Essays on Firm and Labor Market

Xuanli Zhu University of Tokyo

September 13, 2023

Overview

- 4 empirical papers on how firm and labor market interact to affect firm activities and labor market inequalities
- Ch.1: How labor market supply and frictions affects firm dynamics
- Ch.2: How worker and firm differences jointly affect wage inequality
- Ch.3: How firm affects non-wage compensation provision inequality
- Ch.4: How labor market liquidity affects firm training and worker learning
- Contribution: new data; new method; new fact; new theory

Chapter 1. Establishment Dynamics in Post-War Japan

Chapter 2. Post Wage Inequality

Chapter 3. Post Compensation Inequality

Chapter 4. Japanese Programmer and Technology Adoption

Research Questions

- How do firm/establishment dynamics (entry, exit, lifecycle growth) evolve over long time periods?
 - Important for economics growth (e.g. creative destruction) and market efficiency (e.g. resource reallocation/misallocation)
- What are the main drivers of the evolution of long-run market dynamics?
 - Various explanations in the literature: entry cost; frictions; labor supply; ...
 - Less clear on short-run vs. long-run determinants
 - Potential long-run dynamic effects and history dependency

This Paper

- Use newly collected historical statistics to study the long-run establishment dynamics of post-war Japan (1950s-2000s)
 - More works since lost decades, but less known for earlier periods
 - Identify cohort-specific lifecycle growth from repeated cross-sectional data
- Calibrate a typical firm dynamics model to test various theories on the observed evolution of post-war Japan establishment dynamics
 - Test if a newly found driver—labor supply (Karahan et al., 2019; Hopenhayn et al., 2020)—or traditional drivers can explain the entry rate trends in Japan
 - Check if labor market distortions can explain changes in avg. size and lifecycle growth

Data Source and Definition

- Establishment Census in Japan:
 - All private establishments in non-agriculture sectors since 1951 to 2006, conducted every 3 or 5 years (manually collected for before 1980s)
 - Aggregate statistics on establishment number and employment in various categories
 - Age of an establishment is defined as the years passed since it operated its present business in its present physical location
- Focus on incorporated establishments ("Employers")
 - Excluding individual proprietorship ("Nonemployers") given its different nature
 - Consistent with the literature
- Establishments are different from firms, but not too much
 - Over 80% of the firms are single-establishment firm
 - Market dynamism more simple and natural at establishment level

Fact 1: Long-Run Decline in Entry Rate

- Entry rate (= Age 1 est. mass / total mass) declined about 3.5 percent points from 1969 to 2006
- This steady decline starts since around late 1950s if not earlier!
 - similar across industry
 stagnated exit rate
 - ◀ aging est. demographics

 \rightsquigarrow Long-run driver?

Fact 2: Shrinking Establishment Size

- Average establishment size declined over 30% in 1960s and 1970s
- Structural transformation from Manufacturing to Service? \rightarrow About 68% of the decline is within (2-digit) industry
 - diverge across industry
 - different trends for different age groups

 \rightsquigarrow Puzzling?

Fact 3: Birth Cohort Effect on Life Cycle Growth

⁽Imputed from • avg. size-age correlation)

- Growth of a cohort mainly occurs when young, and nearly stops after around age 20 (• cross-country comparison)
- Parallel-like shifts in life-cycle growth across entry cohorts (cond. on surviving)
- Early-life growth is higher in early years and flattened since 1990s

