
A Simple Explanation for Investment in

Obsolete Technologies:

Existence of Complementary Capital∗†

Osamu Aruga‡

October 21, 2007

Abstract

This paper develops and analyzes a growth model that consists of two types
of vintage-specific capital: long-lived and short-lived capital. As a result of the
existence of complementary capital that is chronologically compatible but has
different longevity, the model generates two distinct investment patterns: (i)
if the rate of the vintage-specific technological progress is above a threshold –
which is the product of long-lived capital’s share and the difference in the rates
of depreciation – then all new investment concentrates on the latest technology;
(ii) otherwise, some investment is allocated to obsolete, short-lived capital to
exploit existing excessive long-lived capital with obsolete technologies.

The result provides a new explanation for observed investment in equipment
with obsolete technologies. A striking implication is that equipment price-
changes do not necessarily reflect the rate of technological progress. Another
implication is that acceleration in the rate of technological progress can cause
an abrupt reallocation of investment towards modern capital – consistent with
investment booms that are concentrated in certain ”high-tech” equipment.
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1 Introduction

This paper’s model has two key elements: (i) it is a vintage growth model in which

a certain technology is built into each unit of capital; (ii) it has two kinds of capital

which have different rates of depreciation.1 The existence of long-lived vintage-specific

complementary capital provides a simple explanation for investment in short-lived

capital with obsolete technologies.

This study is motivated by a simple question; why do firms invest in obsolete

technologies that are less efficient in production? Steam locomotives had long been

in operation after more efficient diesel locomotive was introduced for commercial

demonstration in 1924; there had been investment in steam locomotives for more

than 20 years since then (Felli and Ortalo-Magne (1998), Figure 1 and 5). Table 3

in Comin and Hobijn (2004) shows that there have coexisted multiple generations of

steel production technologies for decades. Typical vintage growth models with single

capital type that follow Solow (1960), however, do not feature these facts. Indeed,

in these models, investment should concentrate on capital with the newest vintage

technology that is always more efficient than capital with obsolete technologies.

This paper provides a simple explanation for the question by assuming coexistence

of two types of complementary capital that are chronologically compatible but have

different longevity. The idea behind the assumption is simple; if one type of com-

plementary capital depreciates more slowly (long-lived) than the other (short-lived)

does, then investing in short-lived capital with an obsolete technology may be ratio-

nalized in order to exploit the existing stock of long-lived capital with the obsolete

technology.

The existence of vintage-specific complementary capital in a vintage growth model

results in two surprising implications in a steady state. First, (i) if the rate of tech-

nological progress is above a threshold – the product of the long-lived capital’s share

and the difference in the rates of depreciation – all new investment will concentrate

on the newest two types of capital; (ii) otherwise, a part of new investment will be

allocated to short-lived capital with obsolete vintages as well as both capital types

with the newest vintage. In other words, the speed of diffusion of technology increases

when the technological progress is fast.

Second, if the rate of technological progress is below the threshold, then the prices

1In this study, “depreciation” solely refers physical depreciation, and excludes obsolescence that
is explicitly treated as changes in prices.
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of short-lived obsolete capital remain one over time even when the rate of progress is

positive. This result implies that if production involves vintage-specific complemen-

tary capital that has a longer longevity than equipment does, estimate of the rate of

vintage-specific technological progress based on changes in equipment prices may be

systematically biased downward.

One naturally interprets the set of two distinct types of complementary capital

to the combination of tangible and intangible capital. Tangible capital typically

depreciates more quickly than intangible capital does: the former, such as engine,

physically wears and/or tears; the latter, such as system, knowledge, or organizational

capital, does not.2 The results of the current study can be interpreted as following.

Suppose CD drive (tangible) of your PC crashes for some reason. Then, would you

buy a new set of PC or merely replace the CD drive? If the change in PC model

develops quickly enough, you would purchase a new PC because it has much better

features. Or you would replace the CD drive to keep using the existing PC because

you are used to its customized environment (intangible).3 The decision depends on

the rate of technological progress and remaining size of intangible capital.

Existing growth models that assume capital heterogeneity do not feature the in-

vestment in obsolete technologies. The model in Laitner and Stolyarov (2003) applies

vintage-specific capital assumption to Shell and Stiglitz (1967)’s disembodied two

types of capital model. Their model, however, assumes a single rate of depreciation

of capital types. This assumption maintains the allocation of investment and stock of

capital types proportional to their shares, resulting in that investment concentrates

on the newest technology as in basic Solow (1960)’s model. Greenwood et al. (1997)

and Chapter 2 in Aruga (2006) develop vintage growth model with structures and

equipment that have different longevity. In these models, however, investment in

obsolete technologies cannot be rationalized since structures are not vintage-specific,

and thus they are freely reallocated across vintages technologies like labor.

A few exceptions that explain investment in obsolete capital include Chari and

Hopenhayn (1991), and Parente (2000). They show that, assuming that each technol-

ogy requires vintage-specific skills, investment in both obsolete and new vintages of

technology can coexist. The current model predominates their models in two aspects.

2There is another point of view that knowledge can depreciate by leave or die of knowledgeable
people, of course.

3You may find another beautiful interpretation of intangible capital; your existing collection of
softwares that are not compatible with the newest type of PC.
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First, my model explains not only the diffusion of technology but also the investment

patterns in obsolete technologies. Indeed, their model does not feature the allocation

of capital investment.

Second, my model has Solow (1960)’s type straightforward neo-classical vintage

growth model assumptions, while their models require sets of unique and intricate

vintage-specific labor assumptions. In the current model, any long-lived chronolog-

ically compatible complementary capital can be an incentive to the investment in

obsolete technologies. Thus this model includes the Solow’s model as a special case,

and the results provide implication for growth accounting, such as measurement of

the vintage-specific technological progress.

The rest of the paper is organized as follows: Section 2 presents the model’s frame-

work; Section 3 provides a characterization of a steady state; Section 4.2 discusses

applications of the model; and finally, Section 5 concludes the paper.

2 Model

The model has two key elements: (i) it is a vintage growth model in which a cer-

tain technology is built into each unit of capital; (ii) it has two kinds of capital

which have different rates of depreciation. Except the assumptions of the above cap-

ital heterogeneity, all assumptions are essentially identical to those of Solow (1960):

Cobb-Douglas production function, fixed investment rate, competitive market, perfect

foresight / rational expectation, vintage-specific technological progress, and vintage-

nonspecific labor. This section lists the details of assumptions, and then develops and

analyzes the model.

2.1 Setup of The Model

I assume the economy is competitive, and agents have perfect foresight and are ratio-

nal. Each capital embodies a specific vintage technology; usage of a vintage technol-

ogy requires capital goods that are specifically designed for the vintage technology.

Let v ≥ 0 denote a specific vintage, and assume at time t vintage v ≤ t technology is

available for agents.

