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Abstract

We consider an open-economy model with the Calvo-type sticky prices. We mainly

analyze the situation in which the monetary authority in each country cooperates so

as to maximize the world welfare. In the case where the zero lower bound (ZLB) on

nominal interest rates never binds, the optimal inflation targeting rule in our open-

economy model has exactly the same form as in the closed-economy model. This is

not the case, however, when the ZLB may bind. The optimal paths are characterized

in such a situation. In contrast with what Svensson (2001, 2003, 2004) suggests, the

optimal paths of the nominal exchange rate in our model typically exhibit appreciation

of the currency of the country where the ZLB binds.
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1 Introduction

How should monetary policy be conducted when the zero lower bound (ZLB) for nominal

interest rates may bind? The recent experience of Japan is a well-known example of such

a “liquidity trap.” There, the call rate1 has been below 0.5 percent per annum since

October 1995 and below 0.1 percent since March 1999 (except for the period August

2000-March 2001). Krugman (1998) argues that, even when the nominal interest rate

hits the zero bound, the central bank could still stimulate the current level of output by

raising expectations of future inflation. This point is further elaborated in a more fully

dynamic framework with staggered pricing by Eggertsson and Woodford (2003).2 Based

on an optimization-based, quadratic approximate welfare measure, they analyze the state-

contingent paths of inflation, output gap, and nominal interest rates under optimal policy

commitment. Furthermore, they derive a price-level targeting rule that could implement

the optimal paths.

In this paper, we extend the analysis of Eggertsson and Woodford (2003) to a two-

country open-economy model.3 A continuum of differentiated products are produced in

each country, and each good price is adjusted at random intervals as in Calvo (1983). We

assume perfect exchange-rate pass-through, so that the law of one price holds. We analyze

the optimal state-contingent paths of various variables, and compare our results to the

proposal of Svensson (2001, 2003, 2004) that the currency of a country in a liquidity trap

should depreciate.

We start with a result on equilibrium shares of consumption across countries. In the

literature on open-economy monetary models, it is often assumed that the equilibrium

shares of consumption across countries are determined independently of the monetary

policy rule adopted by each country. This assumption is a bit problematic. It is true

that with complete asset markets (and isoelastic preferences), given initial financial asset

holdings and policy rules, the equilibrium shares of consumption are constant at all dates

and all contingencies. In general, however, even under these assumptions, given initial asset

holdings, different policy rules would result in different equilibrium shares of consumption

across countries. We provide sufficient conditions on preferences and initial asset holdings

for the equilibrium shares of consumption across the two countries to be independent of the

policy rule adopted by each country. They include unit elasticity between goods produced
1The call rate is an overnight interest rate, which is analogous to the federal funds rate in the US.
2A related problem is studied by Jung, Teranishi and Watanabe (2001).
3There is growing literature on open-economy models with nominal rigidities. Examples include, among

others, Corsetti and Pesenti (2001), Obstfeld and Rogoff (2002), Clarida, Gaĺı and Gertler (2001), Gaĺı

and Monacelli (2002), Benigno and Benigno (2003), Svensson (2004).
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in different countries. For simplicity, we assume that those conditions hold in this paper.

As for the policy objective, we mostly focus on the case in which the two monetary

authorities cooperate each other to maximize the world welfare, which is defined as the

world average of expected lifetime utility of households. Based on a second-order approx-

imation, the objective function of the monetary authorities is given by a quadratic loss

function in output gaps and inflation rates. Here, the welfare-relevant inflation rates are

not the CPI inflation rates, but the producer-price inflation rate in each country, as in

Benigno and Benigno (2003) and Clarida, Gaĺı and Gertler (2001). Thus, fluctuations in

the nominal exchange rate per se does not affect the welfare.

We first examine the optimal policy rule when the ZLB is assumed never to bind.

Surprisingly, in this case, the optimal inflation targeting rule in our open economy model

takes exactly the same form with the same parameter value as the one obtained for the

closed economy by Woodford (2003, Section 7.5). That is, the (producer-price) inflation

rate in each country must be targeted at the level given by a constant times the rate of

change of its output gap. This is true even though the aggregate supply relation shows

international dependence, that is, the inflation-output-gap tradeoff in each country is

affected by the output gap in the other country. Thus, as long as the ZLB never binds,

the monetary authority in each country may forget about international dependence and

set the target rate of inflation independently, in order to maximize the world welfare.

This is not the case when the ZLB may bind. In such a case, as our optimal price-level

target rule shows, the price-level target in each country is not determined independently.

To examine quantitative properties of the optimal state-contingent paths of key variables,

we conduct a numerical experiment similar to the one in Eggertsson and Woodford (2003).

It shows that the optimal state-contingent paths of inflation, output gaps, and nominal

interest rates of the country in a liquidity trap look very similar to those obtained for the

closed economy by Eggertsson and Woodford (2003). Such paths in our open economy

model are, however, made possible by active policy coordination of the other country.

Regarding exchange rates, our numerical experiment shows that the currency of a

country in a liquidity trap must appreciate, rather than depreciate. This makes a sharp

contrast to what Svensson (2001, 2003, 2004) proposes. A theoretical justification for his

proposal is made in Svensson (2004). While our model and Svensson’s (2004) differ in

several ways,4 the difference in the evolution of nominal exchange rates under optimal

policy arises from his assumption that (i) the shock that generates a liquidity trap lasts
4For instance, Svensson (2004) considers prices that are set one period in advance, rather than staggered

pricing. Also, in his model, a country in a liquidity trap may or may not be small; there may or may not

be international coordination of monetary policy.
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only for one period and (ii) the country in a liquidity trap has a productivity level which

is higher than the steady-state level. Note that a country falls into a liquidity trap, say,

at date 0, if the expected growth rate of productivity in that country from date 0 to date

1 is sufficiently negative. Svensson (2004) creates such a situation by assuming that the

productivity of a country at date 0 is unusually high (and the expected level of productivity

at date 1 is normal). This is why he observes depreciation at date 0 under optimal policy:

Since the country produces more than normally the relative price of goods produced in

that country to those produced abroad must fall. Because the price of a good is set one

period in advance, this fall in the relative price is achieved by a depreciation. However,

even in this scenario, if the shock lasts for more than one period so that the expected

growth rate of productivity is negative, say, for dates t = 0, . . . , τ , then the currency

would depreciate at all t = 1, . . . , τ under optimal policy commitment. In this sense, our

claim that the currency of a country in a liquidity trap depreciates under optimal policy

commitment holds more robustly.

The rest of the paper is organized as follows. In Section 2, we describe households and

give a proposition on the equilibrium share of consumption. In Section 3, the aggregate-

supply relations are derived. In Section 4, a quadratic approximate world welfare measure

is computed, and an optimal inflation targeting rule is derived for the case where the ZLB

is assumed never to bind. In Section 5, the natural rates of interest are defined and the

“intertemporal IS equations” are obtained. In Section 6, optimal policy in a liquidity trap

is analyzed. In Section 7, the state-contingent paths of nominal exchange rates under

optimal policy is discussed. Section 8 is concluding remarks.

2 Households

The model economy is an open-economy version of the sticky-price model developed by

Woodford (2003). In particular, goods prices are adjusted at random intervals as in

Calvo (1983); households supply differentiated labor; and monetary frictions are abstracted

so that money is not modelled explicitly (a “cashless economy” in the terminology of

Woodford, 2003).

The world economy consists of two countries, Home (H) and Foreign (F ). The size

of population in country j ∈ {H, F} is nj . We normalize the world population to unity:

nH + nF = 1. A set of differentiated products are produced in each country and they are

traded between the two countries. Let Nj denote the set of those products. We assume
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that

NH = [0, nH ], and NF = (nH , 1].

Each country is resided by identical households, who consume differentiated commodi-

ties, supply labor, and own firms in their country. The monetary and fiscal policy is set

by the government in each country. Governments do not consume, and set fiscal policy

in the “Ricardian” way in the sense used by Benhabib, Schmitt-Grohé and Uribe (2001),

among others. The detail of monetary policy is discussed later.

2.1 Preferences

A representative household in H has preferences given by

U0 = E0

∞∑

t=0

βt

{
ũ(Ct)− 1

nH

∫

NH

ṽ
[
`t(i)

]
di

}
, (1)

where 0 < β < 1, σ > 0, and `t(i), i ∈ NH , is the supply of type-i labor, which is used to

produce differentiated product i. We assume that ũ and ṽ have constant elasticity:

ũ(C) ≡ C1−σ

1− σ
, ṽ(`) ≡ 1

1 + ω
`1+ω.

