
taken from Alvaredo et al. (2013). For the model prediction, we plot the two
steady states for the pre-1970 and post-1970 periods, and the transition path
between them.

We find that the model traces data for the Pareto exponent well. The model
also captures the trend in the top 1% share after 1970, although the model’s
prediction is somewhat lower in the level than data. Perhaps, other factors like
the differences in talents also account for the level of the top income share.

The corresponding results for Case B are graphed in Figures 4 and 5. The
model’s transitions of the Pareto exponent and the top 1% share become slower
than those in Case A. The reason is that in Case B, firm’s volatility becomes
higher. This makes xe,t lower by (4), which results in lower volatility of en-
trepreneur’s asset. This perhaps implies that the lower firm volatility at the top
firms where the richest CEOs work is an important factor to understand the
evolution of top incomes,

4We use the partial differential equations solver in Matlab. We set the 2000 mesh points
to ln ãi,t between ln ãLB to 100 and 500 mesh points to time t between 1970 to 2030.
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Insert Figure 2 here.
Insert Figure 3 here.
Insert Figure 4 here.
Insert Figure 5 here.

6.5 Incentive pay for CEOs

The reason for growing inequality in the model is that by the tax change it is
more profitable for CEOs to hold risky assets. It means that entrepreneur’s
portfolio share of risky assets, xe,t, increases in the post-1970 periods, possibly
through utilizing employee stock options. Here, we compare xe,t in the model
with the empirical counterpart of xe,t.

An empirical counterpart of xe,t for corporate CEOs is called as “percent-
percent” incentives, which is defined by

x% increase in pay

1% increase in firm rate of return
.

The concept of “percent-percent” measure is used by Murphy (1985), Gibbons
and Murphy (1992), Rosen (1992), and Edmans et al. (2009).5

We plot the “percent-percent” incentives constructed from Frydman and
Saks (2010) and xe,t in the model in Figure 6.6 We confirm that the data and
model are in the same order. Of course, our model is not intended to explain
the fluctuations in the “percent-percent” incentive itself, and the model cannot
explain why the “percent-percent” incentives increase around the late 1950s.
Further research is needed to understand the empirical facts.

Insert Figure 6 here.

7 Conclusion

We have proposed a model of asset and income inequalities, consistent with
(1) firm-size distribution (2) and household asset and income inequalities at
the upper-tail. Our model matches with the decline in the Pareto exponent of
income distribution and the trend in top 1% share. On the other hand, there are
also discrepancies between the model and data. For example, model’s prediction
of top 1% share is somewhat lower than the data. Further research is needed
for understanding the causes of discrepancies.

5Edmans et al. (2009) argues that the “percent-percent” incentives are cross-sectionally
independent of the firm size. This property is satisfied in our model.

6The “percent-percent” data are calculated by dividing “dollar change in wealth for a 1%
increase in firm rate of return” by “total compensation,” both of which are taken from Figures
5 and 6 of Frydman and Saks (2010).
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A Derivations for the household’s problem

This appendix shows the derivations of the household problem in Section 2.1.
By Ito’s formula, V i(ai,t, t) is rewritten as follows:

dV i(ai,t, t) =
∂V it
∂t

dt+
∂V it
∂ai,t

dai,t +
1

2

∂2V it
∂a2i,t

(dai,t)
2

+
(
V i

′
(ai,t, t)− V i(ai,t, t)

)
dJi,t,

where Ji,t is the Poisson jump process describing the probability of leaving his
firm:

dJi,t =

{
0 with probability 1− pfdt

1 with probability pfdt.

Thus,

Et[dV
i
t ]

dt
=
∂V it
∂t

+ µa,tai,t
∂V it
∂ai,t

+
(σa,tai,t)

2

2

∂2V it
∂a2i,t

+ pf

(
V i

′

t − V it

)
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Substituting in (3), we obtain a Hamilton-Jacobi-Bellman equation:

0 = max
ci,t,xi,t

ln ci,t − (β + ν)V it +
∂V it
∂t

+ µa,tai,t
∂V it
∂ai,t

+
(σa,tai,t)

