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Abstract

Are structural vector autoregressions (VARs) useful for discriminating between

macro models? Recent assessments of VARs have shown that these statistical

methods have good size properties. In other words, in simulation exercises, VARs

will only infrequently reject the true data generating process. However, in assessing

a statistical test, we often also care about power: the ability of the test to reject a

false hypothesis. Much less is known about the power of structural VARs.

In this paper, I attempt to fill in this gap by exploring the power of long-run

structural VARs against a set of DSGE models that vary in degree from the true

data generating process. I report results for two tests: the standard test of checking

the sign on impact and a test of the shape of the response. For the models studied

here, testing the shape is a more powerful test than simply looking at the sign of

the response. In addition, relative to an alternative statistical test based on sample

correlations, I find that the shape-based tests have greater power. Given the results

on the power and size properties of long-run VARs, I conclude that these VARs are

useful for discriminating between macro models.
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1 Introduction

Are structural vector autoregressions (VARs) useful for discriminating between macro

models? Recent assessments of VARs have shown that these statistical methods have

good size properties. In other words, in simulation exercises, VARs only infrequently

reject the true data generating process. However, in assessing a statistical test, we often

also care about power: the ability of the test to reject a false hypothesis. Much less is

known about the power of structural VARs.

In this paper, I attempt to fill in this gap by exploring the power of long-run structural

VARs against a set of DSGE models that vary in degree from the true data generating

process. I report results for two tests: the standard test of checking the sign on impact

and a test of the shape of the response. For the models studied here, testing the shape is

a more powerful test than simply looking at the sign of the response. In addition, relative

to a statistical test based on sample correlations, I find that the shape-based tests have

greater power. Given the results on the power and size properties of long-run VARs, I

conclude that these VARs are useful for discriminating between macro models.

Several recent papers have identified a technology shock in the U.S. macroeconomic

data using a long-run restriction. These papers include Gali (1999); Francis and Ramey

(2003); and Altig, Christiano, Eichenbaum, and Linde (2004). Identifying how the econ-

omy responds to a technology shock has the potential to be useful to help us determine

how to best model the economy.

Although these restrictions are popular, some researchers have criticized using these

identification restriction. In particular, discussions of power in long-run VARs may ap-

pear pointless given Faust and Leeper’s proposition that any test of an impulse response

has significance level greater than or equal to maximum power. (Faust and Leeper 1997

p. 347). However, Faust and Leeper’s claim is that the model has such power properties

against very general data generating processes (DGP). Here, the set of DGP is restricted

to be only those DGPs that are consistent with being generated by a particular class of

macroeconomic models. Faust and Leeper themselves note that fixing the DGP to be a

finite-ordered VAR with maximum lag length K would be a sufficient restriction to make

their proposition inapplicable. However, they view such a restriction as being implausi-

ble. The gain from the current paper is to show that, for data simulated from popular

macroeconomic models, which implies an infinite order VAR, these long-run VARs do

have power to reject false null hypothesis at a rate greater than the size of the test.
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To place the current paper in the literature, it is useful to review three recent papers

that have used simulation evidence from macro models to study these long-run VARs:

Erceg, Guerrieri, and Gust (2004) [EGG]; Chari Kehoe and McGrattan (2007) [CKM];

and Christiano, Eichenbaum, and Vigfusson 2006 [CEV]. (For convenience, I refer to these

papers by the bracketed initials.) The three papers differ in their choice of DGP and also

their choice of what results to report. CKM only report results for parameterizations

of RBC model without any adjustment costs and they only report on the distribution

of the point estimate. The EGG paper reports results for two different models, a RBC

model and also a sticky price model. They compare the models by looking at the relative

frequency of the hour’s response having positive point estimates. The CEV paper differs

from the other two in that it also reports estimated bootstrapped standard errors.1 Both

EGG and CKM report on the fraction of point estimates that are the wrong sign when

compared with the true response from the DGP. Reporting this fraction does not match

up well with standard econometric practice which tests a null hypothesis using both the

point estimate and the associated standard error from a single data set. In studying

statistical size properties, the CEV paper and the current paper better match standard

econometric practice. As such, these papers provide information that should be more

useful to the applied researcher.

The current paper goes beyond the CEV paper in reporting power properties of long-

run VARs. In addition, this paper also emphasizes the usefulness of looking at the shape

of the impulse responses. As such, the current paper’s main contributions are to suggest

new tools for applied researchers (the emphasis on shape) and to give applied researchers

renewed confidence in applying these methods.

The next two sections describe how to estimate a long-run VAR and the macro models

that are used as data generating processes. These sections should be familiar to readers

of the previous papers. Section 5 presents the simulation results. Section 6 reports on

an empirical application of the methods to U.S. data. Section 7 concludes.