The consumption index for the home household, Ct, is given by

Ct =
[
n

1
ρ

HC
ρ−1

ρ

H,t + n
1
ρ

F C
ρ−1

ρ

F,t

] ρ
ρ−1

, (2)

where CH,t and CF,t are the consumption indexes of home and foreign goods consumed by

the home household, respectively, which are defined by:

Cj,t =

[
n
− 1

θ
j

∫

Nj

ct(i)
θ−1

θ di

] θ
θ−1

, j = H, F. (3)

Here, θ > 1 and ct(i) ∈ Nj is the home household’s consumption of good i produced in

country j ∈ {H, F}. It is convenient to define the function u(CH , CF ) by

u(CH , CF ) ≡ ũ

([
n

1
ρ

HC
ρ−1

ρ

H + n
1
ρ

F C
ρ−1

ρ

F

] ρ
ρ−1

)

The lifetime utility of a representative household in F takes the same form as that of

the home household:

U∗
0 = E0

∞∑

t=0

βt

{
ũ(C∗

t )− 1
nF

∫

NF

ṽ
[
`∗t (i)

]
di

}
. (4)
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The consumption indexes for the foreign household, {C∗
t , C∗

H,t, C
∗
F,t}, are defined as in (2)

and (3):

C∗
t =

[
n

1
ρ

HC
∗ ρ−1

ρ

H,t + n
1
ρ

F C
∗ ρ−1

ρ

F,t

] ρ
ρ−1

, (5)

C∗
j,t =

[
n
− 1

θ
j

∫

Nj

c∗t (i)
θ−1

θ di

] θ
θ−1

, j = H, F. (6)

Corresponding to the consumption indexes in country H, Ct, Cj,t, j = H, F , the prices

indexes, Pt, Pj,t, j = H, F , are defined as

Pt =
[
nHP 1−ρ

H,t + nF P 1−ρ
F,t

] 1
1−ρ

,

Pj,t =

[
1
nj

∫

Nj

pt(i)1−θ di

] 1
1−θ

, j = H, F, (7)

where pt(i), i ∈ Nj , j ∈ {H, F}, is the price of good i produced in country j quoted in the

home currency. The price indexes in country F , P ∗
t , P ∗

j,t, j = H,F , are defined similarly

by individual good prices, p∗t (i), i ∈ Nj , j ∈ {H, F}, quoted in the foreign currency. We

assume that the law of one price holds:

pt(i) = Etp
∗
t (i),

for all i ∈ Nj , j ∈ {H, F}, where Et is the nominal exchange rate, defined as the price of

foreign currency in terms of home currency. It follows that Pj,t = EtP
∗
j,t, j = H, F and

Pt = EtP
∗
t .

Cost minimization leads to the derived demands of the home household:

Cj,t = nHCt

(
Pj,t

Pt

)−ρ

, j = H, F,

ct(i) =
1
nj

Cj,t

(
pt(i)
Pj,t

)−θ

, j = H, F. (8)

The derived demands of the foreign household are written similarly.

2.2 Utility maximization

We assume worldwide complete markets. The flow budget constraint for the home house-

hold is

PtCt + Et[Qt,t+1Wt+1] = Wt +
∫

NH

[
wt(i)`t(i) + Πt(i)

]
di + Tt, (9)

where Et is the conditional expectation operator, Qt,t+1 is the stochastic discount factor

between dates t and t+1 for nominal payoffs in the home country, Wt+1 is the portfolio of
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one-period state-contingent bonds, wt(i) is the date-t nominal wage rate for type i ∈ NH

labor, Πt(i) is the date-t nominal profits from sales of good i ∈ NH , and Tt is the nominal

lump-sum transfers from the home government.

To prevent “Ponzi schemes,” the home household also faces the “natural debt limit”

(Ljungqvist and Sargent, 2000):

Wt+1 ≥ −
∞∑

s=t+1

Et

[
Qt+1,s

{∫

NH

[
ws(i)`s(i) + Πs(i)

]
di + Ts

}]
, (10)

where Qt,s is the stochastic discount factor between dates t and s, defined by Qt,s =
∏s

τ=t+1 Qτ−1,τ . Given the initial asset holding, W0, the home household maximizes the

lifetime utility (1) subject to (9) and (10).

The flow budget constraint for the foreign household is analogously expressed:

EtP
∗
t Ct + Et[Qt,t+1Et+1W

∗
t+1] = EtW

∗
t +

∫

NF

Et

[
w∗t (i)`

∗
t (i) + Π∗t (i)

]
di + T ∗t ,

where W ∗
t+1 is the portfolio of the state-contingent bonds in the foreign currency, w∗t (i), is

the nominal wage rate of type i ∈ NF labor, Π∗t (i) is the nominal profit from sales of good

i ∈ NF , and T ∗t is the nominal transfer from the foreign government. Given the initial

asset holding W ∗
0 , the utility maximization problem for the foreign household is defined

similarly to that for the home household.

The first-order conditions that {Ct, C
∗
t , `t(i), `∗t (i)} must satisfy are given by

βũc(Ct+1)
ũc(Ct)

=
βũc(C∗

t+1)
ũc(C∗

t )
= Qt,t+1

Pt+1

Pt
, (11)

and
1

nH

ṽ`[`t(i)]
ũc(Ct)

=
wt(i)
Pt

, i ∈ NH ,
1

nF

ṽ`[`∗t (i)]
ũc(C∗

t )
=

w∗t (i)
P ∗

t

, i ∈ NF .

As we shall see, what the policy makers should stabilize is not Pt or P ∗
t , but PH,t and P ∗

F,t.

For this reason, the first-order conditions in terms of Cj,t and C∗
j,t, j = N, H, turn out to

be more relevant. They are given by

βuH(CH,t+1, CF,t+1)
uH(CH,t, CF,t)

=
βuH(C∗

H,t+1, CF,t+1)∗

uH(C∗
H,t, C

∗
F,t)

= Qt,t+1
PH,t+1

PH,t
(12)

βuF (CH,t+1, CF,t+1)
uF (CH,t, CF,t)

=
βuF (C∗

H,t+1, CF,t+1)∗

uF (C∗
H,t, C

∗
F,t)

= Qt,t+1
PF,t+1

PF,t
(13)

1
nH

ṽ`[`t(i)]
uH(CH,t, CF,t)

=
wt(i)
PH,t

(14)

1
nF

ṽ`[`∗t (i)]
uF (C∗

H,t, C
∗
F,t)

=
w∗t (i)
P ∗

F,t

(15)

uF (CH,t, CF,t)
uH(CH,t, CF,t)

=
uF (C∗

H,t, C
∗
F,t)

uH(C∗
H,t, C

∗
F,t)

=
EtP

∗
F,t

PH,t
(16)
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Here, uj(CH , CF ) denotes the partial derivative of u(CH , CF ) with respect to Cj , j = H, F .

2.3 Equilibrium shares of consumption

Since asset markets are complete, our formulation of the lifetime utility, (1) and (4),

implies that, given a policy rule of each country and the initial asset holdings, W0 and

W ∗
0 , the relative amount of consumption, Ct/C∗

t , becomes constant at all dates and all

contingencies in equilibrium. But this amount, Ct/C∗
t , depends, in general, upon the

policy rule adopted in each country. In particular, the equilibrium amount of Ct/C∗
t would

depend on the process of prices, {PH,t, P
∗
F,t}, which, in turn, depends on the monetary

policy conducted in the two countries. For our welfare analysis, it is convenient if the

share of consumption is determined independently of policy. The next proposition shows

that this is the case when the elasticity of substitution between CH and CF is unity and

when the initial financial asset of the household in country j equals the initial liabilities

of the country-j government. The latter assumption implies that

nHW0 = E0

∞∑

t=0

Q0,t

[
PH,tYH,t − nH

{
Tt +

∫

NH

[
wt(i)`t(i) + Πt(i)

]
di

}]

nFE0W
∗
0 = E0

∞∑

t=0

Q0,tEt

[
P ∗

F,tYF,t − nF

{
T ∗t +

∫

NF

[
w∗t (i)`

∗
t (i) + Π∗t (i)

]
di

}]
,

where Yj,t ≡ nHCj,t + nF C∗
j,t is the aggregate amount of country-j goods, j ∈ {H,F}.

Proposition. Assume that

(a) the elasticity of substitution between home-goods and foreign-goods is unity: ρ = 1;

and

(b) the initial financial asset of the household in country j ∈ {H, F} equals the (per-

capita amount of the) initial liabilities of the country-j government.

Then the relative amount of consumption between the two countries is determined inde-

pendently from the policy rule adopted in each country. Indeed, the equilibrium relative

consumption equals unity:

Ct

C∗
t

=
CH,t

C∗
H,t

=
CF,t

C∗
F,t

=
ct(i)
c∗t (i)

= 1, i ∈ [0, 1].