Each vintage production technology requires three types of inputs: two types of

vintage-specific capital, A (long-lived) and B (short-lived), and vintage-nonspecific

labor, L. Assume A and B depreciate at the rates δA and δB where δA ≤ δB. Let
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a subscript v denote a specific vintage v technology that is embodied in each type

of capital; Av(t) and Bv(t) represent the number of units of A and B designed for a

specific vintage technology v. Lv(t) expresses the amount of labor that is employed

for a vintage v, although L is not vintage-specific.

Assume each vintage-specific production function is Cobb-Douglas form,

Yv(t) = qvAv(t)
αBv(t)

βLv(t)
1−α−β, (1)

where Yv(t) is output from vintage v technology, qv is vintage-specific technology level

that is monotonically increasing in v, and α and β are constant shares of two capital

types.4 Assume that output is homogeneous and keeps a constant physical unit over

time.

Each physical unit of capital can be used for investment in each physical unit of

either type of capital or consumption.5 I assume fixed portion of aggregate output is

used to the investment, and investment is irreversible,

σY (t) = IA(t) + IB(t) (2)

=

∫ t

0

IA
v (t) dv + At(t) +

∫ t

0

IB
v (t) dv + Bt(t),

where aggregate output Y (t) is defined by

Y (t) =

∫ t

0

Yv(t) dv. (3)

Note that investment consists of the part for obsolete technology and the part for

the frontier technology. Further, note that the prices of capital types in units of

output should satisfy P A
v (t) ∈ [0, 1] and P B

v (t) ∈ [0, 1] since each type of capital is

freely disposable, and investment in capital types with existing vintage technology is

possible.

The setup of the model based on the straightforward neoclassical assumptions

turns out to be crucial in applying to various levels of economic activities that are

4In the model presented here, I omit “neutral” technological progress that affects all vintages of
production, since the omission does not change the main point of the result. Chapter 3 in Aruga
(2006) exhibits the case when the neutral technological progress is considered in addition.

5This assumption requires that production functions of two capital types are identical, which
might be an imperfect assumption in some occasions. However, I assume so as conventional growth
models do so for different kinds of equipment.
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discussed in Section 4.2. That is, the assumptions presented here can be used not

only for the aggregate economy, but also various aggregation levels of production.

2.2 Chronological Aggregation

In this subsection, I derive the chronologically aggregated production function that

summarizes the allocation of the two types of capital across vintages. The result

hinges on the assumption of competitive market and is the key in characterizing the

steady state in the following section.

Lemma 1 (Chronological Aggregation). (i) Define aggregate capital types,

A(t) ≡

∫ t

0

MPAv(t)

MPAt(t)
Av(t) dv, (4)

B(t) ≡

∫ t

0

MPBv(t)

MPBt(t)
Bv(t) dv, (5)

and aggregate labor,

L(t) ≡

∫ t

0

Lv(t) dv, (6)

where MPAv(t) and MPBv(t) are marginal products of A and B with vintage

v at time t.

Then, the aggregate output is expressed as

Y (t) = qtA(t)αB(t)βL(t)1−α−β . (7)

(ii) Furthermore, define aggregate consolidate capital,

J(t) ≡

∫ t

0

Jv(t) dv,

where vintage consolidate capital is defined by

Jv(t) ≡
[

qvAv(t)
αBv(t)

β
]

1

α+β . (8)

Then, the consolidate capital is expressed as

J(t) =
[

qtA(t)αB(t)β
]

1

α+β (9)
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and the output and labor allocations across vintages are given by,

Lv(t) =
Jv(t)

J(t)
L(t), (10)

Yv(t) =
Jv(t)

J(t)
Y (t). (11)

Proof: See Appendix A.1.1.

Interestingly enough, the chronologically aggregated production function is the

same form as (1) with frontier technology level, qt, and the aggregate inputs defined

as (4) - (6).

Further note that if returns on capital of each type of capital are independent of

vintages respectively, (4) and (5) simply show the total values of the capital types in

units of frontier vintage capital types. These equations imply that the chronologically

aggregated capital types per labor are identical to the frontier capital types per labor,

At(t)/Lt(t) and Bt(t)/Lt(t).

Notice that I can derive the aggregate production function and determine the

allocation of labor across vintages without knowing prices of capital types.6

3 Steady State

This section analyzes the steady state property of the model. As other economic

studies, the steady state analysis as an approximation provides significant implications

about the existence of the chronologically compatible complementary capital.

I define the steady state of interest as follows.

Definition 1 (Steady State). In a steady state, all the quantities grow at constant

rates, and the real interest rate is constant.

The statement is as usual growth models. Throughout the steady state analysis,

I assume constant vintage-specific technological change, q̂t = q̂, and constant labor

growth, L̂(t) = L̂.

3.1 Investment Scheme

Solow (1960)’s vintage growth model speculates that all new investment concentrates

6Of course, the aggregate production function can be expressed as Y (t) = J(t)α+βL(t)1−α−β ,
which is the same form as Solow (1960). J(t) stands for Solow’s Jelly Capital.
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on the capital that has the newest available vintage by model’s construction. In

his model, this speculation is allowed because marginal product of capital with the

frontier vintage technology is always higher than any obsolete vintage capital since

vintage-nonspecific labor can be freely reallocated to the frontier production technol-

ogy.

This is not necessarily the case in the current model, however – the key is the ex-

istence of chronologically compatible vintage-specific capital with different longevity.

Suppose initially the allocation of long-lived and short-lived capital with a specific

vintage v is optimal such that the prices of two capital types are one. Then, over

time, the existing stock of long-lived capital becomes relatively abundant to that of

short-lived capital without investment. In this case, if long-lived capital is impor-

tant enough in production and lasts much longer than short-lived capital, and the

rate of the vintage-specific technological progress is slow enough, then investment in

the obsolete short-lived capital may become attractive than that in new short-lived

capital. The possibility of investment in obsolete vintage capital complicates the char-

acterization of investment patterns and price distribution across vintages and capital

types.

In order to overcome the complexity of the model, I now analyze four possible

investment schemes of available specific vintage production, v < t.

Definition 2 (Investment Scheme). Consider an existing vintage production, v ≤ t.

Define the four investment schemes such that if the production with the vintage

technology is:

(i) in scheme (a), there is no continuous positive investment in either Av nor Bv;

(ii) in scheme (b), there is continuous positive investment only in Av;

(iii) in scheme (c), there is continuous positive investment only in Bv;

(iv) in scheme (d), there is continuous positive investment in both Av and Bv.

From the definition above, we can determine the relationships of two different

vintages when they have the same investment scheme.7

In a steady state, all Yv(t), Av(t), and Bv(t) ∀ v grow at constant rates and the

interest rate is a constant, r(t) = r∗. Thus, I can draw the following lemma.

7See Appendix A.2 for details.
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Figure 1: Prices of capital in the case α(δB − δA) < q̂, where the investment scheme
is (a) ∀ v.

