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Abstract 
 We investigate the interaction between environmental quality and fertility in an 
altruistic bequest model with pollution externalities created by the aggregate production. 
Despite the negative externality related to the endogenous childbearing decisions, the parents 
may choose to have fewer children in the competitive economy than in the social optimum. 
To achieve optimality, positive taxes on childbearing are required even with an insufficient 
number of children, if the social discount factor equals the parents’ degree of altruism. On 
the other hand, child allowances may constitute the optimal policy if the social discount 
factor exceeds the parents’ degree of altruism. 
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1. Introduction 

 Falling fertility rates and falling environmental qualities are great 

problems among others for many modern societies, and, as often suggested, a 

close relationship is present between population growth and the magnitude of 

pollution. While there is no question that population growth contributes to 

environmental degradation, 1  a causal relationship in the opposite direction 

may also exist, i.e., environmental qualities may affect the fertility decisions 

in a family. If parents are altruistic toward their children and are concerned 

about their children’s welfare (Barro, 1974), they may choose to have a 

smaller number of children in response to environmental degradation, which 

leave their children worse off. From this point of view, altruism could play a 

crucial role in the interaction between fertility and environmental qualities. 

 Jouvet, Michel and Vidal (2000) and Jouvet, Michel and Pestieau (2000) 

investigate environmental issues introducing altruistic bequests. (The latter 

authors consider the case where altruists and non-altruists coexist.) Assuming 

that individuals voluntarily contribute to pollution abatement, these studies 

show that a market economy results in under-contribution to pollution 

abatement and thus an under-provision of environmental quality due to the 

free rider problem. In these models, bequests also create environmental 

externalities via the production process, which lead to an over-accumulation 

of capital. To attain the social optimum, therefore, the government requires 

subsidies on contributions to pollution abatement and taxes on capital. These 

studies, however, assume exogenous fertility and the relationship between 

fertility and environmental qualities is outside their scope.  

 To the best of our knowledge, there is no study addressing the issues of 

fertility choices and environmental externalities in the presence of altruism, 

except Harford (1997, 1998). Harford (1998) considers a consumable capital 

                                                  
1  Cropper and Griffiths (1994) provide evidence for a significant effect of 

population density on deforestation. 
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good and a non-capital good, and consumption of the latter is assumed to 

create a pollution externality. While an increase in the number of children 

implies an increase in aggregate consumption of the polluting good, parents 

do not recognize such an impact of an extra child on pollution, and hence 

childbearing also has an external effect. He shows that Pareto efficiency 

requires taxes on childbearing as well as Pigovian pollution taxes. Taxes on 

capital are not called for in his model, since bequests of capital do not entail 

externalities. 

 In this paper we investigate the relationship between fertility and 

environmental qualities by assuming that production causes pollution and 

bequests embodied in productive capital create pollution externalities, as in 

Jouvet, Michel and Vidal (2000) and Jouvet, Michel and Pestieau (2000). 

Since aggregate production is increasing in population, pollution externalities 

of childbearing also prevail in our model. The co-existence of these two 

externalities leads to a result different from that obtained in the previous 

studies, namely, that the fertility rate determined in a market economy may be 

lower than the social optimum, although childbearing has a negative external 

effect on the environment. Parents choose the number of children so that the 

marginal benefit equals the marginal cost of having a child, and bequests 

toward each child constitute the marginal cost of a child. Thus, an increase in 

bequests raises the marginal cost of a child, and has a negative effect on the 

number of children. Therefore, if the level of bequests in the competitive 

equilibrium is higher than the social optimal level, this over-provision of 

bequests raises the private marginal cost of a child possibly to a level above 

its social marginal cost. In such a case, the number of children in the 

competitive equilibrium rather falls below the social optimum. On the other 

hand, we show that the level of pollution is unambiguously higher than the 

social optimum, whether the fertility rate (or per capita capital) is too high or 

too low. 

 We also examine what kind of policy is required to achieve social 
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optimality. It is shown that, if the social discount factor equals the private 

degree of altruism, the government needs to tax both childbearing and 

inheritance so as to restore efficiency, even if the fertility rate is lower than its 

social optimal level. This is because an over-accumulation of capital is a 

necessary condition for under-production of children. Once capital is adjusted 

to its optimal level by inheritance taxes, the factor in the under-production of 

children disappears, and the fertility rate exceeds its social optimal level due 

to its environmental externalities. On the other hand, if the social discount 

factor is higher than the private degree of altruism, child allowances and/or 

subsidies on inheritance may be required to achieve optimality. However, the 

optimal policy never involves a combination of taxes on childbearing and 

subsidies on inheritance. 

 The rest of the paper is organized as follows. Section 2 presents a model, 

and characterizes the competitive equilibrium. Section 3 characterizes the 

social optimum, and compares it to competitive equilibrium in the benchmark 

case where the social discount factor equals to the private degree of altruism. 

Section 4 examines what kind of policy is required to decentralize the social 

optimum. Section 5, assuming that the social discount factor different from 

private degree of altruism, reexamines the result obtained in the previous 

sections. Section 6 provides the conclusions. 

 

2. The Basic Model 

 Suppose that there are two periods and two generations. The parents’ 

generation (generation 0) lives for period 0 and the children’s generation 

(generation 1) lives for period 1, with no overlapping of the periods. Each 

member of the same generation is identical. The population of generation 0 is 

, and each member of generation 0 produces  children.  N n

 As in Becker and Barro (1988), the parents decide to have  children 

because they are altruistic toward their children in that each child’s welfare 

directly enters their utility functions. It is assumed that each child costs 

n
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 ( 0)β > , so that nβ  is the total cost of raising children. The parents allocate 

the remaining income after they have paid the cost of raising children between 

their own consumption and bequests toward their children. We also assume 

that the inheritance from the former generation determines the income of each 

generation.   