2

2

∂2V it
∂a2i,t

+ pf

(
V i

′

t − V it

)
= max
ci,t,xi,t

ln ci,t − (β + ν)V it +
∂V it
∂t

+
σ2
q,t

2
x2i,ta

2
i,t

∂2V it
∂a2i,t

+ ((ν + µq,t)xi,tai,t + (ν + rft )(1− xi,t)ai,t − ci,t)
∂V it
∂ai,t

,

+ pf

{
V i

′
(ai,t, t)− V i(ai,t, t)

}
. (26)

First-order conditions with respect to ci,t and xi,t are summarized by:

c−1
i,t =

∂V it
∂ai,t

, (27)

xi,t = − ∂V it /∂ai,t(
∂2V it /∂a

2
i,t

)
ai,t

µq,t − rft
σ2
q,t

. (28)

Following Merton (1969), this problem is solved by the following value func-
tion and linear policy functions:

V it = Bit ln ai,t,

ci,t = vi,tai,t,

qi,tsi,t = xi,tai,t,

bi,t = (1− xi,t)ai,t − ht.

We obtain this solution by guess-and-verify. The first-order condition (27) be-
comes:

(vi,t)
−1 = Bit. (29)

Condition (28) is rewritten as:

xi,t =
µq,t − rft
σ2
q,t

. (30)

HJB (26) is expressed as:

0 = ln(vi,tai,t)− (β + ν)Bit ln ai,t +
∂Bit
∂t

ln ai,t −Bita
−2
i,t (xi,t)

2a2i,t
(σq,t)

2

2

+Bita
−1
i,t ((ν + µq,t)xi,tai,t + (ν + rft )(1− xi,t)ai,t − vi,tai,t)

+ pf

{
Bi

′

t ln ai,t −Bit ln ai,t

}
.

By solving this equation, we obtain

vi,t =ν + β. (31)
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B Derivations for the firm’s problem

B.1 Derivations of the FOCs of firm’s problem

This appendix shows the derivations of firm’s problem at Section 2.2.2. qj,t is a
function of kj,t and zj,t. By applying Ito’s formula to qj,t, we obtain

dq(kj,t, zj,t, t) =

(
∂qj,t
∂t

dt+
∂qj,t
∂zj,t

dzj,t +
∂qj,t
∂kj,t

dkj,t

)
+

1

2

∂2qj,t
∂z2j,t

(dzj,t)
2

=

(
∂qj,t
∂t

+ µz
∂qj,t
∂zj,t

+
1

2
σ2
z

∂2qj,t
∂z2j,t

)
dt+

∂qj,t
∂kj,t

dkj,t

+ σz
∂qj,t
∂zj,t

dBj,t.

The FOCs for ℓj,t and dkj,t are

wt =
∂pj,tyj,t
∂ℓj,t

,

(1− τf − ι) =
∂qj,t
∂kj,t

.

By the envelope theorem,

rft
∂qj,t
∂kj,t

dt =(1− τf − ι)

(
∂pj,tyj,t
∂kj,t

dt− δdt

)
+

(
(1− δb)

∂V ((1− δb)kj,t, 0, t)

∂kj,t
− ∂V (kj,t, zj,t, t)

∂kj,t

)
=⇒ rft =

∂pj,tyj,t
∂kj,t

− δ.

Therefore, we obtain the conditions

rft =
∂pj,tyj,t
∂kj,t

− δ,

wt =
∂pj,tyj,t
∂ℓj,t

.

B.2 Derivations on the firm-side variables

This appendix shows the derivations of the firm-side variables at Section 3.1.
From (10)

wt = (1− α)ρ

(
Yt
N

)1−ρ

zρj,tk
αρ
j,t ℓ

(1−α)ρ−1
j,t .

