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Abstract

This paper investigates the role of endogenous labor-saving technological choice

in the generation and propagation of business cycles. We emphasize the impor-

tance of endogenously varying relative factor prices as a force behind the intro-

duction of new technologies and the scrapping of existing ones. The interaction

between labor-saving innovations and changes in the relative price of labor gives

rise to endogenous growth and cycles that match, quali- and quantitatively, ob-

served ones.

VERY PRELIMINARY AND INCOMPLETE.

DO NOT CIRCULATE, PLEASE.
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1. Introduction

This paper investigates the role of endogenous technological change in the generation and

propagation of economic growth and business cycles. We emphasize the importance of endoge-

nously varying factor prices, hence: of income distribution, as a force behind the introduction

of new technologies and the scrapping of existing ones. Put differently, we study endogenous

technological progress that is “biased” by the relative price of inputs, and derive a model in

which persistent growth, persistent business fluctuations, and persistent movements in the

share of income going to, respectively, labor and capital are simultaneously determined. We

claim this makes for a model of growth and the business cycle that fits the facts better than

the existing alternatives.

In our model, growth in total factor productivity is endogenous and results from the adop-

tion of new technologies - capital deepening - their subsequent expansion - capital widening

- and their eventual replacement with with better ones - capital scrapping. The duration

of each phase is endogenous, and determined by the equilibrium movements in the relative

prices of labor and (different kinds of) capital. Recessions occurr when capital widening has

reached its upper limit and scrapping, followed by deepening, becomes economically benefi-

cial; expansions set in when capital deepening is successful and widening may be undertaken.

Apart from the general goal of building a quantitative-theoretical model in which growth

and cycles are equilibrium outcomes and not preset exogenous phenomena, our point of

departure consists of three important, but often ignored, observations. First, the shares of

income accruing to capital and labor move in a systematic way with the business cycle; second,

profits and the growth rate of labor productivity, beside being correlated, are procyclical, but

peak substantially earlier than the cycle does, i.e. when recessions set in, profits have been

decreasing and labor productivity has stopped growing for a few quarters already; third,

while there is little short term substitutability between capital and labor, most technological

improvements appear to be labor saving. The empirical relevance of these three observations,

and the extent to which they relate to each other, is carefully discussed in the ”Stylized Facts”

section; here we focus on the first, which is the one standard models have the hardest time

to capture.
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Start by plotting, Figure 1, the capital income share for the U.S. during the period 1947-

2005. The figure reveals that it ranged between a minimum of 28 percent in 1970 to a

maximum of 34.5 percent in 1997. Moreover, as documented by Young (2005), nearly all

those changes are due to movements in capital share within industries and not because of

variations in the weight of different industries. Figure 2, reproduced from Young (2005),

clearly makes this point.1

That such movements are systematically related to the growth cycle can be shown by

noting that, during the first years of an expansion, the capital income share raises, together

with a substantial increase in the profitability of capital. However, after a peak around

the center of the expansion, the capital income share falls, reaching a minimum during the

recession.

The long expansion of the 1990s is paradigmatic. During the 1990s, the share of the

corporate output counted as Net Operating Surplus, a concept that includes payments to

both share and bond-holders, increased from 16 percent to 20 percent. Similarly, corporate

profits (the Net Operating Surplus less net interests) went from 11 percent to 17 percent.

Given that during the 1990s, the assets of corporations were roughly one and half times the

value of corporate output, we are talking about changes in profitability of around 2.66 percent

(from 10.6 to 13.3) as measured by the Net Operating Surplus and 4 percent (7.33 to 11.33

percent) as measured by corporate profits. These movements are important. For example,

if sustained, the change in corporate profits that took place between 1992 and 1998 would

imply, by itself, a raise in the market value of the corporate sector of the U.S. of about 50

percent.

Standard business cycle models have a difficult time explaining the behavior of factor

shares. The reason why this is so can be understood by looking at the formula for the capital

income share αt at time t:

αt = 1− wtlt
yt

= 1− wt

lpt

1Not only the change in capital share induced by reallocation across sectors are small, but they may also
be the endogenous response to the changes in factor prices that we emphasize in this paper. We elaborate on
this below.
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where wt is the wage, lt is the amount of labor, yt is output, and lpt is labor productivity. An

approximation of this expression, using log-deviations of the variables with respect to their

steady-state value, is: bαt = −bwt − blt + byt = −bwt + blpt (1)

It is plain evident that capital income moves away from its long-run average only to the extent

that labor productivity and wages are less than perfectly correlated. If we further assume

a Cobb-Douglas production function yt = eztkθt l
1−θ
t , where zt is the level of technology, we

have:

αt = 1− wt

eztkθt l
−θ
t

or bαt = zt + θ
³bkt − blt´− bwt (2)

We apply expressions (??) and (??) to several models. The baseline Real Business Cycle

model cannot deliver any of the changes in capital share by construction: the combination

of Cobb-Douglas production function and competitive input markets makes capital income

share trivially equal to the (constant) elasticity of output with respect to capital. In (??), we

will have that, for all t, bwt = blpt and in (??), bwt = zt+θ
³bkt − blt´. We could modify the basic

model to make θ stochastic (as, e.g., Young, 2004), but this alternative, beyond generating

counterfactually high correlation between αt and output, is dangerously close to assuming a

trivial answer (exogenous movements) to the empirical puzzle.

Similarly, we could abandon the Cobb-Douglas production function in favor of a more

general CES production function, case in which the factor shares can change over time. How-

ever, if we compute a standard RBC model with CES production function and an elasticity

of substitution similar to the ones reported in the literature (for example, around 0.8 as in

Antràs, 2004 or Young, 2005b), we find that such models predict movements in factor shares

quite smaller than the observed ones. Moreover, if we assume that technological progress is

Harrod-neutral (as required to have a stationary capital-output ratio), wages become strongly

countercyclical, contrary to all the empirical evidence.