The proof is in Appendix. In what follows we assume (a)-(b) in the proposition. Thus,

the consumption indexes (2) and (5) become

C =
(

CH

nH

)nH
(

CF

nF

)nF

, C∗ =
(

C∗
H

nH

)nH
(

C∗
F

nF

)nF

.
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It follows that u(CH , CF ) is written as

u(CH , CF ) =
1

1− σ

(
CH

nH

)nH(1−σ) (
CF

nF

)nF (1−σ)

,

and the price index, Pt, become

Pt = PnH
H,tP

nF
F,t = EtP

∗
t = EtP

∗nH
H,t P ∗nF

F,t .

Let yt(i), i ∈ NH , and y∗t (i), i ∈ NF , be the aggregate supply of home and foreign

goods, respectively:

yt(i) = nHct(i) + nF c∗t (i), i ∈ NH , y∗t (i) = nHct(i) + nF c∗t (i), i ∈ NF .

The corresponding production indexes of home and foreign goods are

YH,t ≡
[
n
− 1

θ
H

∫

NH

yt(i)
θ−1

θ di

] θ
θ−1

= nHCH,t + nF C∗
H,t,

YF,t ≡
[
n
− 1

θ
F

∫

NF

y∗t (i)
θ−1

θ di

] θ
θ−1

= nHCF,t + nF C∗
F,t

Yt ≡
(

YH,t

nH

)nH
(

YF,t

nF

)nF

= nHCt + nF C∗
t

It follows from the proposition that

CH,t = C∗
H,t = YH,t, CF,t = C∗

F,t = YF,t, Ct = C∗
t = Yt. (17)

3 Aggregate supply

3.1 Technology

For simplicity, we assume that the technology to produce each good is linear in labor:

yt(i) = AtnH`t(i), i ∈ NH ,

y∗t (i) = A∗t nF `∗t (i), i ∈ NF ,

where At and A∗t represent country-specific technology shocks.

For later use, it is convenient to define random variables ξt and ξ∗t by

ξt ≡ −(1 + ω) lnAt, ξ∗t ≡ −(1 + ω) lnA∗t ,

and also functions v(y; ξ) and v∗(y∗; ξ∗) by

v(y; ξ) ≡ eξ

1 + ω

(
y

nH

)1+ω

= ṽ

(
y

nHA

)
,

v∗(y∗; ξ∗) ≡ eξ∗

1 + ω

(
y∗

nF

)1+ω

= ṽ

(
y∗

nF A∗

)
.
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Thus, v(y; ξ) and v∗(y∗; ξ∗) measure the disutility of producing y and y∗ in the home and

foreign countries, respectively, when their technology shocks are ξ and ξ∗. Note that

vy(y; ξ) =
ṽ`(`)
nHA

, v∗y(y
∗; ξ∗) =

ṽ`(`∗)
nF A∗

.

Thus, first-order conditions (14) and (15) are rewritten as

vy[yt(i); ξt]
uH(YH,t, YF,t)

=
1
At

wt(i)
PH,t

,
v∗y [y∗t (i); ξ∗t ]

uF (YH,t, YF,t)
=

1
A∗t

w∗t (i)
P ∗

F,t

, (18)

where we have used equilibrium condition (17).

3.2 Natural rates of output

Each producer is assumed to be a wagetaker.5 Using (8) and (17), nominal profits of a

home supplier of good i ∈ NH at date t are given by
[
(1− τ)pt(i)− wt(i)

At

]
yt(i) =

[
(1− τ)pt(i)− wt(i)

At

]
YH,t

nH

[
pt(i)
PH,t

]−θ

= nHΠt(i),

where τ is the constant tax rate on firms’ revenue. Monopoly profits of a foreign firm is

defined similarly with τ∗ as the tax rate on its revenue.

Let us define the “natural rates of output” (Woodford, 2003) at date t, Y n
H,t and YF,t, as

the levels of home and foreign output which would prevail in the flexible-price equilibrium.

Suppose, momentarily, that all prices are fully flexible. Profit maximization leads to:

(1− Φ)
pt(i)
PH,t

=
wt(i)

PH,tAt
=

vy[yt(i); ξt]
uH(YH,t, YF,t)

, i ∈ NH ,

(1− Φ∗)
p∗t (i)
P ∗

F,t

=
w∗t (i)
P ∗

F,tA
∗
t

=
v∗y [y∗t (i); ξ∗t ]

uF (YH,t, YF,t)
, i ∈ NF ,

where we have used (18) and Φ and Φ∗ are the measures of distortions due to market

power defined by

1− Φ =
θ − 1

θ
(1− τ), 1− Φ∗ =

θ − 1
θ

(1− τ∗).

In the flexible-price equilibrium, pt(i) = PH,t and yt(i) = YH,t/nH for all i ∈ NH , and

p∗t (i) = P ∗
F,t and y∗t (i) = YF,t/nF for all i ∈ NF . Thus, the natural rates of output, Y n

H,t

and Y n
F,t, are determined by

vy[Y n
H,t/nH ; ξt]

uH(Y n
H,t, Y

n
F,t)

= 1− Φ,
v∗y [Y n

F,t/nF ; ξ∗t ]
uF (Y n

H,t, Y
n
F,t)

= 1− Φ∗. (19)

5See Woodford (2003, Section 3.1) for how to make this assumption consistent with the supposition

that each producer uses a different type of labor.
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3.3 New Keynesian aggregate supply relation

Now suppose that goods prices are adjusted at random intervals as in Calvo (1983). Let

α be the probability that each good price remains unchanged in each period. We assume

that this probability is identical in the two countries.

Consider the price adjustment in the home country. Suppose that the price of good

i ∈ NH can be adjusted at date t. The supplier of that good chooses pt(i) to maximize

the expected discounted profits:

Et

∞∑

T=t

αT−tQt,T

{[
(1− τ)pt(i)− wT (i)

AT

]
YH,T

nH

[
pt(i)
PH,T

]−θ
}

The first-order condition for profit maximization is written as

Et

∞∑

T=t

αT−tQt,T

{
YH,T

nH

(
pt(i)
PH,T

)−θ−1 [
vy[yT (i); ξT ]

uH(YH,T , YF,T )
− (1− Φ)

pt(i)
PH,T

]}
= 0. (20)

It follows that all producers that change their prices at date t choose the same price. Let

zt denote this common new price.

As is shown in Appendix, log-linearization of (20) and the corresponding equation for

the foreign country leads to the “New Keynesian” aggregate-supply relations:

πH,t = γHxH,t + γHF nF xF,t + βEtπH,t+1, (21)

π∗F,t = γHF nHxH,t + γF xF,t + βEtπ
∗
F,t+1. (22)

Here πH,t and π∗F,t are the inflation rates of goods produced in the home and foreign

countries, respectively:

πH,t ≡ ln PH,t − ln PH,t−1, π∗F,t ≡ ln P ∗
F,t − lnP ∗

F,t−1,

xj,t is the “output gap” in country j = H, F :

xj,t ≡ ln Yj,t − lnY n
j,t,

and the coefficients are given by

γH ≡ ζ
[
1 + ω + (σ − 1)nH

]
> 0, (23)

γHF ≡ ζ(σ − 1), (24)

γF ≡ ζ
[
1 + ω + (σ − 1)nF

]
> 0, (25)

ζ ≡ 1− α

α

1− αβ

1 + ωθ
. (26)
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4 Welfare approximation

In this section we follow Woodford (2003) and Benigno and Woodford (2004) to derive an

approximate world welfare criterion and discuss optimal policy rules for the case where the

zero lower bound (ZLB) on the nominal interest rates never binds. We assume that the

monetary authorities in the two countries cooperate to maximize aggregate utility. The

case where monetary policy is set in the noncooperative fashion is discussed in Appendix.

Given that preferences of the home and foreign household are given by (1) and (4),

respectively, the level of average expected utility between the two countries is given by

nHU0 + nF U∗
0 = E0

∞∑

t=0

βt

{
u(YH,t, YF,t)−

∫

NH

v
[
yt(i); ξt

]
di−

∫

NF

v∗
[
y∗t (i); ξ

∗
t

]
di

}

Using the conditions that

yt(i) =
1

nH
YH,t

[
pt(i)
PH,t

]−θ

, y∗t (i) =
1

nF
YF,t

[
p∗t (i)
P ∗

F,t

]−θ

,

we obtain
∫

NH

v
[
yt(i); ξt

]
di = nHv

(
YH,t

nH
; ξt

)
∆H,t,

∫

NF

v∗
[
y∗t (i); ξ

∗
t

]
di = nF v∗

(
YF,t

nF
; ξ∗t

)
∆F,t,

where ∆H and ∆F are the measures of price dispersion defined by

∆H,t ≡ 1
nH

∫

NH

(
pt(i)
PH,t

)−θ(1+ω)

di, (27)

∆F,t ≡ 1
nF

∫

NF

(
p∗t (i)
P ∗

F,t

)−θ(1+ω)

di.