 The parents derive disutility from the level of pollution while deriving 

utility from consumption and their children’s welfare. Their utility function is 

thus defined by 

(1) 0 0 0 1 0 0 1 0 0 1( ,  ,  ,  ) [(1 ) ( )] ( ) ( ) ,U c n U u r b n b V n n Uπ β π δ= + − + − +  

where 0 0 1( (1 ) ( ))c r b n b β= + − +  is the parent’s consumption,  is the 

inheritance they receive,  is the bequests to each child,  is the interest 

rate, 

0b

1b r

0π  is the level of pollution in period 0,  is the utility of each child, 

and 
1U

( )nδ  is the weight attached to each child’s utility. We assume that , 

, , , 
0 0u′ >

0 0u′′ < 0 0V ′ > 0 0V ′′> 0 ( )n 1δ< < , ( ) 0nδ ′ < , ( ) ( ) 0n n nδ δ ′+ >  and  

2 ( ) ( ) 0n n nδ δ′ ′′+ < . 

The children consume the inheritance from their parents, and their utility 

function is defined by 

(2) 1 1 1 1 1 1 1( ,  ) [(1 ) ] ( ),U c u r b Vπ π= + −  

where 1π  is the level of pollution in period 1. We assume that , , 

 and . 
1 0u′ > 1 0u′′<

1 0V ′> 1 0V ′′>

 Given , 0(1 )r b+ β  and ( 0,  1)i iπ = , the parents choose the number of 

children first and then choose the level of bequests to each child. In choosing 

the level of bequests, the parents maximize (1) with respect to , given . 

The first-order condition is 

1b n

(3) 0 0 1 1 1[(1 ) ( )] ( )(1 ) [(1 ) ] 0nu r b n b n n r u r b ,β δ′ ′− + − + + + + =  

from which we obtain . In choosing the number of children, the 

parents substitute  into (1) and maximize the utility function with 

respect to . Using the envelope theorem, we have the following first-order 

condition: 

*
1 1 ( )b b n=

*
1 1 ( )b b n=

n
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(4)  { }
* *
1 0 0 1

*
1 1 1 1

( ( ) ) [(1 ) ( ( ) )]

( ( ) ( )) [(1 ) ( )] ( ) 0.

b n u r b n b n

n n n u r b n V

β β

δ δ π

′− + + − +

′+ + + − =

Denoting the solution of (4) as , we obtain the parents’ optimum *n *
1( ,  )b n∗  

from (3) and (4). 

 We assume that the level of pollution in each period is a linear function of 

current production , and that no pollutants survive the period. We thus have iY

(5) ;  0,   0,  1.i iY iπ α α= > =  

Assuming a linear technology, we define the production function as  

(6)  ;   0,   0,  1,i iY AK A i= > =  

where  is the stock of capital in period . iK i

 Equilibrium on the capital market implies  

(7) ; 0, 1,i ib k i   = =  

where . At equilibrium the rate of interest is equal 

to the marginal productivity of capital net of depreciation:

0 0 1 1/   and  /k K N k K nN≡ ≡
2

(8) 1 .r A+ =   

 We hereafter denote  as  for notational simplicity. Substituting (5), 

(6), (7) and (8) into (3) and (4) yields 

1k k

(9)  0 0 1( ,  ) [ ( )] ( ) ( ) 0,F k n nu Ak n k n n Au Akβ δ′ ′≡ − − + + =  

(10)   { }
* * *

0 0

* *
1 1

( ( ),  ) ( ( ) ) [ ( ( ) )]

                [ ( ) ( )] [ ( )] [ ( )] 0,

G k n n k n u Ak n k n

n n n u Ak n V ANnk n

β β

δ δ α

′≡ − + − +

′+ + − =

where . The competitive equilibrium * *
1( ) ( )k n b n= ( , )k n∗ ∗  is characterized by 

(9) and (10). 

 The first term in the RHS of (10) is the marginal disutility from the 

decrease in parental consumption by having an additional child, and can be 

defined as the private marginal cost of a child. The second term in the RHS of 

(10) is the increase in parental utility derived from altruism when adding an 

additional child, and can be defined as the private marginal benefit of a child. 

Thus, we can define  as the private marginal net benefit (PMNB) 

of a child. 

*( ( ),  )G k n n

                                                  
2  We assume total depreciation after one period. 
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3. Social Optimum  

 In this section, we characterize the social optimum, and compare it to the 

competitive equilibrium obtained in the previous section. In particular, we 

show that the number of children chosen may be lower in the competitive 

equilibrium than in the social optimal allocation, albeit children create 

negative environmental externalities. 

 

3.1 Characterizing the Social Optimum 

 We assume a central planner that adopts a utilitarian social welfare 

function consisting of the discount sum of individual’s utilities. As a 

benchmark, we first assume that the social discount factor equals the parent’s 

degree of altruism. The social welfare function is thus defined by 

(11)  { 0 0 0 0 0 1 1[ ( )] ( ( )) ( )[ ( ) ( )]}.W N u Ak n k V AK n n u Ak V ANnkβ π δ α= − + − + −

Given , 0k A , β  and α , the central planner chooses  first and then 

chooses  so as to maximize (11). The first-order condition with respect to 

 is 

n

k

k

(12) { }0 0 1 1( ,  ) [ ( )] ( ) ( ) ( ) 0,SF k n nu Ak n k n n Au Ak ANnV ANnkβ δ α α′ ′ ′≡ − − + + − =  

from which we obtain . Substituting  into (11) and 

maximize that function with respect to  yields the following first-order 

condition: 

( )Sk k n= ( )Sk k n=

n

(13)  
0 0

1 1

1

( ( ),  ) ( ( ) ) [ ( ( ) )]

                    ( ( ) ( ))[ ( ( )) ( ( ))]

                    ( )( ( )) ( ( )) 0.

S S S S

S S

S S

G k n n k n u Ak n k n

n n n u Ak n V ANnk n

n n ANk n V ANnk n

β β

δ δ α

δ α α

′≡ − + − +

′+ + −

′− =

Denoting the solution of (13) as , we obtain the social optimum  

from (12) and (13).  can be defined as the social marginal net 

benefit (SMNB) of a child. 

