Takashi Kano¹ James M. Nason²

¹Graduate School of Economics, University of Tokyo

²Research Department, Federal Reserve Bank of Atlanta

Prepared for Macroeconomics Workshop @University of Tokyo, Tokyo, Japan November 15, 2007

Preliminary and Comments Welcome

Outline

Introduction

DSGE Models

Bayesian Monte Carlo Strategy

Results

Conclusion

Consumption Habits Solve Many Puzzles

Habits smooth marginal utility (or consumption).
Explain asset price anomalies

- Important propagation mechanism in DSGE models.
 - Hump-shaped output response to monetary shocks (Christiano, Eichenbaum, and Evans 2005, JPE)
 - Negative response of hours worked to TFP shocks (Francis and Ramey 2005, JME)

Quandary is that Habits Create ...

- Excess smoothness in consumption to technology shocks (Lettau and Uhlig 2000, RED)
- Excess volatility in the current account (Kano 2007, CIRJE-WP)

 True resolution of asset-price anomalies? (Otrok, Ravikumar, and Whiteman 2002, JME)
Habits solve asset-price anomalies depending on high-frequency fluctuations in consumption, which are insignificant part of actual US data.

Questions remain ...

What does this paper try to do?

- Evaluating the role of habits in business cycle models in a better way.
- Moments relevant and stringent for business cycle analysis.
 - Impulse response functions identified with multivariate vector processes.
 - ► Identified shocks create fluctuations in output and consumption growth at all frequency range. ⇒ Information from IRFs is contaminated by noise not interesting for business cycle analysis
 - We want to extract only low and business-cycle frequency fluctuations generated by identified shocks.
 - Idea: spectral representation of IRFs of output and consumption growth to identified permanent and transitory shocks.

What does this paper try to do?

- Why frequency domain?
 - 1. Can extract fluctuations generated by identified shocks at particular frequency range.
 - Spectral representation theorem implies that IRFs can be decomposed into orthogonal components frequency-by-frequency.

 \Rightarrow Plotting spectra of IRFs conveys correct shape of likelihood of IRF(cf. Sims and Zha 1999, Econometrica)

 Can create a nice statistic for joint test of spectral IRFs at different frequencies: quasi Kolgomorov-Smirnov goodness-of-fit statistic (cf. Cogley and Nason 1995, JEDC)

 \Rightarrow Shape of IRFs really matters for evaluating business cycle models (Vigfusson, last week's presentation)

What does this paper try to do?

- Simulate DSGE models with and without habits.
 - Real business cycle model with capital adjustment costs
 - New Keyensian monetary business cycle (NKMBC) model with Taylor rule
- Bayesian Calibration to measure fit of DSGE models (DeJong, Ingram, and Whiteman 2000 JBES, Geweke 2007)
 - ► Take into account model uncertainty, i.e., uncertainty in structural parameters, formally with prior distributions
 - Compare theoretical distributions of moments with empirical counterparts estimated by Bayesian posterior simulator
 Bayesian posterior odd ratio foundation (Geweke 2007)

$$\frac{P(A|Y^0)}{P(B|Y^0)}$$

Tentative Findings

No significant role of habits in output growth response at low and business cycle frequencies

- to a permanent shock in RBC
- to a monetary shock in NKMBC

Excess smoothness of consumption to a permanent shock in RBC

Tentative Findings

Significant interaction between habits and sticky wages in NKMBC

- Good fit of habit-NKMBC to output and consumption growth response to transitory (monetary) shock crucially depends on sticky wages.
- Without sticky wages, habits lead to the excess smoothness of consumption.

Without sticky wages, no role of habits in monetary business cycles?

Business Cycle Implications of Consumption Habit Formation $\[blue]_{DSGE Models}$

DSGE models

- RBC: Christiano and Eichenbaum (1992,AER) and Cogley and Nason (1995,AER)
 - Permanent technology shock and transitory government spending shock
 - Linear disutility of labor
 - Extended with internal habits
- New Keynesian-MBC: Christiano, Eichenbaum, and Evans (2005, JPE)
 - Nominal rigidities: sticky prices and wages
 - Real rigidities: investment adjustment costs, habit formation, capacity utilization
 - Taylor-type monetary policy rule
 - Permanent technology

RBC: consumption habits

Period utility is

$$U(c_t, c_{t-1}, n_t) = \ln(c_t - hc_{t-1}) + v(1 - n_t), \quad h \in (0, 1)$$

- Household garners utility given internal habits.
- $MU(c_t) = (c_t hc_{t-1})^{-1} \beta hE_t(c_{t+1} hc_t)^{-1}$.
- Household discount factor $\beta \in (0, 1)$.