Then the world welfare measure is given by

nHU0 + nF U∗
0 = E0

∞∑

t=0

βt

{
u(YH,t, YF,t) (28)

− nHv

(
YH,t

nH
; ξt

)
∆H,t − nF v∗

(
YF,t

nF
; ξ∗t

)
∆F,t

}

Now, fix a non-stochastic steady state with zero inflation. In what follows, a bar

over a variable denotes its steady state value, and a hat indicates the log-deviation from

the steady-state value. Following Benigno and Woodford (2004), we take a second-order

approximation of (28) around that steady state in terms of Ξ ≡ (ξ, ξ∗, ∆̂1/2
H,−1, ∆

1/2
F,−1, ϕ),

12



where ϕ are parameters of policy rules normalized in such a way that ϕ = 0 implies long-

run output levels Yj,∞ = Ȳj , j = H,F , and for any small enough ϕ, lnYj,∞ − ln Ȳj =

O(‖ϕ‖), j = H, F . Then, as shown in Appendix,

u(YH,t, YF,t)− nHv

(
YH,t

nH
; ξt

)
∆H,t − nF v

(
YF,t

nF
; ξ∗t

)
∆F,t (29)

=
ūH ȲH

nH

{
nHΦŶH,t + nF Φ∗ŶF,t +

nH

2

[
(1− σ)nH − (1 + ω)(1− Φ)

]
Ŷ 2

H,t

+ (1− σ)nHnF ŶH,tŶF,t +
nF

2

[
(1− σ)nF − (1 + ω)(1− Φ∗)

]
Ŷ 2

F,t

− nH(1− Φ)ŶH,tξt − nF (1− Φ∗)ŶF,tξ
∗
t −

nH(1− Φ)
1 + ω

∆̂H,t − nF (1− Φ∗)
1 + ω

∆̂F,t

}

+ t.i.p. +O(‖Ξ‖3),

where t.i.p. denotes the terms independent of policy. Also, it is shown that

∞∑

t=0

βt nH

1 + ω
∆̂H,t =

αθ(1 + ωθ)
(1− α)(1− αβ)

∞∑

t=0

βt nH

2
π2

H,t + t.i.p. + O(‖Ξ‖3), (30)

∞∑

t=0

βt nF

1 + ω
∆̂F,t =

αθ(1 + ωθ)
(1− α)(1− αβ)

∞∑

t=0

βt nF

2
π∗ 2

F,t + t.i.p. + O(‖Ξ‖3). (31)

4.1 Small distortions at the steady state

The existence of linear terms in (29), nHΦŶH,t +nF Φ∗ŶF,t, might complicate the analysis.

Here, for simplicity, we follow Woodford (2003) and assume that Φ and Φ∗ are small

and treat them as expansion parameters in the Taylor series approximation.6 Let Y e
j ,

j = H,F , denote the efficient levels of output in the absence of shocks, that is,

vy(Y e
H/nH ; 0)

uH(Y e
H , Y e

F )
= 1,

v∗y(Y e
F /nF ; 0)

uF (Y e
H , Y e

F )
= 1.

Then, let xe
j , j = H, F , denote the efficient levels of the output gaps:

xe
j ≡ ln Y e

j − ln Ȳj , j = H,F,

where Ȳj , j = H, F , are the steady-state levels of output. When Φ and Φ∗ are small,

[
1 + ω + (σ − 1)nH

]
xe

H + (σ − 1)nF xe
F = Φ + O(‖Φ‖2),

(σ − 1)nHxe
H +

[
1 + ω + (σ − 1)nF

]
xe

F = Φ∗ + O(‖Φ∗‖2)

6Benigno and Woodford (2004) study the case where Φ is not small.
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Then, using (29)-(31), a second-order approximation of the world welfare measure (28)

is given by

nHU0 + nF U∗
0 = − ūH ȲH

nH

θ

ζ

∞∑

t=0

βtLt + t.i.p. + O(‖Φ, Φ∗, Ξ‖3),

where ζ is as defined in (26), and the loss function Lt is given by

Lt ≡ 1
2
(xt − xe)′Λ(xt − xe) +

nH

2
π2

H,t +
nF

2
π∗ 2

F,t, (32)

Here, xt ≡ (xH,t, xF,t)′, xe
t ≡ (xe

H , xe
F )′, and Λ is defined by

Λ ≡ 1
θ

[
γHnH γHF nHnF

γHF nHnF γF nF

]
,

where γH , γHF , and γF are defined in (23)-(25).

Our welfare measure clearly shows that what must be stabilized are “domestic infla-

tion,” πH,t and π∗F,t, rather than CPI inflation rates, πt and π∗t , as shown by Clarida, Gaĺı

and Gertler (2001) and Benigno and Benigno (2003) in different contexts. In particular,

fluctuations in nominal exchange rate per se do not affect the world welfare.

4.2 Optimal targeting rule in the case where the ZLB never binds

In this subsection we analyze optimal policy when the zero bound on the nominal interest

rates never binds. In particular, we derive “robustly optimal target criteria” (Giannoni

and Woodford, 2002; Woodford 2003). Interestingly, those targeting rules have exactly

the same form with the same parameter values as those obtained in the closed-economy

model.7

In order to introduce a tradeoff between inflation and output stabilization, we modify

the aggregate-supply relation (21)-(22) so that

πH,t = γHxH,t + γHF nF xF,t + βEtπH,t+1 + uH,t, (33)

π∗F,t = γHF nHxH,t + γF xF,t + βEtπ
∗
F,t+1 + uF,t, (34)

where uj,t, j = H, F , are interpreted as “cost-push shocks” (Woodford, 2003).

Suppose that the zero bounds on the nominal interest rates never binds. Then the

optimal policy commitment is derived by solving min(1/2)E0
∑

t Lt subject to (33)-(34).

7Clarida, Gaĺı and Gertler (2001) derive an optimal inflation targeting rule for a small open economy.
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The Lagrangian is formed as

L = E0

∞∑

t=0

βt

{
1
2
(xt − xe

t )
′Λ(xt − xe

t ) +
nH

2
π2

H,t +
nF

2
π∗ 2

F,t

+ ψH,t

(
nHπH,t − γHnHxH,t − γHF nHnF xF,t − βnHπH,t+1

)

+ ψF,t

(
nF π∗F,t − γHF nHnF xH,t − γF nF xF,t − βnF π∗F,t+1

)}

The first-order conditions are

Λ(xt − xe
t ) = θΛψt,

πj,t = −ψj,t + ψj,t−1, j = H, F,

where ψt ≡ (ψH,t, ψF,t)′. Eliminating ψt, we obtain a robustly optimal target rule:8

πH,t +
1
θ
(xH,t − xH,t−1) = 0, π∗F,t +

1
θ
(xF,t − xF,t−1) = 0. (35)

Note that these targeting rules have exactly the same form with the same parameter

values as those obtained for the closed economy (for example, by Woodford, 2003). It

follows that, under our parametric assumptions and as long as the zero bound does not

bind, the world welfare is maximized when each monetary authority acts independently

and adopts the policy rule which is optimal for the closed economy. Later, we shall see

that this is not the case when the zero bound binds.

5 Nominal interest rates and the ZLB

Let iH,t and iF,t be the (one-period) nominal interest rates at date t in the home and

foreign countries, respectively. By definition,

1
1 + iH,t

= Et[Qt,t+1],
1

1 + iF,t
= Et

[
Qt,t+1

Et+1

Et

]
.

Using first-order conditions (11)-(13) and equilibrium condition (17), we could relate the

nominal interest rates and the growth rates of output in the following way:

1
1 + iH,t

= Et

[
βũc,t+1

ũc,t

Pt

Pt+1

]
= Et

[
βuH,t+1

uH,t

PH,t

PH,t+1

]
= Et

[
βuF,t+1

uF,t

PF,t

PF,t+1

]
,

1
1 + iF,t

= Et

[
βũc,t+1

ũc,t

P ∗
t

P ∗
t+1

]
= Et

[
βuH,t+1

uH,t

P ∗
H,t

P ∗
H,t+1

]
= Et

[
βuF,t+1

uF,t

P ∗
F,t

P ∗
F,t+1

]
,

8The fully date-0 optimal solution only satisfy (35) for t ≥ 1. As is well known, such a solution is not

time consistent. As is discussed in Woodford (2003), however, requiring (35) for t ≥ 0 makes the solution

“optimal from a timeless perspective,” and the policy problem time consistent.
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where ũc,s = ũc(Ys) and uj,s = uj(YH,s, YF,s), for s = t, t + 1 and j = H, F .