1The working paper version of the EGG paper reported size but not power properties of impulse
responses. However, the size-related material was removed before journal publication.
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2 Estimating A Vector Autoregression with A Long

Run Identification Assumption

Here, as in Galí (1999), a technology shock is identified as a permanent shock to pro-

ductivity. These shocks and resulting impulse responses are computed in the following

manner. Consider the following structural vector autoregression (VAR) for a vector of

variables Yt :

A0Yt = A(L)Yt−1 +

Ã
εzt
vt

!
(1)

The fundamental shocks εzt and vt (where vt has n − 1 elements) are assumed to be
independent, have mean zero and have variances equal to one. The vector Yt consists of

n elements. The first element is the growth rate of labor productivity, denoted by ∆at.

The next n−1 elements are the other variables in the VAR xt. As such Yt can be written

as

Yt =

Ã
∆at

xt

!
. (2)

Given this structural VAR, we can invert A0 to construct the reduced form VAR

Yt = A−10 A(L)Yt−1 +A−10

Ã
εzt
vt

!
, (3)

where the reduced form VAR coefficients A−10 A(L) are denoted by B(L) and the reduced

form errors are denoted by ut.For notational simplicity let C denote A−10 . The mapping

between structural shocks and reduced form errors is

ut = C

Ã
εzt
vt

!
. (4)

Denote the variance covariance matrix of ut, Eutu0t by V and note by assumption that

V equals CC 0. As such the reduced form is the following:

Yt = B (L)Yt−1 + ut. (5)
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Galí identifies the technology shock by assuming that only the technology shock εzt
can have a permanent effect on the level of productivity zt. All other shocks are assumed

to have no long-run effect. This restriction is referred to the exclusion restriction as it

excludes the other shocks from having any long run effect on the level of productivity.

This restriction imposes a restriction on the moving average representation of the data.

Denote the moving average representation by:

Yt = [I −B(L)]−1C

Ã
εzt
vt

!
. (6)

The exclusion restriction implies that that each element in the top row of the sum of

moving average coefficients equals zero except for the first element. In other words, we

have the following restriction

[I −B(1)]−1C =

"
C11 0

numbers numbers

#
, (7)

where 0 is a row vector. To identify C11 requires the additional sign restriction that a

positive technology shock increases labor productivity which implies that C11 is positive.

No additional restrictions are required.

To compute the dynamic effects of εzt , we require B1, ..., Bq and C1, the first column of

C. The symmetric matrix, V, and the Bi’s can be computed using ordinary least squares

regressions. However, the requirement that CC 0 = V is not sufficient to determine a

unique value of C1. There are many matrices, C, that satisfy CC 0 = V as well as the

exclusion and sign restrictions. However, in all cases, the first column, C1, of each of these

matrices is the same. In particular we can compute a C that satisfies these restrictions

as the following

C = [I −B(1)]D (8)

where D is the lower triangular matrix such that

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= SY (0) . (9)

where SY (ω) denote the spectral density of Yt at frequency ω that is implied by the qth

order VAR. The use of the spectral density at frequency zero to identify a technology

shock is closely connected to the critique of Faust and Leeper.
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3 Models

The model presented here is very similar to the standard quantitative dynamic flexible-

price model presented in Christiano Eichenbaum and Vigfusson (2006). The model,

however, has two additional features. The first is the addition of habit persistence in the

utility function. Thus, the previous period’s level of consumption affects current utility.

Habit persistence results in a slower response by consumption. The second feature is

adding investment adjustment costs to the model. Increasing investment is expensive and

therefore an economic agent will have an incentive to smooth out investment. Christiano,

Eichenbaum, and Evans (2005) use a similar specification to generate improved dynamics

in a sticky price model.

3.1 The Utility Function

The model has a representative agent who chooses consumption C and the fraction of

time spent working H to maximize utility, where utility is defined as

Et

jX
(β (1 + g))j (log (Ct+j − bCt+j−1) + η log (1−Ht+j)) (10)

The coefficient b describes the degree of habit persistence in the model. The parameter

β is the discount rate, g is the growth rate of population, and η controls the trade-off

between consumption and leisure. The agent maximizes utility subject to the budget

constrain that consumption and investment It must equal the return rt from capital Kt

and income from working (1− τ lt)wtHt.

Ct + (1 + τx,t) It ≤ (1− τ lt)wtHt + rtkt (11)

The capital accumulation equation is the following

(1 + γ)Kt+1 = (1− δ)Kt +

µ
1− S

µ
It
It−1

¶¶
It, (12)

where S is the function that determines the cost of changing investment. The value of

S and its first derivative are zero along a steady state growth path and the parameter γ

denotes the second derivative of S evaluated in steady state.
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The production function is standard

Ct + It = Kα
t (ZtHt)

1−α (13)

where Zt denotes the level of technology.