Sn ( ,  )S Sk n

( ( ),  )S SG k n n

 

3.2  Comparing the Competitive Equilibrium to the Social Optimum 

 In our model, the parents do not take into account the effects of  and  k n
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on pollution via the production process. This implies that both childbearing 

and bequeathing to children have pollution externalities. Comparing (10) to 

(13), it follows that the SMNB of  is smaller than its PMNB by n

1( )( )n n ANk Vδ α ′  if . Similarly, a comparison of (9) with (12) 

indicates that the SMNB of  is smaller than its PMNB by 

*( ) ( )Sk n k n=

k 1( )( )n n ANn Vδ α ′  

given . This does not imply, however, that  and  are determined higher 

in the competitive equilibrium than in the social optimum, because there 

exists an interaction between  and . That is, an increase in bequests 

raises the marginal cost of having a child, and thus has a negative effect on the 

number of children. Therefore, if the level of capital accumulation in the 

competitive equilibrium is higher than the social optimal level, and this 

over-accumulation of capital raises the PMNB of a child to a level above its 

SMNB, the number of children in the competitive equilibrium rather falls 

below that in the social optimum.

n k n

k n

3   

Paying attention to the interaction of k  and , we now derive 

conditions for . For this purpose, we compare the relative magnitude of 

the SMNB and the PMNB of a child, with  fixed at . Using the mean 

value theorem, (10) and (13) imply 

n
Snn <∗

n Sn

(14)   
*

*
1

( ( ),  ) ( ,  )
ˆ[ ( ) ] ( ,  ) ( ) ( ),

S S S S S

S S S S S S S S
k

G k n n G k n

k n k G k n n n ANk V ANn kδ α α

−

′= − +

where 0 1
ˆ ˆ ˆ( ,  ) ( ,  ) / ( ) ( ) [ ( ) ( )] 0S S S S S S S S

kG k n G k n k n k u n n Au n n n ANnVβ δ δ δ α 1′′ ′ ′ ′ ′≡ ∂ ∂ = + + − + <  

and . Since ,ˆ ( ,  ( ))S Sk k k n∗∈ ( )Sk n k∗ > S

                                                 

4  the sign of (14) is indeterminate in 

 
3  Similarly, noting the impact of the number of children on the marginal cost of 

bequests, the relative magnitude of k∗  and  is indeterminate. Sk

4  We evaluate (9) when  and Sk k= Sn n= . Substituting (12) into (9) yields 

From  and 

, we thus have . 

1( ,  ) ( )( ) ( ) 0S S S S S S SF k n n n ANn V ANn kδ α α′= > .

1

( ( ),  ) 0S SF k n n∗ =

2 2
0( ,  ) / ( )  0kF F k n k n u n n A uδ′′ ′′≡ ∂ ∂ = + < ( )S Sk n k∗ >
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general, and is negative if  

(15) . 1
ˆ[ ( ) ] ( ,  ) ( )( ) ( )S S S S S S S S

kk n k G k n n n ANk V ANn kδ α α∗ ′− − >

Since both  and  are decreasing in ,( ( ),  )G k n n∗ ( ( ),  )S SG k n n n 5  we obtain the 

following proposition: 

 

Proposition 1.   1
ˆ[ ( ) ] ( ,  ) ( )( ) ( )S S S S S S S S

kk n k G k n n n ANk V ANn kδ α α∗ ′− − > Sn n∗⇒ <

 

The implication of Proposition 1 is as follows. The LHS of (15) represents the 

decrease in the PMNB of a child, or the increase in the private marginal cost 

of a child, when capital (i.e., bequests) increases from  to . (Note 

that  unambiguously exceeds , given , as a result of the 

pollution externality.) The RHS of (15) is the environmental effects of  

which the parents do not take into account in calculating the PMNB of a child. 

If the former dominates the latter, then the SMNB of  exceeds the PMNB of 

 when  and thus the number of children determined in the 

competitive equilibrium is lower than the social optimum. 

Sk ( )Sk n∗

( )k n∗ ( )Sk n n

n

n

n ,Sn n=

 We next compare the level of capital in the competitive equilibrium to its 

social optimal level. It is shown that capital is over-accumulated if the 

condition in Proposition 1 holds. As discussed earlier, this implies that 

 is a necessary condition for Sk k∗ > Sn n∗ ≤ . 

 

Proposition 2.    Sn n∗ ≤ ⇒ Sk k∗ >

 

Proof. From (9) we obtain 

(16) 0 1
2 2

0 1

( ,  ) ( ) ( )( ) 0
( ,  ) ( )

n

k

F k n n k u n n Auk n
n F k n n u n n A u

β δ
δ

∗ ′′ ′ ′+ +∂
= − = − <

′′ ′′∂ +
. 

Since , this implis that ( )Sk n k∗ > S ( ( )) ( )S Sk k n k n k∗ ∗ ∗ ∗= > > .   ,

                                                  
5  The second-order conditions for the social optimum ensure ( ( ),  ) / 0S SdG k n n dn < . 

The proof for  is available on request from the authors. ( ( ),  ) / 0dG k n n dn∗ <
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 We next examine the relative magnitude of pollution between the 

competitive equilibrium and the social optimum. We show that the level of 

pollution is unambiguously higher in the competitive equilibrium than in the 

social optimum, irrespective of the relative magnitude between  and  

and between  and . We thus turn to the following proposition: 

n∗ Sn

k∗ Sk

 

Proposition 3. Sπ π∗ >  

 

Proof.  We define the following function: 

(17)  
{ }
0 0 1

1

ˆ ( ,  ;  ) [ ( )] ( ) ( )
     ( ) ( ) 0,

F k n nu Ak n k n n Au Ak
n n ANnV ANnk

µ β δ
µ δ α α

′ ′≡ − − + +

′− =　

(18)  { }
0 0

1 1

1

ˆ ( ,  ;  ) ( ) [ ( )]
                     ( ( ) ( )) ( ) ( )

     [ ( ) ( )] 0

G k n k u Ak n k
n n n u Ak V ANnk

n n ANkV ANnk

µ β β
δ δ α
µ δ α α

′≡ − + − +

′+ + −

′− =

Note that the competitive equilibrium k k∗=  and n n∗=  satisfies (17) and 

(18) when 0µ = , whereas the social optimum Sk k=  and  satisfies 

them when 

Sn n=

1µ = . 