Lemma 2 (Uniqueness of Investment Scheme across Vintages). In a steady state: (i)

investment scheme of a vintage v does not change over time, (ii) investment scheme

is unique across vintages, and (iii) the scheme is either (a), (b), or (c).

Proof: See Appendix A.1.2.

Given the requirements of the prices in a steady state above, investment schemes

with a set of parameters are characterized by the following proposition.

Proposition 1 (Investment Scheme). In a steady state:

(i) if q̂ ≥ α(δB − δA), then investment scheme is (a) ∀ v ≤ t, firms invest only in

the both capital types with the frontier technology;

(ii) otherwise, investment scheme is (c) ∀ v ≤ t, firms invest in obsolete vintage

short-lived capital in addition to the both capital types with the frontier technol-

ogy.

Proof: See Appendix A.1.3.

Figure 1 and Figure 2 show the price distributions of the two capital types in

a steady state since time t = 0 that correspond to the Proposition 1 (i) and (ii)
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Figure 2: Prices of capital in the case q̂ < α(δB − δA), where the investment scheme
is (c) ∀ v.

respectively. In Figure 1, prices of both capital types of a specific vintage fall as

vintage becomes obsolete because their marginal products do not exceed those of

frontier capital types. On the other hand, in Figure 2, the prices of short-lived

capital across vintages keep one because marginal products of obsolete short-lived

capital are higher than that of newest capital types, and thus investment in obsolete

vintage short-lived capital occurs.

3.2 Full Characterization

Lemma 3 (Allocation of Capital Stock). Define the aggregate effective labor,

N(t) ≡ q
1/(1−α−β)
t L(t), (12)

and use lower case letters to express per effective labor amounts: a(t) = A(t)/N(t),

and b(t) = B(t)/N(t).
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Figure 3: Possible per effective long-lived capital, a(t), and short-lived capital, b(t)
implied by (13) when q̂ > α(δB − δA).

Then, in a steady state, a(t) and b(t) are constant and have a relationship,

βa(t)αb(t)β−1 − αa(t)α−1b(t)β =















0 (a),
[

δB + q̂
β

]

− δA (b), or

δB −
[

δA + q̂
α

]

(c),

(13)

depending on the investment scheme.

Proof: See Appendix A.1.4.

The result of Lemma 3 differs from the disembodied heterogeneous capital model

in Chapter 2 of Aruga (2006) – in that model, right hand side of (13) is always

δB − δA. In the current model, the difference in the rates of depreciation is canceled

in the scheme (a), and extra term, +q̂/β for (b) and −q̂/α for (c), show up because

of the embodiment assumption. When the right hand side is positive, the curve is

convex and above the straight line α/β. If the scheme is (c), the curve shifts down

as the vintage specific technological progress, q̂, goes up, which never occurs in the

disembodied model. Figure 3 and Figure 4 show possible relationships of a(t) and

b(t) implied by (13) when q̂ > α(δB − δA) and q̂ < α(δB − δA) respectively.
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Figure 4: Possible per effective long-lived capital, a(t), and short-lived capital, b(t)
implied by (13) when q̂ < α(δB − δA).

Using the result, I can obtain the steady state values of a∗ and b∗, and characterize

the economy. The full characterization of the cases are as follows.

Proposition 2 (Steady State). Suppose the economy started at t = 0 and has been

in a steady state. Then, there exist steady state values of a∗ and b∗, given the current

L(t) and qt,

(i) [Fast Case] if α(δB − δA) < q̂, the economy is characterized as following:

1. Aggregate Capital:

A(t) = a∗N(t);

B(t) = b∗N(t).

2. Distribution of labor:

Lv(t) =

[

q̂ + αδA + βδB

α + β
+ N̂

]

e−( q̂+αδA
+βδB

α+β
+N̂)(t−v)L(t).
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3. Distribution of capital:

Av(t) =
q̂ + αδA + βδB

α + β
e−(δA+N̂)(t−v)A(t);

Bv(t) =
q̂ + αδA + βδB

α + β
e−(δB+N̂)(t−v)B(t).

4. Allocation of investment:

IA(t) = IA
t (t) =

q̂ + αδA + βδB

α + β
A(t);

IB(t) = IB
t (t) =

q̂ + αδA + βδB

α + β
B(t).

where N̂ = q̂
1−α−β

+ L̂.

(ii) [Slow Case] otherwise, the economy is characterized as following:

1. Aggregate Capital:

A(t) = a∗N(t);

B(t) = b∗N(t).

2. Distribution of labor:

Lv(t) =

[

δA +
q̂

α
+ N̂

]

e−(δA+ q̂

α
+N̂)(t−v)L(t).

3. Distribution of capital:

Av(t) =

[

δA +
q̂

α
+ N̂

]

e−(δA+N̂)(t−v)A(t);

Bv(t) =

[

δA +
q̂

α
+ N̂

]

e−(δA+ q̂
α

+N̂)(t−v)B(t).

4. Allocation of investment:

IA(t) = IA
t (t) =

[

δA +
q̂

α
+ N̂

]

A(t);

IB
t (t) =

[

δA +
q̂

α
+ N̂

]

B(t);
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Table 1: Properties of two cases of steady state.

Steady state (i) Fast Slow

Technological progress (q̂) > α(δB − δA) < α(δB − δA)
PB

v (t) Decline exponentially Remains 1
Investment Frontier only Frontier and Obsolete B
Diffusion Fast Slow

α(δB − δA) Small Large
A(t)/B(t) α/β > α/β

[PA
v (t)Av(t)]/[P

B
v (t)B(t)] α/β > α/β

IB
v (t) =

[

δB − δA −
q̂

α

]

Bv(t);

IB(t) = IB
t (t) +

∫ t

0

IB
v (t) dv =

[

δB + N̂
]

B(t).

where N̂ = q̂
1−α−β

+ L̂.

Proof: See Appendix A.1.5.

Table 1 summarizes the properties of the two cases of steady state.

In the fast case: the investment schemes of all the available vintages are (a);

all new investment is allocated to the frontier technology capital types, At(t) and

Bt(t); and the ratio of those is always the same as the ratio of capital’s shares,

At(t)/Bt(t) = α/β. This case is expressed as a point on the solid line in Figure 3. In

this case, both prices of two capital types of a specific vintage decline exponentially

over time. The prices of short-lived capital are higher than those of long-lived capital

with the same vintages because short-lived capital of that vintage becomes relatively

scarce compared to long-lived capital of that vintage over time. This is because their

depreciation rates differ and there is no investment in vintage capital types.

As q̂ goes up, the allocations of two capital types and labor skew toward the

newest technology. The difference in the allocations of stocks of two capital types

arises from the difference in the rates of physical depreciation. The ratio of aggregate

amounts of them, a(t)/b(t), keeps α/β even when q̂ changes, however. The reason

is that prices of vintage capital types adjust such that they cancel the difference in

their depreciation rates. Indeed, the total depreciation – the sum of obsolescence and

physical depreciation – is (q̂ + αδA + βδB)/(α + β) for both capital types in the fast

case.
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Laitner and Stolyarov (2003)’s model is a special case of the fast case. They

assume a single rate of depreciation, δA = δB, which assures α(δB − δA) = 0 ≤ q̂

as long as the rate of technological progress is positive. The current model shows,

however, that even when depreciation rates differ, similar results to their model are

observed with some sets of parameters. This is because when technological change

is fast enough, the economy does not care about obsolete technology, and instead

focuses on the frontier technology. This results in investment in the capital types

with the frontier technology only.

