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Abstract

We revisit a foundational theoretical paper in the menu cost literature, Sheshinski

and Weiss (1983), one of the few to treat stochastic inflation with persistent deviations

from trend. In contrast to the original finding, we find that optimal pricing in this

environment entails using different (s, S) bands in high-inflation and low-inflation states

of the world. The low-inflation band is strictly contained within the high-inflation band.

This revised solution has very different implications from the original one. Firms are

generally risk-loving, not risk-averse, with respect to inflation. An increase in the

variance of inflation increases price dispersion when inflation is high and decreases price

dispersion when inflation is low. On an aggregate level, this optimal pricing would lead

to bunching of prices and non-neutrality of money in the setting of Caplin and Spulber

(1987). To test the main finding, we construct an establishment-level dataset from the

months surrounding Mexico’s “Tequila crisis” in 1995. In the high-inflation state, price

increases are larger and establishments allow their prices to vary more widely around

their respective long-run mean relative prices. Cross-establishment price dispersion is

lower, but this result seems due to decreased establishment heterogeneity rather than

narrower (s, S) bands. Overall, the evidence suggests that establishments employ wider

(s, S) bands in the high-inflation state.
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1 Introduction

Price stickiness at the firm level and its implications for aggregate behavior have been ana-

lyzed extensively. Studies have examined the relationship between money growth, inflation,

and output by assuming an economy of firms following (s, S) pricing policies. Caplin and

Spulber (1987) find monetary neutrality in a simple (s, S) economy, while Caplin and Leahy

(1991, 1997) find that money can affect output or prices, depending on recent history. Dotsey

et al. (1999) and Danziger (1999) introduce shocks to firms’ menu costs and firms’ produc-

tivity, respectively, to facilitate general equilibrium monetary analysis with endogenous price

inflexibility. Golosov and Lucas (2005) incorporate firm productivity shocks along with menu

costs in a model that matches high- and low-inflation micro-data well, and find negligible

real effects of money.

Underpinning much of this literature is a micro literature, pioneered by Sheshinski and

Weiss. It establishes the optimality at the firm level of an (s, S) policy, under which a firm

allows its relative price to drift below its optimal price, to s, and then adjusts it above its

optimal price, to S. This type of policy is optimal for a firm facing a constant rate of inflation

and a fixed cost of adjusting price, as shown by Sheshinski and Weiss (1977, hereafter SW77).

The same authors have shown the (s, S) policy optimal when inflation is stochastic in the

sense that the economy alternates between two regimes, one with positive inflation and the

other with no inflation, according to two stochastic duration times (1983, hereafter SW83).

Further, the (s, S) band was found to be identical to the one the firm would choose if facing a

deterministic rate of inflation higher than the average inflation rate of the stochastic process.

In other words, there was found to be a risk-premium associated with inflation. Finally, it

was found that an inflation process with a higher variance gives rise to a wider (s, S) band.

In this paper we re-solve the model and find that a single (s, S) policy cannot be optimal

under these circumstances of stochastic inflation.1 Rather, there will be two different (s, S)

1An addendum to a reprint of SW83 in Sheshinski and Weiss (1993, p. 167) acknowledges an error might
exist, since the option of changing price upon switching to state 0 was not taken into account. It conjectures
that there are two different (s, S) bands corresponding to the two inflation rates, the zero-inflation one
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bands, corresponding to the two different inflation regimes, with the zero-inflation band

strictly contained within the positive-inflation band. When inflation stops, some firms may

find it optimal to raise their prices immediately rather than to wait for inflation to start

again and for the price to drift down further. There may also be downward adjustments

in price by firms who find themselves with a price at the high end of the positive-inflation

(s, S) band when inflation stops.

Given that firms will employ two different (s, S) bands, no equivalence can hold between

the stochastic case and the deterministic case (which involves a single (s, S) band). This

equivalence was key to the other findings of SW83; hence we assess whether these other

findings continue to hold.

The original finding that higher variance of inflation leads to wider (s, S) bands gives

way to a more nuanced picture. Here, higher variance leads to wider (s, S) bands in the

high-inflation state of the world, but more narrow (s, S) bands in the zero-inflation state

of the world. In a sense, it increases the elasticity of the (s, S) parameters to the current

inflation rate.

We also find that there is no risk-premium associated with inflation in general. Surpris-

ingly, firms often prefer a stochastic inflation process to a deterministic one with the same

average drift in prices. This is even true when the stochastic inflation process is set to start

in the high-inflation state. We conjecture this is due to the firm’s inflation-related cost being

convex in the rate of inflation. Roughly speaking, if the inflation rate doubles, the firm can

do no worse than bear double the menu costs by keeping the same (s, S) band; but it may

do better.

The dual-(s, S) band solution has a number of other implications. For example, Caplin

and Spulber (1987) show that money is neutral if firms are distributed uniformly and follow

single (s, S) bands in pricing. However, if firms price optimally and money growth is as

modeled here, money can no longer be neutral. Consider a regime switch from zero to

narrower than the other.
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positive money growth. The (s, S) bands immediately widen and some time will elapse

before any firm’s normalized price drifts down to the new, lower trigger point s. That

is, prices will not change instantaneously, and for some time, money will have real effects.

Conversely, consider a regime switch from positive to zero money growth. The (s, S) bands

narrow and a mass of firms immediately change prices upward,2 leading to negative real

effects. In this sense, the model would predict inflationary inertia and output costs when a

disinflation is enacted. In general, state-dependent (s, S) bands lead to bunching of firms,

making a uniform distribution impossible to maintain and leading to real effects of money.

A key implication of the model is that (s, S) bands are themselves state-dependent: they

vary with inflationary expectations and, under inflationary persistence, are wider during a

high-inflation regime.3 We test this by constructing a new establishment-level dataset from

before and after Mexico’s “Tequila crisis” in 1995. This event saw persistently low rates of

inflation give way nearly overnight to high rates. It thus appears to be a good match for

the model. The data are monthly prices of 44 goods, over 22 months, each good from 10-22

different establishments in Mexico City.

The data reveal increases in both frequencies and magnitudes of price adjustments after

the crisis. The result that price increases are larger provides direct evidence that (s, S)

bands widened with the rise in inflation. We also construct measures of price dispersion that

aggregate deviations from firms’ own long-run average prices rather than deviations from

other firms’ average prices. We use these in panel regression tests that are robust to firm

heterogeneity and price change synchronization. As the model predicts, these deviations

tend to be larger in the high-inflation state.

An alternative specification, similar to ones used in previous literature, involves regressing

measures of cross-establishment price dispersion on inflation in a good fixed effects model.

Results from these regressions support a seemingly opposite result: cross-establishment price

dispersion is lower in the high-inflation state. However, the model’s predictions for this

2The same kind of logic is found in Tsiddon (1991).
3This is also a prediction of the Dotsey et al. (1999) calibrated model.
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kind of price dispersion rely on homogeneity and asynchronous price changes across firms.

Our theory and data do not support these assumptions. For example, there are persistent

differences in pricing across establishments for reasons unrelated to menu costs. We find

evidence that this cross-establishment heterogeneity in pricing declined after the crisis, which

partly explains how cross-establishment price dispersion declined even though (s, S) bands

widened. Overall, the evidence suggests that the menu-cost component of price dispersion

did increase with inflation.

It is important to note that we are not testing state-dependent pricing against time-

dependent pricing, a focus of much of the recent literature. A common approach (see Klenow

and Kryvtsov, 2005) is to decompose inflation changes into changes in frequencies and mag-

nitudes of price changes, associating the former with state-dependent pricing and the latter

with time-dependent pricing. Indeed, our key findings, larger price changes and intrafirm

price variability due to higher inflation, are also predicted by time-dependent pricing mod-

els. However, one key point of this paper is to emphasize that state-dependent, and not just

time-dependent, models predict that price change magnitudes respond to changes in inflation

and inflation expectations. Further, our data do show both magnitudes and frequencies of

price adjustment responding significantly to inflation.

The paper is organized as follows. Section 2 describes the model. Sections 3.1 and

3.2 derive the key analytical results of the paper, namely that the optimal policy involves

different (s, S) bands in each state, with the low-inflation band strictly contained in the

high-inflation band. The core of the paper is section 3.3, which discusses the implications

of this revised solution. Section 4 discusses computation and presents the effects of more

variable inflation on the (s, S) bands and the effects of inflation uncertainty on firm value.

Section 5 describes the data and provides some empirical evidence. Section 6 concludes.
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2 The Model

Following SW83, we assume that there are two states of the world, or inflationary ’regimes’,

i = 0 and i = 1. In state i, the aggregate price level is increasing at constant rate ig. Thus

in state 0 a firm’s log relative price, p, is constant. In state 1, it decreases linearly with time:

pt+δ = pt−gδ. The world alternates between the two states stochastically. The length of any

sojourn in state 1 (state 0) is distributed exponentially with parameter λ1 > 0 (λ0 > 0).4

The firm’s profit per unit of time as a function of the firm’s log relative price is Π(p).

Π(p) is assumed to be continuously differentiable, strictly concave, and maximized at p∗.

Profits are discounted at rate r > 0.

The firm is assumed to observe the aggregate price level and inflation rate instantaneously.

Thus it can condition its policy on its own relative price and the inflation regime. To change

its nominal price, the firm must pay a fixed menu cost of B > 0.

The firm maximizes expected profits net of menu costs. It does so by choosing the

amount to adjust its price (including zero) at all dates and histories, inflationary regimes,

and own relative prices. Note that the exponential distribution implies constant exit rates

from each regime. The inflation process thus has the Markov property. Hence, expectations

over future inflation are invariant to the amount of time elapsed in the current state and

past inflationary history. The only relevant data for the firm’s decision are its own relative

price and the inflationary state of the world.5

Thus the firm can be said to maximize profits by choice of two functions: κ(p, i), which

equals zero if no price change takes place at relative price p in state i and one otherwise,

and p̂(i), which gives the target price for each state when a price change occurs.6 Define

τ∞ as an infinite, ordered sequence of non-negative real numbers, {τ1, τ2, ...} with τj < τj+1.

Every potential inflationary history is such a sequence where the τj’s are interpreted as

4SW83 assume only that the hazard rate for state 0 is non-increasing with time. Our assumption of a
constant hazard rate λ0 is stronger, but included in theirs.

5This history independence of the firm’s decision is the reason we strengthen SW83’s assumption by
imposing a Markov structure, i.e. a constant hazard rate in state 0.

6The target price will not depend on the current price since the firm can change to any price at cost B.
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times that the regime changes. Similarly, define T∞ as an infinite ordered sequence of real

numbers, {T1, T2, ...} with Tj < Tj+1. The Tj’s represent times at which the firm changes its

price.7 Given a sequence of regime switching times τ∞, initial relative price p0 and state i0,

and functions κ(p, i) and p̂(i), both T∞ and pt, the time path of the firm’s price, are fully

determined. Leaving this dependence implicit, one can write the value of a firm with current

relative price p0 in state i0 as

V (p0, i0) = max
κ(p,i), p̂(i)

Eτ∞

[∫ ∞

0

e−rtΠ(pt)dt − B
∞∑

j=1

e−rTj

]
. (1)

Henceforth8 we let Vi(p) ≡ V (p, i) and Si ≡ p̂(i), for i = 0, 1. Also, we let Ai ≡ {p : κ(p, i) =

1} and Ii = � \ Ai. Thus Ai is the action region for state i, and Ii the inaction region. It is

clear that for p ∈ Ai,

Vi(p) = Vi(Si) − B, (2)

for i = 0, 1. For concreteness, we assume an indifferent firm changes price.