 Differentiating (17) and (18) yields 6

(19) 
ˆ

,
( ) n n

Fdk k F G
d D n

µ

µ µ
⎡ ⎤= −⎢ ⎥⎣ ⎦

 

(20) 
ˆ

( ) k k

Fdn k F G
d D n

µ

µ µ
⎡ ⎤= − +⎢ ⎥⎣ ⎦

, 

where , 

 and 

2
0 1 1/ ( ) [2 ( ) ( )]( ) ( ( ) ( ))  ( 0)nG G n k u n n n u V n n n ANkVβ δ δ δ δ α′′ ′ ′′ ′ ′≡ ∂ ∂ = + + + − − + <1

0)1
ˆ ˆ / ( )( )  (F F n n ANn Vµ µ δ α ′≡ ∂ ∂ = − < ( ) (>0)D µ  is the determinant of the 

Jacobian. 7   

 Differentiating 1 ANnkπ α=  with respect to µ  and substituting (19) and 

(20) yields 

                                                  
6  See Appendix 1. 
7  The proof for ( ) >0D µ  is available on request from the authors. 
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(21) ˆ
    .

( ) n n k k

d dk dnAN n k
d d d

ANF k kn F G k F G
D n n

µ

π α
µ µ µ

α
µ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛= − + −⎜ ⎟ ⎜
⎞+ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 

Furthermore, subsituting 1( ( ) ( ))k nG F n n n ANnVδ δ α′ ′= − +  and 

1( ( ) ( ))n nnG U n n n ANkVδ δ α′ ′= − +  (where 2
0 /nnU U 2n≡ ∂ ∂ ) into (21) yields 

(22) 

2

2 2

ˆ
2

( )

ˆ
     ( ) ( ) .

( )

k n nn

k n k nn n
k

ANnFd k kF F U
d D n n

ANnF k F F F U F
D F n

µ

µ

απ
µ µ

α
µ

⎡ ⎤− ⎛ ⎞= − +⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

− ⎡ ⎤= − + −⎢ ⎥⎣ ⎦

 

where we have  from the second-order conditions for the 

parent’s utility maximization, implying that 

2( ) 0k nn nF U F− >

/d d 0π µ < . Thus, we have 
Sπ π∗ > .  ,

 

 Propositions 1 and 3 imply the possibility that society may suffer from 

simultaneously insufficient fertility and excess pollution.  

 

4. Optimal Policy  

 This section examines whether the social optimum can be decentralized. 

In our model, since the parents fail to take into account the effects of 

production on pollution in choosing the number of children and the amount of 

bequests to each child, laissez faire leads both the fertility rate and per capita 

capital to become suboptimal. To control two variables, decentralization 

requires two policy instruments. Among many instruments the government can 

use, we consider taxes (or subsidies) on inheritance and taxes on childbearing 

(or child allowances), which would directly affect the decisions on fertility 

and bequests in the family. 

 

4.1 Decentralizing the Social Optimum 

 The government budget is balanced by lump-sum transfers to private 
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individuals in each period. We thus have 

(23) ,nT θ=  

(24) 1(1 ) ,r bτ η+ =  

where  is a tax per child imposed on the parents, T τ  is the tax rate on 

bequests to each child, θ  is a lump-sum transfer to each parent, and η  is a 

lump-sum transfer to each child. 

 The parent’s utility function (1) is rewritten as  

(25) 
{ }

0 0 0 1 0 0

1 1 1

[(1 ) ( ) ] ( ( ))
       ( ) [(1 )(1 ) ] ( ( )) .

U u r b n b T V Y
n n u r b V Y1

β θ π
δ τ η π

= + − + + + −

+ − + + −
 

The competitive equilibrium in this case, , 

satisfies the following conditions: 

( ,  )  and  ( ,  ))k k T n n Tτ τ∗ ∗= =

(26) 0 0

1

( ,  ;  ,  ) [ ( ) ]
                          ( )(1 ) [(1 ) ] 0,
F k n T nu Ak n k T

n n Au Ak
τ β

δ τ τ η
′≡ − − + + +

′
θ

+ − − +

�

=
 

(27)   
{ }

0 0

1 1

( ,  ;  ,  ) ( ( )) [ ( ) ]
  ( ( ) ( )) [(1 ) ] ( ) 0.

G k n T k T u Ak n k T
n n n u Ak V ANnk

τ β β θ
δ δ τ η α

′≡ − + + − + + +

′+ + − + − =

�

If the government realizes the social optimum in a decentralized economy 

with *τ τ=  and , we have *T T=

(28)  * *( ,  ) ,Sk T kτ∗ =

(29)   * *( ,  ) .Sn T nτ∗ =

Substituting (23), (24), (28) and (29) into (26) and (27) yields 

(30)  *
0 0 1[ ( )] ( )(1 ) ( )S S S S S Sn u Ak n k n n Au Akβ δ τ′ ′− − + + − 0,=

(31) 
*

0 0

1 1

( ) [ ( )]

( ( ) ( ))[ ( ) ( )] 0.

S S S

S S S S S S

k T u Ak n k

n n n u Ak V ANn k

β β

δ δ α

′− + + − +

′+ + − =

=

 

Since  also satisfies (12) and (13), equations (30) and (12) with 

 and  imply 

( , )S Sk n
Sk k= Sn n=

(32)  *
1 1( ) ( ) ( )( ) ( ) 0.S S S S S S S Sn n Au Ak n n ANn V ANn kτ δ δ α α′ ′− +

Hence we have 

(33) 1

1

( ) 0.
( )

S S S

S

Nn V ANn k
u Ak

α ατ ∗ ′
= >

′
 

Also, (31) and (13) with Sk k=  and Sn n=  imply 
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(34)  *
0 0 1[ ( )] ( ) ( )S S S S S S ST u Ak n k n n ANk V ANn kβ δ α α′ ′− − + + 0,=

and thus 

(35) 1

0 0

( ) ( ) 0.
[ ( )]

S S S S S

S S

n n ANk V ANn kT
u Ak n k

δ α α
β

∗ ′
= >

′ − +
 

Hence we have the following proposition: 

 

Proposition 4. If the social welfare function is given by (11), the social 

optimum can be decentralized with inheritance taxation and childbearing 

taxation that are defined in (33) and (35), respectively. 