Models with sticky prices and/or sticky wages do not have a much easier time at capturing
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the facts. In response to a monetary shock, wages will go up because of a higher demand

for labor, and labor productivity will go down as labor increases faster than capital. Since

the two elements in the right-hand side of (??) are negative, the capital income share will

go down during an expansion driven by a positive monetary shock. Only in the, empirically

unlikely, event that nominal wages are completely rigid and prices adjust very rapidly to

the monetary shock, would real wages decrease. In the, even more unlikely, event that they

decrease more than labor productivity does as demand for labor increases ,will profit display

a procyclical tendency, but to achieve this we need wage rigidity to last many quarters in the

face of continuous monetary supply surprises and raising prices, an improbability to say the

least. The same argument applies, without the latter caveat, if the expansion is driven by

some non-ricardian fiscal ”stimulus.”

Expression (??), beyond clarifying the problems of existing business cycle models, also tells

us the element that a successful theory requires: a mechanism to increase labor productivity

faster than wages at the beginning and slower at the end of the expansion. Our paper

focuses on one possible channel: the endogenous adoption of labor saving technology. At the

beginning of the expansion, firms will pick new technologies that are labor-saving relatively

to previous ones. As the latter are scrapped and the new capital that embodies the new

technology is accumulated, labor moves accordingly and its productivity increases faster

than wages, hence the capital share and output increase rapidly. However, as the replacement

process completes and more and more labor is employed, wages will eventually go up, drying

the corporate profits, reducing investment, and finishing with it the expansion. Only at the

bottom of the recession, after old and inefficient productive capacity has been scrapped, a

new technology is introduced and the whole cycle starts again.

The paper is organized as follows. Section 2 discusses the closely related literature. Section

3 presents some stylized facts. Section 4 outlines our main theoretical model, and the results

obtained so far. Sections 5 - calibration - and 6 - numerical simulations and discussion, are

missing together with the conclusions.
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2. Related Literature

We are not the first to deal with some of the issues discussed above. Let us leave aside,

for the time being, the very vast literature concerned with the endogenous determination of

both growth and cycles; it suffices here to say that nowhere in that literature one can find a

quantitative-theoretical model that can be, even less: is, brought to face the data. We will

also spare the reader a long survey of the century-long debate on the nature of technological

progress, its biasedness in one direction or another and the extent to which Harrod-neutral

exogenous producvity does or does not mimic the data in a satisfactory form. To us, that

technological progress must be labor - more generally: natural resource - saving is almost

tautological beside being blatantly evident. The relevant issues are how to best model this

fact, and if the pace at which technological change advances should or should not be made

responsive to movements in factor prices. We refer to XXX and YYY for recent discussions

of this issues, and survey of the literature.

Coming next to our first observation - that factor shares are strongly cyclical - we begin

by distinguish three branches of the literature interested in the evolution of the input income

shares and the business cycle. First, there have been papers that focused on the distribution

of risk over the cycle. Boldrin and Horvath (1995) present a model of contractual arrange-

ments between employees and employers when employees are prevented from accessing capital

markets and they are more risk-adverse than employers. The paper characterizes an opti-

mal contract that maps the aggregate states of the economy into wages and labor market

outcomes. Similarly, Gomme and Greenwood (1995) build a model where workers purchase

insurance from the entrepreneurs through optimal contracts. Since our model assumes com-

plete markets, none of the considerations used in those papers is directly pertinent to the

mechanism explored here, even if, as it will be clear later, the introduction of risk-sharing

contractual arrangements would reinforce some of the conclusions.

The second branch of the literature has focused on explanations based on models with im-

perfect competition and/or increasing returns to scale. Hornstein (1993) developed a model

of monopolistic competition where capital income share is procyclical. However, the correla-

tion between output and capital share is perfect, hence the cyclical ”hump-shape” pattern for
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profits cannot be replicated. Other examples include Ambler and Cardia (1998), Bils (1987),

and the models surveyed in the Rotemberg and Woodford (1999). Hansen and Prescott [2005]

is an additional contribution along the same lines, which does not make use of monopolistic

competition but, instead, of fixed capacity at the plant level.

Finally, and the most relevant for us, is the third branch of the literature, spearheaded

by Blanchard (1997) and Caballero and Hammour (1998). These papers have explored the

dynamics over the middle-run induced by exogenous changes in real wages. After an initial

increase in wages, due for example to an exogenous strengthening of the bargaining power

of workers, the capital share goes down. What happens over time depends on the long-run

elasticity of substitution, either with a permanent fall on capital share or with a return to

the initial level. Blanchard (1997) suggests that changes in efficiency induced by the original

increase in wages may even increase the long-run share of capital income. Some of the

intuitive arguments given by Blanchard, inspired by the European experience in the 1970s

and 1980s, are close in spirit to the model we suggest here, in particular the idea that, facing

a persistently high exogenous wage, firms may strive to adopt technologies that reduce the

labor input per unit of output, thereby leading to an eventual decrease in the share of labor

income.

The key differences in our investigations is that we do not begin with an initial, exoge-

nously given shock to wages (due to a change in technology, bargaining power or mark-up)

and explore also the aggregate dynamics after such shock. Further, we view the changes in

capital income share participation as a systematic and recurrent feature of the economy, and

a main driving force behind the introduction of new technology and, therefore, of sustained

growth. To put it plainly, we posit that growth must come through oscillations in the rate of

technology adoption, that such oscillations are endogenous, and that their main source is the

hidden - not always, sometime it becomes very explicit - ”conflict” over the share of income

going to production factor versus another.

Finally, we note the similarities between some points of our model and the literature on

directed technological change surveyed by Acemoglu (2002). A more careful comparison of

intuitions, models, and results will be added in future versions of this paper. In any case, three
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macroscopic differences are that (i) we claim business cycles are ”caused” by labor-saving

technological change, (ii) we focus on the fundamental bias (labor vs capital) in a perfectly

competitive environment, and, (iii) we make the bias endogenous and not exogenous.

3. Stylized Facts

In this section we discuss some of the U.S. evidence pertinent to our model of the business

cycle.2 As most business cycle features of aggregate quantities are well know, our basic

object of observation is the variation of the capital share of input over the business cycle.

We contend that expansions begin with increases in the capital participation share, that this

participation share peaks in the middle of the cycle, and that the last phase of the expansion

is correlated with a fall in the capital share.

We illustrate our assertion by computing the capital share of the U.S. economy in three

different ways. First, we compute the capital share for the whole economy. This measure

has the advantage of comprehensiveness but the drawback that it includes the household and

government sectors, many of whose goods and services are not sold in markets and which

have a fixed capital share (respectively, one and almost zero) by construction. Moreover, we

need to handle the distribution of proprietors income between (imputed) wages and capital

income. To overcome some of these difficulties, we compute the capital share for the corporate

sector. Finally, we compute the capital share for the nonfinancial corporate sector.