Note that I1 must contain a convex subset of positive measure; otherwise, infinite costs

would be incurred. Let [s, p] be such a subset. Then

V1(p) =

∫ p−s
g

0

λ1e
−λ1τ

[∫ τ

0

e−rzΠ(p − gz)dz + e−rτV0(p − gτ)

]
dτ+∫ ∞

p−s
g

λ1e
−λ1τ

[∫ p−s
g

0

e−rzΠ(p − gz)dz + e
−r(p−s)

g V1(s)

]
dτ.

(3)

The first line represents the case where the regime switches at time τ before the price drifts

down from p to s, in which case the termination value is V0(p−gτ). The second line represents

the case where the regime does not switch and the termination value can be thought to be

7Price changes must occur at discrete intervals if the firm is to avoid incurring infinite costs.
8Here the expectation of some function Q(τ∞) can be written as

Eτ∞ [Q(τ∞)] =
∫ ∞

0

∫ ∞

τ1

∫ ∞

τ2

. . . Q(τ∞) . . . e−λ1(τ3−τ2)e−λ0(τ2−τ1)e−λ1τ1 . . . dτ3dτ2dτ1

when i0 = 1. When i0 = 0, the λ1’s and λ0’s are switched.
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V1(s). Changing variables to prices rather than time, carrying out an integration by parts,

and defining Ri ≡ r + λi, for i = 0, 1, gives

V1(p) = e
−R1(p−s)

g V1(s) +

∫ p

s

e
−R1(p−z)

g

[
Π(z) + λ1V0(z)

g

]
dz. (4)

Taking the derivative, whose existence is addressed in lemma 1 below, gives

R1V1(p) = Π(p) + λ1V0(p) − gV ′
1(p) (5)

for p in the interior of I1.

A similar approach can be taken with state 0. The expression analogous to equation 3 is

simpler since there is no drift in price. For any p ∈ I0,

V0(p) =

∫ ∞

0

λ0e
−λ0τ

[∫ τ

0

e−rzΠ(p)dz + e−rτV1(p)

]
dτ =

Π(p) + λ0V1(p)

R0
.

Rearranging gives

R0V0(p) = Π(p) + λ0V1(p). (6)

3 The State-Dependent Solution

3.1 Preliminary Results

As a preliminary step, we show continuity and differentiability of both state’s value functions.

Lemma 1. The value functions V0(p) and V1(p) are continuous. Both state’s inaction regions

consist of one or more disjoint, open intervals. V1(p) is differentiable everywhere except

(potentially) at boundary points of A1. V0(p) is differentiable everywhere except (potentially)

at boundary points of A0 and A1.

Proof. See Appendix A.
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Continuity comes essentially from the value functions being the maximum of two contin-

uous functions, corresponding to the values of inaction and action. Differentiability in state

1 comes from continuity, interestingly, of the profit function and the state-0 value function.

Differentiability in state 0 comes from differentiability of the profit function and of the value

function in state 1. Next we establish differentiability on any lower boundary of I1, that is,

the familiar smooth pasting condition.

Lemma 2. (Smooth Pasting) If at price s there exists an ε > 0 such that (s, s+ ε) ⊂ I1 and

(s − ε, s) ⊂ A1, then V ′
1(s) = 0.

Proof. Note that equation 4 with p = s+ε/2 applies. Optimality implies that varying the

inaction region boundary s either up or down should not improve firm value at p. Consider

such a temporary variation, that is, increasing s marginally but reverting back to the original

s after either the regime changes or a price change is made. The resulting change in value

is, using equation 4,9

∂V1(p)

∂s
= 0 = e

−R1(p−s)
g

[
R1V1(s) − Π(s) − λ1V0(s)

g

]
. (7)

Combining this with equation 5 gives that limp↓s V ′
1(p) = 0. We also know from equation 2

that limp↑s V ′
1(p) = 0.

We next show that the optimal policy is indeed of the (s, S) form, though perhaps a

different one for each state. Equivalently, we show each inaction region is convex, consisting

of a single interval. This follows from the concavity of the profit function.

Lemma 3. For i = 0, 1, inaction region Ii equals (si, Ni), with si < p∗ < Ni.

Proof. See Appendix A.

The proof starts from the fact that each inaction region is a collection of disjoint, open

intervals. It then takes an arbitrary one for each state and uses the shape of the profit

9The change in s does not affect V0(z) in equation 4 since it is ignored after a regime switch. It does not
affect V1(s), since this equals V1(S1) − B, which is unchanged since the change in s is ignored after a price
change.

9



function to show that the interval’s lower bound must be below p∗ and its upper bound must

be above p∗. This proves there is a single such interval for each state, with p∗ contained.

Thus the optimal policies are indeed (s, S) policies, though possibly state-dependent.

The value functions satisfy continuity and differentiability except at some boundary points,

and smooth pasting holds at s1. Next we examine how optimal pricing compares across

inflationary regimes.

3.2 Relative location of parameters

The restrictions imposed by optimality, value matching, and smooth pasting are sufficient

to establish almost completely the relative locations of (si, Si, Ni), i = 0, 1. The relative

location of S1 and N0 is the one fact that depends on parameter values.

In models with monotonic downward drift in prices, the upper boundary of the inaction

region (Ni here) is typically irrelevant. This is because prices only move upward when

changed to the target price Si, less than Ni. Here, N0 may figure into long-run behavior.

Computation (see section 4) shows that sometimes N0 < S1. In this case, a downward price

change occurs when state 1 gives way to state 0 and the price is in (N0, S1).

To illustrate, examples of relative price paths of a firm following an optimal policy are

graphed in Figure 1. In state 1, the relative price drifts down with inflation, while in state

0 it remains flat. In the first example, S1 < N0. Since the price will be contained within

[s1, S1], there will be no downward price adjustments. The only adjustments possible are

from s1 to S1 in state 1 (as occurs in the graph just before t = 4) and from anywhere in

(s1, s0] to S0 in state 0 (as occurs just before t = 10). In the second example, N0 < S1,

and there can be downward adjustments if the firm finds itself with a price too high when

inflation stops (as occurs in the graph just after t = 4). All the price adjustments of the

previous case are possible, in addition to adjustments from anywhere in [N0, S1) to S0 in
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Figure 1: Sample price paths when S1 < N0 and when N0 < S1.

state 0. The following assumption is sufficient (not necessary) to guarantee that S1 < N0:

1

λ1

+
1

R0

≤ B

Π(p∗)
. (A1)

Proposition 1. The inaction region of state 0 is fully contained in the inaction region of

state 1, and (s0, S0) ⊂ (s1, S1). Specifically, s1 < s0 < p∗ < S0 < S1, N0 < N1. Under the

additional assumption A1 and supposing the firm has a (weakly) positive net present value

in state 1, S1 < N0.

Proof. By lemmas 4-7 below.

Lemma 4. Each state has a unique target price Si, with p∗ < S0 < S1.

Proof. See Appendix A.

The uniqueness of each state’s optimal prices comes from the concavity of the profit

function. The fact that S1 > p∗ is due to the downward drift in prices, which makes it
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appealing to overshoot the optimal price. Finally, it is not surprising that S0 ∈ (p∗, S1).

This is clear from equation 6, which shows the tradeoff between current profits, which would

push the choice toward p∗, and the value when inflation starts again, which would push the

choice toward S1.

Lemma 5. s1 < s0.

Proof. We show below that state-0 value attains a strictly higher maximum than

state-1 value: V1(S1) < V0(S0). Since changing price is always an option, we know that

V0(s1) ≥ V0(S0) − B. Note also that V1(s1) = V1(S1) − B. Combining these facts gives

V0(s1) > V1(s1). We show next that s1 ≥ s0 implies V0(s1) = V1(s1), a contradiction.

Assume s1 ≥ s0. Then s1 is on the boundary or in the interior of both states’ inac-

tion regions. Thus the inaction region value functions 5 and 6 apply at s1. Solving them

simultaneously and using smooth pasting gives that V0(s1) = V1(s1).

Finally, we show V1(S1) < V0(S0). Define v0(S1) as the value in state 0 of remaining at

price S1 until the regime changes, and following the optimal policy thereafter. Of course,

V0(S1) ≥ v0(S1). The same reasoning leading up to equation 6 gives that R1v0(S1) =

Π(S1) + λ0V1(S1); thus

R1V0(S1) ≥ Π(S1) + λ0V1(S1).

Together with equation 5 and optimality condition V ′
1(S1) = 0, this implies V1(S1) ≤ V0(S1).

Finally, V0(S1) < V0(S0) since S0 is the unique optimizer in state 0 (lemma 4).

Note that this holds for any parameter values λ0, λ1, and g. Thus there will always be a

range of prices from which a firm will choose to switch when state 1 gives way to state 0.

Lemma 6. N0 < N1.

Proof. See Appendix A.

Thus the state-0 inaction region is fully contained within the state-1 inaction region:

(s0, N0) ⊂ (s1, N1). Of course, in the long run the firm’s price is contained within (s1, S1),
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which strictly contains (s0, S0). It may contain even (s0, N0), in which case downward price

changes may occur. Sufficient condition A1 rules this out.

Lemma 7. Under assumption A1 and if the firm has a (weakly) positive net present value

in state 1, S1 < N0.

Proof. See Appendix A.

Condition A1 is intuitive. The left-hand side is roughly equivalent to the sum of expected

durations in each state of the world, 1/λi. The right-hand side is the menu cost relative to

potential profit flows. Thus as long as the inflationary states are transitory enough, relative

to the normalized menu cost, there will be no downward price changes. Highly transitory

regimes make the two (s, S) bands similar, as firm pricing policy is based more on the average

drift in prices rather than the current drift.

3.3 Discussion

The fact that the (s, S) bands vary with the inflationary state of the world has potentially

significant implications. Most directly, there is no simple correspondence between the firm’s

behavior under this stochastic inflation process and under a simpler deterministic inflation

process. This contrasts with the finding in SW83. Since the comparative statics of SW83

are based on this finding, the questions addressed there are re-opened. In particular, how

does more variable inflation affect firm pricing? We address this in section 4.

A second direct implication of the solution here is that forward-looking firms do indeed

allow their prices to vary more widely in a high-inflation environment (with persistence).

This implication was plausible after SW77, which established that a firm facing a higher

deterministic rate of inflation would allow its price to vary more widely. To take SW77 to

time series data, however, would involve assuming that firms are always surprised by a change

in the inflation rate and believe the current one will last forever. SW83 moved in a crucial

direction by introducing a stochastic inflationary process, for which firms fully account in
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their pricing. Taking this model to the data could thus be done with greater confidence.