Rewriting this,

ℓj,t =

(
(1− α)ρ

wt

(
Yt
N

)1−ρ

zρj,tk
αρ
j,t

) 1
1−(1−α)ρ

. (32)
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On the other hand, from (9),

MPKt = αρ

(
Yt
N

)1−ρ

zρj,tk
αρ−1
j,t ℓ

(1−α)ρ
j,t . (33)

By substituting (32) into (33) and rearranging,

k
αρ

1−(1−α)ρ

j,t =

(
αρ

MPKt

(
Yt
N

)1−ρ
) αρ

1−ρ
(
(1− α)ρ

wt

(
Yt
N

)1−ρ
) αρ(1−α)ρ

(1−ρ)(1−(1−α)ρ)

z
ϕ αρ

1−ρ

j,t ,

(34)

where ϕ ≡ ρ
1−(1−α)ρ . Substituting (34) into (32),

ℓj,t =

(
αρ

MPKt

(
Yt
N

)1−ρ
) αρ

1−ρ
(
(1− α)ρ

wt

(
Yt
N

)1−ρ
) 1−αρ

1−ρ

z
ρ

1−ρ

j,t (35)

By substituting this equation into the labor market condition (13) and rear-
ranging,(

αρ

MPKt

(
Yt
N

)1−ρ
) αρ

1−ρ
(
(1− α)ρ

wt

(
Yt
N

)1−ρ
) 1−αρ

1−ρ

=
L

N

1

E
{
z

ρ
1−ρ

j,t

} ,
(36)

or,

(
(1− α)ρ

wt

(
Yt
N

)1−ρ
) (1−α)ρ

1−ρ

=


(

αρ

MPKt

(
Yt
N

)1−ρ
)−αρ

1−ρ
L

N

1

E
{
z

ρ
1−ρ

j,t

}


(1−α)ρ
1−αρ

.

(37)

where E is the operator of the cross-sectional average of the whole firms. Then,
substituting (36) into (35),

ℓj,t =
L

N

 z
ρ

1−ρ

j,t

E
{
z

ρ
1−ρ

j,t

}
 .

Rewriting (34),

kj,t =

(
αρ

MPKt

(
Yt
N

)1−ρ
) 1−(1−α)ρ

1−ρ
(
(1− α)ρ

wt

(
Yt
N

)1−ρ
) (1−α)ρ

1−ρ

z
ρ

1−ρ

j,t . (38)

Substituting (37) into (38),

kj,t =

(
αρ

MPKt

(
Yt
N

)1−ρ
) 1

1−αρ (
L

N

) (1−α)ρ
1−αρ

 z
ρ

1−ρ

j,t

E
{
z

ρ
1−ρ

j,t

} (1−α)ρ
1−αρ

 . (39)
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Next, we derive Y . Substituting (15) and (39) into yj,t = zj,tk
α
j,tℓ

1−α
j,t , and

rearranging,

yj,t =

(
αρ

MPKt

(
Yt
N

)1−ρ
) α

1−αρ (
L

N

) 1−α
1−αρ

 z
1

1−ρ

j,t

E
{
z

ρ
1−ρ

j,t

} (1−α)
1−αρ

 .

Substituting this equation into Y =
(∫ N

0

(
1
N

)1−ρ
yρj,tdj

) 1
ρ

,

(
Yt
N

)1−ρ

=

(
αρ

MPKt

)α(1−ρ)
1−α

(
L

N

)1−ρ

E
{
z

ρ
1−ρ

j,t

}(1−ρ)[ 1−αρ
(1−α)ρ

−1]
. (40)

Substituting (40) into (39),

kj,t =

(
αρ

MPKt

) 1
1−α

E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

1
1−α

(
L

N

) z
ρ

1−ρ

j,t

E
{
z

ρ
1−ρ

j,t

}


=

(
αρ

MPKt

) 1
1−α

E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

1
1−α

ℓj,t. (41)

Substituting (15) and (41) into (40)

pj,tyj,t = Y 1−ρ
t yρj,t (42)

=

(
αρ

MPKt

) α
1−α

E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

1
1−α

(
L

N

) z
ρ

1−ρ

j,t

E
{
z

ρ
1−ρ

j,t

}


=

(
αρ

MPKt

) α
1−α

E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

1
1−α

ℓj,t. (43)

Rewriting (15),

ℓj,t = ℓt z
ρ

1−ρ

j,t , where ℓt ≡

 L/N

E
{
z

ρ
1−ρ

j,t

}
 .

Rewriting (43),

pj,tyj,t = pytℓt z
ρ

1−ρ

j,t , where pyt ≡
(

αρ

MPKt

) α
1−α

E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

1
1−α

.