3.1. Overall Economy

Our first take at evaluating the capital share in the U.S. economy uses aggregate data from

the whole economy. As explained before, following this route faces the basic difficulty of how

to divide Proprietors Income between labor and capital. A common solution to this problem

(Cooley and Prescott, 1995) is to allocate the Proprietors Income according to the share

2Abundant evidence is also available for pretty much each and every EU country, that we will summarize in
subsequent versions. The styilzed facts reported here are, if possible, even more clearly visible in the European
post-WWII data, which is what motivated Blanchard and Caballero-Hammour initial work. Further, a cross
country comparison may be useful in assessing the empirical relevance of the model’s main predictions.
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of capital income observed in the non-proprietors part of the economy. To do so, we can

subtract from our measure of output the Proprietors Income and include as capital income

only the unambiguous capital income.

This strategy implies, first, that capital income includes income coming from two different

sources:

1. Unambiguous capital income, equal to Rental Income of persons, Corporate Profits, Net

Interest and miscellaneous payments, and the current surplus of government enterprises.

We diverge from Cooley and Prescott (1995) in our definition of unambiguous capital

income only in our inclusion of the current surplus of government enterprises as capital

income. This surplus can be considered an income of the capital used by those firms.

However, the quantitative importance of this number is quite small, less than 0.05% of

output.

2. The consumption of fixed capital by the non-proprietors private sector and the gov-

ernment. We do not include the consumption of fixed capital by proprietors to be

consistent with our exclusion of their income from our computations.

Second, we define output as Gross Nation Product less Proprietors Income. In addition,

we subtract the difference between Net National Product and National Income (since this

statistical discrepancy is also of difficult imputation between capital and labor) and Net

Taxes on Production and Imports, since again this item cannot be divided between capital

and labor.

As a consequence, our capital share α is defined:

α =
Unambiguous Capital Income+DepreciationÃ

GNP − Proprietors Income-Net National Product+National Income

-Net Taxes on Production and Imports

!

Our different measures are taken directly from NIPA, Table 1.7.5 (Relation of Gross

Domestic Product, Gross National Product, Net National Product, National Income, and

Personal Income) and Table 1.12. (National Income by Type of Income). Since we only need
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percentages, we take nominal quantities that avoid distortions induced by price indexes. Our

sample, of quarterly data, goes from 1947:1 to 2005:2.

Our findings are plotted in figure 1. Clearly, capital share fluctuates quite a bit. Figure

2 presents the cyclical component obtained with a Hodrick-Prescott filter with λ = 1600 and

(as vertical lines) the NBER dating of recessions.

But the fluctuations are even clearer when we decompose α in its different components, as

plot in figure 3. For comparison purposes, the plot also draws the trend of the series obtained

with the Hodrick-Prescott filter and NBER recessions. The top line in the plot corresponds

to α. Even if it stays around a value of 0.32, as usually discussed, it fluctuates over time

between 0.28 and 0.35, a change of 23%.

The second line corresponds to the share of Unambiguous Capital Income. This series

illuminates more than α the cyclical variations of capital income. By construction, depreci-

ation (the third line, with a small positive trend3 will be a relatively smooth series. We can

see how the Unambiguous Capital Income clearly, almost deterministically, fluctuates with

the cycle: it tends to go up at the beginning of the expansion, pick at the middle, and drop

in the second half of the expansion.

The fourth and fifth line correspond to corporate profits and net interest. We will discuss

corporate profits in detail in the next subsection. Net interest are relatively acyclical and we

only need to notice the big increase in the 80’s associated with the high real rates of interest

of the time. Finally, the last line corresponds to the rental income, which is also relatively

smooth over time.

3.2. Corporate Sector and Nonfinancial Corporate Sector

Our next measure of the capital share uses data from the corporate sector. These measure-

ment is closer to the main theoretical thrust of the paper.

3It is relevant to find out the origin of this positive trend in the data. Hypotheses: More capital-intensity?
Quicker depreciation and obsolescence rates? Inconsistencies in the definition of real versus nominal prices
of capital? Is there any relation between this trend and the Stock Market evolution? Is this a temporary,
possible compositional, effect?
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We define the output of the corporate sector to be equal to the Gross value added of

corporate business less the Taxes on production and imports net of subsidies. As capital

income we add the Net operating surplus plus the Consumption of fixed capital. We repeat

the exercise with the same concepts for the Nonfinancial Corporate Sector.

Our different measures are taken directly from NIPA, Table 1.14. Gross Value Added

of Domestic Corporate Business in Current Dollars and Gross Value Added of Nonfinancial

Domestic Corporate Business in Current and Chained Dollars. As in the previous subsection,

we employ nominal quantities.

Figure 4 plots the capital share in the corporate sector. Again we can see how, even if the

capital share fluctuates around a mean, these fluctuations are not trivial. The next line is

the Net Operating Surplus series that shows a strong cyclicality. The third line is corporate

profits, also quite procyclical, and the last line is depreciation. Figure 5 reproduces the same

series for the nonfinancial corporate sector.

An interesting pattern appears if we study the three longest expansions in the U.S. after

the second world war. We will call these expansions the 60s expansion, the 80s expansion, and

the 90s expansions. These three episodes can be thought as particularly interesting because

the length of the expansion allows one to identify more clearly the type of phenomena we are

concerned with. We plot in figure 6, the Net Operating Surplus during the three expansions

and, in figure 7, the Corporate Profits. We observe a common structure: both measures

of capital income go up at the beginning of the expansion by a considerable amount, peaks

roughly at the middle of the expansion, and decreases afterwards.