However, the implication of a wider band in a high-inflationary period was lost: firms were

found to use the same (s, S) band whether inflation was high or low. The solution here

resolves this tension and restores the implication of wider dispersion under higher inflation

to solid theoretical footing. We test it in section 5.

Related to this, under the original solution of SW83, higher inflation (i.e. a regime

change) results in greater frequencies of price adjustment but no change in magnitudes of

price adjustment, due to the single (s, S) band. An association of state-dependent pricing

with frequencies of adjustment as the key margin, and time-dependent pricing with magni-

tudes of adjustment as the key margin, (as in Klenow and Kryvtsov, 2005) would thus be

well-founded. However, as our solution here shows, state-dependent pricing does indeed pre-

dict a positive correlation between inflation and magnitudes of price adjustment, since the

(s, S) bands widen with inflation. On the other hand, the correlation between inflation and

frequencies of price adjustment is not entirely clear here and may well be negative: prices fall

faster but have further to fall. In fact, in the related non-stochastic case of SW77, restric-

tions on the profit function were necessary to ensure that the frequency of price adjustment

increased with inflation; they produce an example in which inflation rises but frequency of

price adjustment falls due to (s, S) band widening. These results and ours suggest it is

not a general conclusion that changes in frequencies of price adjustment predominate under

state-dependent pricing.10

The solution here also adds some complexity to the empirical implications of (s, S) pric-

ing. For example, Eden (2001) summarizes, tests, and rejects three implications of (s, S)

pricing, two of which hold under the solution of SW83 but none of which hold here. The

first implication cited is that the magnitude of price changes should equal the amount the

10On the other hand, Klenow and Krytsov (2005) do show that frequencies of adjustment are predominant
in the state-dependent pricing model of Dotsey et al. (1999) as originally calibrated. This may be due,
however, partly to the specific parametrization of the profit function and the distribution of menu costs.
Other state-dependent models show different results. For example, Golosov and Lucas (2005) find a high
importance of magnitudes of price adjustment in their state-dependent model; however, in their case it may
be driven primarily by the idiosyncratic firm shocks rather than the (s, S) band changes we stress here.

14



real price has eroded since the last price change. This is true if firms always adjust to the

same S, but not if their target prices vary by state, as they do here (S0 < S1). The second is

that price jumps are equal across time in one-sided (s, S) settings. In the solution here, the

size of the price jump increases with the current rate of inflation. The third is that the level

of the real price after a change does not depend on whether the price was raised or lowered.

Here, a downward change can only happen when inflation is low (i.e. 0) and thus the target

price (S0) is low, while upward price changes can occur under either rate of inflation and thus

the target price may be high or low (S0 or S1). Indeed, Eden (2001) finds that downward

changes result in lower real prices than upward changes.

There are implications for macroeconomic models as well. These can best be understood

in the setting of Caplin and Spulber (1987), who consider a continuous money growth process

in continuous time, as we do.11 If money growth follows the stochastic process assumed

here and firms follow the optimal, regime-dependent (s, S) policies, then money will not be

neutral. To see this, consider starting in the zero-money-growth regime. When the regime

gives way to the positive-money-growth regime, the (s, S) bands will immediately widen.

There will be an interval of time with no price changes, long enough for the lowest normalized

price to drift down from s0 (or above it) to s1. Thus at the beginning of inflationary periods,

all money growth would translate into real effects.12

Consider now a disinflation in which money growth is halted. The (s, S) bands shrink

and a mass of firms now find themselves outside the inaction region (between s1 and s0) and

change prices upwards.13 That is, there would be a burst of inflation in response to the slower

money growth, and a concomitant real contraction.14 This case holds when S1 ≤ N0, in which

11It is the money supply that evolves stochastically in Caplin and Spulber (1987), as compared with the
aggregate price level here.

12Of course, monetary neutrality does hold if firms use a single (s, S) band, which is the case considered
by Caplin and Spulber (1987).

13The intuition here is similar to that of Tsiddon (1991). Almeida and Bonomo (2002) also discuss the
effect of a shrinking (s, S) band after a disinflation.

14In Burstein’s (forthcoming) framework, the sticky price model does not produce inertial inflation and
negative real effects, while the sticky plan model – in which firms can pay a menu cost to choose all future
prices – does. Of course, the conjecture we outline here would have an instantaneous, not protracted, burst
of inflation; this is in contrast with his sticky plan model.
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case there would be no price decreases. However, if the reverse condition holds, then there

will be some price decreases (from firms between N0 and S1) as well as price increases. The

decreases could mitigate or even cancel the inflationary burst and the negative real effects.

The case with counterbalancing price decreases is more likely the greater is the disinflation

(g) and the more credible it is (λ0 near zero), since these accentuate the differences in the

(s, S) bands and make N0 < S1 more likely to hold. This is in line with the view that large

and credible disinflations may be less costly than small ones.

More generally, the solution in this paper gives rise to endogenous bunching of firms. In

fact, if firms are identical (except in initial prices), it appears to give rise to a degenerate

distribution of prices in the long run. This conjecture is based on the following reasoning.

First, when two firms reach the same price, they stay at the same price forever. Second,

all firms that end up in (s1, s0] when inflation stops change to the same price, S0. Thus

the distribution will ‘eventually’ be a finite number of spikes. Third, any two spikes will

‘eventually’ be in (s1, s0] together when inflation stops.15 Only one spike remains in the end.

Of course if s0 is close to s1, the degeneracy will be a long time in coming. Further, the

degeneracy would not survive the kind of randomization introduced in Caplin and Leahy

(1991). On the other hand, it is clear that a uniform distribution of firms will not last even

with such randomization. The fact remains that there is a force for bunching of firms in the

solution proposed here.16 Bunching in turn will cause money to have real effects at times,

though presumably not in an easily tracked pattern.

The solution proposed here also suggests a key (conjectural) condition for a single (s, S)

band to be inadequate: persistence in the stochastic element of inflation (or of the money

supply). If the future of inflation always looks the same regardless of present or past inflation,

15This might not be true if any two spikes remained at the same distance from each other indefinitely.
But there is random variation in the distance between any two spikes due to state-0 price changes.

16Bunching here does not seem to be an artifact of the discontinuous changes in inflationary expectations,
which give rise to discontinuous changes in (s, S) bands. It is hard to imagine a uniform distribution being
preserved even if the bands change continuously over time. This would require that as the width of the band
shrank, say, firms would be re-distributed evenly over the whole remaining band; but in general, they will
be switching to an area near the top of the band.
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a firm need never change its (s, S) band. This holds true if inflation is constant or if prices

follow a random walk or Brownian motion, with or without drift. These are the cases

most common in the literature. On the other hand, if the inflationary future looks different

depending on current or past inflation, (s, S) bands will themselves be state-dependent.

In the SW83 model there are exactly two inflationary outlooks, with the current rate of

inflation summarizing all helpful information. This gives rise to two (s, S) bands. More

general models may be much more complicated. But whether a single (s, S) band is a good

approximation seems to hinge on the persistence of inflation, an issue which can be addressed

empirically.17

We note finally that consistent aggregation does not result from the solution here. That

is, the sum of firms’ pricing decisions does not replicate the inflation process to which they

are responding.18 Aggregation is possible if a single (s, S) band is used, as Caplin and

Spulber (1987) have pointed out. However, assume firms use the optimal, regime-dependent

(s, S) bands. As inflation stops, there is a burst of upward price changes: all firms that find

themselves in (s1, s0] change upward to S0. This would mean that inflation jolted forward

also, a contradiction to its having stopped. Conversely, any time inflation restarted, all firms

would initially have prices higher than s0; there would thus be no price changes for some

interval of time as the lowest prices drifted from above s0 down to s1, a contradiction to

inflation’s having restarted.

4 Computation

Here we derive a system of equations and conditions that allow computation of the key

parameters. The results of section 3 allow us to express the value functions in terms of a

17Estrella and Fuhrer (2002), among others, show that the impulse response of U.S. inflation to nominal
and real shocks exhibits persistence. Some argue that inflation persistence is not inherent in an economy
but varies significantly with the credibility and policies of the monetary authority. See the discussion and
references in Erceg and Levin (2003), for example.

18Recall that firm profits in this paper depend on the firm’s price relative to the aggregate price level. If
instead profits depended on the firm’s price relative to the money supply, as in Caplin and Leahy (1991),
this aggregation question would not be an issue.
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boundary and the profit function only. In particular, proposition 1 establishes that (s0, N0)

is a subset of both states’ inaction regions. Thus equations 5 and 6 both apply on this

interval. Solving them simultaneously gives

rV1(p) = Π(p) − g1V
′
1(p) (8)

and

rV0(p) = Π(p) − g0V
′
1(p) = Π(p) + (g1/R0)Π

′(p) − g1V
′
0(p), (9)

where g1 ≡ g(r + λ0)/(r + λ0 + λ1) and g0 ≡ gλ0/(r + λ0 + λ1).

These equations allow for interesting non-stochastic interpretations of the value functions.

Equation 8 is exactly the value function for a firm facing a constant rate of inflation g1 forever.

Note that g1 is higher than the asymptotic average rate of inflation, g ≡ gλ0/(λ0+λ1). This is

not due to induced risk aversion,19 but since it applies to a firm starting in the high-inflation

state. This interpretation is corroborated in the fact that g1 is the expected discounted

inflation rate conditional on starting in state 1, and similarly for g0 in state 0.20

Differential equations 8 and 9 have the following solutions, valid over the common inaction

region and its boundaries, [s0, N0]:

V1(p) = e
−r(p−s0)

g1 V1(s0) +

∫ p

s0

e
−r(p−z)

g1
Π(z)

g1

dz, (10)

and

V0(p) = e
−r(p−s0)

g1 V0(s0) +

∫ p

s0

e
−r(p−z)

g1

[
Π(z)

g1
+

Π′(z)

R0

]
dz. (11)

State-1 value over (s1, s0] and [N0, N1) looks different. For every p in these intervals,

19The solution of SW83 can be derived from imposing optimality, value matching, and smooth pasting on
equation 8. In that solution g1 has a natural interpretation as the certainty equivalence rate of inflation,
and it appears that uncertainty widens the (s, S) band of the firm. But different parameter values would
be found if the same conditions were applied to equation 9 rather than 8. That is, a different (s, S) band
would be derived if value conditional on starting in state 0, rather than in state 1, were maximized.

20Specifically, g1 = E[
∫ ∞
0

re−rtπ(t)dt| i0 = 1] and g0 = E[
∫ ∞
0

re−rtπ(t)dt| i0 = 0], where π(t) = gi(t) is
the rate of inflation.
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V0(p) = V0(s1), since s1 and these prices are all in the state-0 action region. Using this fact,

smooth pasting, and equation 5, we can write the following differential equation:

R1[V1(p) − V1(s1)] = Π(p) − Π(s1) − gV ′
1(p),

which applies over (s1, s0] and [N0, N1). The solution over (s1, s0] is

V1(p) = V1(s1) +

∫ p

s1

e
−R1(p−z)

g
Π(z) − Π(s1)

g
dz (12)

and over [N0, N1) is, since V1(s1) = V1(N1),

V1(p) = V1(N1) −
∫ N1

p

e
−R1(p−z)

g
Π(z) − Π(s1)

g
dz. (13)

Equations 10-13 completely describe the value functions for both states in their respective

inaction regions. The value in action regions is given by equation 2. Given a profit function,

we can solve for the six parameters (s0, s1, S0, S1, N0, N1) and boundary value V1(s0) (from

which V0(s0) is known given equation 6). This is done using seven conditions imposed on the

equations above and others: V ′
i (Si) = 0, i = 0, 1; V ′

1(s1) = 0; Vi(Si) = Vi(si) + B, i = 0, 1;

and Vi(Si) = Vi(Ni) + B, i = 0, 1.