Rewriting (41),

kj,t = ktℓtz
ρ

1−ρ

j,t , where kt ≡

(
αρ

MPKt
E
{
z

ρ
1−ρ

j,t

} 1−ρ
ρ

) 1
1−α

. (44)
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From (44),

dkj,t = d(ktℓtz
ρ

1−ρ

j,t )

=
dktℓt
dt

z
ρ

1−ρ

j,t dt+ ktℓtd
(
z

ρ
1−ρ

j,t

)
.

Note that

d
(
z

ρ
1−ρ

j,t

)
=

{(
ρ

1− ρ

)
µz +

(
ρ

1− ρ

)(
ρ

1− ρ
− 1

)
σ2
z

2

}
z

ρ
1−ρ

j,t dt+

(
ρ

1− ρ

)
σzz

ρ
1−ρ

j,t dBj,t.

Then,

dkj,t = d(ktℓtz
ρ

1−ρ

j,t )

=
dktℓt
dt

z
ρ

1−ρ

j,t dt+ ktℓtd
(
z

ρ
1−ρ

j,t

)
= kj,t

{
µk,tdt+

(
ρ

1− ρ

)
σzdBj,t

}
.

where

µk,t ≡g −
1

1− α

drft /dt

MPKt
+

(
ρ

1− ρ

){
(µz − gz) +

(
ρ

1− ρ
− 1

)
σ2
z

2

}
.

gz is the growth rate of zmin and g is the trend growth rate of the aggregate
economy.

dj,tdt is computed using these results and the following relationship:

dj,tdt =(pj,tyj,t − wtℓj,t − δkj,t)dt− dkj,t

=(1− (1− α)ρ)pj,tyj,tdt− δkj,tdt− dkj,t.

Then, dj,tdt is rewritten as follows:

dj,tdt = dtℓtz
ρ

1−ρ

j,t dt−
{(

ρ

1− ρ

)
σzdBj,t

}
ktℓtz

ρ
1−ρ

j,t ,

where dt ≡ (1− (1− α)ρ)pyt − (δ + µk,t) kt.

B.3 Returns on risky assets

This appendix explains the derivation of the returns on risky assets at Sections

3.1 and 4.2. Multiplying (6) by e−
∫ u
t
rfs ds and integrating7, we obtain

qj,t =Et

[∫ ∞

t

(1− τf − ι)dj,ue
−

∫ u
t
rfs dsdu

]
.

7The Ito process version of integration by parts∫ T

t
Xj,sdYj,s = Xj,TYj,T −Xj,tYj,t −

∫ T

t
Yj,sdXj,s −

∫ T

t
dXj,sdYj,s.

is used here. Define ∆t,u ≡ e−
∫ u
t rfs ds. Then,∫ ∞

t
∆t,udqj,u = qj,u∆t,u |∞t −

∫ ∞

t
qj,u(−rfu)∆t,udu
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By further rearranging the above equation,

qj,t =

∫ ∞

t

(1− τf − ι)e−
∫ u
t
rfs ds Et [dj,u] du.

Because

Et[dj,u] =duℓu Et[z
ρ

1−ρ

j,u ]

=dtℓt
duℓu

dtℓt
× exp

{∫ u

t

((
ρ

1− ρ

)
µz +

(
ρ

1− ρ

)(
ρ

1− ρ
− 1

)
σ2
z

2

)
ds

}
· z

ρ
1−ρ

j,t

=dtℓtz
ρ

1−ρ

j,t exp

{∫ u

t

(
d ln(dsℓs)

ds
+

(
ρ

1− ρ

)
µz +

(
ρ

1− ρ

)(
ρ

1− ρ
− 1

)
σ2
z

2

)
ds

}
≡dtℓtz

ρ
1−ρ

j,t exp

{∫ u

t

µd,sds

}
.

Therefore,

qj,t =qtℓtz
ρ

1−ρ

j,t , where qt ≡ (1− τf − ι)dt

∫ ∞

t

exp

{
−
∫ u

t

(rfs − µd,s)ds

}
du.

Then,

dqj,t =qj,t
d ln(dtℓt)

dt
dt+ qj,t

d(z
ρ

1−ρ

j,t )

z
ρ

1−ρ

j,t

+ qj,t
−1 + (rft − µd,t)

∫∞
t

exp
{
−
∫ u
t
(rfs − µd,s)ds

}
du∫∞

t
exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du

dt

=
{
−(1− τf − ι)dtℓtz

ρ
1−ρ

j,t + rft qj,t

}
dt+ qj,t

(
ρ

1− ρ

)
σzdBj,t.