Whether or not the zero bound binds depends on the policy rules that the monetary

authorities adopt. A given shock may or may not result in iH,t = 0 depending on, for

example, whether the home monetary authority tries to stabilize CPI, Pt, or the domestic

price level, PH,t. In the previous section, we have seen that the prices which have to be

stabilized are not CPI’s, Pt or P ∗
t , but the producer price levels, PH,t and P ∗

F,t. In this

sense, it is natural to use

1
1 + iH,t

= Et

[
βuH,t+1

uH,t

PH,t

PH,t+1

]
, and

1
1 + iF,t

= Et

[
βuF,t+1

uF,t

P ∗
F,t

P ∗
F,t+1

]
(36)

for our policy analysis.

As in Woodford (2003), it is convenient to introduce new variables, rn
H,t and rn

F,t, called

the “natural rates of interest.” They are defined as the real interest rates which would

realize if the domestic price levels, PH,t and P ∗
F,t, were completely stabilized for all t. It

follows that rn
H,t and rn

F,t satisfy

1
1 + rn

H,t

= Et

[
βuH(Y n

H,t+1, Y
n
F,t+1)

uH(Y n
H,t, Y

n
F,t)

]
, and

1
1 + rn

F,t

= Et

[
βuF (Y n

H,t+1, Y
n
F,t+1)

uF (Y n
H,t, Y

n
F,t)

]
(37)

At the non-stochastic steady state, rn
j,t = r̄ ≡ β−1 − 1, j = H, F . Note that even if PH,t

and P ∗
F,t were completely stabilized, the nominal exchange rate, Et, may fluctuate. Thus,

rn
H,t 6= rn

F,t in general.

Using these, log-linearizing (36) yields

0 ≤ it,H = Et

{[
1 + (σ − 1)nH

]
(xH,t+1 − xH,t) (38)

+ (σ − 1)nF (xF,t+1 − xF,t) + πH,t+1 + rn
H,t

}

0 ≤ it,F = Et

{[
1 + (σ − 1)nF

]
(xF,t+1 − xF,t) (39)

+ (σ − 1)nH(xH,t+1 − xH,t) + π∗F,t+1 + rn
F,t

}

6 Optimal policy commitment in the case where the ZLB

may bind

We say that country j is in a liquidity trap if ij,t hits the zero lower bound. In this section,

we consider optimal policy coordination in the case where the home country may fall into

a liquidity trap, that is, the case in which the inequality in (38) may bind but (39) does

not. Our numerical exercise is an open-economy extension of Eggertsson and Woodford

(2003).
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We restrict attention to the case where there is no distortion at the steady state,

Φ = Φ∗ = 0, and there are no cost push shocks, ut = u∗t = 0, all t. Thus, the aggregate-

supply relations are given by (21)-(22), and the loss function Lt in (32) becomes

Lt ≡ 1
2
x′tΛxt +

nH

2
π2

H,t +
nF

2
π∗ 2

F,t, (40)

It follows that, without the zero bound, the optimal policy would simply be the one that

attains πH,t = π∗F,t = xH,t = xF,t = 0, for all t.

Assume that the world economy is in the steady state with zero inflation at date

t = −1, namely, the one around which we have approximated the world welfare, the

aggregate-supply relations, and the intertemporal Euler equations. Regarding exogenous

shocks, we suppose that the productivity processes, ξt and ξ∗t , are such that the natural

rates of interest, rn
H,t and rn

F,t, follow the following stochastic processes: (i) The natural

rate of interest in the foreign country equals the steady-state level at all times, rn
F,t = r̄, all

t. (ii) The natural rate of interest in the home country gets negative at date 0, rn
H,0 = r,

for some r < 0. In the following periods, it returns to the steady-state level at a constant

probability, 1 − µ ∈ (0, 1]. That is, given that rn
H,t−1 = r, the conditional distribution of

rn
H,t is given by

rH,t =

{
r, with probability µ,

r̄, with probability 1− µ.

Once it gets back to r̄, it stays there from then on: if rn
H,t−1 = r̄, then rn

H,t = r̄ with

probability one.

The parameters are calibrated as follows. One period in the model corresponds to a

quarter. We set α = 0.66, β = 0.99, θ = 7.88, ω = 0.47, which are taken from Woodford

(2003, Table 5.1). We follow Eggertsson and Woodford (2003) to set r = −0.02/4. For σ,

three values are considered: σ = 0.5, 1, 5. As we shall see below, the value of σ affects how

the foreign monetary authority should react to the liquidity trap that occurs in the home

country. The two countries have an equal size: nH = nF = 1/2. Finally, µ = 0.25, that

is, the home natural rate of interest remains negative for a year on average. As discussed

below, the value of µ is chosen so that zero-inflation targeting generates deflation during

a liquidity trap.

6.1 Zero inflation targeting

We first examine the consequences of strict zero inflation targeting, that is, the policy that

achieves zero inflation whenever possible. It follows from the aggregate-supply relations

(21)-(22) and the Euler equations (38)-(39) that it is indeed possible to attain πH,t = π∗F,t =
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xH,t = xF,t = 0 after rn
H returns to the steady-state level, r̄. When rn

H,t = r, however,

setting both of the two inflation rates to zero is not possible. Under our parametric

assumptions, during the period when rn
H,t = r,

πH,t < 0, xH,t < 0, π∗F,t = 0,

and xF,t R 0 as σ R 1. Here, xF,t = 0 when σ = 1, because, as the aggregate-supply

relations (21)-(22) show, when σ = 1, the inflation rate and the output gap in each

country are completely separately determined. The state-contingent paths of πH,t, xH,t,

and xF,t are drawn in Figure 1.9 In each panel, the j-th (solid, dashed, dashdot) line

corresponds to the sample path where rn
H,t = r for t = 0, . . . , j − 1, and rn

H,t = r̄ for t ≥ j.

This example fits well with the casual statement that a “bad policy” during a liquidity

trap results in deflation (πH,t < 0) and a negative output gap (xH,t < 0). It is not

generally true, however. For example, Figure 2 depicts the state-contingent paths of the

same variables under strict zero inflation targeting when µ = 0.1. In this case, there is

inflation, πH,t > 0, and a positive output gap, xH,t > 0, during a liquidity trap. Indeed,

we can show that there is a threshold value, µ, such that the home country experiences

deflation for µ > µ during a liquidity trap, and inflation otherwise. To gain an intuition,

consider the closed-economy case, and suppose that µ = 0, that is, the natural rate of

interest remains negative for all t. It follows from the Fisher equation that the inflation

rate equals the difference between the nominal and the real interest rates. Since the latter

is negative and the former is zero, the inflation rate is positive.

In what follows, we assume µ = 0.25 so that strict zero inflation targeting implies

deflation in the home country during the liquidity trap. We have checked numerically

that the qualitative properties of the optimal state-contingent paths of inflation and output

gaps are not affected much by the choice of the value of µ.

6.2 Optimal policy

The optimal policy problem is formulated as the minimization problem of the discounted

expected value of the loss function (40) subject to the aggregate-supply relations (21)-(22)

and the inequality constraints (38)-(39). Letting ψj,t and φj,t, j = H, F , be the Lagrange

9In all figures, inflation rates and interest rates show annual rates.
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multipliers associated with those constraints, the Lagrangian is formed as

L = E0

∞∑

t=0

βt

{
1
2
x′tΛxt +

nH

2
π2

H,t +
nF

2
π∗ 2

F,t

+ ψH,t

(
nHπH,t − γHnHxH,t − γHF nHnF xF,t − βnHπH,t+1

)

+ ψF,t

(
nF π∗F,t − γHF nHnF xH,t − γF nF xF,t − βnF π∗F,t+1

)

+ φH,t

(
nH [1 + (σ − 1)nH ](xH,t − xH,t+1)

+ (σ − 1)nHnF (xF,t − xF,t+1)− nHπH,t+1 − rn
H,t

)

+ φF,t

(
(σ − 1)nHnF (xH,t − xH,t+1)

+ nF [1 + (σ − 1)nF ](xF,t − xF,t+1)− nF π∗F,t+1 − rn
F,t

)}

Letting πt ≡ (πH,t, π
∗
F,t)

′, xt ≡ (xH,t, xF,t)′, ψt ≡ (ψH,t, ψF,t)′, and φt ≡ (φH,t, φF,t)′,

the first-order conditions are written as

Λxt − θΛψt + A(φt − β−1φt−1) = 0, (41)

πt + ψt − ψt−1 − β−1φt−1 = 0, (42)

where the matrix A is defined by

A ≡
[
nH [1 + (σ − 1)nH ] (σ − 1)nHnF

(σ − 1)nHnF nF [1 + (σ − 1)nF ]

]

Eliminating ψ and φ in (41)-(42), we obtain the following optimal targeting rule for

the logged price levels, pt ≡ (lnPH,t, lnP ∗
F,t)

′, with possibly binding ZLB. It extends the

result of Eggertsson and Woodford (2003) to the open-economy model.10

(i) In each period, there is a predetermined price-level target p̌t = (p̌H,t, p̌
∗
F,t). The

central banks choose the interest rates iH,t and iF,t to achieve the target relation:

p̃t = p̌t

if this is possible; if it is not possible because of the zero bound, then

iH,t = 0 and/or iF,t = 0.