4.1 Effect of Inflation Variability on Pricing

Figure 2 shows what happens to (si, Si, Ni), i = 0, 1, as the λi’s decrease. Note that a

decrease in the λi’s prolongs the expected stay in each state. It also represents a mean-

preserving increase in the variance of inflation, as long as the ratio λ1/λ0 is held constant,

as SW83 show.

In the original solution, the result was that higher variance of inflation widened the

single (s, S) band (since this increases g1). Here, the result is state-dependent: a mean-

preserving increase in inflation variability tightens the low-inflation state bands and widens
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Figure 2: Higher inflation variability, captured by lower λi’s, widens the state-1 inaction
region and tightens the state-0 inaction region.

the high-inflation state bands. In particular, for high λi’s, the parameters are quite similar

across states and approximately equal to the parameters of a firm facing deterministic rate of

inflation equal to the asymptotic average, g = gλ0/(λ0 +λ1) (the dashed lines in Figure 2).21

As the λi’s decrease, persistence increases, and the parameters become more different across

states. As intuition would suggest, the state-1 parameters approach those of a firm facing

deterministic rate of inflation g (the dash-dotted lines in Figure 2) and the state-0 parameters

approach those of a firm facing deterministic rate of inflation 0 (the dotted lines in Figure 2).

The results suggest that the more variable inflation, the greater the elasticity of the (s, S)

bands to the current rate of inflation. However, the structure of uncertainty in this model

links inflation variability with the persistence of inflation. This link may not hold in other

specifications of uncertainty. For example, it would be interesting to see the relationship in

the current setting augmented with i.i.d. shocks to each state’s inflation rate.

21These and other parameters from the problem with deterministic inflation rate q (solved by SW77) are
found by imposing optimality, value matching, and smooth pasting on the equation rV (p) = Π(p)− qV ′(p).
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The results also make clear that setting N0 < S1 is sometimes optimal. Thus firms

may lower their prices even though aggregate prices are monotonically increasing. Quite

intuitively, if the persistence of inflation is strong enough, firms may find benefit in reducing

their prices toward the optimal price when inflation stops.

4.2 Effect of Uncertainty on Firm Value

Value functions are graphed (using solid lines) in Figure 3. The left panel corresponds to

λ0 = λ1 = 1, the right panel to λ0 = λ1 = 1/4; all other parameters for both panels are the

same as for Figure 2. Also graphed (using dash-dotted lines) are the average of the value

functions. This corresponds to the expected value of being at price p, not knowing the state,

but with the probability of being in each state equal to the asymptotic expected fraction of

time spent there.22 We also graph (using dashed lines) the value of a firm facing deterministic

inflation equal to the asymptotic average of the stochastic process, g = gλ0/(λ0 + λ1).

Interestingly, in both examples, the expected value of the firm under stochastic inflation is

higher than the value under the corresponding deterministic inflation rate. More remarkably,

it is higher even when starting in the high-inflation regime. Evidently, the prospect of having

zero-inflation spells in the future more than compensates for the current high rate of inflation.

This effect gets stronger, not weaker, as the λi’s decrease from 1 to 1/4 making inflation more

persistent (and variable). It must be that the prospect of having longer zero-inflation spells

in the future more than compensates for the prospect of having longer to endure in the

current high inflation regime.

This effect is non-monotonic. As the λi’s approach zero, the value function in state

i converges to that of a firm facing deterministic drift ig, i = 0, 1. In this case, V0(p)

would typically be above, and V1(p) below, the value of a firm facing deterministic drift

g ∈ (0, g). In these cases too, most computational results place the expected value from the

stochastic case everywhere higher than the value of deterministic drift g. In fact, in nearly

22Specifically, the asymptotic probability of being in state 1 is (1/λ1)/(1/λ1 + 1/λ0) and of being in state
0 is (1/λ0)/(1/λ1 + 1/λ0). When λ0 = λ1, each probability is 1/2.
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lines), compared to firm value under constant inflation g equal to the average inflation in
the stochastic case (dashed lines). All parameters except λ0 and λ1 are the same in both
panels.

all parameterizations we try, the expected value of the stochastic case is higher than the

value of deterministic drift g. The only exceptions we found are when the λi’s are high, in

which case all value functions are nearly the same; and when g is near zero.

For robustness, we turn to the deterministic model of SW77. We compute the value of

a firm at its optimal price, as a function of the deterministic drift rate g: V [S(g); g]. The

value is decreasing and, as the above results would suggest, nearly everywhere convex in g;

see Figure 4. The only exception is a concave portion near zero inflation;23 24 for the above

23It is not surprising that the value V [S(g); g] is concave at g = 0. It reaches a global maximum at g = 0,
since no drift is better than inflation or deflation. Relatedly, we know from SW77 that V [S(g); g] = Π[S(g)]/r.
Thus dV/dg = S′(g)Π′[S(g)]/r. Since S(0) = p∗, dV/dg must be zero at g = 0.

24Interestingly, firms are risk-averse over low levels of inflation, but risk-loving over high levels of inflation.
If the range of inflation leading to risk aversion is non-negligible, this may imply that firms in low-inflation
countries hedge against inflation more than firms in high-inflation countries.
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parameters, the concave portion only appears for inflation less than 0.3% (detectable in the

right panel of Figure 4). Thus in general, a firm would rather have a 50/50 lottery between

facing g1 forever and facing g2 forever than face (g1 + g2)/2 forever.

These menu cost models generate risk-loving preferences with respect to inflation. The

intuition appears to be as follows. If the drift rate doubles, the firm can always simply

pay twice as much in menu costs over time, by keeping the same (s, S) band.25 But it can

do better by substituting between paying higher menu costs and accepting lower profits by

widening its (s, S) band. Thus higher inflation lowers firm value, but in a convex way.

25This ignores discounting, but the basic thrust holds under discounting as well.

23



5 Empirical Results

5.1 Mexican Price Data and Main Results

There are several straightforward predictions of the model. First, price changes are larger in

the high-inflation state of the world. Prices are adjusted from s1 to S1 in the high inflation

state and from somewhere in (s1, s0] to S0 in the low-inflation state, and Proposition 1

establishes that s1 < s0 < S0 < S1. Second and relatedly, firms allow their relative prices

to vary more widely in the high-inflation state. A firm’s price will be contained (eventually)

within (s1, S1] in the high-inflation state. In the low-inflation state, it will be within (s0, S1]

if S1 < N0 or within (s0, N0) if N0 < S1. Since s1 < s0, the range of observable prices in the

high-inflation state is wider than the range of prices in the low-inflation state.

Clearly, no real-world scenario fits the model’s framework perfectly. For example, infla-

tionary processes and expectations are not as simple as our two-state case with constant

hazard rates, and low-inflation regimes rarely involve zero inflation as in the model. How-

ever, some scenarios are better candidates than others. The best case for finding evidence

of the model’s predictions would involve a large and sudden change from one persistent rate

of inflation to another, and a public signal or event leading to a rapid shift in inflationary

expectations. By contrast, small or transitory changes in inflation and inflationary expecta-

tions would not change the (s, S) bands by much, potentially leaving the model’s predictions

hard to detect in the data.

Hence we turn to the Mexican ‘Tequila’ crisis of early January 1995. In line with the

model’s framework of inflation regime alternation with constant exit probabilities, Mexico

had seen periodic spells of high inflation, but the timing of this currency crisis was a relative

surprise. It led to 52% inflation in 1995, the year after the crisis (and 28% in 1996), as

compared with 7% in 1994, the year preceding the crisis (and 8% in 1993). Table 1 shows

monthly inflation rates, πt, in 1994 and 1995, based on the aggregate consumer price index

(CPI), Pt. In light of the apparent large inflationary shift, we consider 1994 to be in the
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low-inflation regime and 1995 to be in the high-inflation regime.

[Table 1 about here]

Our raw Mexican micro price data, obtained from the Mexican Central Bank and hard-

copy editions of “Diario Oficial”, include all the establishment-level monthly prices used to

compute the Mexican CPI, from January 1994 to October 1995.26 From these, we chose a

subset of goods, and establishments per good, as follows. We restricted attention to prices

in Mexico City, the state with the most observations, for purposes of uniformity. Next, we

eliminated all goods that did not have at least 14 observations with the exact same detailed

product description in March 1995, the one month in our sample that included detailed

product descriptions.27 Since Mexican CPI sample sizes expanded during this period but

before March 1995, we finally eliminated all goods that did not have at least 10 of these

identical-product establishments represented in all 22 months. We were left with 44 goods,

each with 10-22 price observations on products with identical descriptions for each of 22

months. Henceforth ‘firm’ is used in place of ‘establishment’.

The goods are listed in Appendix Table A1 along with the number of firms per good.

Table 1 also reports monthly inflation calculated using these 44 goods. In comparison with

CPI inflation, it has more between-month variability mainly due to a smaller sample of

goods, but matches annual CPI inflation fairly well.

Using this set of goods, we first examine how price change frequencies and magnitudes

changed with the spike in inflation. For both, we distinguish between price changes and price

26We have data on November and December 1995 also. However, all prices for all the goods we use are
exactly the same in November 1995 as in October 1995. We take this to be data error, and drop November.
We drop December also since this eliminates the need to make several judgment calls, including about price
change magnitudes and frequencies.

27Even within a good, the exact product sampled may vary. For example, the good ’tequila’ had price
samples from different brands, specifications, and quantities. (All prices are converted to a unit price,
so quantity is important only if pricing is non-linear.) We took only subsets from each good with identical
descriptions in all dimensions. For example, of the 26 observations on tequila, we end up with 14 observations,
all brand ’Sauza’, specification ’blanco’ (white), and quantity of 1L. From a couple of goods, we end up with
two different sets of products. For example, the good ’table wine’ yields two different comparable sets of
prices, for red and white wine, respectively. The exceptions to identical descriptions are when the variation
in quantity was less than 10% (e.g. 940mL vs. 1L) and different shapes of pasta.
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increases, since the model would predict only price increases.28 Let Fjt (F+
jt ) be the fraction

of firms selling good j that changed (increased) their price from time t − 1 to t. For each

good, time-average frequencies of price changes and increases in 1994 and 1995 are provided

in Appendix Table A1. On the whole, the frequencies are a bit higher than those reported

by Bils and Klenow (2004) for 350 categories of goods and services in the U.S. during the

period 1995-1997.29 Similarly, let Mjt (M+
jt ) be the average percentage price increase among

those firms selling good j that changed (increased) price from time t − 1 to t. For these

variables, panel data become unbalanced since price change magnitudes are not observed if

no firm changes price of a given good in a given month. Average magnitudes of price changes

and increases are reported for each good in Appendix Table A1.