There are three shocks.

log zt = μZ + σzε
z
t (14)

τ lt = (1− ρl) τ̄ l + ρlτ lt−1 + σlε
l
t (15)

τxt = (1− ρx) τ̄x + ρxτxt−1 + σxε
x
t (16)

where zt equals the growth in technology Zt/Zt−1. Each of the shocks εzt , ε
l
t, and εxt is

independent and identically distributed with mean zero and variance equal to one. The

values of μZ , τ̄ l,and τ̄x are the average values of the shocks. One could describe the

shocks τ lt and τxt as labor and capital tax rates respectively. However, estimation that

matches the model to observed non-tax variables implies that these variables τ lt+1 and

τxt+1 are much more variable than observed labor and capital tax rates. The values of

the auto-regressive parameters ρl and ρx are both constrained to be less than one.

4 The Problem with Long-Run VARs.

There are two problems when you estimate a long-run VAR using data simulated from

a macro model. The first problem is that the true data generating process is not a

finite-ordered VAR rather it is a infinite-ordered VAR model. In particular, the model

has the following log-linearized solution where ξt are the model’s state variables (such

as capital), εt are the fundamental shocks, and Yt are the model’s observed variables

(such as investment and hours worked). The solution to the model can be given by the

following system of equations

ξt = Fξt−1 +Gεt (17)

Yt = Hξt (18)
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Note that the autoregressive nature of the first equation is without log of generality as

we can stack variables in the state variable vector (such as kt+1, kt, and kt−1).

Given this system of equations, one can derive the following infinite ordered VAR for

the observed variables Yt (CEV 2006). The data generating process for Yt is

Yt = HF (I −ML)−1GC−1Yt−1 + Cεt (19)

where L is the lag operator and the following matrices are defined

C = HG (20)

M =
¡
I −DC−1H

¢
F (21)

Two additional assumptions are required. The first assumption is that the matrix C

be square and invertible. For C to be square requires that there be as many economic

fundamental shocks as there are observed variables. If there were fewer economic shocks

than observed variables, then the variance covariance matrix of Yt is singular.2 The

second assumption is that M j converges to zero as j goes to infinity. This assumption

rules out explosive solutions. Note if B (L) denotes the infinite ordered polynomial for

the autoregressive terms on Yt, then we have that

B (L) = HF (I −ML)−1GC−1. (22)

Given this definition, the jth term of B (L) , Bj, equals HFM jGC−1. For the system

to be non-explosive, the value of M j must converge to zero as j goes to infinity. By

satisfying this require, we would have that Bj converges to zero.

This infinite ordered VAR is typically approximated by a finite order VAR B̂ (L) of

order p where B̂q equals zero for all q greater than p. There has been some debate about

the ability of a finite ordered VAR to approximate the dynamics of the infinite order VAR.

The short-run identification results in CEV (2006), however, suggest that a finite-ordered

VAR can do fairly well at capturing the short-run dynamics. The individual estimated

VAR coefficients
n
B̂i

op
i=1

are close estimates of the individual population coefficients

{Bi}pi=1 and, with a relatively small value of p, do a good job of minimizing the variance
of the one-step ahead forecast errors. However, as was described in Sims and further

2When there are more shocks than variables, one can still derive a VAR. However, identifying all the
shocks becomes more difficult. See Sims and Zha (2006) for more details.
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discussed in CEV, the sum of the estimated coefficients B̂ (1) (or equivalently
Pp

i=1 B̂i)

may not be close to the true sum B (1) (
P∞

i=1Bi).

An inability to match the long-run sum is a particular problem for the long-run

identification assumption since the value of C the mapping between reduced form shocks

ut and fundamental shocks εt requires knowing D where D, as already defined in equation

9, is the following

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= SY (0) . (23)

Because the value of D is a function of B(1), the inability of the sum of the finite-order

VAR’s coefficients B̂ (1) to match B (1) is a problem particular to the long-run identifying

assumptions.

As was mentioned in the introduction, a discussion of power of long-run VARs may

appear pointless given Faust and Leeper’s proposition that any test of an impulse re-

sponse identified with a long-run restriction has significance level greater than or equal

to maximum power. (Faust and Leeper 1997 p. 347). The identification of the long-run

VAR depends on knowing the matrix D. The matrix D is a function of the spectrum

at frequency zero and knowing the spectrum at frequency zero is what underlies Faust

and Leeper’s claim about the problems with long-run VARs. As was discussed in Faust

(199x), the confidence interval on a single point on the spectrum is unbounded because,

under the assumption of a very general data generating processes, one can not rule out

a spike at that single point. If one can restrict the DGP sufficiently to rule out these

spikes, then the spectrum and hence the matrix D will be better behaved. For exam-

ple, Faust and Leeper themselves note that fixing the DGP to be a finite-ordered VAR

with maximum lag length K would be a sufficient restriction to make their proposition

inapplicable. However, they view such a restriction as being implausible.