Therefore, using dj,t = dtℓtz
ρ

1−ρ

j,t , the return of a risky asset is

(1− τe)dj,t + dqj,t
qj,t

=


(

1− τ e

(1− τf − ι)
− 1

)
1∫∞

t
exp

{
−
∫ u
t
(rfs − µd,s)ds

}
du

+ rft

 dt

+

(
ρ

1− ρ

)
σz

1−
(

1− τe

(1− τf − ι)

)
kt

dt

1∫∞
t

exp
{
−
∫ u
t
(rfs − µd,s)ds

}
du

 dBj,t.

(45)

Note that if (rft −µd,t) is constant,
∫∞
t

exp
{
−
∫ u
t
(rfs − µd,s)ds

}
du = 1/(rf−µd)

and

qj,t =
(1− τf − ι)dtℓtz

ρ
1−ρ

j,t

rf − µd
.

We need to know the value of
∫∞
t

exp
{
−
∫ u
t
(rfs − µd,s)ds

}
du to compute

the transition dynamics. We calculated the value by the following steps. If we
know the value of the aggregate asset At and aggregate human asset Ht, we can
compute aggregate financial asset Ft by At−Ht. On the other hand, integrating
(19), we obtain∫ ∞

t

exp

{
−
∫ u

t

(rfs − µd,s)ds

}
du =

Ft

(1− τf − ι)dtL
.
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Substituting this result into (45), we can compute the return of risky asset in
transition.

B.4 Derivations on the restructuring

This appendix shows the derivations of the restructuring at Section 3.2. Let
z̃j,t ≡ zj,t/e

gzt . Then, Qrestructuring,t+dt is written as follows:

Qrestructuring,t+dt =Nqt+dtℓt+dte
gztE

{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}
.

where E
{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}
is the expectation of z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+dt con-

ditional on that z̃j,t+dt is lower than z̃min. Since the evolution of z̃j,t follows
(22) and the distribution follows (23),

E
{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}
=

∫ ∞

ln z̃min

d(ln z̃j,t)

∫ ln z̃min

−∞
d(ln z̃j,t+dt)(

z̃
ρ

1−ρ

min − z̃
ρ

1−ρ

j,t+dt

)
fz(ln z̃j,t)fz(ln z̃j,t+dt| ln z̃j,t)

=

∫ ∞

ln z̃min

d(ln z̃j,t)

∫ ln z̃min

−∞
d(ln z̃j,t+dt)

(
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+dt

)
C0e

−λ ln z̃j,t
1√

2πσ2
zdt

e
− (ln z̃j,t+dt−(ln z̃j,t+µ̃zdt))

2

2σ2
zdt ,

where µ̃z ≡ µz−gz−σ2
z/2−m, fz(ln z̃j,t+dt| ln z̃j,t) is the distribution of ln z̃j,t+dt

conditional on ln z̃j,t, which follows a normal distribution, and fz(ln z̃j,t) is the
steady state firm size distribution.

Under the setup, taking the limit as dt approaches zero from above, (20)
becomes

E
{
z̃

ρ
1−ρ

j,t

}
m

(
ρ

1− ρ

)
= lim
dt→0+

E
{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+dt

∣∣∣z̃j,t+dt ≤ z̃min

}
dt

= lim
t′→0+

dE
{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}
dt′

. (46)
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dE
{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}
/dt′ can be further calculated:

dE
{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}
dt′

=

∫ ∞

ln z̃min

d(ln z̃j,t)

∫ ln z̃min

−∞
d(ln z̃j,t+t′)

d

dt′

(z̃ ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+t′

)
C0e

−λ ln z̃j,t
1√

2πσ2
zt

′
e
− (ln z̃

j,t+t′−(ln z̃j,t+µ̃zt′))
2

2σ2
zt′


=
C0e

−(λ−( ρ
1−ρ )) ln z̃min

(
ρ

1−ρ

)
4
(
λ−

(
ρ

1−ρ

))
×

(
e

1
2λ(2µ̃z+λσ

2
z)t

′
(2µ̃z + λσ2

z) Erfc

[
(µ̃z + λσ2

z)
√
t′√

2σz

]