RBC: technology

- Cobb-Douglas technology $Y_t = K_t^{\psi} (N_t A_t)^{1-\psi}$.
- ▶ TFP is random walk (with drift)

$$\ln(A_t/A_{t-1}) = \alpha + \epsilon_t, \quad \alpha > 0, \ \epsilon_t \sim N(0, \sigma_{\epsilon}^2)$$

Investment adjustment costs

$$\mathcal{K}_{t+1} = (1-\delta)\mathcal{K}_t + \left[1 - \mathcal{S}(\frac{X_t}{\alpha X_{t-1}})\right]X_t, \qquad (1)$$

where $\mathcal{S}(1) = \mathcal{S}'(1) = 0$, and $\mathcal{S}''(1) = \omega > 0$.

RBC: leisure, government, and market structure

▶ Rogerson (1988) indivisible labor supply ⇒ linear labor disutility

$$v(1-n_t)=-\zeta n_t$$

- Transitory AR(1) government spending shock, g_t
- Government budget balance period by period.
- Complete and perfectly competitive markets

NKMBC: preference and technology

From RBC model, keep internal consumption habits, investment adjustment costs, drop g_t shock.

• Alter labor disutility to
$$-n_t^{1+\frac{1}{\gamma}}/(1+\frac{1}{\gamma})$$

- Money in utility: $\ln M_t/P_t$
- Add capacity utilization, u_t , to create capital service, $K_t = u_t \mathcal{K}_t$, at cost $a(u_t)\mathcal{K}_t$ to household, where a(1) = 0 and a''(1)/a'(1) = 0.01 without uncertainty.

NKMBC: Calvo staggered price and wage mechanisms

- Monopolistic competition in goods and labor markets.
- ► Firms (households) unable to update their price (wage) index to lagged aggregate price (wage) inflation ⇒ full indexation.
- Firm updates price at prob $\mu_p \in (0, 1)$, faces price elasticity $\chi > 0$
- ► Household updates wage at prob µ_w ∈ (0, 1), faces wage elasticity θ > 1.

```
NKMBC: monetary policy
```

Interest rate-smoothing Taylor rule

$$R_{t} = \rho_{R}R_{t-1} + (1-\rho_{R})(R^{*} + a_{\pi}E_{t}\pi_{t+1} + a_{y}y_{t}) + v_{t}, \quad v_{t} \sim N(0, \sigma_{v}^{2})$$

Empirical s-IRFs of $\Delta \ln Y$ and $\Delta \ln C$

- On 1954Q1-2002Q4 sample, estimate
 - 1. VARs for RBC: $[\Delta \ln Z_t, \ln N_t], Z = \{Y, C\}$
 - 2. VARs for NKMBC: $[\Delta \ln Z_t, \Delta \ln P_t], Z = \{Y, C\}$
 - 3. Identify IRFs with long-run restrictions \Rightarrow Y (or C) responds only to TFP shock in the long run
- ► SMAs with permanent and transitory shocks \(\epsilon_{p,t}\) and \(\epsilon_{s,t}\) with unit variances

$$\Delta \ln Z_t = \sum_{k=0}^{\infty} \Gamma_k^p \epsilon_{p,t} + \sum_{k=0}^{\infty} \Gamma_k^s \epsilon_{s,t}$$

Empirical s-IRFs of $\Delta \ln Y$ and $\Delta \ln C$

▶ Spectral representation of IRF(q) at frequency $\lambda \in [0, \pi]$

$$S_{\Delta Z}(\lambda) = (2\pi)^{-1} \sum_{k=0}^{q} \sum_{l=0}^{q} \Gamma_{k}^{p} \Gamma_{l}^{p} \exp(-ik\lambda) \exp(il\lambda) + (2\pi)^{-1} \sum_{k=0}^{q} \sum_{l=0}^{q} \Gamma_{k}^{s} \Gamma_{l}^{s} \exp(-ik\lambda) \exp(il\lambda)$$

- Setting q = 20 in this presentation.
- Alternative interpretation: frequency decomposition of FEVDs
- S_{∆Z}(0) goes back to standard FEVDs of ln Z_t at 20 period forecast horizon.