The slow case is considerably different from the fast case, and thus from Laitner

and Stolyarov (2003). In this case, investment is not only allocated to the frontier

technology capital types, At(t) and Bt(t), but also to existing short-lived capital with

obsolete vintages, Bv(t) ∀ v < t. The ratio of investment in the frontier capital types,

At(t)/Bt(t), is identical to the aggregate amounts, A(t)/B(t). This steady state is

expressed as a point on the line (c) in Figure 4. The ratio a(t)/b(t) is larger than α/β

as in the figure.

Unlike the fast case, when q̂ declines, the ratio A(t)/B(t) rises, because a decline

in q̂ lowers interest rate r. This makes long-lived capital more attractive since long-

lived capital will last relatively longer of the two. The result does not occur in the

fast case since the rates of obsolescence of capital types adjust such that the sum of

the rates of depreciation and of obsolescence is the same across the different capital

types.

Prices of short-lived capital of all vintages are one since the marginal product

of obsolete short-lived capital exceeds that of new capital types. This is because a

large stock of long-lived capital raises the marginal product of short-lived capital.

This attracts invest in obsolete short-lived capital, while prices of long-lived capital

decline with vintage.

The investment in obsolete technology geometrically discontinuously lowers the

speed of diffusion of technology. Diffusion curves – the ratio of the chronologically

aggregated production after time T0 to the whole production – are:

1 − e−( q̂+αδA+βδB

α+β
+N̂)(t−T0)

for the fast case; and

1 − e−(δA+ q̂

α
+N̂)(t−T0)
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for the slow case.

Although the allocations of those inputs skew toward newer technology as q̂ rises,

unlike in the fast case, the motion of vintage short-lived capital is affected by invest-

ment in vintage short-lived capital as well as by physical depreciation. The ratio of in-

vestment in vintage short-lived capital to the existing short-lived capital, IB
v (t)/Bv(t),

rises as q̂ falls, because a smaller q̂ makes investment in vintage short-lived capital

more attractive.

Most importantly, the model implies that estimated technological progress using

changes in equipment prices over time might be under-estimated. Greenwood et al.

(1997) use change in equipment prices over time provided by Gordon (1990) in order

to estimate the rate of vintage-specific technological progress. But their estimates are

correct only when an economy is experiencing the fast case, because in the slow case

I have no obsolescence in tangible capital if there exists long-lived complementary

capital; thus combinations of the fast case and slow case may result in bias in the

measurement of technological progress.

These results of slow case considerably differ from those of models in existing

literature, including Solow’s and Laitner and Stolyarov’s, which predict investment

only in the frontier vintage capital at any moment. These findings can be confirmed

by evaluating empirical evidence of the relationships between changes in q̂ and: in-

vestment patterns, ratios of capital stocks, a(t)/b(t), and changes in prices.

4 Discussion

4.1 Validity of the Model

In Section 3.2, the steady state analysis of the model reveals two distinct investment

patterns: (i) if the rate of the progress, q̂, is above a threshold – which is the product

of long-lived capital’s share and the difference in the rates of depreciation, α(δB−δA) –

then all new investment concentrates on the frontier technology; (ii) otherwise, some

investment is allocated to obsolete, short-lived capital to exploit existing excessive

long-lived capital with obsolete technologies.

Obvious implication of this result is that if the rate of technological progress

is below the threshold, then, surprisingly, the prices of obsolete short-lived capital

remain one over time even when the rate of technological progress is positive. In this
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case, estimate of the rate of technological progress from changes in equipment prices

would be systematically biased downward.

Another important implication is that acceleration in the rate of vintage-specific

technological progress can cause an abrupt reallocation of investment towards modern

capital – consistent with investment booms that are concentrated in certain ”high-

tech” equipment. There is a widely accepted observation that the economic boom in

the late 1990’s coincided with the diffusion of the so-called information technology

(IT).8 While typical growth models merely consider investment in IT equipment as a

source of improvement in productivity, the current model considers the observation in

a different point of view; the concentration of investment in IT equipment is a result

of a higher rate of vintage-specific technological change.

Is it possible that an economy switches around the threshold of slow case and fast

case? Suppose that production involves vintage specific long-lived intangible capital,

short-lived tangible capital. Also suppose that: the labor share is 60%; the rest of the

share is equally divided to the each capital share; the depreciation rate of tangible

capital is 10%; and intangible capital does not depreciate. These provide an ad-hoc

threshold α(δB − δA) = 0.02, which is about the average labor productivity growth

rate of the post-war U.S. economy. Although vintage-specific technological progress

is typically smaller than this, it is possible that the economy is in the slow case at

times. The economy fluctuates around the threshold and the cases would differ at

times. This implies that values in Greenwood et al. may be biased downward.9

4.2 Applications of the Model

Although the analysis in the former sections presumes aggregate level of production,

the result can be applied to broader aggregation levels of production as long as the

assumptions of the model are satisfied.10 Table 2 summarizes three possible different

aggregation levels of production that can be explained by the model. I believe that

the assumptions are satisfied at least to an approximation with these examples, and

thus implication from the analysis should provide explanation for observed economic

8For example, Oliner and Sichel (2000) indicate that business investment in IT equipment rises
more than fourfold from 1995 to 1999, and Chart 2 in Oliner and Sichel (2003) shows that the output
shares of IT equipment have risen more than 20 % between 1994 and 2000.

9Bias over time might be different when average growth rate is fast enough, however. The result
depends on dynamics of the model, which is unsolved yet.

10i.e., fixed rate of recursive investment from output, profit maximization, competitive factors
market, constant vintage-specific technological progress, and Cobb-Douglas production function.
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Table 2: Different aggregation levels of production.

Level Equipment Intangible capital Example

Machinery Parts System, Skill, PC, Appliances,
Environment Cotton spinning

Factory Machinery Network, Railroad transportation,
Process, Skill Steel plant

Firm Factory, Organization, Retail firm,
Machinery Skill, R&D Manufacturing firm

activities. The three aggregation levels are machinery level, factory level, and firm

level.