−e
1
2 (

ρ
1−ρ )(2µ̃z+( ρ

1−ρ )σ
2
z)t

′
(
2µ̃z +

(
ρ

1− ρ

)
σ2
z

)
Erfc


(
µ̃z +

(
ρ

1−ρ

)
σ2
z

)√
t′

√
2σz

).
By combining these results and taking the limit, we obtain

lim
t′→0+

dE
{
z̃

ρ
1−ρ

min − z̃
ρ

1−ρ

j,t+t′

∣∣∣z̃j,t+t′ ≤ z̃min

}
dt′

=
1

4
C0e

−(λ−( ρ
1−ρ )) ln z̃min

(
ρ

1− ρ

)
σ2
z

Substituting this result into (46), we finally obtain

m =

(
λ− ρ

1− ρ

)
σ2
z

4
.

C Derivations on Household’s Asset Distribu-
tions in the Steady State

This appendix shows the derivations of the household asset distributions at 5.

C.1 Derivations on the asset distribution of entrepreneurs

fe(ln ãi|t′), the probability density function of entrepreneurs at age t′ whose
detrended log wealth level is ln ãi, is

fe(ln ãi|t′) =
1√

2πσ2
aet

′
exp

(
− (ln ãi − (ln h̃+ (µae − g − σ2

ae/2)t
′))2

2σ2
aet

′

)
.

Then, the probability density function of entrepreneur’s asset distribution,
fe(ln ãi), is

fe(ln ãi) =

∫ ∞

0

dt′ fe(t
′)fe(ln ãi|t′),
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where

fe(t
′) =

(ν + pf )N

L
exp (−(ν + pf )t

′)

is the probability density of entrepreneurs whose age is t′. By applying the
formula∫ ∞

0

exp(−at− b2/t)/
√
tdt =

√
π/a exp(−2b

√
a), for a > 0, b > 0.

to the above equation, we obtain fe(ln ãi) in Section 5.1.

C.2 Derivations on the asset distribution of innate work-
ers

The asset distribution of innate workers is calculated as follows:

fw(ln ãi) =

∫ ∞

0

dt′ fw(t
′)fw(ln ãi|t′)

=

∫ ∞

0

dt′
νL− (ν + pl)N

L
exp(−νt′) · 1(ln ãi = ln h̃+ (µaw − g)t′)

=

∫ ln h̃+(µaw−g)∞

ln h̃

dt′

d ln ãi
d(ln ãi) · νL− (ν + pl)N

L
exp

(
− ν

µaw − g
(ln ãi − ln h̃)

)
× 1(ln ãi = ln h̃+ (µaw − g)t′)

=

{
νL−(ν+pl)N

L
1

|µaw−g| exp
(
− ν
µaw−g (ln ãi − ln h̃)

)
if ln ãi−ln h̃

µaw−g ≥ 0,

0 otherwise.

Note that 1(ln ãi = ln h̃+ (µaw − g)t′) is a unit function that takes 1 if ln ãi =
ln h̃+ (µaw − g)t′) and 0 otherwise.

C.3 Derivations on the asset distribution of former en-
trepreneurs

The asset distribution of former entrepreneurs is derived as follows. Let t′m ≡
(ln ãi − ln h̃)/(µaw − g). First, we consider the case where µaw ≥ g. If ln ãi ≥
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ln h̃, then

fl(ln ãi) =

∫ t′m

0

dt′ plfe1(ln ãi − (µaw − g)t′)× exp(−νt′)

+

∫ ∞

t′m

dt′ plfe2(ln ãi − (µaw − g)t′)× exp(−νt′)

=

[
−pl

ν − ψ1(µaw − g)
fe1(ln ãi − (µaw − g)t′)× exp(−νt′)

]t′m
0

+

[
−pl

ν + ψ2(µaw − g)
fe2(ln ãi − (µaw − g)t′)× exp(−νt′)

]∞
t′m

=
pl

ν − ψ1(µaw − g)
{−fe1(ln ãi − (µaw − g)t′m)× exp(−νt′m) + fe1(ln ãi)}

+
pl

ν + ψ2(µaw − g)
{−0 + fe2(ln ãi − (µaw − g)t′m)× exp(−νt′m)} .