 

4.2 Implications of the Optimal Policy  

 Equation (35) implies that  is positive independent of the relative 

magnitude between  and . (Similarly, (33) implies that 

*T

n∗ Sn *τ  is positive 

independent of the relative magnitude between k∗  and .) We now discuss 

why childbearing should be taxed to achieve social optimality, even when the 

number of children is too low in relation to the social optimum.

Sk

8

 In Figure 1, lines  and  respectively represent (26) and (27) with F G

0Tτ = =  in the ( ,  plane. )k n 9  In this case, the number of children is too low 

and the level of bequests is too high at the equilibrium point E . Since an 

increase in τ  shifts  to the left, and an increase in T  shifts  

downward,

F G
10  these lines move to  and * *( ( ,  ;  , *))F F k n T=� �

                                                 

 τ

 
8  A similar discussion could be applied to the reason τ  should be positive. 
 
9  Differentiating (26) and (27) with respect to  and , it can be shown that both 

 and G  slope downward, and  is steeper than . 

k n

F F G

 
10  Differentiating (26) with respect to , k τ , , T θ  and η , given , and noting n

Tdn ndT dθ+ =  and ( )A dk kd dτ τ+ = η

0

, which are derived from (23) and (24) 

respectively, yields  and / ( / )kk F Fτ∂ ∂ = − <� � / 0k T∂ ∂ = , where 

 and 2 2
0 1( )(1 ) 0kF n u n n A uδ τ′′ ′′≡ + − <�

1( ) 0.F n n Auτ δ ′≡ − <�  Similarly, differentiating 
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* *( ( ,  ;  ,  ))G G k n Tτ=� � *  if the government adopts ( 0)τ τ ∗= >  and . 

As a result, the social optimum  is achieved in the decentralized economy. 

( 0)T T ∗= >

S

 To explain the reason why the government should tax childbearing 

although the number of children is insufficient in the initial equilibrium, we 

first suppose that the government uses only an inheritance tax τ  as a policy 

tool. We see that an inheritance tax suffices to attain the optimal level of 

capital  as shown in Figure 1, in which a bequest tax such that Sk τ τ ′=  

alters the equilibrium to point  by shifting  to D F F ′� . However, the new 

equilibrium  is suboptimal because the number of children is too high 

relative to the social optimum (

D

( ,  0)n τ∗ ′ > ). Once  is adjusted to its 

optimal level, the factor in the insufficiency of  disappears, and  exceeds 

its optimal level. In this stage, the government needs to tax childbearing to 

internalize a pollution externality children will create.  

Sn k

n n

 

5. Alternative Social Discount Rate 

 Throughout the previous sections, we have maintained the assumption 

that the central planner counts the children’s welfare only through the parent’s 

welfare. In this section, we relax this assumption and consider that the social 

discount factor ( )nγ  differs from the parents’ degree of altruism ( )nδ . Since 

such an extension would not affect the results obtained above when 

( ) ( )n nγ δ< , we concentrate on the case where ( ) ( )n nγ δ> . In particular, we 

suppose that the central planner counts all individuals’ welfare equally, i.e., 

( ) 1nγ = , to simplify the analysis. In this case, the parents value the children’s 

welfare less than the central planner, and the parents’ behavior on fertility and 

inheritance creates other types of externalities.  

  The social welfare function is now defined as 

                                                                                                                                                  
n(27) with respect to , τ , , T θ  and η , given , and noting k Tdn ndT dθ+ =

( )A dk kd d

 

and τ τ η+ = / 0n τ∂ ∂ = / ( / ) 0,T nn T G G yields  and ∂ ∂ = − <� �

0 0TG u′≡ − <�
0 1 1 1( )( ) (2 ( ) ( ))( ) ( ( ) ( )) 0n T k u n n n u V n n n NAkVβ β δ δ δ δ α

 where 

 and G k ′′ ′ ′′ ′ ′≡ + + + + + − − + <� . 
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(36)  { 0 0 0 0 0 1 1
ˆ [ ( )] ( ( )) [ ( ) ( )]}.W N u Ak n k V AK n u Ak V ANnkβ π α= − + − + −

Accordingly, the social optimum is characterized by 

(37) 0 0 1 1
ˆ ( ,  ) [ ( )] [ ( ) ( )] 0,SF k n nu Ak n k nA u Ak NnV ANnkβ α α′ ′ ′≡ − − + + − =  

(38) 
0 0

1 1

1

ˆ ( ( ),  ) ( ( ) ) [ ( ( ) )]

                    [ ( ( )) ( ( ))]

                    ( ( )) ( ( )) 0.

S S S S

S S

S S

G k n n k n u Ak n k n

u Ak n V ANnk n

n ANk n V ANnk n

β β

α

α α

′≡ − + − +

+ −

′− =

 

 In this case, while Proposition 1 would be maintained by slight 

modification of the sufficient condition, Proposition 2 is no longer valid. 

Whether  is higher or lower than , the number of children can be too 

low due to the positive externality of childbearing that stems from the 

difference between the private and social welfare weights. Thus,  is 

not a necessary condition for . This implies that we do not necessarily 

have  in this case. 

k∗ Sk

Sk k∗ >
Sn n∗ ≥

( )Sk n k∗ > S

n The assumption that ( ) ( )nγ δ>  has policy implications different from 

those in the previous section. Thus, Proposition 4 is also not fully maintained: 

the social optimum can be still decentralized, but the optimal policy does not 

necessarily imply taxing both on childbearing and inheritance. 

 Equations (33) and (35) are reduced to 

(39) 1 1

1

( ) [1 ( )] (ˆ ,
( ) ( )

S S S S

S S

Nn V ANn k n u Ak
n u Ak

α α δτ
δ

∗ ′ ′− −
=

′
)S

 

(40) 1 1

0 0

( ) [1 ( ) ( )][ ( ) ( )]ˆ .
[ ( )]

S S S S S S S S S S

S

ANn k V ANn k n n n u Ak V ANn kT
u Ak n k

α α δ δ α
β

∗ ′ ′− − − −
=

′ − +
1  

The sign of τ̂ ∗  and  may be positive or negative, depending on whether 

the pollution externalities, whose effects are captured by the first term in the 

numerator of (39) and (40), dominate or are dominated by the externalities 

arising from the parents’ underestimation of the children’s welfare, whose 

effects are captured by the second term in the numerator of (39) and (40). 