[Table 2 about here]

Table 2 reports the results of panel regressions, with good-specific fixed effects, of fre-

quency and magnitude on a high-inflation regime dummy, Dt, which equals 1 if the month

is in 1995. For all cases, the coefficients on the high-inflation regime dummies are signif-

icantly positive.30 Price increases (F+
jt and M+

jt ) are nearly eighty percent more frequent

and nearly twenty percent larger, on average, in the high-inflation regime. Results for price

changes (Fjt and Mjt) fit this pattern qualitatively but differ quantitatively mainly due to

the non-negligible number of price decreases in 1994. Thus, the difference in frequencies of

price changes across regimes is not as drastic as that of price increases, while the magnitudes

are more different across regimes due to the negative changes in 1994.

Focusing on the price increase results, we find support for the first prediction of the

28The model allows for price decreases when inflation stops but not when it spikes upward, as is the case
here.

29Of course, inflation was significantly lower in the U.S. than in Mexico during the respective periods. In
addition, as Gagnon (2006) points out, there is an upward bias in the frequency numbers due to the fact that
the price quotes are monthly averages. See Gagnon (2006) for a filter to eliminate this bias and for further
analysis spanning eleven years of Mexican price data, including decomposition of inflation into frequencies
and magnitudes of price changes.

30All regression tests in the paper are based on heteroskedasticity and autocorrelation robust standard
errors for the fixed effects panel model (see Arellano, 1987). Similar results (not reported) are obtained using
standard errors with the homoskedasticity assumption.
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model. Had (s, S) bands not changed across regimes, all the inflation would come from

increased frequency of price adjustment; however, a positive amount is coming from increased

magnitudes of adjustment.

We next examine the second prediction, that firms allow prices to vary more widely when

inflation is high. This is done by computing firm-specific long-run mean relative prices, and

creating from them measures of dispersion that aggregate deviations from firms’ own average

prices rather than from other firms’ average prices. The advantage of these measures is that

according to the theory, they should increase with inflation regardless of heterogeneity or

price synchronization across firms.

For each firm i, good j, and month t, the relative price is calculated as the firm price

divided by the aggregate price index: pijt = Pijt/Pt. The firm mean relative price is then

calculated over the 22 months: pij =
∑

t∈1994,1995 pijt/22. Regime-specific mean relative

prices are also calculated: pij,94 =
∑

t∈1994 pijt/12 and pij,95 =
∑

t∈1995 pijt/10. One can

interpret these pij ’s as estimates of the midpoints of firms’ (s, S) bands. If the (s, S) bands

have different midpoints across inflationary regimes, then using regime-specific pij ’s is the

preferred approach.

We let δijt = (pijt − pij)/pij denote the percentage deviation of firm i’s price in period t

from its own long-run relative price. The following measures of dispersion are then calculated:

(1) the mean squared deviation across firms: MSDjt = 100×
√∑

i δ
2
ijt/

∑
i 1; (2) the mean

absolute deviation: MADjt = 100 × ∑
i |δijt|/

∑
i 1; (3) the range of deviations: Rjt =

100 × (maxi{δijt} − mini{δijt}); and (4) the interpercentile range based on the difference

between the 90th and the 10th percentile deviations: IPRjt = 100×(Q90i{δijt} − Q10i{δijt}).
While the first two are more common measures of dispersion, we also consider the latter two

since the literal prediction of the model involves a widened range. Also, note that MADjt and

IPRjt should reduce the effect of outliers relative to MSDjt and Rjt, respectively. Finally,

each of these measures can be calculated using either firms’ regime-specific mean relative

prices, pij,94 and pij,95, or firms’ regime-invariant mean relative prices, pij. This leaves eight
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measures.

[Table 3 about here]

Table 3 shows the results of panel regressions, with good-specific effects, of all dispersion

measures on the regime dummy Dt or the aggregate monthly inflation rate πt. Each entry

represents one regression. The results with positive coefficients suggest that firms’ distances

from their own mean relative prices are higher when inflation is higher.

When regime-invariant mean relative prices (pij) are used in the dispersion measures,

all coefficients on both the regime dummy and the aggregate inflation rate are positive and

significant. In the high inflation period, within-firm price variability increases by 2.5 percent-

age points on average for the first three dispersion measures, and by less than 2 percentage

points on average for IPRjt. In addition, a 1 percentage point increase in aggregate monthly

inflation implies a 0.1-0.5 percentage point increase in price dispersion. When regime-specific

mean relative prices (pij,94 and pij,95) are used, somewhat weaker evidence is obtained for

the range measure Rjt. Coefficients on the regime dummy and aggregate inflation are not

significantly different from zero. For the other three measures, however, the results are qual-

itatively and quantitatively similar to the regime-invariant mean relative price case. Among

all four dispersion measures, the most consistently positive and significant measure is the

IPRjt, which focuses directly on the width of the (s, S) band but removes outliers. Overall,

these regressions provide evidence for wider (s, S) bands in the high-inflation state.

5.2 Comparison to Previous Studies

Our analysis suggests price dispersion within a firm becomes higher in the high-inflation

state. This result adds to a large literature on inflation and price dispersion. Most of the

literature focuses, however, on the relationship between inflation and price dispersion across

firms, rather than the dispersion within a firm. For example, Tommasi (1993) uses weekly

data covering 15 goods, 5 sellers per good, and the time period of February to December 1990
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in Argentina. Using inflation and its square, he finds some evidence for a positive relationship

between inflation and the coefficient of variation of prices across firms, though the squared

coefficient is negative. Reinsdorf (1994) finds a significant and robust negative relationship

between inflation and price dispersion using U.S. data from the Volcker disinflation 1980

to 1982. Eden (2001) uses data from Israel and finds little significant relationship between

price dispersion and inflation. Each study above uses good-specific inflation rates to measure

inflation and uses price levels to measure dispersion.31

Are these results in line with our model? Similar to the prediction involving price disper-

sion within a firm (over time), the model can also imply greater dispersion of prices across

firms selling a given good, in the high-inflation state. This third prediction of the model,

however, can be considered weaker than the two in the previous subsection because it rests

on two auxiliary assumptions. First, assume a number of firms identical except with re-

spect to initial price. Second, assume that prices remain diffusely distributed (across firms)

throughout the firms’ identical inaction region. Under these assumptions, since the inaction

region is larger in the high-inflation regime, the cross-section of prices will be more widely

dispersed in the high-inflation state than in the low-inflation state. However, the prediction

is not as clear-cut if firms are heterogeneous in (s, S) bands or if prices are not diffusely dis-

tributed (across firms) throughout the inaction region. Given the model’s tendency toward

price synchronization, discussed in section 3.3, the second assumption may be especially un-

likely to hold. With these caveats in mind, we test this prediction regarding cross-sectional

price dispersion, in part for purposes of comparison with the previous literature.

Our cross-firm measures of dispersion include: (1) the coefficient of variation, CVjt, equal

to the standard deviation of prices across firms selling good j at time t divided by the mean

price across such firms at time t, P jt; (2) the range, R̃jt, given by the difference between

the maximum and minimum prices of good j in month t, normalized by P jt; and (3) the

31There are also many studies that examine dispersion in price changes rather than price levels (see for
example Lach and Tsiddon, 1992). We do not follow this approach here, in part because the implications of
menu cost models for dispersion in price changes are less clear, as Reinsdorf (1994) points out.
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interpercentile range, ˜IPRjt, given by the difference between the 90th and the 10th percentile

prices normalized by P jt.
32

[Table 4 about here]

Table 4 shows the results of panel regressions, with good-specific fixed effects, of the three

cross-firm dispersion measures on the regime dummy Dt or the aggregate monthly inflation

rate πt. In addition, we report results using the good-specific monthly inflation rate, πjt, as

the regressor, following the previous studies described above.33 The prediction is not upheld

but rather contradicted. At least when regressed on the regime dummy or the aggregate

inflation rate, price dispersion is lower when inflation is high.

How do we reconcile these results with our previous findings? We interpret our rejection

of the third prediction as a rejection of one or both of the auxiliary assumptions noted above,

namely homogeneous firms and negligible price synchronization.

First, a closer look at the data makes clear that despite our attempts to eliminate prod-

uct heterogeneity, firms do not appear to be following similar (s, S) bands. Some firms

consistently price more highly than others. This could be explained by heterogeneity in

location within Mexico City, for example. Thus there appears to be a substantial amount of

price dispersion unrelated to menu costs.34 As evidence, we test the hypothesis that mean

relative prices over the 22-month sample period are identical across all firms selling a given

good, using separate panel regressions for each good. This hypothesis is rejected at the one

percent level for all forty four goods except vegetable shortening and instant coffee (as noted

in Appendix Table A1).

32These measures remain unchanged if all prices increase by the same percentage.
33Which measure of inflation is more appropriate depends on the interpretation of the profit function in

the model. The firm’s real profits are plausibly a single-peaked function of the firm’s price relative to the
aggregate price index, since the price of all other goods in the economy affects both costs and real revenues.
Ignoring the aggregate, it is also reasonable that a firm’s real profits are a single-peaked function of the firm’s
price relative to the price index of the good it is selling, for example with monopolistic competition across
similar firms. We prefer the latter measure, but run specifications using each one, in part for comparability
to previous results.

34Golosov and Lucas (2005) conclude that much of observed pricing behavior is driven by idiosyncratic
firm-specific shocks. Our data also indicate that existence of firm heterogeneity, in enduring price differences
across firms.
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Thus firms appear to have differently centered (s, S) bands. We note, however, that

these bands appear to have converged somewhat after the regime changed. We compute the

dispersion of pij,94 and pij,95 across firms i for each good j, using the coefficient of variation

measure. Across goods, the average coefficient of variation in 1994 is 12.96 and in 1995 is

11.29. Indeed, more than two thirds of goods have higher dispersion of pij,94 than of pij,95.

This at least partially explains why cross-firm dispersion decreased at the same time that

firms allowed their prices to vary more widely: (s, S) bands grew wider within firms, while

(s, S) band centers (and optimal prices) converged across firms.35

Second, it may be that price synchronization increased after the crisis, decreasing cross-

firm price dispersion even though (s, S) bands widened. This is not predicted by the model,

since synchronization only increases after inflation stops. But a richer model that included

monopolistic competition and endogenously varying substitution elasticities (due to search

effects, say) might explain this. Alternatively, there would be a clear force for increased

synchronization if firm pricing became more influenced by public signals after the crisis.

In summary, firms changed their prices by more and allowed their prices to vary more

widely when inflation was high. Cross-firm price dispersion declined, but this appears to

be due to decreased firm heterogeneity rather than narrower (s, S) bands. The analysis

here goes beyond previous work in examining dispersion measures that allow for firm hetero-

geneity. Specifically, these measures use deviations from firms’ own long-run average prices

rather than from other firms’ average prices. Results of these tests support the idea that the

menu-cost component of price dispersion did increase with inflation.