Empirical s-IRFs of $\Delta \ln Y$ and $\Delta \ln C$

- Priors for Markov-chain Monte Carlo (MCMC) are VAR estimates
- Generate \mathcal{J} posterior draws.
- VAR posteriors generate empirical, *E*, s-IRF distributions of Δ ln Z_t w.r.t. permanent and transitory shocks.
- How close is each posterior draw of s-IRFs to the sample estimate counterpart? quasi Kolmogorov-Smirnov statistic (QKS) (Cogley and Nason 1995, Dzhaparidze 1986)
- Calculate QKSs for posterior draws of empirical s-IRFs and construct empirical (posterior) distribution of QKS

-Bayesian Monte Carlo Strategy

DSGE model solution

- Construct optimality and equilibrium conditions
- Stochastically detrend and linearize.
- Solve linearized RBC and NKMBC models with Sims' (2002) algorithm.

-Bayesian Monte Carlo Strategy

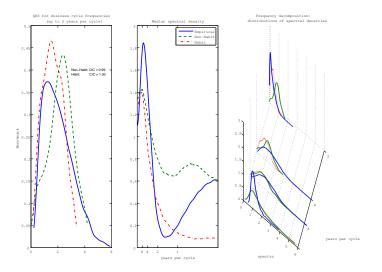
DSGE model parameters

Calibrate RBC and NKMBC models.

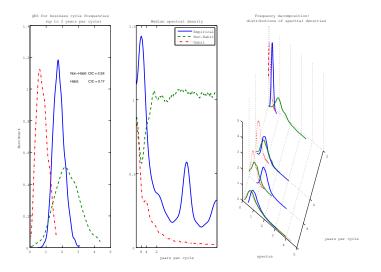
- 1. with and without consumption habits
- 2. RBC models driven by TFP and g shocks
- 3. NKMBC models driven by TFP and v shocks

 \Rightarrow theoretical long-run restrictions.

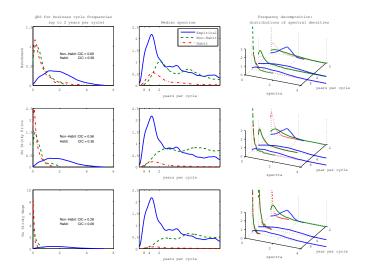
- 4. NKMBC models with and without stick price and wage.
- Sources of priors previous DSGE model studies and other aggregate data.
- Draw vectors of length $\mathcal{J} = 5000$ for parameters.


Theoretical s-IRFs distributions

- Create *J* synthetic samples of length *T* = 196 from linearized solution of DSGE models given priors of parameters.
- Estimate VARs on the synthetic samples.
- VARs provide T s-IRF distributions.
- Construct T distributions of QKS using synthetic s-IRFs and the sample estimate counterpart.


Measuring fit of DSGE models to the data

- Gauge fit of $\mathcal E$ and $\mathcal T$ s-IRF distributions
- Present median s-IRFs across ensemble of \mathcal{E} and \mathcal{T} .
- Non-parametric density plot of s-IRFs for low and business-cycle frequencies
- Measure overlap of $\mathcal E$ and $\mathcal T$ distributions of QKS
- Non-parametric density plot of QKS for low and business-cycle frequencies
- Credible interval criteria (CICs) (DeJong, Ingram, and Whiteman, 1992): CIC > 0.3 means good fit


Figure 1: s-IRF of $\Delta \ln Y$ to P-Shock: RBC

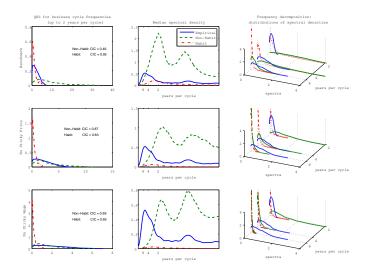

Figure 2: s-IRF of $\Delta \ln C$ to P-Shock: RBC

Figure 3: s-IRF of $\Delta \ln Y$ to T-Shock: NKMBCs

Figure 4: s-IRF of $\Delta \ln C$ to T-Shock: NKMBCs

Conclusion

- New and better statistics for evaluating DSGE models w.r.t. IRFs in frequency domain
- Habits seem to matter little in RBC model as a business cycle DGP
- Excess smoothness of consumption
- Without sticky wages, no role of habits in monetary business cycles.
- Habits likely to interact with nominal rigidities in labor market for generating good fit to business cycle moments.