In the following sections, the set of data generating processes (dgp’s) is restricted

to the set of infinite-ordered VARs that arise from macro-economic models. For these

DGPs, I will show that long-run VARs do have power to reject false null hypothesis at a

rate greater than the size of the test. Although these macro models are perhaps not fully

descriptive of the data, these models are more plausible dgp’s than the fixed lag VARs.
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5 Model calibrations and Simulation Experiments

To simulate data from the model requires values for the models parameters. To make my

results reported here comparable to CKM (2007) and CEV (2006), most model parame-

ters are set at values that they use. See Table 1 for the values of {β, θ, δ, τx, τ l, g, ψ, μz, τ l}.
In the first set of simulations, the values of habit parameter b and the investment ad-

justment costs parameter γ are set equal to zero. In subsequent simulations, I relax this

restriction and simulate data from a model with the coefficient of habit persistence b and

the degree of investment adjustments costs γ fixed at the values (b = 0.7 and γ = 3) that

are reported in Christiano, Eichenbaum and Evans (2005).

As in CEV(2006), the variance and auto-correlation of the model’s shocks are esti-

mated by standard maximum likelihood methods. Define the observed vector of variables

to be the following

Yt =

⎛⎜⎝ ∆yt −∆ht

ht

it − yt

⎞⎟⎠ (24)

where∆yt−∆ht is the growth rate of labor productivity, ht is the level of per capita hours

worked and it−yt is the ratio of investment to output expressed in logs. All data is from

the United States for the period 1959 to 2001. Labor productivity and hours worked

are measured for the business sector. The ratio of investment to output is measured

using the nominal share of total investment in GDP. Given these observed variables and

the model structure results in the model set-up described by equations 17 and 18. The

model can then be estimated by applying the Kalman filter approach in Hamilton (1994,

Section 13.4). Estimated model coefficients match those found in CEV (2006) and are

reported in Table 1.

5.1 Simulation Evidence With Data Generated from a RBC

model

All simulations are done 2000 times with a sample size of 200 observations. For each

simulated data set, I estimate a three variable VAR where the three variables are the

growth rate of labor productivity, the log level of per capita hours worked and the ratio

of investment to output expressed in log. For each VAR, I fixed the lag length at four.

Based on past experience, applying more sophisticated algorithms for choosing lag length
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does not provide substantially different results. By applying the long-run identifying

assumption, for each data set, I identify the responses to a one-standard deviation increase

in technology.

For each simulated data set, I estimate a bootstrapped standard error by simulating

the estimated VAR 200 times where the vector of economic shocks at time s are drawn

with replacement from the estimated set of residuals and the starting values come from

that particular data set. The bootstrap standard deviation is estimated as the sample

statistic coming from the distribution of the bootstrapped impulse responses.

Figure 1 reports, for the benchmark VAR estimated using data simulated from a RBC

model, the response of hours worked to a permanent shock to labor productivity with

size equal to one-standard deviation.

The gray area indicates the sampling distribution of the estimated impulse responses.

The edges of the gray area indicate the 5th and 95th percentile of all the estimated

impulse responses. These intervals are wide which is typical of structural VARs that are

identified with a long-run restriction (see CEV 2006).

Figure 1 also reports the true impulse responses from several parameterizations of

flexible price DGE models that have real rigidities in the form of investment adjustment

costs and habit persistence. These other responses all lie within the gray area, which, as

previously mentioned, indicates sampling uncertainty. One, therefore, might be tempted

to conclude that these impulse responses are unable to discriminate between the different

parameterizations and, as such, that the statistical test of the hours response has poor

power.3 The rest of this paper will show that a conclusion that these long-run VARs

have poor power would be overly pessimistic.