Thus, if the net external effect of children (bequests) is positive, child 

allowances (subsidies on bequests) are required to achieve optimality. It 

should be noted, however, that the sign of 

T̂ ∗

τ̂ ∗  and T̂ ∗  is not to be determined 
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independent of the sign of the other, as shown in the following proposition:  

 

Proposition 5.  ˆˆ 0 0Tτ ∗ ∗≤ ⇒ <

 

Proof. Using (37) and (38), we rewrite (39) and  (40), respectively, as 

follows: 

(41) 1 0

1

[1 ( )] ( )ˆ ,
( ) ( )

S S S S S S

S S S

ANn k V n k u ANn k V
Ak n u Ak

α δ ατ
δ

∗ 1′ ′ ′− − +
=

′
 

(42) 1 0

0 0

[1 ( ) ( )][( ) ]ˆ .
[ ( )]

S S S S S S S S

S

ANn k V n n n k u ANn k VT
u Ak n k

α δ δ β α
β

∗ ′ ′ ′− − − + +
=

′ − +
1′

1

 

Subtracting the numerator of (42) from that of (41) yields  

 . 0 0[1 ( ) ( )] ( )( ) 0S S S S S S S Sn n n u n n k u ANn k Vδ δ β δ α′ ′ ′ ′ ′− − − + >

Since the denominators of (42) and (41) are both positive, if , then 

.    ,  

ˆ 0τ ∗ ≤

ˆ 0T ∗ <

 

Proposition 5 implies that, if the social welfare function is given by (36), a 

combination of taxes on childbearing and subsidies on inheritance can not 

implement social optimum in a market economy. 

 

6. Conclusion 

 Using an altruistic bequest model with endogenous fertility, in which both 

childbearing and bequests entail pollution externalities, we contrasted the 

fertility rate and the pollution level in the competitive equilibrium with those 

in the social optimum. It is shown that the fertility rate may be too low in the 

competitive equilibrium despite the negative externality created by 

childbearing, and, if this is the case, per capita capital over-accumulates. On 

the other hand, the level of pollution is unambiguously higher than the social 

optimum, whether the fertility rate (or per capita capital) is too high or too 

low. 

 Furthermore, we investigated what kind of policy is required to achieve 
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social optimality. If the social discount factor equals the private degree of 

altruism, the government needs to tax both childbearing and inheritance so as 

to restore efficiency, even if fertility or capital accumulation falls short of the 

respective optimal level. On the other hand, if the social discount factor 

differs from the private degree of altruism and is assigned equally among all 

individuals, child allowances and/or subsidies to inheritance may be required 

to achieve optimality. However, the optimal policy never involves a 

combination of taxes on childbearing and subsidies on inheritance. 
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Appendix 1: Derivation of /dk dµ  and /dn dµ  

 

 Differentiating (25) and (26) with respect to ,  and k n µ  yields 

 
ˆˆ ˆ

ˆˆ ˆ
k n

k n

FF F dk
d

dn GG G
µ

µ

µ
⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

, 

where 

 

  

2 2 2
0 1

ˆ ( ) ( )( ) 0,kF n u n n A u n n ANn Vδ µ δ α′′ ′′ ′′= + − <1

′′

′′ <

1V

( )
( ){ }

( ){ }

0 0 1

2
1 1

0 1

2
1 1

ˆ ( ) ( ) ( )

        2 ( ) ( ) ( ) ( )( )

    ( ) ( )

        ( ) ( ) ( ) ( )( ) 0

nF n k u u n n n Au

n n n ANn V n n AN nkV

n k u n n Au

n n n ANn V n n AN nkV

β δ δ

µ δ δ α δ α

β δ

µ δ δ α δ α

′′ ′ ′ ′= + − + +

′ ′− + +

′′ ′ ′= + +

′ ′− + +

 ( 0 1( ) ( )( )u n Au n ANnδ µδ α′ ′= −∵ ′

1

), 

 

0 0 1 1

2
1 1

0 1

2
1

ˆ ( ) ( ( ) ( ))[ ( ) ]

      ( )( ) ( )( )

   ( ) ( ) ( ( ) ( ))( ) ]

       ( )( ) 0

kG n k u u n n n Au ANn V

n n AN V n n AN nkV

n k u n n Au n n n ANn V

n n AN nkV

β δ δ α

µ δ α δ α

β δ δ δ α

µ δ α

′′ ′ ′ ′ ′= + − + + −

′ ′′⎡ ⎤− +⎣ ⎦
′′ ′ ′ ′= + + − +

′′⎡ ⎤− <⎣ ⎦

′

1V

 

 ( 0 1( ) ( )( )u n Au n ANnδ µδ α′ ′= −∵ ′

1

), 

 
2

0 1 1

2
1 1

ˆ ( ) (2 ( ) ( ))( ) ( ( ) ( ))( )

     ( ( ) ( ))( ) ( )( ) 0,
nG k u n n n u V n n n ANk V

n n n ANk V n n ANk V

β δ δ δ δ α

µ δ δ α δ α

′′ ′ ′′ ′= + + + − − +

′ ′ ′′⎡ ⎤− + + <⎣ ⎦

′

n

 

  , 1
ˆ ( )( ) 0F n n ANn Vµ δ α ′= − <

  . 1
ˆ ( )( ) 0G n n ANk Vµ δ α ′= − <

Noting that , we have ˆ ˆ /G F kµ µ=

 
ˆ ˆ1 ˆ ˆ ˆˆ ˆ ˆ ,

( ) ( ) ( )n n n n n n

F Fdk k kF G G F F G F G
d D D n D n

µ µ
µ µµ µ µ µ

⎡ ⎤ ⎡⎡ ⎤= − + = − = − ⎤
⎢ ⎥ ⎢⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

 

 
ˆ ˆ1 ˆ ˆ ˆˆ ˆ ˆ .