Table 1 summarizes the information. The first column corresponds to the value of the Net

Operating Surplus at the beginning of the expansion, the second column to the maximum

value in the expansion, the third column to the percentage increase, the fourth column is the

final value at the end of the expansion, and finally, the fifth column reports the percentage

decrease.
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Table 1: Evolution of the Net Operating Surplus

Initial Value Maximum Value Increase Final Value Decrease

Expansion 60s 18.4% 23.6% 28.4% 18.0% 30.6%

Expansion 80s 15.4% 19.0% 23.5% 16.6% 14.5%

Expansion 90s 16.6% 19.9% 19.8% 15.8% 25.9%

The main message of this table is the sizable changes in the Net Operating Surplus over

the business cycle. If we take a benchmark capital-output ratio of 3, we can transform this

numbers into rates of return dividing them by 3. With this back-of-the-envolope calculation,

we see, for example, that the rate of return of the Corporate sector in the 60s went from 6.1%

to 7.9% and then fell to 6.0% at the start of the recession.

Table 2 reports the same information as table 1, except that now we measure the evolution

of corporate profits. The increases in Corporate Profits are of an even more substantial

magnitude, especially for the 80s and 90s cycles. For example in the 80s, Corporate Profits

went up by a 43% and in the 90s by a 42.2%; while this is not the topic of the present paper,

one may want to consider how much these dramatic increases in profitability account for the

large stock market rallies witnessed during those two expansions, and for the early 1970s and

2000 crashes as well.

Table 2: Evolution of Corporate Profits

Initial Value Maximum Value Increase Final Value Decrease

Expansion 60s 17.6% 22.4% 27.0% 15.4% 44.9%

Expansion 80s 9.6% 13.7% 43.0% 11.5% 18.8.%

Expansion 90s 11.9% 16.9% 42.2% 10.9% 54.6%

We can also repeat the back-of-the-envolope calculation of our previous paragraph, con-

sidering now the leverage implied by debt. We can see then how the profitability rate of the

Corporate sector went in the 90’s from 4% to 5.6% and then fell again to 3.6%.
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Another way to think about this: corporate profits are highly procyclical and five times

more volatile than output (Boldrin and Horvath, 1995).4

4. A Model of the Business Cycle

We present now a simple business cycle model to account for the previous observations.

4.1. Preferences

There is a representative agents whose preferences are represented by the standard expected

utility

maxEt

( ∞X
t=0

δt [u(Ct) + v(1− Lt)]

)
where both utility functions satisfy standard monotonicity, concavity and differentiability

restrictions.

4.2. Production

Production takes places in two (three) different sectors, each of which should be conceived

as composed of a continuum of heterogeneous firms (or plants); the latter are affected by

idiosyncratic technology shocks, to be discussed later. Description of the three sectors follow.

The first sector uses active technologies (embodied in technology-specific machines) to

produce aggregate output through labor (L) and productive capacity ( Π ), and it is repre-

sented by a neoclassical production function Y = F (Π, L). The second sector uses aggregate

output (and labor, or active machines and labor, depending on the specific version being

considered) to introduce new technologies by producing the prototypes of the new machines.

4A similar analysis of “representative” recessions should be added in later versions, for two purposes. The
labor share tends to rise later in expansions and to fall, sometime substantially, late in recessions. The timing
of these movements, and their relation with the investment rate and the exit/entry of firms (failure rate, etc.)
is a crucial test of the causation mechanism we are pursuing. Further, one needs to disentangle how much of
the drop in labor share is due to a lower wage rate driven by an increase in unemployment, and how much is
due to capital/labor substitution driven by the adoption of more efficient technologies. This is also relevant
for a proper calibration of our model.
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Once a technology is introduced, i.e. a prototype of its machine is created, we label that

technology active and assume it contributes to productive capacity at par with all other pre-

viously active technologies. When a third sector is introduced we assume that accumulation

of capital stock (machines) for active technologies requires a production function different

from the one generating aggregate output; in particular: that investment in each kind of

machine can only come from output generated by that kind of machine, and labor.

Hence, in general, there will always be an aggregate sector producing aggregate output,

which is consumed and, in the baseline case with two sectors, also invested in the capital stock

of active technologies; there is always also an innovation sector, which creates new technolo-

gies using aggregate output, and labor in some specifications. All sectors have neoclassical

constant return to scale production functions with machines and labor as inputs.

4.2.1. Fixed Coefficients Technology

There exists a countable number of potential technologies, indexed by the superscript j =

0, 1, .... We say that a technology j is active in period t if Kj
t > 0, i.e. a positive amount

of capital stock of type j was produced in some previous period and has not yet been either

depreciated or scrapped. Denote with Jt = {0, 1, 2, ....,bjt} the set of all technologies that are
active at time t.

Output of technology j = 0, 1, ..., in period t, is

Y j
t = min{AjKj

t , γ
jLj

t}+ νjSj
t ,

where 0 ≤ Sj
t ≤ Kj

t denotes ”scrapping” of the capital stock j, and 0 ≤ νj < Aj; scrapping

takes place right after the capital stock has been used, for the last time, to produce aggregate

output. From the equality

AjKj
t = γjLj

t

we get
AjKj

t

γj
= ajK

j
t = Lj

t
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So the symbol aj denotes the efficient Labor/Kapital ratio in sector j.
5 Marginal productivi-

ties in technology j are

∂Yt

∂Lj
t

= γj, for Lj
t ≤ ajK

j
t , and zero otherwise;

∂Yt

∂Kj
t

= Aj, for Kj
t ≤ a−1j Lj

t , and zero otherwise.

In the baseline deterministic version, as long as a technology is active, adding to its capital

stock costs as much as adding to the capital stock of any other active technology; one unit

of homogeneous output yields one unit of capital of any active technology. Because a unit of

capital of type j costs the same as a unit of capital j − 1 but uses less inputs to produce a
unit of homogeneous output, among the active technologies the only one with positive gross

investment will be the best available technology bjt.6 We also define the marginal technology
jt, in period t, as that technology jt ∈ Jt for which L

j

t > 0 and Lj
t = 0 for all j <jt.

We introduce a few additional concepts. First, potential labor demand Λt in period t is

Λt =
X
j∈Jt

ajK
j
t .

Second, productive capacity Πt is

Πt =
X
j∈Jt
(Aj + νj)Kj

t .

Aggregate output is bounded by productive capacity

Yt =
X
j∈Jt

Y j
t ≤ Πt.

5When uncertainty is introduced, the parameter aj is the source of uncertainty. In general, we will assume
it to follow the process ajt+1 = aj + �t, with �t and AR(1) process with (possibly very) low persistence.