35Why this occurred is beyond the scope of this paper. Some possibilities are that differentiation decreased
when inflation increased because firms were basing their pricing more on public signals (such as international
prices and exchange rates) and less on private information; or because consumers spent more time searching
or shopping, reducing firms’ locational advantages (though this may be incompatible with reduced overall
price dispersion).
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6 Conclusion

The model studied here, due to SW83, is relatively unique in the state-dependent pricing

literature in treating an inflation rate that persistently deviates from trend. Its solution

is more complicated than previously thought. The firm will operate two different (s, S)

bands depending on the inflationary state of the world – engaging in state-dependent state-

dependent pricing. The low-inflation band is narrower than the high-inflation band. The

effect of uncertainty is not to widen the (s, S) band per se, but to increase the elasticity of

its width to the current rate of inflation. A striking implication of this model is that firms

appear to prefer inflation risk in many circumstances.

Firms’ use of multiple (s, S) bands has implications for aggregate behavior. It creates a

force for bunching of prices, making a uniform distribution impossible to maintain. It thus

would lead to real effects of money in a model such as that of Caplin and Spulber (1987).

Use of multiple bands appears likely to be optimal whenever the stochastic component of

inflation is persistent.

The data from Mexico’s Tequila crisis do suggest that firms use different (s, S) bands

depending on the inflationary state of the world. After inflation increased in a dramatic and

unexpected way, firms changed prices by more and allowed their prices to stray further from

their respective optima.

It may well be fruitful to pursue in greater detail aggregate implications under conditions

of a Markov money growth process and varying (s, S) bands. One could look at inflation and

output effects monetary regime changes varying by size of shock (g) and different degrees

of credibility (λ0, λ1). If the intuition derived from this model holds, this simple framework

could produce real effects from an increase in the growth rate of the money supply, and

persistence in inflation and negative real effects after a decrease in the growth rate of the

money supply.
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A Appendix

Proof of Lemma 1. From equation 2, V1(p) is continuous and differentiable on the interior

of A1. An equation analogous to equation 4 can be written for every p in the interior of

I1. Inspection of equation 4 gives that V1(p) is continuous in p (even if V0(p) is not). Thus

V1(p) is continuous on the interior of I1. This also implies that in the interior of I1, V0(p)

is continuous in p, it being the maximum of two functions continuous in p (see equations 2

and 6). Thus, since all functions on the right-hand side of equation 5 are continuous in the

interior of I1, V1 is differentiable in the interior of I1.

Next, assume V1 is continuous on boundary points between A1 and I1. Then V1 is contin-

uous everywhere. This implies that V0 is also continuous everywhere, since it is the maximum

of two functions continuous in p (see equations 2 and 6). Continuity of both functions then

implies that both inaction regions consist of one or more convex, open intervals, since the

inaction regions can be defined by Ii = {p : Vi(p) > Vi(Si) − B}. Finally, inspection of

equations 2 and 6 establishes that V0 is also differentiable everywhere on the interior of A0

and I0, except (potentially) at points in I0 where V1 is not differentiable, that is, points on

the boundary of A1.

Finally, we show V1 continuous at arbitrary boundary point p. If (p − ε, p) ⊂ A1 and

(p, p + ε) ⊂ I1 for ε > 0 small enough, then clearly V1(p) equals V1(S1)−B since profits will

be enjoyed for a measure-zero time span before the price change occurs. The limits from

both sides of p then also equal V1(S1) − B (see equations 2 and 4). This implies continuity.

If (p − ε, p) ⊂ I1 and (p, p + ε) ⊂ A1 for ε > 0 small enough, then it must also be that V1(p)

and the limits from both sides of p equal V1(S1) − B. If not, the limit from the left must

be strictly higher or lower than the value of action. Take the former case. Then one can

choose a δ such that inaction over (p − ε, p + δ), at least until the regime changes or the

price is raised, leads to higher value over (p, p + δ). This is due to continuity with respect

to p in equation 4, and contradicts optimality. In the latter case, this implies the value at

some points in the inaction region is strictly less than the value of action, a contradiction of
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optimality. Thus V1 is continuous at boundary point p.36

Proof of Lemma 3. Let s1 be the lower bound of an open interval contained in I1,

and assume s1 > p∗. We consider three cases, each of which leads to contradiction. First,

assume s1 is in the interior of A0. Then there is an ε > 0 such that (s1, s1 + 2ε) ⊂ I1 ∩ A0,

(s1 − 2ε, s1) ⊂ A1 ∩ A0, and s1 − ε > p∗. Using equation 4, we can write

V1(s1 + ε) = e
−R1ε

g [V1(S1)−B]+

∫ ε

0

e
−R1(ε−u)

g

[
Π(s1 + u) + λ1[V0(S0) − B]

g

]
du > V1(S1)−B.

This expression uses a change of variables u = z − q in the integration, the fact that the

neighborhood of s1 is in A0 so V0(u) = V0(S0) − B, and the fact that V1(s1) = V1(S1) − B

since once s1 is reached, the price will be changed to S1. Now consider temporary inaction

over (s1 − ε, s1], reverting back to original policy after either the regime changes or a price

change is made. The value from this policy can be written similarly as

v̂1(s1) = e
−R1ε

g [V1(S1) − B] +

∫ ε

0

e
−R1(ε−u)

g

[
Π(s1 − ε + u) + λ1[V0(S0) − B]

g

]
du.

Since Π(s1 − ε + u) > Π(s1 + u) for u ∈ (0, ε) by strict concavity of Π and the fact that

s1−ε > p∗, it is clear that v̂1(s1) > V1(s1+ε) (> V1(S1)−B). This contradicts the optimality

of action at s1.

Second, assume s1 is in the interior of I0. Then for some ε > 0, (s1, s1 + 2ε) ⊂ I1 ∩ I0,

(s1 − 2ε, s1) ⊂ A1 ∩ I0, and s1 − ε > p∗. In I1 ∩ I0, equations 5 and 6 can be solved

36We have not addressed the pathological case where even an arbitrarily small half-ball above or below
p contains prices in both A1 and I1. In such a case, we can treat all points in I1 that do not have a
positive-measure interval of I1 immediately to the left as in A1; this is because profits will be enjoyed for
a measure-zero time span before the price change occurs. Thus we only need be concerned with interval
subsets of I1 near p, and in particular, with the question of whether restricting attention to these subsets
gives a limit approaching p other than V1(S1) − B. Note that any such interval must be continuous at its
left endpoint, by inspection of equation 4. Further, the slope of V1 in the inaction region interior, given
in equation 5, is clearly bounded above since Π and V0 are. Thus it is clear that for any δ > 0, a tight
enough half-ball can be found that restricts V1 from rising more than δ above V1(S1) − B. (We need not
be concerned about going below V1(S1)−B, since this would contradict optimality.) Thus the limit on this
half-ball exists and equals V1(S1) − B. One can use the same logic as in the text to prove continuity in this
case, where the half-ball is treated analogously to a half-ball completely contained in A1.
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simultaneously to get

rV1(p) = Π(p) − g1V
′
1(p), (14)

where g1 ≡ g(r + λ0)/(r + λ0 + λ1). This differential equation yields the solution

V1(s1 + ε) = e
−rε
g1 [V1(S1) − B] +

∫ ε

0

e
−r(ε−u)

g1

[
Π(s1 + u)

g1

]
du > V1(S1) − B,

using techniques of the previous paragraph. Now let v̂1 be defined on (s1−ε, s1) as the value

of temporarily deviating to inaction over this interval, returning to the original plan after

a price change or regime change. One can show that the following equation (analogous to

equation 5) applies over this interval:

R1v̂1(p) = Π(p) + λ1V0(p) − gv̂′
1(p).

This can be solved simultaneously with equation 6 to get

rv̂1(p) = Π(p) − g1v̂
′
1(p) +

λ0λ1

r + λ0 + λ1
[V1(p) − v̂1(p)] .

Define the last term as θ(p). By hypothesis, the deviation represented in v̂1(p) cannot raise

firm value, and thus θ(p) ≥ 0. As above, we can write

v̂1(s1) = e
−rε
g1 [V1(S1) − B] +

∫ ε

0

e
−r(ε−u)

g1

[
Π(s1 − ε + u) + θ(s1 − ε + u)

g1

]
du > V1(s1 + ε).

The inequality, due to reasoning as in the previous paragraph, contradicts optimality of

action at s1.

Third, assume s1 is on the boundary between I0 and A0. First assume s1 is on a lower

boundary of A0. An argument exactly analogous to that of the first case can be applied to

establish a contradiction. The only difference is that in the expression for v∗
g(s1), V0(u) will

not equal V0(S0) − B, the value of action, but something larger. This only strengthens the
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case. Second assume s1 is on an upper boundary of A0. Then using equation 6 and applying

lemma 2 (smooth pasting) give that limz↓s1 V ′
0(z) = Π′(s1)/R1, strictly negative for s1 > p∗.

Since V0(s1) = V0(S0) − B, this implies that the value in state 0 goes below V0(S0) − B, a

contradiction of optimality. Thus, any lower boundary of an inaction interval must be no

greater than p∗: s1 ≤ p∗.

Next, let (s1, N1) be an open interval contained in I1, bounded on both ends by A1, and

assume N1 ≤ p∗. By continuity and equation 5

R1V1(N1) = Π(N1) + λ1V0(N1) − g lim
z↑N1

V ′
1(z).

Optimality implies that limz↑N1 V ′
1(z) be non-positive; otherwise, the value would drop below

the value of action. Thus

Π(N1) ≤ R1V1(N1) − λ1V0(N1).

A similar expression holds at s1, except with equality due to smooth pasting:

Π(s1) = R1V1(s1) − λ1V0(s1).

Since s1 < N1 ≤ p∗ and Π is strictly concave, Π(N1) > Π(s1). Further, by continuity both

V1(s1) and V1(N1) equal V1(S1)−B. Combining these facts with the above expressions gives

that V0(s1) > V0(N1). This is impossible if s1 ∈ A0, since the value in state 0 is bounded

below by the value of action. Thus equation 6 applies at s1, and

Π(s1) + λ0V1(s1)

R0

= V0(s1) > V0(N1) ≥ Π(N1) + λ0V1(N1)

R0

,

where the last inequality is because the state-0 value at N1 is at least as great as the value of

inaction there. But since V1(s1) = V1(N1) as noted above, this implies that Π(s1) > Π(N1),

a contradiction. Thus any upper bound of an interval in I1 must be strictly greater than

p∗: p∗ < N1. Since any lower bound must be no greater than p∗, this establishes that
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I1 = (s1, N1).

We now turn to state-0 policy. Let s0 be the lower bound of an open interval contained

in I0, and assume s0 > p∗. There exists an ε > 0 such that (s0−2ε, s0) ⊂ A0 and p∗ < s0− ε.

Then

Π(s0 − ε) + λ0V1(s0 − ε)

R0
≤ V0(S0) − B = V0(s0) =

Π(s0) + λ0V1(s0)

R0
.

The first inequality is because (s0 − ε) ∈ A0 and thus the value of inaction there (from

equation 6) is no greater than the value of action. The equalities are because both equations 2

and 6 apply at boundary points due to continuity. Since Π(s0 − ε) > Π(s0) due to strict

concavity of Π and the fact that p∗ < s0 − ε < s0, it must be that V1(s0) > V1(s0 − ε). This

can only be true if s0 ∈ I1 since V1 is bounded below at V1(S1) − B.