It is easy to interpret these levels of production in actual economic activities. For

example, consider an automobile as machinery level of production. An automobile

consists of various kinds of parts. In this case, purchase of parts corresponds to the

investment in equipment, and assembly of automobile from parts corresponds to the

investment in intangible capital (system of automobile).11 Parts physically wear and

tear, while the system of automobile does not. You can produce transportation service

as output by using automobile that is set of parts and system, and then reinvest a part

of revenue from output in parts or system of automobile. Now suppose the engine

of an automobile breaks down. If the change in automobile model develops quickly

enough, you would purchase a new automobile since it has much better features than

the obsolete one. Otherwise, you would replace the malfunctioned engine with new

one but designed for the obsolete model in order to keep using the existing system of

obsolete automobile.12

Applications to the other levels – factory and firm levels – are considered as

somewhere between machinery and aggregate levels. Of these, analysis that focus

on the roles of intangible capital in production at firm level is well documented.

Hall (2001) shows that the U.S. economy has incorporated a substantial amount of

intangible capital, especially in the past decade. Other examples of this line of study

include Atkeson and Kehoe (2005), and McGrattan and Prescott (2005).

There are two types of empirical relevancy of the model in this context. Table

11The system of automobile can be interpreted as physical layout of parts that is based on the
specific design of an automobile.

12As presented in Introduction using the example of PC, there are broader types of candidates of
intangible capital depending on the type of machine.
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Table 3: Service life, warranty period, and
change in prices of two types of equipment.

Equipment type PC Appliance
Service lifea 7 years 10 years

Warranty periodb 1 year up to lifetime
Change in pricec 0.0467 3.014

a From Table 3 in Fraumeni (1997).
b Figure on PC is from Toshiba’s notebooks, and

that of appliance is from Kitchen Aid’s refriger-
ators, dishwashers, and washers.

c Ratios of prices of 1983 to 1947 in Gordon
(1990).

3 shows service life, warranty period, and change in prices of PC and appliances.

Appliances have longer warranty periods and service life than PC does.These figures

are counter-intuitive if physical depreciation from wear and tear is the dominant factor

of the service life, since appliances have more moving parts than PC does. These

facts suggest that there be investment in obsolete technology as replacement parts

for appliances, but not for PC. This observation is consistent with the implication of

the model with the fact that vintage-specific technological progress of PC is faster

than that of appliances as shown in Table 3.13 An important factor of longevity

of equipment is maintenance and repair cost as emphasized by McGrattan and Jr.

(1999) and Mullen and Williams (2004). The decision of maintenance and repair can

be explained by the current model interpreting the investment in obsolete technology

as maintenance and repair.

The second type of relevancy is coexistence of different vintage technologies. At

the machinery level, Saxonhouse and Wright (2000) show that mule spinning was a

preferred equipment for experienced workers than ring spinning around 1900. This

instance can be explained by the existence of the specific skill (intangible capital) for

the mule spinning. At the factory level, Comin and Hobijn (2004) present coexistence

of several steel production methods; Felli and Ortalo-Magne (1998) present the co-

existence of steam and diesel locomotives for railroad transportation. In these cases,

13One might argue that the life of IT equipment is shorter than that of appliances because the
value of IT equipment declines more quickly than that of appliances do. Indeed, this is one of the
main point that are formalized in the current model.
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equipment for steel production or locomotives are short-lived tangible capital, and

system of specific type of steel production process or networks of railroad are long-

lived intangible capital. Development of the process or the network using tangible

capital is considered as investment in intangible capital, while purchase of equipment

or locomotives are considered as investment in tangible capital. The coexistence

of different vintage technology is accompanied by investment in obsolete short-lived

capital types, which is consistent with the prediction of the current model.

Thanks to the generic assumptions of the model, the implication presented in

this study can be extended to continuous aggregation levels of production.In addition

to the difference in the rates of technological progress in temporal dimension, those

between machinery types, factories, firms, industries, and even countries can be ex-

ploited to confirm the importance of the result of the model. The full characterization

of the steady state that includes allocation and investment across vintages expands

the possibility of testing the importance of complementary capital.

The model also provides a new way of thinking about investment when production

involves complementary capital for managers, executives, government officials, and

international officials. Business people should take into account the importance of

complementary capital for maximizing the production, while public sectors should

worry about the implication of the model when they analyze implication of economic

policy.

5 Conclusion

The existence of heterogeneous complimentary capital yields two distinctive invest-

ment patterns: (i) if the rate of technological progress is above a threshold – the

product of long-lived capital’s share and the difference in the rates of depreciation

– then all new investment concentrates on the capital types that embody frontier

technology; (ii) otherwise, a part of the investment is allocated to obsolete short-lived

capital to exploit existing obsolete long-lived capital.

The result provides a new explanation for the observed investment in equipment

with obsolete technologies. An important implication is that change in prices of

equipment does not necessarily reflect the rate of technological progress. Another

implication is that an acceleration in the rate of technological progress can cause an

abrupt reallocation of investment towards modern capital, consistent with investment
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booms that are concentrated in certain “high-tech” equipment.

The results from the straightforward neoclassical setup can be applied to broader

types of economic activities that consist of production and investment. I presented

the examples in three different aggregation levels of production: machinery, factory,

and firm levels. The result of the model fit well with the evidence from other studies.

Although existing literature typically focuses on the roles of intangible capital at

the firm level, the current analysis suggests that intangible capital in other levels of

production be important.

Avenues for future research include both empirical and theoretical. Empirically

testable implications include: investment patterns across countries / industries / firms

/ machines that have different rates of technological progress; investment concentra-

tion in specific equipment during boom and recession; diffusion curve and technolog-

ical progress; maintenance and repair of different types of equipment with different

rates of technological progress; and measuring the true rate of technological change.

Theoretically, generalizing production function, introduction of demands, character-

izing transition, loosening vintage-specificity assumption of capital, and multi-sector

model will be meaningful.

Another interesting avenue is to consider a new question: is investment in high-

tech equipment source of growth, or result of higher vintage-specific technological

progress? The results of these application will be critical for both business and

government sectors in order to correctly evaluate economic activities with forgotten

complementary capital.
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A Appendix

A.1 Proofs

A.1.1 Lemma 1 (Chronological Aggregation)

(i) Agent’s profit maximization conditions are:

MPAv(t) = α
Yv(t)

Av(t)
= P A

v (t)RA
v (t) = P A

v (t)
[

r(t) + δA − P̂ A
v (t)

]

, (14)

MPBv(t) = β
Yv(t)

Bv(t)
= P B

v (t)RB
v (t) = P B

v (t)
[

r(t) + δB − P̂ B
v (t)

]

, (15)

MPL(t) = (1 − α − β)
Yv(t)

Lv(t)
= W (t), (16)

where hat (̂ ) denotes the time derivative of the natural log of argument, and

prices are normalized at 1 unit of output. Note that marginal product of labor,

MPL(t), does not have vintage subscript because labor is not vintage-specific

and the wage is independent of vintages. Then, we have

[

MPAv(t)

MPAv′(t)

]α [

MPBv(t)

MPBv′(t)

]β

=
qv

qv′
. (17)
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Now, using (1), (3) - (6), and (14) - (17), the aggregate output will be

Y (t) =

∫ t

0

Yv(t) dv

=

∫ t

0

qvAv(t)
αBv(t)

βLv(t)
1−α−β dv

=

∫ t

0

qv

[

At(t)

Lt(t)

MPAt(t)

MPAv(t)
Lv(t)

]α

·

[

Bt(t)

Lt(t)

MPBt(t)

MPBv(t)
Lv(t)

]β

Lv(t)
1−α−β dv

=

[

At(t)

Lt(t)

]α [

Bt(t)

Lt(t)

]β ∫ t

0

qv
qt

qv
Lv(t) dv

= qtA(t)αB(t)βL(t)1−α−β ,

which is equation (7).