By substituting into the above equation the following relations: ln ãi − (µaw −
g)t′m = ln h̃, fe1(ln h̃) = fe2(ln h̃), and t

′
m = (ln ãi − ln h̃)/(µaw − g), we obtain

fl(ln ãi) =
pl

ν − ψ1(µaw − g)
fe1(ln ãi)

−
(

1

ν − ψ1(µaw − g)
− 1

ν + ψ2(µaw − g)

)
plfe1(ln h̃)

× exp

(
− ν

µaw − g
(ln ãi − ln h̃)

)
.

If ln ãi < ln h̃,

fl(ln ãi) =

∫ ∞

0

dt′plfe2(ln ãi − (µaw − g)t′)× exp(−νt′)

=
pl

ν + ψ2(µaw − g)
fe2(ln ãi).

Next, we consider the case where µaw < g. If ln ãi ≥ ln h̃, then

fl(ln ãi) =

∫ ∞

0

dt′plfe1(ln ãi − (µaw − g)t′)× exp(−νt′)

=
pl

ν − ψ1(µaw − g)
fe1(ln ãi).

If ln ãi < ln h̃,

fl(ln ãi) =

∫ t′m

0

dt′plfe2(ln ãi − (µaw − g)t′)× exp(−νt′)

+

∫ ∞

t′m

dtplfe1(ln ãi − (µaw − g)t′)× exp(−νt′)

=
pl

ν + ψ2(µaw − g)
fe2(ln ãi)

−
(

1

ν + ψ2(µaw − g)
− 1

ν − ψ1(µaw − g)

)
plfe1(ln h̃)

× exp

(
− ν

µaw − g
(ln ãi − ln h̃)

)
.
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pre-1970 post-1970
ordinary income tax, τord 0.75 0.40
corporate income tax, τ corp 0.50 0.35

capital gain tax, τ cap 0.25 0.25
τ e 0.75 0.40
τf 0.63 0.51

Table 1: Tax rates
Notes: The figures of those in the upper half of the Table are calibrated from
the top statutory marginal federal tax rates in Figure 1, which is taken from
Saez et al. (2012). The tax rate on risky assets, τ e, is set to be equal to τord.
The tax rate on risk-free assets, τf , is calculated by 1− (1− τ cap)(1− τ corp),

β discount rate 0.04
ν prob. of death 1/50
α capital share 1/3
δ depreciation rate 0.1
g steady state growth rate 0.02
ρ elasticity of substitution 0.7
pf prob. of entrepreneur’s quit 1/20
ℓmin min. level of employment 1
L fraction of population 1.0
N fraction of employees 0.05

Case A Case B(
ρ

1−ρ

)
σz firm-level vol. of employment 0.25 0.45

ι transaction costs of fin. intermed. 0.215 0.243

Table 2: Calibrated parameters
Notes: The figures on the firm-level volatility of employment are taken from
Figure 2.6 of Davis et al. (2007). Case A corresponds to the case where the
firm-level volatility is equal to that of publicly traded firms in the data and
Case B corresponds to the case where the firm-level volatility is equal to that
of both publicly traded and privately held firms in the data.
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Figure 1: Federal tax rates
Note: The data are taken from Table A1 of Saez et al. (2012).
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Figure 2: Pareto exponent: Case A
Note: Data are taken from Alvaredo et al. (2013).
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Figure 3: Top 1% share: Case A
Note: Data are taken from Alvaredo et al. (2013).
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Figure 4: Pareto exponent: Case B
Note: Data are taken from Alvaredo et al. (2013).
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Figure 5: Top 1% share: Case B
Note: Data are taken from Alvaredo et al. (2013).

�

�

�

�

�

�

�

�

	

�
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
�� �
	� �
	� �

� �

� ���� ����

����������������	�����	
�� �
������������ �
������������

Figure 6: ”Percent-percent” incentives
Notes: The “percent-percent” data are calculated by dividing “dollar change in
wealth for a 1% increase in firm rate of return” by “total compensation,” both
of which are estimated in Frydman and Saks (2010). These data correspond to
the median value of the fifty largest firms.
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