Thus there is an ε > 0 such that (s0, s0 + 2ε) ⊂ I0 ∩ I1, (s0 − 2ε, s0) ⊂ A0 ∩ I1, and

s0 − ε > p∗. In I0 ∩ I1, equations 5 and 6 can be solved simultaneously to yield

rV0(p) = Π(p) + (g1/R0)Π
′(p) − g1V

′
0(p),

with g1 defined above. This differential equation yields the solution

V0(s0 + ε) = e
−rε
g1 [V0(S0)−B]+

∫ ε

0

e
−r(ε−u)

g1

[
Π(s0 + u)

g1
+

Π′(s0 + u)

R0

]
du > V0(S0)−B, (15)

by reasoning above. Now let v̂0 be defined on (s0−ε, s0) as the value of temporarily deviating

to inaction over this interval, returning to the original plan after a price change or regime

change. The following analogue to equation 6 applies over this interval:

v̂0(p) = [Π(p) + λ0V1(p)]/R0.

This can be solved simultaneously with equation 5 to get

rv̂0(p) = Π(p) + (g1/R0)Π
′(p) − g1v̂

′
0(p) +

λ0λ1

r + λ0 + λ1
[V0(p) − v̂0(p)] .
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Define the last term as θ(p). By hypothesis, the deviation represented in v̂0(p) cannot raise

firm value, and thus θ(p) ≥ 0. As above, we can write

v̂0(s0) = e
−rε
g1 [V0(S0)−B] +

∫ ε

0

e
−r(ε−u)

g1

[
Π(s0 − ε + u) + θ(s0 − ε + u)

g1
+

Π′(s0 − ε + u)

R0

]
du.

Since both Π(p) and Π′(p) are declining in p above p∗, comparing this with equation 15

establishes that v̂0(s0) > V0(s0 + ε). This contradicts optimality of action at s0. Thus any

lower boundary of an inaction interval must be no greater than p∗: s0 ≤ p∗.

Finally, let (s0, N0) be an open interval contained in I0, bounded on both ends by A0,

and assume N0 ≤ p∗. An argument similar to the one above concerning N1 gives that

V1(s0) > V1(N0). This implies that s0 ∈ int(I1). The result above that I1 = (s1, N1) with

p∗ < N1 further implies that (s0, N0) ⊂ I1. Thus we can apply equation 4:

V1(N0) = e
−R1(N0−s0)

g V1(s0) +

∫ N0

s0

e
−R1(N0−z)

g

[
Π(z) + λ1V0(z)

g

]
dz.

Using this along with the facts V1(s0) > V1(N0), Π(z) > Π(s0) for z ∈ (s0, N0) (since Π is

strictly concave and N0 < p∗), and V0(z) > V0(s0) for z ∈ (s0, N0), we can write

V1(s0) >

∫ N0

s0
e

−R1(N0−z)
g

[
Π(z)+λ1V0(z)

g

]
dz

1 − e
−R1(N0−s0)

g

>
Π(s0) + λ1V0(s0)

R1
. (16)

Since s0 ∈ int(I1), (s1, s0) is a non-empty subset of I1∩A0. Using the fact that (s1, s0) ⊂
A0, we can use equation 5 to write R1V1(p) = Π(p)+λ1V0(s0)− gV ′

1(p) for p in this interval.

Differencing and using smooth pasting gives

R1[V1(p) − V1(s1)] = Π(p) − Π(s1) − gV ′
1(p).
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This can be solved to yield

V1(s0) = V1(s1) +

∫ s0

s1

e
−R1(s0−z)

g
Π(z) − Π(s1)

g
dz > V1(s1),

where the inequality is due to the fact that Π(z) > Π(s1) for z ∈ (s1, s0), for familiar reasons.

But now we can use similar logic to that leading up to equation 16 to write

V1(s0) <

∫ s0

s1
e

−R1(s0−z)
g

[
Π(z)+λ1V0(z)

g

]
dz

1 − e
−R1(s0−s1)

g

<
Π(s0) + λ1V0(s0)

R1

.

This contradicts equation 16. Thus any upper bound of an interval in I0 must be strictly

greater than p∗: p∗ < N0. Since any lower bound must be no greater than p∗, this establishes

that I0 = (s0, N0).

It remains to show that s0 and s1 are strictly less than p∗. Equation 2 gives that

V0(S0) − V0(s0) = B. Using equation 6, we can write

Π(S0) − Π(s0) = λ0{B − [V1(S0) − V1(s0)]} + rB > 0.

The inequality holds because the difference in value between any two points cannot exceed

B, and thus the bracketed term cannot be negative. Thus Π(s0) < Π(S0). Since s0 < S0 (S0

must be in I0) and given that Π is strictly concave and maximized at p∗, it must be that

s0 < p∗. An exactly parallel argument (making use of smooth pasting) shows s1 < p∗.

Proof of Lemma 4. Consider first state 1. Of course there exists at least one local

maximum over I1; otherwise every price would lead to action, which cannot be optimal.

Here we prove there is only one local maximum in I1, which is then a global maximum.

First, consider the following subset of I1: I1 ∩ I0. Differentiating equation 14, which
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applies over this region, gives

rV ′
1(p) = Π′(p) − g1V

′′
1 (p). (17)

The first- and second-order conditions for a local maximum at p imply that Π′(p) < 0,

which requires p > p∗. Now, suppose Sa
1 and Sb

1 > Sa
1 are two local maxima in I1 ∩ I0.

Then there must exist local minimum at Sc
1, say, with Sa

1 < Sc
1 < Sb

1 and V1(S
c
1) < V1(S

b
1).

Again using equation 14, note that V1(S
b
1) = Π(Sb

1)/r and V1(S
c
1) = Π(Sc

1)/r. This implies

Π(Sc
1) < Π(Sb

1), a contradiction since p∗ < Sa
1 < Sc

1 < Sb
1. Thus there is at most one local

maximum in I1 ∩ I0, and it must strictly exceed p∗.

Second, consider the following subset of I1: I1 ∩ A0 ∩ (−∞, p∗). Even if non-empty, this

subset cannot contain a local maximum. Note that equation 5 can be differentiated on this

interval to give

R1V
′
1(p) = Π′(p) − gV ′′

1 (p),

since V0(p) is constant. Given that p < p∗, Π′(p) > 0 and any local extremum cannot be a

local maximum.37

Third, consider the remaining subset of I1, which equals I1∩A0 ∩ (p∗,∞). Suppose there

are two local maxima on this interval, Sa
1 and Sb

1 > Sa
1 , say. Then there must exist a local

minimum at Sc
1, say, with Sa

1 < Sc
1 < Sb

1 and V1(S
c
1) < V1(S

b
1). But using equation 5 and the

fact that Sc
1, S

b
1 ∈ A0, one can show this implies that Π(Sc

1) < Π(Sb
1). This is a contradiction,

since p∗ < Sa
1 < Sc

1 < Sb
1 and Π is strictly concave. Thus there is at most one local maximum

in I1 ∩ A0 ∩ (p∗,∞).

We have established that there are at most two local maxima, one in I1 ∩ I0 the other in

I1 ∩ A0 ∩ (p∗,∞), and that both strictly exceed p∗. We now show there can be at most one

local maximum. Suppose there are two, Sa
1 ∈ I1 ∩ I0 and Sb

1 ∈ I1 ∩A0; clearly p∗ < Sa
1 < Sb

1.

37This applies except on the boundary of A0, i.e. at p = s0, where V0 may not be differentiable. But the
same argument can be modified using the left and right limits of the second derivative at s0. In particular,
limp↑s0 V ′

0(p) = 0 and limp↓s0 V ′
0(p) ≥ 0 since otherwise the value in state 0 would drop below the value of

action. Given this, both limp↑s0 V ′′
0 (p) and limp↓s0 V ′′

0 (p) are strictly positive, ruling out a local maximum.
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Then there exists a local minimum Sc
1, say, with Sa

1 < Sc
1 < Sb

1 and V1(S
c
1) < V1(S

b
1).

But if Sc
1 ∈ A0, the argument of the previous paragraph implies that Π(Sc

1) < Π(Sb
1), a

contradiction. If Sc
1 ∈ I0, then equation 17 applies and gives that V ′′

1 (Sc
1) < 0, which

contradicts Sc
1’s being a local minimum. Thus, there is exactly one local maximum in I1,

S1 > p∗.

Consider next state 0, and the following subset of I0: I0 ∩ A1. Everywhere on this set,

except (potentially) at N1, V ′
1(p) = 0. Thus using equation 6, R0V

′
0(p) = Π′(p) except

(potentially) at N1. This is clearly non-zero, since p∗ /∈ A1. Similarly, limp↓N1 R0V
′
0(p) =

Π′(N1) < 0 and limp↑N1 R0V
′
0(p) = Π′(N1) + limp↑N1 λ0V

′
1(p) < 0. The latter inequality holds

in part because the second term is non-positive, since otherwise V1 would go below the value

of action. Thus there is no local maximum on I0 ∩ A1.

Consider finally I0 ∩ I1. Again using equation 6, R0V
′
0(p) = Π′(p) + λ0V

′
1(p). Clearly

there can be no maximum for p < p∗, since Π′(p) > 0 and V ′
1(p) ≥ 0. There can also be no

maximum for p ≥ S1, since Π′(p) < 0 and V ′
1(p) ≤ 0. Further, there can be no maximum

at p∗. This would require V ′
1(S1) = 0 (which might be possible at a point of inflection); but

then solving equations 6 and 5 simultaneously would give V1(S1) = Π(p∗)/r, which we know

is impossible. Thus any maximum must be in (p∗, S1) ∩ I0.

Note that over (p∗, S1) ∩ I0, V1 is strictly concave. This can be seen by differentiating

equation 14 and rearranging to get

g1V
′′
1 (p) = Π′(p) − rV ′

1(p).

Clearly in this range, Π′(p) < 0 and V ′
1(p) ≥ 0. Differentiating equation 6 twice then gives

R0V
′′
0 (p) = Π′′(p) + λ0V

′′
1 (p).

This is strictly negative since Π is strictly concave, as is V1 over this range. Thus there is

exactly one local maximum in I0, S0 ∈ (p∗, S1).
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Proof of Lemma 6. By reasoning as in the proof of lemma 5, we know that V0(N1) ≥
V0(S0) − B > V1(S1) − B = V1(N1). Now if N1 ≤ N0, then N1 is on the boundary or in the

interior of both states’ inaction regions. Thus the inaction region value functions 6 and a

version of 5 apply at N1:

R1V1(N1) = Π(N1) + λ1V0(N1) − g lim
p↑N1

V ′
1(p).

Solving them simultaneously gives that

(r + λ0 + λ1)[V0(N1) − V1(N1)] = g lim
p↑N1

V ′
1(p).

This is a contradiction; we have shown the left-hand side strictly positive, while the right-

hand side must be non-positive since V1(·) reaches a minimum at N1.