6In the stochastic version, a technology is the best available only in an expected value sense, and positive
investment in active technologies other than the best one is an equilibrium outcome when shocks have some
degree of persistence.
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The resource constraints are, respectively

Ct +
X
j∈Jt

Ijt +Dt ≤ Yt,

for aggregate output, and

Ld
t =

X
j∈Jt

Lj
t ≤ Λt,

for aggregate labor demand. The law of motion for the active capital stocks j ∈ Jt is

Kj
t+1 = (1− µ)Kj

t + Ijt − Sj
t ,

together with the non-negativity constraints

Kj
t ≥ 0, Ijtt ≥ 0, Dt ≥ 0, Sj

t ≥ 0, Ct ≥ 0, Lj
t ≥ 0.

Next, let the sequences {Xt =
P

j∈Jt I
jt
t + Dt}∞t=0 and {S1t , ..., Sjt

t }∞t=0 be given. The
marginal technology jt satisfies the following two conditions. For all jt < j ≤ bjt

v0

1− jtX
i=j

aiKi
t

 < u0

 jtX
i=j

AiKi
t +

jtX
i=j

νiSi
t −Xt

 γj−1

while

v0

1− jtX
i=j

t

aiKi
t

 > u0

 jtX
i=j

t

AiKi
t +

jtX
i=j

t

νiSi
t −Xt

 γjt−1.

Then, employment at time t is uniquely determined by the condition

v0

1− jtX
j=j

t
+1

ajKj
t + φajtK

j
t

t

 = u0

 jtX
j=j

t
+1

AjKj
t + φAj

tK
j
t

t +
X
j∈Jt

νiSj
t −Xt

 γjt.

for some 0 ≤ φ ≤ 1.
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Example with two technologies. Assume the stocks of two machines and investment x

are given. Employment is found by solving the static problem

maxu(c) + v(1− L)

subject to

c+ x = min{A1K1, γ1L1}+min{A2K2, γ2L2}

L = L1 + L2

Assume

u0(A2K2 − x)γ1 > v0(1− a2K2)

then labor supply L∗ solves

u0
¡
A2K2 + γ1(L∗ − a2K2)− x

¢
γ1 = v0(1− L∗).

Notice that, because γ2 − γ1 ≥ ε > 0, the following is possible

u0
¡
A2K2 − x

¢
γ1 < v0(1− a2K2) < u0

¡
A2K2 − x

¢
γ2,

which implies that an “interior” solution satisfying FOCs exactly may not exist. A unique

solutio, still exists, though, which may imply either L∗ = a2K2 or L∗ = a2K2 + L1, for L1

small enough; to compute it one needs to compare utility levels directly.

4.2.2. Linear Innovation Technology

In our baseline model we assume a linear technology for production of the new machines,

with aggregate output as the sole required input

Kjt+1
t+1 = ζDt, ζ < 1.

Notice that, because we assume that ζ < 1, introducing a new technology is not always

17



profitable and depends on relative prices; as the latter change over the cycle, this generates

irregular innovation patterns. The first machine of a new technology costs more that one

additional machine of an already active technology; this extra cost is, in the appropriate

circumstances, compensated by smaller input requirements. Let us check when this is the

case, i.e. let’s figure out the circumstances under which, with the linear innovation technology,

it is convenient to innovate rather than accumulate old capital.

Conditions for innovation. Because, in the deterministic case, only Ijtt > 0, it suf-

fices to compare investment in the best available technology bjt with investment in the new
technology bjt + 1. The latter is more profitable than the former if

1− ζ

ζ
<

Pt+1

Pt

h
Ajt+1 −Ajt

i
− wt+1

Pt

h
ajt+1 − ajt

i
.

In the exponential case, this simplifies to

(1− ζ)

ζ
< Ajt

Pt+1

Pt
[A− 1]− ajt

wt+1

Pt
[a− 1] .

Interestingly, this shows that it matters, in general, if the new technology is relatively more

capital or more labor saving, not just if they are overall ”better”.

When they aremore capital saving, we have a = A/γ > 1, hence the higher is the expected

wage rate the less profitable it is to invest in the new machinery - alternatively, the higher is

the relative price of tomorrow’s consumption, the more valuable is the new technology.

When the new machine is more labor saving, i.e. a = A/γ < 1, a high expected wage next

period makes the new technology profitable. This is our benchmark case.

Consider the important special case in which Ajt+1 = Ajt = A, then innovating is more

profitable than accumulating active technologies if

ζ
h
Ajt+1Pt+1 − ajt+1wt+1

i
>
h
AjtPt+1 − ajtwt+1

i
.

[ajt − ajt+1]wt+1 >
h
Ajt − ζAjt+1

i
Pt+1.
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1− ζ

ζ
<

wt+1

Pt

·
γ − 1
γjt+1

¸
.

Notice that, with a constant factor γ > 1, the denominator of the right hand side goes to

zero, hence the wage rate (in unit of current consumption) must grow, on average, at a rate

of γ − 1 per period to maintain a stable pattern over time. When the real wage grows at
a rate lower than γ − 1, technological innovation is delayed; the reverse when the real wage
grows at a rate higher than γ − 1, then new machines are introduced more rapidly.7

Minimum Size Constraint Later on we will also consider the impact that a minimum size

constraint in the innovation technology may have on the model’s dynamics. This is because of

the following intuitive reason: without minimum size the “pure innovation problem” is badly

defined, at least in the limit case of no discouting. Because ζ < 1, and any new technology

can be accumulated at a fixed marginal cost of one once an infinitesimal prototype has been

introduced, it is optimal to let Dt → 0, and accumulate next period, when the technology

has become active. The minimum size restriction has the following form

Kjt+1
t+1 = ζDt, for Dt ≥ Djt+1.

Kjt+1
t+1 = 0, otherwise.

An alternative solution to this problem, which preserves convexity of the technology set, is

to assume that, for each active technology j, only output used by technology j can be used

to accumulate additional machines of that kind. In this case, starting with a prototype of an

infinitesimal size makes the accumulation of additional capital very costly, and a well defined

solution exists for the ”pure innovation problem.” In this case one can still write

7This formalizes the intuition according to which in Europe labor saving innovations are more often
adopted, labor productivity is higher and the capital/output ratio is also higher, because wage rates are
”artificially” kept high by union power, political considerations, and, more generally, labor and product
market regulations.
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Kjt+1
t+1 = ζDt,

for the innovation sector, while the law of motion of each active technology becomes

Kj
t+1 = (1− µ)Kj

t + Ijt − Sj
t ,

with

Ijt ≤ Y j
t + νjSj

t .