(ii) Use (4) and (14) -(16) to show

A(t) =

∫ t

0

[

qv

qt

]
1

α+β
[

Bv(t)/Av(t)

Bt(t)/At(t)

]
β

α+β

Av(t) dv

= q
− 1

α+β

t

[

Bt(t)

At(t)

]− β
α+β

∫ t

0

[

qvAv(t)
αBv(t)

β
]

1

α+β dv

= q
− 1

α+β

t

[

B(t)

A(t)

]− β

α+β
∫ t

0

Jv(t) dv

= q
− 1

α+β

t

[

B(t)

A(t)

]− β

α+β

J(t),

which is the equitation (9). From (7) - (8), and (16), we have

[

Jv(t)

Lv(t)

]α+β

=
Yv(t)

Lv(t)
=

Y (t)

L(t)
=

[

J(t)

L(t)

]α+β

,

which provides (10) and (11).

�
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A.1.2 Lemma 2 (Uniqueness of Investment Scheme across Vintages)

The proof has four steps. I show: (i) both P̂ A
v and P̂ B

v are constant; (ii) uniqueness

of changes in prices; (iii) distribution of schemes.

The scheme (d) is not allowed across vintages, because if different vintages v and

v′ are in scheme (d), both capital types’ prices must be one and therefore MPAv(s) =

MPAv′(s) and MPBv(s) = MPBv′(s), which breaks the condition (14) or (15).

(i) [Growth Rate of Prices of Capital] In a steady state, (14) and (15) imply that

both MPAv(t) and MPBv(t) grow at constant rates since Yv(t), Av(t), and Bv(t) all

grow at constant rates. Now, suppose P̂ A
v (t) > ˆMPAv(t). Then, MPAv(t)/P

A
v (t) =

r∗ +δA− P̂ A
v (t) declines and therefore the growth rate of P A

v (t) should accelerate over

time. Then, P A
v (t) should reach one with positive growth rate in a finite time, which

breaks the condition, P A
v (t) ∈ [0, 1].

Next, suppose P̂ A
v (t) < ˆMPAv(t). Then, P A

v (t) should reach zero in a finite time

with negative growth rate and either it breaks the condition, P A
v (t) ∈ [0, 1], or firms

want to get rid of the capital, which breaks the constant growth.

Therefore, I need P̂ A
v (t) = ˆMPAv(t) and thus P A

v (t) grows at a constant rate.

Then, P̂ A
v ≤ 0 since otherwise P A

v exceeds one in a finite time, which is impossible in

a steady state. Similar arguments apply to the prices of tangible capital, P B
v (t).

Thus, both P A
v (t) and P B

v (t) must grow at constant rates, and

ˆMPAv = P̂ A
v ≤ 0, (18)

ˆMPBv = P̂ B
v ≤ 0. (19)

(ii) [Uniqueness of Change in Prices] Next, consider the vintage v and v′ that are

in scheme (a). Since there is no continuous positive investment, ˆJv(t) = ˆJv′(t), which

implies ˆYv(t) = ˆYv′(t) from (11). Therefore, (14) and (15) imply ˆP A
v (t) = ˆMPAv(t) =

ˆMPAv′(t) = ˆP A
v′ (t). Argument for P B

v (t) and P B
v′ (t) is the same.

For the vintage v and v′ that are in scheme (b), I have P̂ A
v (t) = P̂ A

v′ (t) = 0,

and thus (17) implies MPBv(t)/MPBv′(t) = P B
v (t)/P B

v′ (t) is constant. The similar

argument applies to the scheme (c).

Thus, if vintages v and v′ are in a same investment scheme, then

P̂ A
v (t) = P̂ A

v′ (t), (20)
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P̂ B
v (t) = P̂ B

v′ (t). (21)

(iii) [Scheme across Vintages] Relationships of prices across vintages of capital types

in a same investment scheme are:

P A
v (t) =

[

qv

qv′

]
1

α+β
[

Bv(t)/Av(t)

Bv′(t)/Av′(t)

]
β

α+β

P A
v′ (t); (22)

P B
v (t) =

[

qv

qv′

]
1

α+β
[

Bv(t)/Av(t)

Bv′(t)/Av′(t)

]− α
α+β

P B
v′ (t). (23)

In a steady state, both Âv and B̂v are constant. Changes in investment scheme is not

allowed because they require change in either Âv or B̂v, which breaks the definition

of a steady state.

Now, suppose vintage v is scheme (a) or (c) and vintage v′ is scheme (b). Then,

since ˆ[Bv/Av] > ˆ[Bv′/Av′ ], (22) implies

P̂ A
v > P̂ A

v′ = 0,

which cannot be held in a steady state because price of capital Av exceeds one in

a finite time, and I cannot change the scheme. I have similar arguments against

combinations of schemes (a) and (c) with (23).

Thus, in a steady state: both P A
v (t) and P B

v (t) must grow at constant rates, and
ˆMPAv = P̂ A

v ≤ 0 and ˆMPBv = P̂ B
v ≤ 0; and if vintages v and v′ are in a same

investment scheme, then P̂ A
v (t) = P̂ A

v′ (t) and P̂ B
v (t) = P̂ B

v′ (t).

Therefore, investment scheme of a vintage v cannot change over time, and invest-

ment scheme is unique across vintages, and is either (a), (b), or (c). �

A.1.3 Proposition 1 (Investment Scheme)

(i) Suppose investment scheme is (b) ∀ v. Then, P A
v = 1 and P̂ A

v = 0. Since
ˆ[

MPAv

MPBv

]

=
ˆ[

Bv

Av

]

< −[δB − δA], and ˆMPAv = P̂ A
v = 0, I have ˆMPBv = P̂ B

v >

δB − δA > 0, which cannot be true in a steady state because price of Bv exceeds

one eventually.

Next, suppose investment scheme is (c) ∀ v. Then, P B
v = 1, P̂ B

v = 0, and (22)
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implies ˆP A
v (t) = −q̂t/α. Following the same argument above, I know

−
q̂t

α
= P̂ A

v > −[δB − δA].

Therefore, in a steady state with q̂ > α(δB − δA), investment scheme must be

(a) ∀ v.

(ii) Investment scheme (b) is impossible as in (i). Now, suppose investment scheme

is (a) ∀v. We know that there is no investment and thus ˆY (t) = ˆIA(t) = ˆIB(t) =
ˆAt(t) = ˆBt(t) from (2). But this is impossible because (23) implies that P B

v (t)

exceeds one when q̂ < α(δB − δA). Therefore, investment scheme must be (c)

when q̂ < α(δB − δA).