different across industry
 early cohorts also parallel

→ History matters

Benchmark Model

- We use the canonical Hopenhayn firm dynamics model as our benchmark
 - $\pi_t(\mathbf{s}_t, \mathbf{n}_t, \mathbf{w}_t) = \mathbf{s}_t \mathbf{n}_t^{\theta} \mathbf{w}_t \mathbf{n}_t \mathbf{w}_t \mathbf{c}_f$
 - $V(s_t, \mathbf{w}_t) = \max_{n_t} \pi_t(s_t, n_t, w_t) + \beta \max_{X \in \{0,1\}} \{ \mathbb{E} V(s_{t+1}, \mathbf{w}_{t+1} | s_t), 0 \}$
 - $\bar{s}_t = \inf \{ s | \mathbb{E} V(s_{t+1}, \mathbf{w}_{t+1} | s_t) \ge V^x \}$ (optimal exit)
 - $V^{e}\left(\mathbf{w}_{t}
 ight)=\int V\left(s,\mathbf{w}_{t}
 ight)dG_{t}(s)-c_{e}$ (free entry)
- Putting the model to Balanced Growth Path (*L* grow at rate η):
 - Labor market clearing: $\int \{n(s, w^*) + c_f\} d\tilde{\mu}^*(s) = 1$
 - Law of motion on the productivity distribution: $\tilde{\mu}^*(A) = \frac{1}{1+\eta} \iint_{s' \in A, s \ge \bar{s}^*} dF(s'|s) d\tilde{\mu}^*(s) + \tilde{m}^* \int_{s' \in A} dG(s')$
 - Both total est. measure and entrant measure m grow at η
- During Transitional Path (due to η changes), aggregate states w^* and \bar{s}^* keep invariant, and entrants work as a labor-absorbing wedge

Calibrating to Period Average

Moments	Data	Model	
Entry rate, %	5.76	5.62	Target
Exit rate, %	2.56	3.62	
Average establishment size	17.57	16.82	Target
Average entrant size	12.63	13.57	Target
Average life-cycle growth rate, %			
(conditional on survival)			
Age 1-10	21.65	21.88	Target
Age 1-20	30.17	29.72	Target
Age 1-26	31.98	32.32	
Number share by size, %			
Employment 1-9	61.64	63.86	Target
Employment 10-29	27.14	25.13	
Employment 30-99	9.03	8.76	
Employment 100+	2.16	2.25	
Number share of entrant by size, %			
Employment 1-9	67.98	67.40	Target
Employment 10-29	24.21	23.66	
Employment 30-99	6.55	7.53	
Employment 100+	1.19	1.41	

- Calibrate our benchmark model
 parameters to the average firm statistics over 1969-2006 and average life cycle growth over 1969-1981
- We assign an average labor supply growth rate of 2% thus the model exit rate in BGP is higher than data
- The avg. size derived from model is a little deviated from the data, but the life cycle growth and share distribution is well matched

Declining Labor Force Can Drive Long-Run Entry Decline

- By feeding the labor force growth into our benchmark model, it generate entry rate decline in the transition path qualitatively similar to data in the long-run
- The medium/short-run fluctuations come from labor supply trends

✓ with HP filters

- weak feedback effects
- cannot explain exit rate and avg. size changes

Traditional Explanations Fail to Explain Large Entry Decline W/O Generating Inconsistent Trends

To produces 2.2 percent points entry rate decline

	Benchmark	Labor Growth	Entry Cost	Exit Value	Fixed Cost
η, %	2.00	0.00	-	-	-
Ce	76.05	-	136.05	-	-
V^{x}	0.00	-	-	-20.79	-
Cf	2.12	-	-	-	0.86
<i>w</i> *	0.98	0.98	0.78	0.95	1.09
\bar{X}^*	1.32	1.32	0.82	0.82	0.82
Entry Rate, %	5.62	3.43	3.41	3.41	3.41
Exit Rate, %	3.62	3.43	1.41	1.41	1.41
Avg. Entry Size	13.57	13.57	23.49	14.68	9.46
Avg. Entry Size (after exit)	14.89	14.89	23.84	14.89	9.61
Avg. Est. Size	16.82	17.31	21.61	13.58	8.71
LifeCycle Growth Rate 10y, %	21.88	21.88	-2.51	-2.36	-2.51
LifeCycle Growth Rate 20y, %	29.72	29.72	-7.71	-7.25	-7.71