Figure 2 reports a scatter plot of the estimated impact response of hours to a tech-

nology shock versus the corresponding estimated bootstrapped standard error for each

of the 2000 simulations. For any given simulation, we can determine whether an econo-

metrician observing only that simulation would reject the true null hypothesis that the

hours response on impact matches the response from a RBCmodel. If the econometrician

had assumed that the estimated impulse response has an asymptotic normal distribution

centered around the true response, then she would use a standard critical value of 2 and

falsely reject the true null hypothesis 18 percent of the time. Given that the rejection

3The argument on page 19 in CKM seems to be a claim of poor power. However, CKM never report
the estimated statistical sampling uncertainty that a researcher would estimate when faced with only a
single data set. Rather they just report the distribution of the point estimates. In terms of my Figure
2, they report the distribution of the values on the x-axis but do not calculate the values on the y-axis.
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rate is greater than the nominal size of 5 percent, I calculate the critical value (2.8),

where an econometrician observing only a single data set would correctly fail to reject

the null hypothesis 95 percent of the time and reject the true model only 5 percent of

the time.4

Figure 3 reports the same scatter plot of estimated impulse responses and standard

errors. However, Figure 3 reports the results for testing whether the estimated impulse

response matches the response from a DGEmodel with high levels of habit and investment

adjustment cost. Even with the size-corrected critical values, the false model is correctly

rejected 32 percent of the time. Using the standard critical value would lead to an even

greater rejection rate of 53 percent.

Figure 4 reports the distribution of the absolute value of the test statistics for data

simulated from the RBC model when the tested null responses is the RBC model. In

addition for the same simulated data, the Figure reports the distribution of the test

statistics when the tested null response is the DGE model with high levels of habit and

investment adjustment cost. Regardless of the critical value chosen, the DGE model with

real rigidities are rejected far more often than are the RBC model.

Reporting the equivalent of Figure 3 for all possible parameterizations is not feasible,

as such, rejection rates are summarized by Figure 5 which report for low degrees of habit

(Figure 5a) and high degrees of habit (Figure 5b), the rejection rates for different values

of γ.When γ equals 0 and b equals 0, then the rejection rate is the likelihood of rejecting

the true model and is by construction 5 percent. When γ equals 3 and b equals 0.7, the

rejection rate is 32 percent.

As can be seen in Figure 5, the test is much more likely to reject a false null hypothesis

than a true null hypothesis. As such, the evidence implies that the set of DGP’s studied

here are more restrictive than the general class of DGP’s for which Faust and Leeper’s

proposition of low power for long-run VARs would hold true. The rejection rates do

increase with γ and b. However, these rejection rates are not large. Even for parameter-

izations with a fairly large degree of habit persistence and investment adjustment costs,

the test has a size-corrected rejection rate of under 40 percent.

To be able to discuss the usefulness of these long-run VARs, we need to determine

whether the rejection rates reported in Figure 5 are high or low. Because statistical

4An alternative approach would be to experiment with the various proposed modifications of how
to construct confidence intervals. However, as many different methods have been proposed, I leave
explorations of the properties of these different methods for future work.
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power is only infrequently reported, for comparison purposes, it would be useful to have

a benchmark from the literature on statistical testing of DGE models. One such statistic

is the correlation of output growth.5 The inability of the RBC model to match the

correlation of output growth has been an important statistic in casting doubt on the

basic RBC model. Papers that discuss the correlation of output growth include Cogley

and Nason (1995) and Christiano and Vigfusson (2003).

Results for this unconditional statistic help put the performance of the impulse re-

sponse analysis in context. Figure 5 also reports results for the output correlation. The

power of these correlation statistics are somewhat better than the impulse responses.

The rejection rates increase as both γ and b increase. With no habit persistence in con-

sumption, the rejection rates using the correlation are about 20 percent for models with

moderate or high degrees of investment adjustment costs γ. For models with a high

degree of habit, the correlations reject the false models much more frequently.

Overall, this evidence suggests that the power of testing using the correlation is better

than testing using just the impact response of hours worked. The rest of this paper shows

that other applications of VARs can be more informative. In particular, Figure 5 has

an additional set of lines that, for certain parameterizations, have better rejection rates

than the rejection rates from the correlation test. The next section describes these lines.

5.2 Shape of Hours

In the monetary structural VAR literature, the delayed responses to monetary policy

shocks is what moved the literature from the NewClassical models of immediate responses

to models with rigidities (Woodford 2003, p. 173). For technology shocks, I will argue

that, here too, the shape of the response can better differentiate between models than

the impact response.