( ) ( ) ( )k k k k k k

F Fdn k kG F F G F G F G
d D D n D n

µ µ
µ µµ µ µ µ

⎡ ⎤ ⎡⎡ ⎤= − + = − + = − + ⎤
⎢ ⎥ ⎢⎣ ⎦ ⎥⎣ ⎦ ⎣ ⎦

 

 17



Appendix 2: Numerical Examples 

 

Functional Specifications and the Baseline Values of Parameters 

 In this appendix, we consider numerical examples of our model to 

quantitatively assess the results obtained in Sections 3 and 4. For that purpose, 

we specify the utility functions from goods consumption,  and , 

and the disutility functions from pollution, 

)(0 cu )(1 cu

)(0 πV  and )(1 πV , as follows: 

σccucu == )()( 10 , 0 1,σ< <  

and 

ν
πππ
νBVV == )()( 10 , , 0>B 1>ν . 

The degree of altruism toward children is assumed to take a form with a 

constant elasticity with respect to the number of children, , where, εξδ −= nn)(

0>ξ , and 10 << ε , as employed in Becker and Barro (1988).  

 Let us now determine the baseline values of parameters. First, we 

normalize the population of parent’s generation ( ) to 1 and we assume 

initial endowment of each parent ( ) equal to 1. Then, the total capital stock 

at first period ( ) equals 1. The productivity parameter (

0N

0b

0K A ) is set to 3.8134. 

The value corresponds to the case where the annual rate of interest is equal to 

0.055 when one period is considered to be 25 years (i.e., ). 

Emission coefficient (

25)055.01(8134.3 +≈

α ) is set equal to 0.2 and parameters appearing in the 

functions specified above are set to 6.0=σ , 1=B , 2=ν , 25.0=ξ , and 

1.0=ε . Rearing cost per child ( β ) is set to 0.2, which implies that, in the case 

where each parameter takes the baseline value, the share of child rearing cost 

in income ( 0ynβ= ) in the competitive equilibrium is about 6.9 %, that the 

share of consumption in income for parents ( 00 yc= ) is about 72.3 %, and 

that the share of bequests to the children in income ( 0ynk= ) is about 20.7 ％ . 

The baseline values of parameters are collected in Table 1．  

 When each parameter is set to its baseline value, the competitive 
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equilibrium is given by  = 0.5990 and  = 1.3198, while the social 

optimum is calculated as  = 0.3907 and  = 1.2863. Notice that, in our 

baseline case where each parameter takes its baseline value, the number of 

children determined in the competitive equilibrium, , is larger than the 

social optimum level . 

∗k ∗n
Sk Sn

∗n
Sn

 

Comparing the Competitive Equilibrium to the Social Optimum 

 In the following, we perform a sensitivity analysis by changing the values 

of key parameters of the model. In particular, we focus on the following 

parameters: the level parameter of the degree of altruism toward children (ξ ); 

the level parameter of the disutility functions from pollution ( B ); emission 

coefficient (α ); and rearing cost per child ( β ). We change the value of each 

parameter and re-calculate the competitive equilibrium values of , , and k n

π  and the social optimum levels of these variables in each case, holding all 

other parameters constant at their baseline values. Henceforth, we call a value 

of a variable determined in competitive equilibrium as an equilibrium value of 

the variable, and a social optimum level of a variable as an optimum value of 

the variable. The results of our sensitivity analysis are reported in figures 2 – 

5. The each figure presents the values of a given variable as a function of each 

parameter.  

 First we examine the sensitivity of the variables to changes in ξ . Figures 

2(a) – 2(c) show, in order, the values of , , and k n π , corresponding to the 

values of ξ  on the horizontal axis. As we can see from figure 2(a), when ξ  

moves from 0.2 to 0.4, the equilibrium value of  increases from about 0.44 

to about 1.53, while the optimum value of  decreases from about 0.40 to 

about 0.37. The response of fertility rate is presented in figure 2(b). The 

figure shows that, over the same interval of 

k

k

ξ , the optimum value of  

increases monotonically whereas the equilibrium value of  first increases 

and then decreases. The optimum value of  increases from about 0.77 to 

about 2.05. The equilibrium value of  increases for relatively small value 

n

n

n

n
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of ξ  ( 27.020.0 ≤≤ ξ ) from about 0.89 to about 1.34, while, for relatively 

large values of ξ  ( 40.028.0 ≤≤ ξ ),  decreases from about 1.34 to about 

1.02. In figure 2(c), the levels of pollution emission for different values of 

n

ξ  

are plotted. The social optimum level of π  necessarily increases with ξ , 

since both  and  increase as k n ξ  rises. Besides, the emission in the 

competitive equilibrium also increases monotonically in our example. When 

the value of ξ  is relatively small, the emission increases with ξ  since both 

 and  increase as k n ξ  rises. As we saw above, when the value of ξ  is 

relatively large, an increase in ξ  raises , but lowers . However, in our 

example, the former effect dominates the latter effect, and hence, the emission 

increases with an increase in 

k n

ξ , as shown in figure 2(c).  

 Summarizing, in our numerical example, as parents become more 

altruistic toward children, each parent tends to have less children and to leave 

larger bequest to each child than those of socially optimum levels. As for the 

level of pollution emission, it increases monotonically both in the competitive 

equilibrium and in the social optimum. 

 From Proposition 1, we know that the fertility rate determined in the 

competitive equilibrium may be higher or lower than the social optimum level, 

depending on the relative magnitude of LHS and RHS of (15). Now let us 

check the condition (15) for our parameter configurations. Remember that the 

LHS represents the decrease in PMNB of a child when capital increases from 

 to  and that the RHS is the environmental effects of  which the 

parents do not take into account in calculating the PMNB of a child. Figure 

2(d) shows the LHS and RHS of (15) for each value of 

Sk ( )Sk n∗ n

ξ . We can see from 

the figure that, for larger values of ξ  (i.e., 0.26ξ ≥ ), the LHS is greater than 

the RHS and hence, the condition (15) is satisfied. In such cases, as shown in 

Proposition 1, the number of children chosen in the competitive equilibrium 

must be lower than that of the socially optimal level. And, figure 2(b) shows 

that, in our example, the fertility rate in the competitive equilibrium for 

relatively large value of ξ  is indeed less than that of the socially optimal 
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level. 