�

A.1.4 Proposition 3 (Allocation of Capital Stock)

The laws of motion of the capital types of each vintage are

Ȧv(t) = IA
v (t) − δAAv(t),

Ḃv(t) = IB
v (t) − δBBv(t).

In a steady state, P A
t (t) = P B

t (t) = 1 from Lemma 2. Then, I now know from (20),

(21), (4) and (5) can be rewritten as

A(t) =

∫ t

0

P A
v (t)Av(t) dv, (24)

B(t) =

∫ t

0

P B
v (t)Bv(t) dv. (25)

By differentiating (24) and (25), I can obtain the laws of motion of aggregate capital:

Ȧ(t) =
∂

∂t

∫ t

0

P A
v (t)Av(t) dv (26)

=

∫ t

0

[P A
v (t)Av(t)][P̂ A

v (t) + Âv(t)] dv + At(t)

=
[

P̂ A
v (t) − δA

]

A(t) +

∫ t

0

IA
v (t) dv + IA

t (t)
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=
[

P̂ A
v (t) − δA

]

A(t) + IA(t);

and

Ḃ(t) =
[

P̂ B
v (t) − δB

]

B(t) + IB(t). (27)

Since A(t) grows at a constant rate, (26) implies ÎA = Â. Similarly, I have

ÎB = B̂. Therefore, from (2), Ŷ = ÎA = ÎB. These imply Ŷ = Â = B̂ and thus (7)

gives Ŷ = N̂ = ẑ+q̂
1−α−β

+ L̂ in a steady state.

These growth rate is the same as those of the aggregate output and the aggregate

amounts of two capital types in a steady state.

Now, by canceling r(t) from (14) and (15), I have

[

β

P B
v (t)Bv(t)

−
α

P A
v (t)Av(t)

]

Yv(t) = [δB − P̂ B
v (t)] − [δA − P̂ A

v (t)]. (28)

Since again Y (t)/L(t) = Yt(t)/Lt(t), A(t)/L(t) = At(t)/Lt(t), and B(t)/L(t) =

Bt(t)/Lt(t) from (1), (4), (5), and (7), by applying v → t and with per effective

capita amounts, I can rewrite (28) as

βa(t)αb(t)β−1

P B
t (t)

−
αa(t)α−1b(t)β

P A
t (t)

= [δ̃B − P̂ B
v (t)] − [δA − P̂ A

v (t)].

�

A.1.5 Proposition 2 (Steady State)

[Laws of Motion] In per effective labor expressions, the sum of the laws of motion,

(26) and (27), becomes

ȧ(t) + ḃ(t) =

σa(t)αb(t)β − [δA − P̂ A
v (t) + N̂(t)]a(t) − [δB − P̂ B

v (t) + N̂(t)]b(t).

Now, consider the case of Proposition 1 (i). In a steady state, the right hand side

of (13) is zero and therefore At(t)/Bt(t) = α/β. Note that all the investment is spent

on two capital types with frontier technology because only P A
T and P B

T can be one.

Applying (22) and (23) to v → t, I have

ȧ(t) + ḃ(t) =
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= σa(t)αb(t)β −

[

q̂ + αδA + βδB

α + β
+ N̂

]

[a(t) + b(t)].

In a steady state, using the condition A(t)/B(t) = α/β, this can be simplified to

ḃ(t) =
σβ

α + β

[

α

β

]α

b(t)α+β −

[

q̂ + αδA + βδB

α + β
+ N̂

]

b(t). (29)

Now, consider the case of Proposition 1 (ii). Using the prices of capital types from

(22) and (23), I have

ȧ(t) + ḃ(t) = (30)

σa(t)αb(t)β −

[

δA +
q̂

α

]

a(t) − δBb(t) − N̂ [a(t) + b(t)].

[Full Characterization] Now, I focus on the proof of (ii) [Slow Case] because the

proof of (i) [Fast Case] is an easier case of that of the former one.

First, aggregate capital can be specified by

A(t)

N(t)
= a∗,

B(t)

N(t)
= b∗,

which are from the per effective labor definition.

Then, consider the investment allocation between aggregate long-lived capital and

aggregate tangible capital. Since at the steady state ˙a(t) = ˙b(t) = 0, from (26), (27)

and the proof of Lemma 2, I have

IA(t)

N(t)
=

[

δA +
q̂

α
+ N̂

]

a∗, (31)

IB(t)

N(t)
=

[

δB + N̂
]

b∗, (32)

where N̂ = q̂
1−α−β

+ n.

(31) and (32) also imply the investment allocation between them is constant,

IA(t)

IA(t) + IB(t)
=

[δA + g/α + N̂ ](a∗/b∗)

[δA + g/α + N̂ ](a∗/b∗) + [δB + N̂ ]
= θ.
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Since the investment in long-lived capital is only for the frontier vintage, I have

Av(t) = Av(v)e−δA(t−v) = θσY (v)e−δA(t−v). (33)

Since Ŷ (t) = N̂(t) = N̂ ,

Y (v) = Y (t)e−N̂(t−v).

Thus, (33) can be written as

Av(t) = θσY (t)e−(δA+N̂)(t−v). (34)

Now, find the optimal allocation of labor, Lv(t). From (14) - (16), the proof of

Lemma 2, and (34) with per effective labor notation, read

Lv(t) = P A
v (t)

Av(t)

At(t)
Lt(t) = e−(δA+ q̂

α
+N̂)(t−v)Lt(t). (35)

So, since the total amount of labor is L(t) =
∫ t

0
Lv(t) dv, I have

Lt(t) =

[

δA +
q̂

α
+ N̂

]

L(t). (36)

Therefore, (35) and (36) can determine the distribution of the labor, Lv(t).

(35) combined with (31) provides distribution of long-lived capital,

Av(t) =
Lv(t)

Lt(t)

At(t)

P A
v (t)

=

[

δA +
q̂

α
+ N̂

]

e−(δA+N̂)(t−v)A(t). (37)

Now consider vintage tangible capital. Since MPBv(t) = MPBt(t) and thus from

(14) (16)
Bv(t)

Lv(t)
=

Bt(t)

Lt(t)
. (38)

Using (37), I have

Bt(t) = At(t)
B(t)

A(t)
=

[

δA +
q̂

α
+ N̂

]

B(t).
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Therefore,

Bv(t) = Bt(t)
Lv(t)

Lt(t)
=

[

δA +
q̂

α
+ N̂

]

e−(δA+ q̂

α
+N̂)(t−v)B(t).

On the other hand, in the per effective labor notation, (38) is

bv(t) = bt(t)

[

qt

qv

]
1

1−α−β

= b∗e
q̂

1−α−β
(t−v).

So, I have

B̂v(t) =
q̂

1 − α − β
+ L̂v(t) = −

[

δA +
q̂

α

]

.