- Entry cost increase: price effect dominates and raises more entry size than avg. size
- Exit value decline: weakened selection effects lower avg. size for incumbents but has less effect on entry size
- Fixed cost decline: a combination of higher wage and weakened selection

Size-Correlated Labor Tax

-	· / /		-	-	
	Benchmark	γ =0.04	γ =0.07	γ =0.12	γ =0.20
W*	0.98	0.92	0.87	0.80	0.71
<i>w</i> min	0.98	0.83	0.72	0.58	0.43
w max	0.98	1.04	1.09	1.17	1.30
w max / w min	1.00	1.25	1.50	2.00	3.00
$ar{x}^*$	1.32	1.26	1.20	1.12	0.99
Entry Rate, %	5.62	5.29	4.99	4.60	4.06
Exit Rate, %	3.62	3.29	2.99	2.60	2.06
Avg. Entry Size	13.57	13.59	13.60	13.63	13.67
Avg. Est. Size	16.82	16.07	15.44	14.62	13.55
LifeCycle Growth Rate 10y, %	21.88	16.77	12.53	7.11	0.47
LifeCycle Growth Rate 20y, %	29.72	22.31	16.20	8.40	-1.18

Assume a labor wage tax $(1 + \tau_i^w) = s^{\gamma_i}$ that depends on productivity s

- A tax generating a 2-fold wage gap btw. the smallest and largest establishments reduces avg. est. size for about 13%
- It has cancelled effects (lower cost for entry but higher cost for growth) for entry size and thus decrease the life cycle growth.

Labor Adjustment Costs

Assume a adjustment costs $\Psi(n_t, n_{t-1}) = \tau^{\omega} \cdot \max\{0, n_{t-1} - n_t\}$					
	Benchmark	Firing		Full	
	τ ^a =0.00	τ ^a =0.25	τ^a =0.50	τ^a =0.25	τ^{a} =0.50
<i>W</i> *	0.98	0.95	0.93	0.92	0.88
$ar{x}^*$ (mean)	1.32	1.29	1.26	1.26	1.20
Entry Rate, %	5.62	5.45	5.29	5.29	5.01
Exit Rate, %	3.62	3.45	3.29	3.29	3.01
Avg. Entry Size	13.67	11.56	10.70	10.64	9.71
Avg. Est. Size	16.93	16.51	16.34	16.28	15.92
LifeCycle Growth Rate 10y, %	21.85	42.10	53.53	53.74	67.03
LifeCycle Growth Rate 20y, %	29.66	50.47	61.82	62.07	75.62
Job Turnover Rate, %	0.47	0.29	0.24	0.24	0.18

Assume a adjustment costs $\Phi(n, n, i) = \tau^{a} \max \{0, n\}$

- Entrants have avg. size decline because they would hire less to avoid an additional firing cost when exit
- However, incumbent avg. size does not decline much and the life cycle growth thus increase substantially

Summarizing Main Results

1. Persistent decline in market dynamism in post-war Japan

- Can be large explained by decline in labor supply growth
- Other traditional explainers would generate inconsistent changes in est. avg. sizes
- 2. Establishment size decline and Lifecycle growth downward shifting in 1960s & 1970s
 - Labor market distortions such as size-correlated labor tax and labor adjustment costs fail to generate such declines
 - Alternative mechanisms such as initial investment channel might be required

Chapter 1. Establishment Dynamics in Post-War Japan

Chapter 2. Post Wage Inequality

Chapter 3. Post Compensation Inequality

Chapter 4. Japanese Programmer and Technology Adoption

Motivation

- What's the determinants of wage dispersion in the labor market?
 → Worker heterogeneity + Firm heterogeneity + W-F sorting + ...
- Major econometric problem: unobserved worker/firm characteristics \rightarrow common approach: TWFE + linked EE panel data (AKM1999)
- Results from the literature:
 - 1. 50+% worker effect \rightarrow unobserved skill & task variations
 - 2. 5-15% firm effect \rightarrow variations in firm wage premiums
 - 3. 5-15% sorting \rightarrow important to correct for limited mobility bias
- \rightarrow Q1: Only available for a limited set of developed countries. Other countries? Alternative ways?
- \rightarrow Q2: Do we fully understand any of these components? Deep drivers? Heterogeneity?