Here, p̃t = (p̃H,t, p̃
∗
F,t)

′ is output-gap adjusted price indexes defined by

p̃t ≡ pt +
1
θ
xt.

10In the terminology of Woodford (2003), this rule is optimal from a timeless perspective, and hence

time-consistent.
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(ii) The target for the next period is determined as

p̌t+1 = p̌t + β−1(I + θA−1Λ)δt − β−1δt−1 (43)

where δt is the target shortfall in period t:

δt ≡ p̌t − p̃t.

In the price-target equation (43),

θA−1Λ =
ζ

σ

[
σ + ω + (σ − 1)ωnF −(σ − 1)ωnF

−(σ − 1)ωnH σ + ω + (σ − 1)ωnH

]
,

which is not a diagonal matrix. It follows that the target price levels, p̌H,t and p̌∗F,t, are

not separately determined. This is in contrast to the case where the zero bound never

binds, as we have seen in the previous section.

Figure 3 shows the optimal state-contingent paths of inflation, output gaps, and nom-

inal interest rates in the two countries. Figure 4 compares the paths of those variables

under optimal policy and under strict zero inflation targeting in the case where rn
H,t = r

for t = 0, 1, . . . , 9 and σ = 5. The optimal state-contingent paths of πH,t, xH,t and iH,t are

remarkably similar to those obtained for the closed-economy by Eggertsson and Woodford

(2003). When the shock hits the home country at date 0, the home inflation rate πH and

the home output gap xH become negative, but by committing to generate inflation after

the natural rate rn
H turns back to normal, its impact is curbed to minimal. As Eggertsson

and Woodford (2003) emphasize, under optimal policy commitment, the home nominal

interest rate, iH,t, typically is set to zero for a few periods after the home natural rate, rn
H,t,

returns to the steady-state level, r̄. As Figure 4 shows, the deviations of πH,t and xH,t are

much smaller under optimal policy commitment than under strict zero inflation targeting.

Note that such stabilization is made possible by the coordinating monetary policy in the

foreign country unless σ = 1. During periods where rn
H,t = r, the foreign nominal interest

rate, iF,t, must be set lower (higher) than the steady state level when σ < 1 (σ > 1). It

is true that such policy coordination generates (small) inflation/deflation in the foreign

country, the output gaps in the foreign country are made much smaller than under zero

inflation targeting.

7 Liquidity trap and the exchange rate

In this section, we discuss the optimal state-contingent paths of the nominal exchange

rate. We are particularly interested in examining the extent to which Svensson’s (2001,

20



2003, 2004) proposal that emphasizes currency depreciation to “escape optimally from a

liquidity trap” holds true in our setting.

First-order condition (16) for utility maximization implies that the nominal exchange

rate, Et, must satisfy

Et =
nH

nF

PH,t

P ∗
F,t

YH,t

YF,t
.

Note that Et is the price of the foreign currency quoted in the home currency.

To determine dynamic paths of the nominal exchange rate, it is not enough to specify

the stochastic process of the natural rates of interest, rn
H,t and rn

F,t. We need to identify the

process of the (growth rates of the) natural rates of output, Y n
H,t and Y n

F,t. By definition

of the natural rates of interest, (37), we obtain

1
β(1 + rn

H,t)
= Et




(
Y n

H,t+1

Y n
H,t

)(1−σ)nH−1 (
Y n

F,t+1

Y n
F,t

)(1−σ)nF



1
β(1 + rn

F,t)
= Et




(
Y n

H,t+1

Y n
H,t

)(1−σ)nH
(

Y n
F,t+1

Y n
F,t

)(1−σ)nF−1



Log-linearization of these equations yields

− ln[β(1 + rn
H,t)] = [(1− σ)nH − 1]Etg

n
H,t+1 + (1− σ)nF Etg

n
F,t+1

− ln[β(1 + rn
F,t)] = (1− σ)nHEtg

n
H,t+1 + [(1− σ)nF − 1]Etg

n
F,t+1

where gn
j,t+1, j = H, F , are the growth rates of the natural rates of output in country j:

gn
j,t+1 ≡ ln(Y n

j,t+1/Y n
j,t), j = H, F.

Since β(1 + rn
F,t) = 1, all t, we obtain

[
Etg

n
H,t+1

Etg
n
F,t+1

]
=

1
σ

[
(1− nF + σnF )

(1− σ)nH

]
ln[β(1 + rn

H,t)]

This equation relates the natural rate of interest rn
H,t at date t and the expected growth

rates of the natural rates of output in the next period, Etg
n
j,t+1, j = H,F . Thus, given a

process of rn
H,t, there are many processes of gn

j,t+1, j = H, F , which are consistent of it. To

be specific, we assume that, given rn
H,t at date t, the growth rate of the natural rates of

output in the next period, gn
j,t+1, j = H, F , are perfectly forecastable. That is, we assume

that gn
j,t+1, j = H, F , t ≥ 0, follow the process given by

[
gn
H,t+1

gn
F,t+1

]
=

1
σ

[
(1− nF + σnF )

(1− σ)nH

]
ln[β(1 + rn

H,t)]
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For normalization, we assume that E−1 = 1 and gn
j,0 = 0, for j = H,F . Note that the

value of gj,0 is irrelevant for rn
H,t, t ≥ 0. We discuss the normalization regarding gn

j,0 later,

when we compare our result to Svensson’s proposal.

Let εt ≡ ln Et. Then our parametric assumptions imply that

εt = εt−1 + ln[β(1 + rn
H,t−1)] + πH,t − π∗F,t + xH,t − xH,t−1 − (xF,t − xF,t−1).

Figure 5 draws the optimal state-contingent paths of the log nominal exchange rate, εt.

The figure shows that, regardless of the value of σ, the optimal nominal exchange rate of

the home currency appreciates during periods when rn
H,t < 0. The optimal evolution of

the nominal exchange rate does not exhibit a depreciation as opposed to the proposal of

Svensson.

Where does the difference between our results and Svensson’s come from? His theoret-

ical analysis is given in Svensson (2004). His model is different from ours in several ways.

For instance, in his model, all prices are set one period in advance; the home country may

be small or large; in the large-country case, there may or may not be international policy

coordination. However, the difference in the results is not due to those differences in the

models considered. Instead, it owes to the difference in the normalization of gn
H,0.

To illustrate it, following Svensson (2004), consider the case in which the home natural

rate of interest becomes negative only at date 0:

rn
H,0 = r, rn

H,t = r̄, for t ≥ 1.

This implies that the natural rate of home output, Y n
H,t, evolves as Y n

H,0 > Y n
H,1 = Y n

H,2 =

· · · , or equivalently, gn
H,1 < 0 and gn

H,t = 0, for t ≥ 2. The process of rn
H,t does not pin

down gn
H,0. What we have assumed above is that gn

H,0 = 0, i.e., Y n
H,−1 = Y n

H,0. In contrast,

what Svensson (2004) assumes is that Y n
H,0 > Y n

H,−1 = Y n
H,t, t ≥ 1, and so,

gn
H,0 > 0, gn

H,1 < 0, gn
H,t = 0, for t ≥ 1.

Thus, he considers the case in which rn
H,0 < 0 at date 0 because the home country ex-

periences an unusually high level of productivity. Figure 6 shows the processes of gn
H,t

assumed here (panel a) and in Svensson (2004) (panel b).

Figure 7 plots the optimal paths of the nominal exchange rate, εt, (a) when gn
H,0 = 0

and (b) when gn
H,0 > 0, for the three values of σ. Case (a), corresponding to our results in

Figure 5, shows that the home currency appreciates during a liquidity trap. In contrast,

corresponding to Svensson (2004), case (b) shows depreciation of the home currency at

date 0. The home currency depreciates in case (b), because the home country produces

goods more than usually so that the relative price of home goods must fall.
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Note, however, that our difference lies only in the choice of gn
H,0, and hence, in ε0. It

follows that in the case where the shock lasts for more than one period, the evolution of

nominal exchange rates for t ≥ 1 would be independent of the assumption on gn
H,0, and

thus, the home currency would appreciate for t ≥ 1 even in the model of Svensson (2004).

Hence, our previous remark that the home currency appreciates as long as rn
H,t = r along

the optimal path holds true for t ≥ 1, regardless of the choice of gn
H,0.

Finally, Figure 8 compares the optimal path of the nominal exchange rate and its path

under strict zero inflation targeting in the case where rn
H,t = r for t = 0, 1, . . . , 9. The

nominal exchange rate under strict zero inflation targeting shows much larger appreciation

of the home currency than under optimal policy commitment. This is because, under our

parametric assumptions, strict zero inflation targeting leads to very large deflation as

shown in Figure 1.