Therefore,
IB
v (t)

Bv(t)
= B̂v(t) + δB = δB − δA −

q̂

α
,

and thus

IB
v (t) =

[

δB − δA −
q̂

α

]

Bv(t).

�

A.2 Prices

A.2.1 Relationship Across Vintages

From (14) and (15), I have

MPAv(t)/MPBv(t)

MPAv′(t)/MPBv′(t)
=

Bv(t)/Av(t)

Bv′(t)/Av′(t)
,

which implies with (17),

MPAv(t)

MPAv′(t)
=

[

qv

qv′

]
1

α+β
[

Bv(t)/Av(t)

Bv′(t)/Av′(t)

]
β

α+β

, (39)

MPBv(t)

MPBv′(t)
=

[

qv

qv′

]
1

α+β
[

Bv(t)/Av(t)

Bv′(t)/Av′(t)

]− α
α+β

. (40)

Now, consider the relationship of prices across vintages that have a same invest-

ment scheme over time.

First, suppose vintages v and v′ are in scheme (a) since time T0 such that v ≤
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v′ ≤ T0 ≤ s ≤ t where t is the current time and s is some time between T0 and t.

Then, I can rewrite (39) as

MPAv(s)

MPAv′(s)
=

[

qv

qv′

]
1

α+β
[

Bv(T0)/Av(T0)

Bv′(T0)/Av′(T0)

]
β

α+β

= ϕA(v, v′, T0),

since change in capital stock is only from physical depreciation. Note that ϕA(v, v′, T0)

is time independent in this case. Substitution of (14) gives

P A
v (s){r(s) + δA} − ˙P A

v (s) = ϕA(v, v′, T0)
[

P A
v′ (s){r(s) + δA} − ˙P A

v′ (s)
]

, (41)

and similarly,

P B
v (s){r(s) + δB} − ˙P B

v (s) = ϕB(v, v′, T0)
[

P B
v′ (s){r(s) + δB} − ˙P B

v′ (s)
]

,

where

ϕB(v, v′, T0) =
MPBv(s)

MPBv′(s)
=

[

qv

qv′

]
1

α+β
[

Bv(T0)/Av(T0)

Bv′(T0)/Av′(T0)

]− α
α+β

.

So, given the initial distribution of prices and stocks of capital types and path of

interest rate {r(s)}, I can determine the relative prices of two types of capital when

there is no investment in the types of capital over time, which is in scheme (a).14

Now, consider the scheme (b), where there is investment in vintage capital v and

v′ since T0 such that v ≤ v′ ≤ T0 ≤ s ≤ t. In this case, I know P A
v (s) = P A

v′ (s) = 1

and thus MPAv(s) = MPAv′(s). So, (17) becomes

[

MPBv(s)

MPBv′(s)

]β

=
qv

qv′
, (42)

and, again I have

P B
v (s){r(s) + δB} − ˙P B

v (s) =

[

qv

qv′

]
1

β [

P B
v′ (s){r(s) + δB} − ˙P B

v′ (s)
]

.

The next scheme is (c), where investment is only in the short-lived capital. Simi-

14Details of dynamics is in Appendix A.2.2.
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larly I have P B
v (s) = P B

v′ (s) = 1, and

P A
v (s){r(s) + δA} − Ṗ A

v (s) =

[

qv

qv′

]
1

α [

P A
v′ (s){r(s) + δA} − Ṗ A

v′ (s)
]

.

In this way, I can determine relationship of prices of capital types in the same

investment scheme given the investment scheme and the initial distributions of stocks

and prices of capital types across vintages, as well as history of real interest rate.

Which investment scheme dominates in vintage v in what conditions? How are the

relative prices of obsolete capital types to the new investment prices determined?

What are the relationships of prices between different investment schemes? These

answers depend on distribution of the vintage long-lived and short-lived capital, rate

of vintage-specific technological change, and steady state which an economy reaches

eventually. In the following section, I consider the distributions of prices in a steady

state that is sensible for an economy.

A.2.2 Dynamics of Prices

Investment Scheme (a) Multiply both sides of (41) by −e
−{

∫ s

T0
r(u) du+δA(s−T0)}

,

and integrate over s from T0 to the current time t. Then, read

∫ t

T0

˙
[e

−{
∫ s

T0
r(u) du+δA(s−T0)}

P A
v (s)] ds = ϕA(v, v′, T0)

∫ t

T0

˙
[e

−{
∫ s

T0
r(u) du+δA(s−T0)}

P A
v′ (s)] ds

which is, given the initial prices P A
v (T0) and P A

v′ (T0), equivalent to

P A
v (t) − ϕA(v, v′, T0)P

A
v′ (t) (43)

= e
∫ t

T0
r(u) du+δA(t−T0)

[P A
v (T0) − ϕA(v, v′, T0)P

A
v′ (T0)].

(43) shows the relationship of intangible capital prices across vintage. Similarly, the

relationship of prices of tangible capital across vintage is, given the initial stocks and

the initial prices P B
v (T0) and P B

v′ (T0),

P B
v (t) − ϕB(v, v′, T0)P

B
v′ (t) (44)

= e
∫ t

T0
r(u) du+δB(t−T0)

[P B
v (T0) − ϕB(v, v′, T0)P

B
v′ (T0)],
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where

ϕB(v, v′, T0) =
MPBv(s)

MPBv′(s)
=

[

qv

qv′

]
1

α+β
[

Bv(T0)/Av(T0)

Bv′(T0)/Av′(T0)

]− α
α+β

.

Another useful characterization of prices of capital is, the relationship between the

capital types with the same vintage from (14) and (15) when there is no investment

in vintage v at time s ∈ [T0, t]. Now, from (14) and (15), I have

MPAv(s)

MPBv(s)
=

α

β

Bv(s)

Av(s)
, (45)

and further,

P A
v (s){r(s) + δA} − ˙P A

v (s) =
α

β

Bv(s)

Av(s)

[

P B
v (s){r(s) + δB} − ˙P B

v (s)
]

Then, I also have

e
−

{

∫ t

T0
r(u) du+δA(t−T0)

}

P A
v (t) − P A

v (T0)

=
α

β

Bv(T0)

Av(T0)

[

e
−

{

∫ t

T0
r(u) du+δB(t−T0)

}

P B
v (t) − P B

v (T0)

]

.

Investment Scheme (b) Similarly,

P B
v (t) =

[

qv

qv′

]
1

β

P B
v′ (t)

+ e
∫ T

T0
r(u) du+δB(T−T0)

[

P B
v (T0) −

{

qv

qv′

}
1

β

P B
v′ (T0)

]

.

Investment Scheme (c) Similarly,

P A
v (t) =

[

qv

qv′

]
1

α

P A
v′ (t)

+ e
∫ T

T0
r(u) du+δA(T−T0)

[

P A
v (T0) −

{

qv

qv′

}
1

α

P A
v′ (T0)

]

.
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