Figure 6 reports, for data generated from a standard RBC model, a scatter plot of

the response of hours on impact and the change in the response six periods later. Around

each of these responses, one could construct a confidence ellipse. Assuming that these

responses are drawn from a multivariate normal distribution, then the formula for the

confidence ellipse can be easily derived from a simple wald test. Given an estimated

5The confidence intervals were constructed using the standard method from the matlab statistics

toolbox. Confidence intervals were constructed using the result that 12 log
³
1+ρ
1−ρ

´
is approximately normal

with a variance equal to 1
N−3 . As with other statistics reported in this paper, the critical value was

size-corrected.
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vector μ̂ and a variance covariance matrix for μ̂ denoted by V̂ , then a point x lies in the

95 percent confidence ellipse if x satisfies the following inequality

[x− μ̂]0 V̂ −1 [x− μ̂] < ξ95 (25)

where ξ95 is the critical value. According to standard asymptotic theory, the statistic is

distributed chi-squared with 2 degrees of freedom. As was done for the impact responses,

the test needs to be size-corrected. In the simulations the value of ξ95 is 10 rather than

the standard value of 6. To give some degree of the magnitude of the correction, Figure

6 reports, for one single simulation, the estimated confidence intervals using the two

different critical values. In either case, one would fail to reject the true null hypothesis

that the response matches the response from the RBC model (the green dot). Although,

the size-corrected confidence set is much wider than the non-size corrected interval, for

this particular simulation, one would reject the false null hypothesis that the response

matches the response from a model with high degrees of habit and investment adjustment

costs (the red dot).

Returning to Figure 5, we can compare the power properties of the shape test versus

the power properties of the tests of the impact response and the correlation. The rejection

rates for tests using the shape of hours are much better than the rejection rates for tests

using the sign and are comparable to rejection rates testing the correlation of output

growth.

5.3 Investment Response

As was mentioned in CEV, the variance of hours explained by technology shocks is very

low. In the benchmark parameterizations studied here, technology shocks account for

less than 1 percent of the variance of hours. However, technology shocks do account

for 22 percent of the variance of the ratio of investment to output. As such, a natural

question to ask is whether looking at the response of investment rather than hours is

more informative. I report below that looking at investment does appear to be more

informative.

Figure 7 plots the impulse responses estimated for investment from the same bench-

mark three variable VAR (with variables: labor productivity growth, hours worked and

investment to output ratio). The various model responses again lie within the large gray

area. Also of note is that, unlike with hours, the investment response is not monotoni-
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cally increasing with respect to both habit and investment adjustment costs. For a given

degree of habit persistence, the size of the investment response declines as the investment

adjustment costs increase. However, for a high degree of habit persistence, the invest-

ment response is larger than would be the case with a low degree of habit. The economics

behind this reversal is that, with a high degree of habit, the utility maximizing behavior

is to invest more in order to avoid too quick of an increase in consumption.

Figure 8 reports the power properties of the two tests of investment and also repro-

duces from Figure 5 the rejection rates when one tests using the correlation of output.

The shape of the investment response seems more useful than the impact response and

the investment responses appear to be quite useful in discriminating between models.

5.4 Changing the True Data Generating Process

For the results reported above, the true data generating process is the RBC model.

Given data simulated from the RBC model, I reported the rejection rate of the false

null hypothesis that the data was generated from models with real rigidities. Of course,

we are also interested in the opposite case where the data is simulated from a model

with real rigidities and the false null hypothesis of the RBC model is tested. Reversing

the role of the two models is particularly relevant as most empirical work favors models

with various degrees of adjustment costs. (See ACEL and Smets and Wouters (2003) for

examples).

For this exercise, I generate data from the model with high investment adjustment

costs and habit persistence with values of γ and b set at the values estimated in Christiano,

Eichenbaum and Evans (2002). Using data generated from this model, the statistical tests

frequently reject the standard RBC model. The rejection rates are much greater than

the rejection rates observed when data is simulated from the RBC model and the test is

of the model with high adjustment costs.

Figure 9 reports the impulse response of hours worked. Absent the accommodating

monetary reaction embodied in the ACEL model and given the high level of costs asso-

ciated with adjusting either the level of consumption or investment, a technology shock

actually drives down hours. The improvement in productivity causes the consumer to

increase leisure rather than increase consumption or investment. The average estimated

response is somewhat biased away from the true response. However, using the standard

critical value, the rejection rate is 24 percent which is similar to the results presented
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above. As can be seen in Table 2, when using the size-corrected critical value, the power

of the test to reject the now false RBC model is 58 percent. Comparing these results with

the results from Figure 5, the test is much more powerful when the data is simulated

from the model with real rigidities than when the data is simulated from the RBC model.

Figure 10 reports the shape of the hours response. Here the estimated responses are

clustered around the true model response. Table 2 reports the power of testing the shape

of the hours response using the size-adjusted critical values. The false RBC model is

rejected 90 percent of the time.

Figure 11 and 12 report the same results for the investment response. Table 2 also

reports the results for these models. As with the RBC model, the size and power proper-

ties are better for testing investment than testing hours. Using the investment response,

one can almost always reject the RBC model. Finally Table 2 also reports a test using

the correlation of output growth. Here too the statistic has a high degree of power.