The aggregate resource constraint on consumption and innovation expenditure has to be

rewritten as

Ct +Dt ≤
X
j∈Jt
(Y j

t − Ijt ),

The question here is one of modeling techniques, i.e. is the non-convexity needed to

capture the quantitative pattern of recessions and aggregate innovation, or not?

Other Innovation Technologies Alternative formulations to be considered include, the

Cobb-Douglas case

Kjt+1
t+1 = BDβ

t (L
D
t )

1−β, B < 1

paired with the technology-specific accumulation rule.

Of some relevance, at least in principle and again as a modeling technique curiosity, is

the probabilistic case in which the innovation technology takes aggregate output and labor

as inputs, and generates a level of capital stock Kjt+1
t+1 ∈ [0, B] according to a probability

distribution with mass shifting toward B as the amount of resources invested increases.

4.2.3. CES Technology

Definition of active technologies, best available technology and marginal technology is as in

the fixed coefficient case. The production functions now are

Y j
t = Aj

£
η(Kj

t )
ρ + γj(Lj

t)
ρ
¤1/ρ

+ νjSj
t ,
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0 ≤ ν < Aj < ∞, −∞ < ρ < 1, η > 0, γ > 1. For each technology j = 0, 1, ..., we assume

that there exist xj and xj such that xj ≤ Kj
t

Ljt
≤ xj must hold; i.e. for each technology there

exists a minimum and a maximum admissible capital/labor ratio. Rewrite the production

functions in term of capital intensities x = K/L.

Y j
t = AjLj

t

£
η(xjt)

ρ + γj
¤1/ρ

+ νjSj
t ,

Marginal productivities, for technology j, are

∂Yt

∂Lj
t

= Ajγj
£
η(xjt)

ρ + γj
¤(1−ρ)/ρ

, for xj ≤ xjt ≤ xj, and zero otherwise;

∂Yt

∂Kj
t

= Ajη(xjt)
ρ−1 £η(xjt)ρ + γj

¤(1−ρ)/ρ
, for xj ≤ xjt ≤ xj, and zero otherwise.

Potential labor demand Λt is the sum, over technologies, of maximum achievable employment

given installed capacity

Λt =
X
j∈Jt

L
j

t =
X
j∈Jt

Kj
t

xj
,

while productive capacity Πt is

Πt =
X
j∈Jt

(
Aj

·
η +

γj

(xj)ρ

¸1/ρ
+ νj

)
Kj

t =
X
j∈Jt
(κj + νj)Kj

t .

As before, the aggregate constraints are

Yt =
X
j∈Jt

Y j
t ≤ Πt,

Ct +
X
j∈Jt

Ijt +Dt ≤ Yt,

Ld
t =

X
j∈Jt

Lj
t ≤

X
j∈Jt

L
j

t = Λt,
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Kj
t+1 = (1− µ)Kj

t + Ijt − Sj
t ,

and

Kj
t ≥ 0, Ijtt ≥ 0, Dt ≥ 0, Sj

t ≥ 0, Ct ≥ 0, Lj
t ≥ 0.

Let the sequences {Xt =
P

j∈Jt I
j
t +Dt}∞t=0 and {S1t , ..., Sjt

t }∞t=0 be given, and characterize
the period by period allocation of total labor supply across sectors, for given productive

capacity installed. As before, the planner will

max
{L1,...,Ljt}

u(C) + v(1− L)

subject to

C +X =
X
j∈Jt

n
AjLj

t

£
η(xjt)

ρ + γj
¤1/ρ

+ νjSj
t

o
,

L =
X
j∈Jt

Lj
t

First order conditions

Ajγj
£
η(xjt)

ρ + γj
¤(1−ρ)/ρ

= wt, for all j ∈ Jt such that L
j
t > 0.

In the exponential case the latter implies that, for all pairs j, i ∈ Jt, j > i, for which Lj
t , L

i
t > 0

(Aγ)
ρ(j−i)
(1−ρ)

£
η(xjt)

ρ + γj
¤
= η(xit)

ρ + γi.

This requires xjt < xit, independently from the sign of ρ; hence, we should always observe

a lower capital intensity in the most advanced sectors. This holds also in the special, but

important, case in which technological progress is purely labor saving, i.e. when Aj = Ai = A.
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Then, employment at time t is uniquely determined by the xjt ≤ x
j
t
t ≤ xjt solving

v0

1− jtX
j=j

t
+1

Kj
t

xj
+

K
j
t

t

x
j
t
t

 =

u0

 jtX
j=j

t
+1

κjKj
t +Aj

t

"
η(K

j
t

t )
ρ + γjt

Ã
K

j
t

t

x
j
t
t

!ρ#1/ρ
+
X
j∈Jt

νjSj
t −Xt

Aj
tγjt

£
η
¡
xjt
¢ρ
+ γjt

¤(1−ρ)/ρ
.

Example with two technologies. Assume the stocks K1, K2, investment X and scrap-

ping S1 and S2 are given. Employment is found by

max
L1,L2

u(C) + v(1− L)

subject to

C +X = A1
£
η(K1)ρ + γ1(L1)ρ

¤1/ρ
+A2

£
η(K2)ρ + γ2(L2)ρ

¤1/ρ
+ ν1S1 + ν2S2

L = L1 + L2

Reduced form objective function is

max
L1,L2

u
h
A1
£
η(K1)ρ + γ1(L1)ρ

¤1/ρ
+A2

£
η(K2)ρ + γ2(L2)ρ

¤1/ρ
+ ν1S1 + ν2S2 −X

i
+v(1−L1−L2)

Interior solutions when

(L1)ρ−1γ1A1
£
η(K1)ρ + γ1(L1)ρ

¤(1−ρ)/ρ
= (L2)ρ−1γ2A2

£
η(K2)ρ + γ2(L2)ρ

¤(1−ρ)/ρ
= w

u0
h
A1
£
η(K1)ρ + γ1(L1)ρ

¤1/ρ
+A2

£
η(K2)ρ + γ2(L2)ρ

¤1/ρ
+ ν1S1 + ν2S2 −X

i
w = v0(1− L)
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Use first, under the assumption of exponential productivity parameters, to find capital in-

tensities in the two sectors

£
η(x1)ρ + γ1

¤(1−ρ)/ρ
= γA

£
η(x2)ρ + γ2

¤(1−ρ)/ρ
and rewrite second as

u0
·
A1

K1

x1
£
η(x1)ρ + γ1

¤1/ρ
+A2

K2

x2
£
η(x2)ρ + γ2

¤1/ρ
+ ν1S1 + ν2S2 −X

¸
γ2A2

£
η(x2)ρ + γ2

¤(1−ρ)/ρ
= v0

µ
1− K1

x1
+

K2

x2

¶
Solve the two equations for x1 and x2.