Proof of Lemma 7. Equation 5 gives that V1(S1) = [Π(S1) + λ1V0(S1)]/R1. Now if

S1 ≥ N0, then S1 is in A0: V0(S1) = V0(S0) − B. Using equation 6 to get V0(S0) and

combining this with the expression for V1(S1) gives

(R1/λ1)V1(S1) − (λ0/R0)V1(S0) = Π(S1)/λ1 + Π(S0)/R0 − B.

Since V1(S1) > V1(S0), V1(S1) ≥ 0, and R1/λ1 > 1 > λ0/R0, the left-hand side is strictly

positive. Thus

0 < Π(S1)/λ1 + Π(S0)/R0 − B < Π(p∗)/λ1 + Π(p∗)/R0 − B.

This contradicts assumption A1. Therefore, S1 < N0.

45



Table A1 — List of Goods and Monthly Average of Price Increase/Change

Number Frequency of Magnitude of
of price increase price change price increase price change

Good (English Equivalent) firms 1994 1995 1994 1995 1994 1995 1994 1995
1. Harina de maiz (Corn flour) 10 5.5 35.0 12.7 39.0 7.1 7.8 0.1 5.1
2. Pan de caja (Bread) 15 20.6 81.3 23.6 82.7 5.2 5.1 1.8 5.0
3. Pan blanco (White bread) 15 62.4 75.3 90.9 89.3 4.4 9.8 2.2 9.1
4. Pan dulce (Sweet bread) 15 55.2 76.0 96.4 85.3 3.3 6.7 0.9 6.0
5. Pasta para sopa (Pasta) 22 11.2 51.4 18.6 53.2 7.1 9.0 1.7 8.5
6. Higado de res (Liver) 12 1.5 15.8 2.3 16.7 6.9 11.6 0.0 10.5
7. Chuleta (Pork chopsv) 12 22.0 31.7 34.8 43.3 4.7 6.5 0.6 5.1
8. Lomo (Pork loin) 12 23.5 26.7 36.4 38.3 5.9 4.4 1.9 3.7
9. Pollo entero (Whole chicken) 12 28.8 32.5 65.9 72.5 4.9 6.5 -0.6 1.7
10. Pollo en piezas (Chicken pieces) 12 38.6 42.5 75.0 79.2 4.4 4.4 -0.3 1.0
11. Atun en lata (Canned tuna) 10 17.3 51.0 25.5 57.0 4.7 7.7 1.0 5.2
12. Otros pesc. y maris. en co 10 5.5 43.0 7.3 48.0 6.4 12.6 1.9 10.3

(Other canned fish/seafood)
13. Leche en polvo (Powdered milk) 12 19.7 63.3 29.5 65.8 3.5 6.7 0.7 6.4
14. Leche evaporada (Evaporated milk) 15 12.1 72.7 24.8 76.0 2.5 7.2 -0.8 6.7
15. Leche condensada (Condensed milk) 15 12.1 73.3 16.4 76.0 4.4 6.2 1.6 5.9
16. Mantequilla (Butter) 14 19.5 53.6 31.8 53.6 7.5 9.2 0.5 9.2
17. Manteca vegetal 15 25.5 64.0 37.0 64.7 5.4 10.9 2.3 10.5

(Vegetable Shortening)1,5,10

18. Manteca de cerdo (Lard) 13 2.1 51.5 3.5 53.1 14.8 11.7 5.9 11.1
19. Margarina (Margarine) 12 26.5 40.8 33.3 40.8 7.5 14.4 4.4 14.4
20. Platano tabasco (Banana) 15 34.5 52.0 65.5 70.0 9.2 10.0 -0.4 5.9
21. Papaya (Papaya) 12 29.5 56.7 65.9 75.0 12.9 19.1 -1.5 10.4
22. Melon (Melon) 12 43.2 53.3 90.9 89.2 11.5 18.8 -0.6 6.5
23. Sandia (Watermelon) 12 31.1 48.3 71.2 82.5 15.2 9.9 -0.8 3.4
24. Chile serrano (Chile)1 15 35.2 50.0 83.6 92.0 17.8 19.4 -1.9 5.4
25. Chile poblano (Chile) 15 49.1 44.7 92.7 96.0 20.4 17.9 2.9 1.6
26. Cebolla (Onion) 14 39.6 38.6 76.0 80.0 14.9 13.4 -0.1 0.7
27. Chile seco/ancho (Dried Chile) 12 15.2 35.0 30.3 55.0 7.3 12.4 -0.5 6.3
28. Chile seco/guajillo (Dried Chile) 12 17.4 38.3 35.6 49.2 9.6 11.2 -0.6 8.5
29. Chile seco/pasilla (Dried Chile) 12 13.6 32.5 28.0 49.2 10.6 9.2 -2.2 3.6
30. Elote (Corn) 15 43.6 39.3 88.5 79.3 11.5 12.5 1.0 1.3
31. Col (Cabbage) 15 38.2 52.0 76.4 71.3 15.2 13.0 2.0 8.0
32. Pepino (Cucumber) 12 43.2 45.8 81.8 81.7 17.6 15.6 2.3 4.5
33. Calabacita (Squash) 13 45.5 50.0 93.0 88.5 16.0 18.2 0.2 7.0
34. Chicharo (Green pea) 15 41.2 60.0 91.5 88.0 15.9 13.7 -0.7 6.8
35. Miel de abeja (Honey) 10 12.7 46.0 20.9 52.0 4.9 14.4 1.3 11.2
36. Cafe soluble (Instant coffee)1,5,10 11 66.1 69.1 69.4 75.5 7.3 5.2 6.9 4.4
37. Ajo (Garlic) 13 36.4 43.1 60.8 69.2 10.4 9.2 1.3 3.0
38. Cerveza (Beer) 14 20.8 28.6 28.6 35.0 7.2 5.8 2.1 3.8
39. Ron (Rum) 11 36.4 71.8 46.3 76.4 5.1 6.7 3.0 6.3
40. Brandy (Brandy) 13 35.0 63.8 39.2 70.0 3.1 5.8 2.0 5.0
41. Vino de mesa/blanco (White wine) 11 14.0 46.4 17.4 47.3 8.9 6.3 5.4 6.0
42. Vino de mesa/tinto (Red wine) 12 20.5 51.7 26.5 52.5 6.4 5.2 3.3 5.1
43. Tequila (Tequila) 10 27.3 57.0 32.7 61.0 3.7 5.6 1.7 5.1
44. Chayote (Chayote) 14 40.6 44.7 89.1 86.0 12.9 21.6 -0.9 4.8

Mean 13 28.2 50.0 49.3 66.0 8.8 10.4 1.2 6.1

Note: Monthly averages of frequencies and magnitudes for each year in percentage. Goods with superscripts
1, 5 and 10 indicate that the null hypothesis of common mean relative prices across firms selling the same
good is not significantly rejected at 1, 5, and 10% levels, respectively. For goods without subscripts, the
same hypothesis is significantly rejected at 1% level.
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Table 1
Inßation Rate in Mexico: 1994 and 1995

1994 1994
Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

CPI 0.78 0.51 0.51 0.49 0.48 0.50 0.44 0.47 0.71 0.52 0.53 0.88 7.05

44 goods � -4.16 -1.93 1.59 1.70 -0.37 -0.17 -0.25 2.99 3.28 0.90 -0.69 2.93

1995 1995
Data Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

CPI 3.76 4.24 5.90 7.97 4.18 3.17 2.04 1.66 2.07 2.06 2.47 3.26 51.97

44 goods 5.86 6.78 3.06 8.16 7.52 3.89 0.78 -1.50 0.79 4.26 1.59∗ 1.59∗ 51.53

Notes: Monthly inßation rate in percentages. Good-speciÞc monthly inßation rates from our sample equal the
geometric average over Þrm-speciÞc inßation rates of Þrms selling a given good; monthly inßation rates equal the
geometric average over good-speciÞc inßation rates. Numbers with asterisks are converted from a two-month inßation
rate due to missing observations in 1995:11.



Table 2
Panel regression of price adjustment frequencies and magnitudes

Dependent variable
Frequency of Magnitude of

price increase price change price increase price change
(F+

jt ) (Fjt) (M+
jt ) (Mjt)

Constant 28.16∗∗∗ 49.26∗∗∗ 8.76∗∗∗ 1.19∗∗∗

(1.02) (0.76) (0.29) (0.42)
Dt 21.84∗∗∗ 16.79∗∗∗ 1.64∗∗∗ 4.96∗∗∗

(1.71) (1.38) (0.47) (0.62)
Sample size

924 924 815 884

Note: Numbers in parentheses are heteroskedasticity and autocorrelation
robust standard errors. Sample periods are 1994:2 to 1995:10. Coefficients
significant at 1% levels are denoted by ***.



Table 3
Panel regression of price dispersion measures

Dispersion Mean of
measures dependent var. Regressor
(dependent var.) 1994 1995 (1) Dt (2) πt

(A) Deviation from regime-invariant, firm-specific mean relative price
MSDjt 11.45 13.98 2.530∗∗∗ 0.179∗

(0.433) (0.104)
MADjt 9.76 12.23 2.473∗∗∗ 0.172∗

(0.418) (0.102)
Rjt 27.70 30.21 2.510∗∗∗ 0.421∗∗∗

(0.696) (0.160)
IPRjt 16.16 17.93 1.764∗∗∗ 0.218∗∗

(0.433) (0.107)
(B) Deviation from regime-specific, firm-specific mean relative price
MSDjt 8.77 10.91 2.134∗∗∗ 0.374∗∗∗

(0.339) (0.081)
MADjt 7.16 9.53 2.376∗∗∗ 0.409∗∗∗

(0.325) (0.079)
Rjt 23.91 23.30 -0.612 0.171

(0.618) (0.142)
IPRjt 12.98 14.00 1.023∗∗ 0.266∗∗∗

(0.399) (0.101)

Note: MSDjt: Mean squared deviation (from firm-specific mean relative
price); MADjt: Mean absolute deviation; Rjt: Range of deviation; IPRjt:
10-90th interpercentile range of deviation. Numbers in parentheses are het-
eroskedasticity and autocorrelation robust standard errors. Sample periods
are 1994:1 to 1995:10. Coefficients significant at 1%, 5% and 10% levels are
denoted by ***, ** and *, respectively.



Table 4
Panel regression of cross-firm price dispersion measures

Dispersion Mean of
measure dependent var. Regressor
(dependent var.) 1994 1995 (1) Dt (2) πt (3) πjt

CVjt 14.66 13.28 -1.387∗∗∗ -0.199∗∗∗ 0.001
(0.217) (0.057) (0.018)

R̃jt 49.75 44.25 -5.500∗∗∗ -0.802∗∗∗ -0.023
(0.860) (0.218) (0.074)˜IPRjt 28.22 26.23 -1.986∗∗∗ -0.285∗∗ 0.028
(0.492) (0.130) (0.041)

Note: CVjt: coefficient of variation; R̃jt: Range (normalized); ˜IPRjt: 10-
90th interpercentile range (normalized). Numbers in parentheses are het-
eroskedasticity and autocorrelation robust standard errors. Sample periods
are 1994:1 to 1995:10 (1994:2 to 1995:10 for (3)). Coefficients significant at
1%, 5% and 10% levels are denoted by ***, ** and *, respectively.