Table 3 and Table 4 summarizes across several different parameterizations to reject

the RBC model. For low levels of habit, testing the initial period of the hours response is

not very informative but testing the shape of the hours response can be very informative.

When there is no habit, the initial investment response is also not very informative.

In models with a higher degree of habit, the initial investment response is much more

informative.

Table 4 presents the values of the critical values that result in tests with correct size.

For each test statistic, the critical values are fairly constant across parameterizations.

As such, it seems reasonable to suppose that using the average critical value from this

table is a good way to size correct when the true data generating process is unknown.

6 An Empirical Application

As an empirical application, I take a VAR similar to that estimated in Christiano Eichen-

baum and Vigfusson (2003) and ask what parameterizations can be ruled out and which

can be allowed.

The VAR is the same three variable system used above in terms of labor productivity,

hours worked and the ratio of investment to output. The difference is that rather than

the data being simulated from a RBC model, the data is the empirical data from the

United States. In particular, productivity is measured as hourly labor productivity in the

business sector, hours worked is per capita business hours worked, and investment is the
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ratio of private investment to GDP. In this section, hours enters the VAR in levels. The

discussion of how to treat hours and other low frequency movements in estimating these

VARs is beyond the scope of the current paper and is instead addressed in Christiano

Eichenbaum and Vigfusson (2003). The sample period is 1954 to 2001.

Empirical responses are reported in Figure 13a,13b, and 13c. In addition, for com-

parison sake, model impulse responses are reported for a few model parameterizations.

A 95 percent confidence interval is constructed for the empirical responses using the esti-

mated bootstrap error and a size-adjusted critical value that is the average of the values

reported in Table 5. Given the width of the confidence interval, I fail to reject any of

the models. Figure 14a, however, shows that, even when using the large size-adjusted

critical value, a test based on the shape of the hours response does lead to a rejection

of both extremes of no real rigidities and large real rigidities. However, the investment

response shown in Figure 14b is less informative.

Based on these results, the most promising way to model the response to a technology

shock is to allow for delayed hump-shaped responses to the technology shock. Future work

will be directed towards determining whether these delayed responses are best modeled

as the result of nominal or real rigidities.

7 Conclusions

Impulse responses from long-run VARs can reject false models. As expected, these re-

jection rates increase the further away the false model is from the true data-generating

model. In addition, these rejection rates vary depending on what variables are studied.

Overall, however, this paper shows that these long-run VARs can be informative about

which models are to be preferred. For the models studied here, testing the shape is a

more powerful test than simply looking at the sign of the response. In addition, relative

to an alternative statistical test based on sample correlations, I find that the shape-based

tests have greater power.

These results should encourage us to find creative and new ways to test our models.

The conclusion is not to abandon our tools but to find ways to improve their use. Overall,

given these results on the power and size properties of long-run VARs, I conclude that

these VARs can be useful for discriminating between macro models and, therefore, should

continue to be used in developing and testing business cycle theory.
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Tables

Table 1: Model Parameter Values
Calibrated
β 0.981/4 ψ 2.5
θ 0.33 g 1.011/4 − 1
δ 1− (1− .06)1/4 μz 1.0161/4 − 1
τx 0.3 τ l 0.242
Estimated
σz 0.00968
σl 0.00631 ρl 0.9994
σx 0.00963 ρx 0.9923

Table 2: Size and Power when DGP is DGE Model with High Adjustment Costs
Test Rejection Rate Critical

RBC Model
Size Adjusted*

True Model
Not-size Adjusted

Value

Impact Hours Response 58% 23% 3.2
Shape of Hours Response 99% 29% 16.5
Impact Investment Response 100% 10% 2.4
Shape of Investment Response 100% 13% 9.84
Correlation of Output Growth 100% 10% 2.55
*Rejection Rates are for the size-adjusted critical values given in column (iii)
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Table 3: Rejection Rates of the RBC Model
Model Test Statistic

Parameters Hours Investment Output
b γ Sign Shape Sign Shape Correlation
0 0.5 0.05 0.81 0.12 1.00 0.00
0 1.5 0.08 1.00 0.21 1.00 0.01
0 3 0.11 1.00 0.24 1.00 0.00
0.5 0.5 0.20 0.43 0.70 0.88 0.79
0.5 1.5 0.33 1.00 0.85 1.00 0.92
0.5 3 0.41 1.00 0.87 1.00 0.92
0.7 0.5 0.27 0.25 0.83 0.58 0.95
0.7 3 0.58 1.00 0.89 1.00 1.00
Results are reported for tests done on data
simulated using the macro model described in the paper
with parameters in the first two columns on the
left. For each set of model parameters, 2000 simulations
are done. For each parameterization, size-adjusted
critical values are used to test the false null hypothesis
null hypothesis that the data were generated by an RBC model.