Also, use £
η(x1)ρ + γ1

¤(1−ρ)/ρ
= γA

£
η(x2)ρ + γ2

¤(1−ρ)/ρ
to write

[η(x1)ρ + γ1]

[η(x2)ρ + γ2]
= (γA)ρ/(1−ρ) .

As long as capital intensities satisfy the previous restriction, and the two ratios x1 and x2

are in the technologically admissible cone, both sectors are being used in production, and

positive investment takes place in both sectors. Next we look at the case in which the less

efficient sector is abandoned, and only the second sector has positive employment.

This amounts to finding corner solutions. In particular, when do we set L1 = 0 and only

use the stock of capital K2? When

£
η(x1)ρ + γ1

¤(1−ρ)/ρ
< γA

£
η(x2)ρ + γ2

¤(1−ρ)/ρ
.

the minimum productivity of labor in sector 2 is higher than the maximum productivity of

labor in sector 1.
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Efficient Dynamic Allocations Begin with simple case in which only capital of type 1 is

active, and capital of type 2 may or may not be introduced. We have

max
∞X
t=0

[u(Ct) + v(1− Lt)] δ
t

subject to

Ct + It +Dt = A1
£
η(K1

t )
ρ + γ1(L)ρ

¤1/ρ
+ ν1S1t

K1
t+1 = (1− µ)K1

t + It

K2
t+1 = ζDt

FOC for labor supply

u0(Ct)
∂Ct

∂Lt
= v0(1− Lt)

A1γ1
·
η

µ
K1

t

Lt

¶ρ

+ γ1
¸(1−ρ)/ρ

=
v0(1− Lt)

u0(Yt − It −Dt)

which has a unique solution L(K1
t , K

1
t+1, Dt, S

1
t ).

FOCs for the two investments (Note, It > 0⇔ S1t = 0 and viceversa)

u0(Ct) = δ

·
u0(Ct+1)

∂Y 1
t+1

∂K1
t+1

− v0(1− Lt+1)
∂Lt+1

∂K1
t+1

¸

u0(Ct) = δζ

·
u0(Ct+1)

∂Y 2
t+1

∂K2
t+1

− v0(1− Lt+1)
∂Lt+1

∂K2
t+1

¸
Notice that, contrary to the Fixed Coefficients case, BOTH these FOCs may be satisfied

with equality as long as x1t+1 and x2t+1 are chosen to satisfy the equality of rate of returns

condition, given in the appendix.
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5. Planner Problem

5.1. Fixed Coefficient, Linear Innovation

We do not assume a minimum size constraint here, hence all competitive equilibria are Pareto

Optima, and viceversa because the technology set is a convex cone, preferences are regular,

and markets are complete.

max
{Ct,Ljt ,Ijt ,Sjt ,Dt}

Et

( ∞X
t=0

δt [u(Ct) + v(1− Lt)]

)

subject to

Ct +
X
j∈Jt

Ijt +Dt ≤
X
j∈Jt

£
min{AjKj

t , γ
jLj

t}+ vjSj
t

¤
,

Lt =
X
j∈Jt

Lj
t ,

Kj
t+1 = (1− µ)Kj

t + Ijt − Sj
t ,

Kjt+1
t+1 = ζDt.

Kj
t ≥ 0, Ijtt ≥ 0, Dt ≥ 0, Sj

t ≥ 0, Ct ≥ 0, Lj
t ≥ 0.

First Order Conditions Begin with the static FOC for Lt and L
j
t (this is the three-step

procedure detailed earlier)

u0

 jtX
j=j

t
+1

AjKj
t + φAj

tK
j
t

t +
X
j∈Jt

vjSj
t −Xt

 γjt = v0

1− jtX
j=j

t
+1

ajKj
t + φajtK

j
t

t


Notice what this conditions says: it says that, in period t, the marginal utility of leisure, i.e.

the real wage rate, is equal to the marginal utility of consumption, i.e. the current price of the

homogeneous output, times the marginal productivity of labor in the marginal technology.

This implies that the capital stock invested in the marginal technology breaks even, and

makes zero profit, while all other sectors receive competitive rents, which are reflected in the
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higher equilibrium price of their capital. Recall that, in the stochastic case, the marginal

technology in period t may well be one of those introduced recently.

Given the vectors of Kj
t , S

j
t and Xt we solve the above for Lt = L(Kt, St,Xt) and for the

sectorial Lj
t . Next, we use the aggregate resource constraint to write

Ct =
X
j∈Jt

£
min{AjKj

t , γ
jLj

t}+ vjSj
t

¤−X
j∈Jt

Ijt −Dt

and reformulate the planning problem as

max
{Ijt ,Sjt ,Dt}

Et

( ∞X
t=0

δt

"
u

ÃX
j∈Jt

£
min{AjKj

t , γ
jLj

t}+ vjSj
t

¤−X
j∈Jt

Ijt −Dt

!
+ v(1− L(Kt, St,Xt))

#)

subject to

Kj
t+1 = (1− µ)Kj

t + Ijt − Sj
t ,

Kjt+1
t+1 = ζDt.

Kj
t ≥ 0, Ijtt ≥ 0, Dt ≥ 0, Sj

t ≥ 0.