This Paper - New Method

- A new way to study wage determination taking advantage of
 - 1. Online job vacancy/ads data
 - 2. Machine learning algorithms
- Key idea: worker $\sim {\rm job}$

As firms document all the job characteristics to attract their ideal candidates, and post wage based on their valuation • vacancy sample

Implicit presumptions: directed search & perfect matching

- Advantage:
 - 1. Vacancy data is more accessible & up-to-date
 - \rightarrow EE data is not always available, e.g. China
 - 2. Not only alternative but also ideal environment for studying firm effect & sorting
 - \rightarrow Pre-bargaining; Pre-mismatch
 - 3. Estimation is more flexible & parsimonious
 - ightarrow No restriction on connected set or exogenous mobility, less limited mobility bias
 - 4. Open the black box of worker effect in a data-driven way
 - \rightarrow See what are the important skills/tasks contributing to wage differential & sorting

What Exactly We Do

- 0. Use 4m vacancy data from a Chinese job board (2013-2020) with full job description texts & posted wages
- 1. ML part: Use basic supervised & unsupervised ML methods to explore the high-dimensional job-text data and to generate proxy variables for various skills&tasks
 - 1.1 Feature Selection
 - 1.2 Feature Clustering

1.3 Dimensional Reduction

- two methods (w/ & w/o human knowledge)

(Why basic? Interpretation + Performance)

- 2. Econometrics part: Embed these proxy variables into the typical wage regression & variance decomposition and examine different wage components
- 3. Extensive analysis: Examine potential heterogeneity of skill prices & firm wage premium and the driver of inequality trend

Data: Basic Info

Lagou.com: the largest IT-centered online job board in China (mostly "cognitive jobs")

- Over 6 million vacancies between 2013 and 2020 vacancy trend
- Mainly jobs in all occupations demanded by IT-producing/using firms: Computer, Design & Media, Business Operation, Financial & Law, Sales, Admin
 • occupation classification
- Like other vacancy data, biased to young/low-experienced and high education workers/jobs in large cities details & reliefs
- Vacancy information: job name, posted wage, location, requirements on education and experience, job task or skill description, job benefits, firm name, ... vacancy sample
- Final Sample after cleaning: 4 million vacancies sample cleaning summary statistics
 Potential concerns: various data/sample representativeness issues data/sample representativeness issues

Posted Wage Regression

- Baseline: In $w_i = X_i\beta + \psi_j + \iota_t + \epsilon_i$
 - w_i is the mean of the posted wage scope
 - X_i is a vector of job characteristics, denote $\theta_i \equiv X_i \beta$
 - ψ_i is the firm effects
 - ι_t is the year effects
- Estimated β will be the market average prices of the job characteristics
- Estimated ψ_i will be the firm-specific wage premiums/discounts for any reasons
- $\hat{\beta}$ and $\hat{\psi}_j$ would be biased if $\operatorname{cov}(X_i, \epsilon_i) \neq 0$ and $\operatorname{cov}(\psi_j, \epsilon_i) \neq 0$

- var
$$(\ln w_i) = \underbrace{\operatorname{var}(\theta_i)}_{\text{Job Effect}} + \underbrace{\operatorname{var}(\psi_j)}_{\text{Firm Effect}} + \underbrace{2\operatorname{cov}(\theta_i, \psi_j)}_{\text{Firm-Job Sorting}} + \operatorname{var}(\varepsilon_i)$$