8 Conclusions

We have analyzed optimal policy in an open economy. First, when the ZLB for nominal

interest rate is assumed never to bind, the optimal inflation targeting rule for each country

is exactly the same with the same parameter value as the one for the closed-economy

model (Woodford, 2003). Indeed, in such a case, each monetary authority can forget

about international dependence in setting its inflation target, in order to maximize the

world welfare. Second, this is not the case when the ZLB may bind. The optimal price-

level target rule shows significant international dependence. The optimal state-contingent

paths of inflation, output gaps, and nominal interest rates for the country in a liquidity

trap look very similar to those obtained for the closed-economy model by Eggertsson and

Woodford (2003). However, such paths are made possible by policy coordination by the

other country. Third, in spite of the proposal of Svensson (2001, 2003, 2004), the nominal

exchange rate of the country in a liquidity trap appreciates under optimal policy (except

possibly at the initial date).

We have restricted our attention to the case where the steady-state distortions due

to market power is (close to) zero. Benigno and Woodford (2004) have developed the

approach to deal with the case of a distorted steady state. Applying their approach to

open economies is left for future research.
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A Appendix

A.1 Proof of the proposition

Here, we prove the proposition in Section 2.3. Then the consumption indexes become

C =
(

CH

nH

)nH
(

CF

nF

)nF

, C∗ =
(

C∗
H

nH

)nH
(

C∗
F

nF

)nF

.

Under the natural debt limit, the household’s utility maximization problem is reexpressed

by using the lifetime budget constraints:

E0

∞∑

t=0

Q0,t

(
PH,tCH,t + PF,tCF,t

)
(44)

≤ W0 + E0

∞∑

t=0

Q0,t

{∫

NH

[
wt(i)`t(i) + Πt(i)

]
di + Tt

}
,

and

E0

∞∑

t=0

Q0,tEt

(
P ∗

H,tC
∗
H,t + P ∗

F,tC
∗
F,t

)
(45)

≤ E0W
∗
0 + E0

∞∑

t=0

Q0,tEt

{∫

NF

[
w∗t (i)`

∗
t (i) + Π∗t (i)

]
di + T ∗t

}
.

Let λ and λ∗ be the Lagrange multipliers associated with the lifetime budget con-

straint for the home household and for the foreign household, respectively. The first-order

conditions for utility maximization of the home household with respect to Cj,t are given

by

βt

(
CH,t

nH

)nH(1−σ)−1 (
CF,t

nF

)nF (1−σ)

= λQ0,tPH,t,

βt

(
CH,t

nH

)nH(1−σ) (
CF,t

nF

)nF (1−σ)−1

= λQ0,tPF,t.

Analogous conditions hold for the foreign household. Those conditions imply that

PH,tCH,t

PF,tCF,t
=

PH,tC
∗
H,t

PF,tC∗
F,t

=
nH

nF
(46)

CH,t

C∗
H,t

=
CF,t

C∗
F,t

=
(

λ

λ∗

)− 1
σ

(47)

The net revenue of the home government at date t is

PH,tYH,t − nH

{
Tt +

∫

NH

[
wt(i)`t(i) + Πt(i)

]
di

}
,
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where YH,t ≡ nHCH,t + nF CF,t. Since W0 equals the initial liabilities of the home govern-

ment, the lifetime budget constraint for the home government implies that

nHW0 = E0

∞∑

t=0

Q0,t

[
PH,tYH,t − nH

{
Tt +

∫

NH

[
wt(i)`t(i) + Πt(i)

]
di

}]
. (48)

Similarly, the lifetime budget constraint for the foreign government is given by

nFE0W
∗
0 = E0

∞∑

t=0

Q0,tEt

[
P ∗

F,tYF,t − nF

{
T ∗t +

∫

NF

[
w∗t (i)`

∗
t (i) + Π∗t (i)

]
di

}]
. (49)

Note that the lifetime budget constraint for each household holds with equality in equi-

librium. Then, combining the governments’ and households’ lifetime budget constraints,

we obtain the equilibrium condition:

E0

∞∑

t=0

Q0,t(nHPF,tCF,t − nF PH,tC
∗
H,t) = 0. (50)

Using (46)-(47), this equation is rewritten as
{

1−
(

λ

λ∗

) 1
σ

}
E0

∞∑

t=0

Q0,tPH,tCH,t = 0.

Thus, λ = λ∗ in equilibrium, and

Ct

C∗
t

=
CH,t

C∗
H,t

=
CF,t

C∗
F,t

= 1.

A.2 Steady-state equilibrium

It is convenient to define the “real marginal cost” of producing good i ∈ Nj in country

j ∈ {H, F} as

s
[
yt(i), YH,t, YF,t; ξt

] ≡ vy[yt(i); ξt]
uH(YH,t, YF,t)

=
1
At

wt(i)
PH,t

(51)

s∗
[
y∗t (i), YH,t, YF,t; ξ∗t

] ≡ v∗y [y∗t (i); ξ∗t ]
uF (YH,t, YF,t)

=
1

A∗t

w∗t (i)
P ∗

F,t

(52)

Consider a non-stochastic steady state with zero inflation: ξt = ξ∗t = 0, and

pt(i) = PH,t = PH , i ∈ NH , p∗t (i) = P ∗
F,t = P ∗

F , i ∈ NF , Et = E .

In such a steady state, aggregate output levels, ȲH and ȲF , are determined by

s

(
ȲH

nH
, ȲH ; 0

)
= 1− Φ, and s∗

(
ȲF

nF
, ȲF ; 0

)
= 1− Φ∗.

Output of individual products are

yt(i) =
ȲH

nH
, i ∈ NH , and y∗t (i) =

ȲF

nF
, i ∈ NF .
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A.3 Derivation of the aggregate supply relations (21)-(22)

The natural rates of output are then implicitly defined by the conditions:

s
[
Y n

H,t/nH , Y n
H,t, Y

n
F,t; ξt

]
= 1− Φ, s∗

[
Y n

F,t/nF , Y n
H,t, Y

n
F,t; ξ

∗
t

]
= 1− Φ∗.

Let a hat over a variable denote the log-deviation from its steady-state value. Then,

log-linearization of those equations yields

ξt =
[
(1− σ)nH − (1 + ω)

]
Ŷ n

H,t + (1− σ)nF Ŷ n
F,t,

ξ∗t = (1− σ)nH Ŷ n
H,t +

[
(1− σ)nF − (1 + ω)

]
Ŷ n

F,t.

Using these, log-linearization of the real marginal cost function (51) leads to

ŝt(i) = ωŷt(i) +
[
1− (1− σ)nH

]
ŶH,t − (1− σ)nF ŶF,t (53)

+
[
(1− σ)nH − (1 + ω)

]
Ŷ n

H,t + (1− σ)nF Ŷ n
F,t

Let st denote the date-t average of the real marginal cost in the home country. Then

ŝt =
[
1 + ω − (1− σ)nH

]
(ŶH,t − Ŷ n

H,t)− (1− σ)nF (ŶF,t − Ŷ n
F,t) (54)

Remember that zt is the new price chosen by all home producers that revise their

prices at date t. Let yt,T be the date-T supply of goods whose prices equal zt:

yt,T ≡ YH,T

nH

(
zt

PH,T

)−θ

,

and define st,T ≡ s(yt,T , YH,T , YF,T ; ξT ).

Then the log-linearization of the profit-maximizing condition (20) becomes

Et

∞∑

T=t

(αβ)T−t
[
(ln zt − ln PH,T )− ŝt,T

]
= 0. (55)

Note that

ln zt − ln PH,T = (ln zt − lnPH,t)−
T∑

τ=t+1

πH,τ .

The home-good price index, PH,t, evolves as

P 1−θ
H,t = αP 1−θ

H,t−1 + (1− α)z1−θ
t ,

so that, to a first-order approximation,

ln zt − ln PH,t =
α

1− α
πH,t.
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It follows that equation (55) reduces to

Et

∞∑

T=t

(αβ)T−t

{
α

1− α
πH,t −

T∑

τ=t+1

πH,τ − ŝt,T

}
= 0. (56)

From (53)-(54), it follows that

ŝt,T = ŝT + ω(ŷt,T − ŶH,T )

= ŝT − ωθ(ln zt − ln PH,T )

= ŝT − ωθ

(
α

1− α
πH,t −

T∑

τ=t+1

πH,τ

)
,

where we have used the demand function (8) in the second line. Then (56) is rewritten as

Et

∞∑

T=t

(αβ)T−t

{
α(1 + ωθ)

1− α
πH,t − ŝT − (1 + ωθ)

T∑

τ=t+1

πH,τ

}
= 0

Solving this equation for πH,t, we obtain

πH,t =
1− α

α

1− αβ

1 + ωθ
ŝt + βEtπH,t+1.