6. Implications of the Zero Profit Conditions

Putty Clay and Linear Innovation Technologies The price at time t of additional

machines for an active technology is equal to the price of output/consumption, Pt, as the

two are perfectly substitutable in the aggregate resource constraint; the price of a machine

for the new technology is Pt/ρ. On the other hand, because installed capital is ”technology-

specific” (the model is ”putty-clay”) each existing machine has its own price, qjt . Here we

look at the equilibrium relations among these prices (these are present value prices), as they

are determined by the zero profit conditions. The present value of output/consumption in

period t is Pt = δtu0(Ct).
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Zero profits for active technology j in the production of aggregate output, gives

Pt =
qjt
Aj
+

wt

γj
=⇒ qjt = AjPt − ajwt

for j = 1, ...,bjt. Zero profit for the innovation technology gives
qjt+1t+1 =

Pt

ζ
.

Notice that

qjt = Aj

·
Pt − wt

γj

¸
> Aj−1

·
Pt − wt

γj−1

¸
= qj−1t

for j = 1, ...,bjt. So, assuming that Aj = (A)j γj = (γ)j, the prices of machines embodying

active technologies, when they are active, satisfy

qjt
qj−1t

=
A
h
Pt − wt

γj

i
h
Pt − wt

γj−1

i = A

·
γjPt − wt

γjPt − γwt

¸
> 1.

Clearly, for some j ∈ {1, ...,bjt} we may have γjPt ≤ wt, and then qjt = 0, meaning that

technology j is not used in period t (Question, may it come back in later periods? NO: once

the condition qjt = 0 is realized, technology j is scrapped for ever in this economy.) Relate

this to first order conditions above determining employment and capacity utilization.

Notice also that, as long as Ijtt > 0, the price of investment in machine bjt today must
equal the market value of the machine tomorrow

qjtt+1 = Pt, if I
jt
t > 0, and

qjtt+1 < Pt, if I
jt
t = 0,

meaning that Tobin Q is always less or equal to one in this version of the model. This implies

that Ijt = 0 for all j = 1, ...,bjt−1, and only Ijtt ≥ 0 (this is also be set equal to zero, in periods
when a new machine is produced.) From these considerations and the zero profit condition
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for technology bjt in period t we conclude that, when Ijtt > 0

qjtt+1 =
qjtt

Ajt
+

wt

γjt
= Pt,

which gives the first order process followed by the prices of the best installed machines, as

long as it does not drop to zero (we should figure out when is it that this takes place.) For

the other active technologies j = 1, ...,bjt − 1, we know that qjt < qjtt and that

qjt = AjPt − ajwt

Manipulate the latter under the assumption of exponential productivity parameters, to find

the marginal technology in period t. This is the lowest index j for which qjt ≥ 0; from the

zero profit condition we have that

wt ≥ γγ
j
tPt.

Next, consider the hypothetical case in which a new machine gets introduced, i.e. Dt > 0,

and there is also positive investment in the best available technology, i.e. Ijtt > 0. Then it

must be true that, in this particular circumstances,

qjt+1t+1

qjtt+1
= ζ−1.

Clearly this is not a generic case. In general, you either innovate (and then you do not invest

anything in any of the active technology) or you do not, and then you invest only in the most

efficient among the active technologies. You innovate when

ζqjt+1t+1 > qjtt+1
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or, more properly, we innovate in period t, i.e. Dt > 0 and Ijtt = 0, when

ζ
h
Ajt+1Pt+1 − ajt+1wt+1

i
>
h
AjtPt+1 − ajtwt+1

i
.

7. Appendix

Here we collect some algebra that is useful to understand the subtleties of the general CES

case.

First, in what sense are we modeling labor saving technological progress? Assume expo-

nential productivity parameters, and compare two technologies, j > i, along isoquants at

which they produce the same amount of aggregate output and use one unit of capital stock.

Aj
£
η + γj(Lj

t)
ρ
¤1/ρ

= Ai
£
η + γi(Li

t)
ρ
¤1/ρ

¡
Aj−i¢ρ £η + γj(Lj

t)
ρ
¤
= η + γi(Li

t)
ρ

(Aργ)j−i (Lj
t)
ρ = (Li

t)
ρ − η

γi
[
¡
Aj−i¢ρ − 1]

Capital is immobile, and investment flows only to the best available technology (in the

deterministic case), hence it is not obvious that the marginal productivity of capital should

ever be equalized across sectors. In any case, let’s compute the conditions under which capital

productivity is equalized across sectors.

¡
Aj−i¢ρ/(1−ρ) η(xjt)−ρ £η(xjt)ρ + γj

¤
= η(xit)

−ρ £η(xit)ρ + γi
¤

¡
Aj−i¢ρ/(1−ρ) γj−i(xjt)−ρ = (xit)−ρ − η

γi
[
¡
Aj−i¢ρ/(1−ρ) − 1]

Special case, in which Aj = Ai = A gives

(xjt)
−ρ £η(xjt)ρ + γj

¤
= (xit)

−ρ £η(xit)ρ + γi
¤

γj(xjt)
−ρ = γi(xit)

−ρ
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γj

γi
=

Ã
xjt
xit

!ρ

Notice that when ρ > 0 the capital labor ratio is higher in the most efficient sector, but

the opposite is true when ρ < 0.

Zero profit in investment activity has no additional implications. A unit of investment,

no matter where it is allocated, always costs a unit of consumption today, i.e. pt. Its payoff

in sector j is pt+1
∂Yt+1

∂Kj
t+1

.

Movements in labor shares.

wLj

Y j
=

LjAjγj [η(xj)ρ + γj]
(1−ρ)/ρ

AjLj [η(xj)ρ + γj]1/ρ
=

=
γj

η(xj)ρ + γj
=

1

1 + η(xj)ρ

γj

Hence, we have the two following cases

ρ > 0
1

1 + η(xj)ρ

γj

is a decreasing function of xj and an increasing function of γj, hence, for a given tech-

nology, the labor share decreases as the capital intensity increases. Recall that, at least in

principle, along an expansion the capital intensity decreases in all sectors, hence the labor

share should increase during an expansion, when ρ > 0.

When there is an innovation, i.e. a technology with higher index is adopted, then, ceteris

paribus, the labor share would increase. This suggests that, if our intuition works, right after

an innovation the capital intensity of all sectors, and of the most recent ones in particular,

should increase more than proportionally, thereby lowering the labor share of income.

ρ < 0

The opposite is true. Notice that, in this case, in order for the labor share to increase

along an expansion we would need the capital intensity to increase along an expansion. That
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is to say, employment increases but investment increases more than proportionally driving

up the labor share of income.
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