Overview of ML Procedures Jump to Results

1. Feature Selection: 110,000+ \rightarrow 3100+

Transform vacancy documents **D** to an indicator matrix **C** ($N \times K$), where K = |V|; Run Lasso regression of ln *w* on **C** to shrink the entire vacancy text vocabulary set *V V* to a vocabulary subset V' (and **C** to **C**')

▶ Lasso detail) (▶ Lasso turning by BIC) (▶ Lasso inference & sanity check

- 2. Feature Clustering: 3100+ → 8 groups
 Train a word embedding model (Word2Vec) on vacancy text D to obtain the embedding space representation for selected features: U' = {u_k} where k ∈ V';
 Apply K-Means classifier to U' generate P (= 8) clusters {V'_p}^P_{p=1}
 word embedding detail A data driven skill & task space a data driven skill & task space
- Dimensional Reduction: 3100+ → 8 × 3 = 24 Use PLS to transform each C'_p ≡ {c_k}, k ∈ V'_p into a low dimensional representation Ξ_p (N × Q; Q = 3) and obtain {Ξ_p}^P_{p=1}

dimensional reduction detail

Feature Clustering: Skill/Task Structure • Overview

A data-driven skill/task structure shows layers of specificity • specificity • specificity

- 0. Compensation (V_c')
- 1. General skills (V'_g)
 - Cognitive: e.g. logic, self-learning
 - Interpersonal: e.g. communication, extrovert
 - Non-cognitive: e.g. hard working, responsibility
- 2. Education-related or -extensive skills (V'_{e})
 - e.g. education level, college majors, certificates, fundamental occupational skills, basic field experience
- 3. Occupation-specific skills and tasks (V'_{s1}, \ldots, V'_{s5})
 - e.g. c++, python, graphic design, logistic management, audit, business negotiation, client responding, ...

(way more granular than cognitive/social/... dimension or traditional occ dimension)

Proxy Variables on Skills & Tasks

- Under our construction, $\{\Xi_g, \Xi_e, \Xi_{s1}, \dots, \Xi_{s5}\}$ proximate to a full set of skills/tasks required in the vacancy that are predictive for posted wage
- Our final specification of job controls: $X = \{X_{ext}, X_{int}\}$
 - $X_{ext} \equiv \{EDU, \Xi_g, \Xi_e, \Xi_{s1}, \dots, \Xi_{s5}\}$, (extensive margin)
 - $X_{int} \equiv \{EXP\}$ (intensive margin) \rightarrow compare R2
- We further split X_{ext} into three groups:
 - Most general group: Ξ_g
 - Medium specific group: $\Xi_m \equiv \{EDU, \Xi_e\}$
 - Most specific group: $\Xi_s \equiv \{\Xi_{s1}, \dots, \Xi_{s5}\}$

Variance Decomposition

24/60

Variance Decomposition: Robustness

- Limited mobility bias is limited as long as firms have enough number of vacancies
 bias correction
- Education or Experience composition does not drive our results conditional on EXP & EDU
- Switching Ξ_4 from Ξ_s to Ξ_m has strongest impact on Admin sample $\Box_m = \{EDU, \Xi_4\}$
- Can still largely replicate the results in Deming and Kahn (2018) replicate DK app
- Non-wage compensation terms selected by Lasso largely because they can predict job and firm effects add Ξ₀ into regression
- Estimated firm wage premium are positively correlated with firm size (conditional on sorting) and accounted by firm location, consistent with the literature firm FE regression
- Mean residuals by firm-job cells show that the linear (additive separability) assumption seems to be a worse approximation in pooled sample residual distribution