Finally, using (54), we obtain

πH,t =
1− α

α

1− αβ

1 + ωθ

{[
(1 + ω)− (1− σ)nH

]
(ŶH,t − Ŷ n

H,t)− (1− σ)nF (ŶF,t − Ŷ n
F,t)

}

+ βEtπH,t+1,

which is equation (21) in the text. The aggregate-supply relation (22) for the foreign

country is derived in the similar fashion.

A.4 Derivation of second-order approximations (29)-(31)

We follow the procedure described in Benigno and Woodford (2004). The home-goods

price level, PH,t, evolves as

P 1−θ
H,t = (1− α)z1−θ

t + αP 1−θ
H,t−1,

where zt is the newly chosen price at date t. We can rewrite this as

(
zt

PH,t

)−θ(1+ω)

=

(
1− αΠθ−1

H,t

1− α

) θ(1+ω)
θ−1

,
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where ΠH,t ≡ PH,t/PH,t−1. It follows that the evolution of ∆H,t, defined in (27), is written

as

∆H,t = (1− α)

(
1− αΠθ−1

H,t

1− α

) θ(1+ω)
θ−1

+ αΠθ(1+ω)
H,t ∆H,t−1

A second-order approximation of this equation is given as

∆̂H,t = α∆̂H,t−1 +
1
2

α

1− α
θ(1 + ω)(1 + ωθ)π2

H,t + O(‖Ξ‖3),

and a similar expression holds for ∆F,t. These expressions are used to obtain (30)-(31).

A quadratic approximation of u(YH,t, YF,t) in terms of the log-deviations Ŷj,t, j = H, F ,

is given by

u(YH,t, YF,t) = uH ȲH ŶH,t + uF ȲF ŶF,t +
1
2
(ȲHuH + Ȳ 2

HuHH)Ŷ 2
H,t (57)

+ uHF ȲH ȲF ŶH,tŶF,t +
1
2
(ȲF uF + Ȳ 2

F uFF )Ŷ 2
F,t + t.i.p. + O(‖Ξ‖3)

A quadratic approximation of nHv(YH,t/nH ; ξt)∆H,t is

nHv

(
YH,t

nH
; ξt

)
∆H,t = v̄yȲH

{
∆̂H,t

1 + ω
+ ŶH,t +

1 + ω

2
Ŷ 2

H,t + ŶH,tξt

}
(58)

+ t.i.p. + O(‖Ξ‖3)

Also,

nF v

(
YF,t

nF
; ξ∗t

)
∆F,t = v̄∗yȲF

{
∆̂F,t

1 + ω
+ ŶF,t +

1 + ω

2
Ŷ 2

F,t + ŶF,tξ
∗
t

}
(59)

+ t.i.p. + O(‖Ξ‖3)

Then, using the fact that

v̄y = (1− Φ)ūH , v̄∗y = (1− Φ∗)ūF ,

uF YF

uHYH
=

nF

nH
,

uHHY 2
H

uHYH
= (1− σ)nH − 1,

uHF YHYF

uHYH
= (1− σ)nF ,

uFF Y 2
F

uF YF
= (1− σ)nF − 1,

we can combine (57)-(59) to obtain (29).
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A.5 Noncooperation

In the main text we have assumed that there is no (or small) distortion at the non-

stochastic steady state, Φ = Φ∗ = 0, and analyzed the case in which the two countries

coordinate so as to maximize the world welfare. Remember that our linear-quadratic

approach is based on this assumption of zero (or small) distortions at the steady state,

which is introduced to deal with the linear terms in (29). As is pointed out by Benigno

and Benigno (2003), when we consider the noncooperative case, however, the linear terms

do not vanish under our assumptions on Φ and Φ∗.

To see this, suppose that the monetary authority in each country seeks to maximize

the lifetime utility of its representative household. The home household’s lifetime utility

is given by

U0 = E0

∞∑

t=0

βt

{
u(YH,t, YF,t)− v

(
YH,t

nH
; ξt

)
∆H,t

}

A second-order approximation of the flow utility is

u(YH,t, YF,t)− v

(
YH,t

nH
; ξt

)
∆H,t

=
ūH ȲH

nH

{
nH ŶH,t +

(1− σ)n2
H

2
Ŷ 2

H,t + nHnF (1− σ)ŶF,tŶH,t + nF ŶF,t +
(1− σ)n2

F

2
Ŷ 2

F,t

− (1− Φ)ŶH,t − (1− Φ)
1 + ω

2
Ŷ 2

H,t − (1− Φ)ξtŶH,t − (1− Φ)
∆̂H,t

1 + ω

}

Thus, the linear term, (nH−(1−Φ))ŶH,t, does not vanish unless Φ = 1−nH . Similarly, the

linear term in the corresponding quadratic measure of the welfare of the foreign household

does not go away unless Φ∗ = 1− nF .

The existence of such linear terms would make our simple approach invalid. Such

linear terms would give an incentive to each domestic monetary authority to generate

unexpected deflation when Φ = Φ∗ = 0. There is a simple intuition for this result.

Suppose that Φ = Φ∗ = 0. Then at the non-stochastic steady state the average utility

flow across the two countries is maximized:

(ȲH , ȲF ) = arg max
YH ,YF

u(YH , YF )− nHv

(
YH

nH
; 0

)
− nF v

(
YF

nF
; 0

)

Thus, v̄y = ūH and v̄∗y = ūF . The home household’s flow utility at the steady state,

however, is given by

u(ȲH , ȲF )− v

(
ȲH

nH
; 0

)
,
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which decreases with ȲH , since ūH − v̄y/nH < 0. Thus, from the noncooperative perspec-

tive, the efficient level of output is too large. This is because one unit of decrease in the

world supply of YH reduces only nH < 1 unit of its consumption in the home country. A

similar argument holds for YF , and this is where an incentive to generate deflation arises.

Benigno and Woodford (2004) have shown how to extend the linear-quadratic ap-

proach to the case in which such linear terms remain in the quadratic approximate welfare

measure. Applying their approach to the open-economy model is left for future research.
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Figure 1: State-contingent paths of πH,t, xH,t, and xF,t under strict zero inflation targeting

when µ = 0.25. In each panel, the solid line corresponds to σ = 0.5, the dashed line to

σ = 1, and the dashdot line to σ = 5.
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Figure 2: State-contingent paths of πH,t, xH,t, and xF,t under strict zero inflation targeting

when µ = 0.1. In each panel, the solid line corresponds to σ = 0.5, the dashed line to

σ = 1, and the dashdot line to σ = 5.
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Figure 3: Optimal state-contingent paths of πH,t, π∗F,t, xH,t, xF,t, iH,t, and iF,t. In each

panel, the solid line corresponds to σ = 0.5, the dashed line to σ = 1, and the dashdot

line to σ = 5.
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Figure 3 (continued): Optimal state-contingent paths of πH,t, π∗F,t, xH,t, xF,t, iH,t, and

iF,t. In each panel, the solid line corresponds to σ = 0.5, the dashed line to σ = 1, and

the dashdot line to σ = 5.
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Figure 4: The paths of πH,t, π∗F,t, xH,t, xF,t, iH,t, and iF,t under optimal policy commitment

(solid lines) and under strict zero inflation targeting (dashed line) in the case where rn
H,t

is negative for t = 0, 1, . . . , 9 and σ = 5.
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Figure 4 (continued): The paths of πH,t, π∗F,t, xH,t, xF,t, iH,t, and iF,t under optimal policy

commitment (solid lines) and under strict zero inflation targeting (dashed line) in the case

where rn
H,t is negative for t = 0, 1, . . . , 9 and σ = 5.
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Figure 5: Optimal state-contingent paths of the (log) nominal exchange rate εt for σ = 0.5

(solid line), σ = 1 (dashed line), and σ = 5 (dashdot line).
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Figure 6: The paths of gn
H,t in the case where the natural rate of interest evolves deter-

ministically as rn
H,0 = r and rn

H,t = r̄ for t ≥ 1. Panel (a) is the case in which gn
H,0 = 0 and

panel (b) is the case in which gn
H,0 > 0. The solid lines, dashed lines, and dashdot lines

correspond to σ = 0.5, σ = 1, and σ = 5, respectively.
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Figure 7: The optimal evolution of the (log) nominal exchange rate, εt, when rn
H,0 = r

and rn
H,t = r̄ for t ≥ 1. Panel (a) is the case in which gn

H,0 = 0 and panel (b) is the case

in which gn
H,0 > 0. The solid lines, dashed lines, and dashdot lines correspond to σ = 0.5,

σ = 1, and σ = 5, respectively.
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Figure 8: The paths of εt under optimal policy commitment (solid lines) and under strict

zero inflation targeting (dashed line) in the case where rn
H,t = r for t = 0, 1, . . . , 9.
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