 Figures 3(a) – 3(c) show how the values of , , and k n π  vary with the 

value of B . As we can see in figure 3(a), when B  varies from 1.1 to 2.5, the 

equilibrium value of  increases from about 0.52 to about 0.73, while the 

optimum value of  is almost constant at about 0.39. In figure 3(b), changes 

in the value of  are plotted. From the figure, we can see that both the 

equilibrium and the optimum values of n  decrease as 

k

k

n

B  rises. The 

equilibrium value of  decreases from about 1.72 to about 0.85, while the 

optimum value of  decreases from about 1.60 to about 0.92. And, as shown 

in figure 3(c), the pollution emission becomes smaller when 

n

n

B  rises in both 

competitive equilibrium and social optimum. 

 Let us here check the condition (15) for each value of B . The LHS and 

RHS of (15) for each value of B  are presented in figure 3(d). The figure 

shows that, for larger values of B  (i.e., ), the LHS is greater than the 

RHS. Comparing figures 3(b) and 3(d), we can see that, for the relatively 

large values of 

1.3B ≥

B , the fertility rate in the competitive equilibrium is indeed 

lower than that of the socially optimal level.  

 Figures 4(a) – 4(c) present, respectively, the values of , , and k n π , 

corresponding to changes in the value of α . It is seen in figure 4(a) that, 

when α  changes from 0.1 to 0.3, the equilibrium value of  increases from 

about 0.47 to about 0.72, while the optimum value of  decreases slightly 

from 0.40 to 0.39. Changes in the value of  are shown in figure 4(b). The 

figure shows that, both the equilibrium and the optimum values of  

decreases as 

k

k

n

n

α  rises. The equilibrium value of  decreases from about 2.08 

to about 0.90, while the optimum value of  decreases from about 1.92 to 

about 0.96. And, in both cases, the pollution emission increases when 

n

n

α  

increases, as shown in figure 4(c). Figure 4(d) shows that the condition (15) is 

satisfied for relatively large values of α  (i.e., α≤23.0 ). For those values of 

α , the fertility rates chosen in the competitive equilibrium are lower than 

those of socially optimal levels, as shown in figure 4(b).  

 Finally, figures 5(a) – 5(c) report the values of , , and k n π , 
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corresponding to the values of β  on the horizontal axis. As shown in figure 

5(a), when β  increases from 0.1 to 0.3, the equilibrium value of  

increases from about 0.51 to about 0.72 and the optimum value of  

increases from about 0.19 to about 0.59. Both in the competitive equilibrium 

and in the social optimum solution, an increase in 

k

k

β  reduces the fertility rate 

. For the same rage of values of n β , the equilibrium value of  decreases 

from about 2.00 to about 0.83, and the optimum value of  decreases from 

about 2.83 to about 0.73. In both cases,  increases and  decreases when 

n

n

k n

β  increases. In our numerical exercise, however, the former effect always 

dominates the latter effect, hence increasing the pollution emission π  with 

an increase in β , as shown in figure 5(c). By comparing figures 5(b) and 5(d), 

we can see that, when the rearing cost per child is relatively small (i.e., 

18.0≤β ), the condition (15) is satisfied and then the parents choose to have 

the smaller number of children than the optimum levels.  

 

Optimal Policies 

 We reconsider by numerical examples the optimal policies examined in 

section 4.2. We change the value of each parameter and calculate the optimal 

policies, T  and τ , in each case holding all other parameters constant at their 

baseline values. The results are reported in figures 6(1) – 6(4). Figure 6(1) 

presents the optimal policies for ξ  from 0.2 to 0.4; figure 6(2) for B  from 

0.5 to 2.5; figure 6(3) for α  from 0.1 to 0.3; and figure 6(4) for β  from 0.1 

to 0.3. Notice that, for ξ , B , and α , the optimal policies, T  and τ , 

increase when values of the parameters rise, as shown in figures 6(1) – 6(3). 

The increase in τ  can be understood from figures 2(a), 3(a), and 4(a). As can 

be seen in these figures, the difference between the competitive value of  

and the optimum value of  increases as the value of each parameter rises. 

To reduce the differences, higher tax on bequests is required for higher values 

of the parameters, and hence 

k

k

τ  must be increased. Next let us consider the 

tax on having a child, T . First note that the numerator of T  is equal to RHS 
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of (15), which represents the environmental effects of  which the parents 

do not take into account in calculating the PMNB of a child. The graphs of 

RHS of (15) were given in figures 2(d), 3(d), and 4(d). As shown in the 

figures, RHS is positively affected by 

n

ξ , B , and α , and it increases with 

the parameters. On the other hand, the changes in denominator of (35) are 

ambiguous. However, in our choice of parameter configurations, the former 

dominates the latter and hence T  increases with the parameters.  

 Symmetrically, T  and τ  decrease when rearing cost per child increases. 

As for τ , we can understand the result in the same way above. As we can see 

in figure 5(a), the difference between the competitive value of  and the 

optimum value of  decreases as 

k

k β  rises. For higher values of β , a lower 

tax on bequests suffices to eliminate the difference, and hence τ  decreases. 

As for the tax on having a child, the numerator of T  decreases with β , as 

shown in figure 5(d). And, irrespective of the changes in denominator of (35), 

the optimal policy T  decreases as β  increases, as shown in figure 6(4). 
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Figure 1: Optimal Policies 
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Figure 2:   Sensitivity to ξ  
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(c) Sensitivity of pi to xi
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Figure 3:   Sensitivity to B  
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(b) Sensitivity of n to B
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(c) Sensitivity of pi to B
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(d) Condition of Proposition 1
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Figure 4:   Sensitivity to α  
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(b) Sensitivity of n to alpha
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Figure 5:   Sensitivity to β  
 

(a) Sensitivity of k to beta
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(b) Sensitivity of n to beta

0

0.5

1

1.5

2

2.5

3

0.1 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.2 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.3

beta

n

n_(competitive equilibrium) n_(social optimum)

 
(c) Sensitivity of pi to beta
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(d) Condition of Proposition 1
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Figure 6:   Optimal Policies 
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Table 1:   The baseline values of parameters 
 
 

Parameter Values 
β  0.2
σ 0.6
B 1
ν 2
ξ 0.25
ε 0.1
A 3.8134
α 0.2

0b 1
N 1
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