Table 4: Size Adjusted Critical Values
Model Test Statistic

Parameters Hours Investment Output
b γ Sign Shape Sign Shape Correlation
0 0 3.20 16.5 2.4 9.84 2.55
0 0.5 2.96 10.80 2.36 8.38 2.96
0 1.5 2.81 10.60 2.27 8.36 3.11
0 3 2.75 9.93 2.31 8.78 3.06
0.5 0.5 2.77 10.56 2.36 8.12 2.64
0.5 1.5 2.83 12.55 2.32 9.06 2.64
0.5 3 2.87 13.42 2.40 9.34 2.63
0.7 0.5 2.87 11.65 2.52 9.13 2.56
0.7 3 3.20 16.47 2.39 9.85 2.55
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 Figure 1: The response of hours worked to a technology shock estimated 
using data simulated from a RBC Model

RBC Model
γ = 0.05 b = 0
γ = 0.45 b = 0
γ = 3 b = 0.7

 Note Thick black line is average response over 2000 estimated responses using data simulated from
 a RBC model.  Edges of grey area indicate 5th and 95th percentiles of all estimated responses to
a technology shock
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 Figure 2: Testing The Impact Response of Hours.
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 Figure 3: Testing The Impact Response of Hours using a false null hypothesis
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 Figure 4: Cumulative Distribution Function for Testing Impact Effect.

True DGP, RBC Model
False DGP, High Adjustment Costs and Habit



 Figure 5 Rejection Rates For Different Tests when True DGP is RBC Model.
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 5B: With Habit, b = 0.7
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 Figure 6: The Shape of The Hours Response
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 Figure 7: The response of investment to a technology shock estimated 
using data simulated from a RBC Model

RBC Model
γ = 0.05 b = 0
γ = 0.45 b = 0
γ = 0.45 b = 0.5

 Note Thick black line is average response over 2000 estimated responses using data simulated from
 a RBC model.  Edges of grey area indicate 5th and 95th percentiles of all estimated responses to
a technology shock

 Figure 8 Rejection Rates For Testing Investment Response.
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 Figure 9: The response of hours worked to a technology shock estimated 
using data simulated from a Model with High Investment Adj. Costs and Habit

RBC Model
γ = 0.05 b = 0
γ = 0.45 b = 0
γ = 3 b = 0.7

 Note Thick black line is average response over 2000 estimated responses using data simulated from
 a DGE model.  Edges of grey area indicate 5th and 95th percentiles of all estimated responses to
a technology shock
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 Figure 10: The Shape of The Hours Response with Data
Simulated From DGE Model with High Adjustment Costs
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 Figure 11: The response of investment to a technology shock estimated 
using data simulated from a Model with adjustment costs

RBC Model
γ = 0.05 b = 0
γ = 0.45 b = 0
γ = 3 b = 0.7

 Note Thick black line is average response over 2000 estimated responses using data simulated from
 a DGE model.  Edges of grey area indicate 5th and 95th percentiles of all estimated responses to
a technology shock

−1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

2

Impact Response

C
ha

ng
e 

In
 R

es
po

ns
e 

ov
er

 6
 q

ua
rt

er
s

 Figure 12: The Shape of The Investment Response with Data
Simulated From DGE Model with High Adjustment Costs
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Figure 13a: The estimated response of output to a technology shock

RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

Note Thick black line is estimated response using a three variable VAR using U.S. data between 1954 to 2001.
Edges of dashed areas indicate confidence interval of 2.8 standard deviations.
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Figure 13b: The estimated response of hours worked to a technology shock

RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

Note Thick black line is estimated response using a three variable VAR using U.S. data between 1954 to 2001.
Edges of dashed areas indicate confidence interval of 2.8 standard deviations.
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Figure 13c: The estimated response of Investment to a technology shock

RBC Model
γ = 0.45 b = 0
γ = 3 b = 0.7

Note Thick black line is estimated response using a three variable VAR using U.S. data between 1954 to 2001.
Edges of dashed areas indicate confidence interval of 2.8 standard deviations.
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Figure 14a: The Shape of The Hours Response In An Estimated VAR

Empirical Estimate RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

NoteGrey dots indicate responses from bootstrap simulations using empirical VAR.
Blue ellipse indicates confidence interval around point estimate.
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Figure 14b: The Shape of The Investment Response In An Estimated VAR

Empirical Estimate RBC Model γ = 0.45 b = 0 γ = 3 b = 0.7

Note: Grey dots indicate responses from bootstrap simulations using empirical VAR.
Blue ellipse indicates confidence interval around point estimate.