A Shortcut

- Occupation is itself a concept born from skill/task specificity, though too coarse
- Bonhomme et al. (2019) suggests another way to solve the finite sample bias: estimating latent firm groups: $\min_{\mathfrak{t}_1,...,\mathfrak{t}_j,H_1,...,H_g} \sum_{j=1}^J n_j \int \left(\widehat{F}_j(y) - H_{\mathfrak{t}_j}(y)\right)^2 d\mu(y)$
- Here we can also use our embedding space representation to classify latent job groups:
 - First, for each vacancy: $\mathbf{z}_i = \sum_{k \in V_i} \mathbf{u}_k = (z_{i1}, \dots, z_{iH})$
 - Then, $\min_{\{\iota_1,...,\iota_l,G_1,...,G_{\mathfrak{L}}\}} \sum_{i=1}^{l} \sum_{h=1}^{H} (z_{ih} G_{\iota_i}(h))^2$
 - This can be seen as a way to generate occupations with arbitrary number $\ensuremath{\mathfrak{L}}$

A Shortcut

Summarizing Main Results

- 1. At least for this market, our estimated shares of wage inequality components (45.0% job effect; 13.6% firm effect; 14.2% sorting) are consistent with the literature
- 2. Our approach shows a data-driven skill/task structure featured by different specificity levels
- 3. For the posted wage variations from job effect and firm-job sorting
 - Extensive margins account for 2/3; Intensive margin (Exp) accounts 1/3
 - Occupation-specific skills/tasks account for the major shares, esp. in high-skill occ
 - Education-related skills/tasks account for more shares in low-skill occ
 - General skills, whether cognitive, interpersonal, or noncognitive, barely matter (here)
- 4. Levels of skill prices, firm wage premiums, & sorting vary across occupations
- 5. Increased posted wage variance in our data is largely driven by increased sorting, esp. from those occupation-specific skills/tasks

Chapter 1. Establishment Dynamics in Post-War Japan

Chapter 2. Post Wage Inequality

Chapter 3. Post Compensation Inequality

Chapter 4. Japanese Programmer and Technology Adoption

Research Questions

Empirical:

- 1. What consists non-wage compensations in today's labor market?
- 2. Do firms distinguish in their provision of amenities/disamenities? How?
- 3. What are their impact on wage disparity?

Theoretical:

- 1. Do observed firms' provision patterns consisting with existing theories?
- 2. Why empirical tests of compensating differential often fail?
- 3. What are general implications of non-wage compensations on labor market?

What This Paper Does

- 1. Investigate the provision patterns & wage effects of non-wage compensation (both pecuniary & nonpecuniary) by using job ads/vacancy data
 - Difficult to observe in census/survey data
 - Extract info from job texts using (basic) ML methods
 - Find stylized patterns in the data
 - Discuss the inconsistency between findings and existing theories
- 2. Construct a new & simple theory to rationalize our empirical findings
 - Extend the idea of compensating differential with a new force
 - Reconcile our empirical findings and offer important implications

Fact 1: Firms Provide "Common" Non-wage Compensations • chinese

insurance&fund; leisure; growth potential, bonus, environment, fringe benefits, ...

Fact 2a: Firm Non-wage Compensations Correlated With Job Attributes <- Lasso top features using V_{comp} - Lasso top features using V

All V'_{comp}

Fact 2b: Compensations Explain Wage Differentials Through Linkage with (Both Job and) Firm Heterogeneity (posted wage regression details)

 $\ln w_{i,j,t} = \theta_i + \psi_j + \frac{\delta_i}{\delta_i} + \iota_t + \epsilon_i$

	With δ		Without δ		
	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.362	-	.362	-	
$Var(\theta_i)$.158	.437	.163	.450	
$Var(\psi_i)$.046	.128	.049	.136	
$Var(\delta_i)$.002	.004			
$Var(\epsilon_i)$.097	.269	.098	.272	
$2 \operatorname{Cov}(\theta_i, \psi_i)$.049	.137	.052	.142	
$2 \operatorname{Cov}(\delta_i, \theta_i)$.006	.017			
$2 \operatorname{Cov}(\delta_i, \psi_i)$.003	.008			
$\operatorname{Corr}(\theta_i, \psi_i)$.289		.288		
$\operatorname{Corr}(\delta_i, \theta_i)$.193				
$\operatorname{Corr}(\delta_i, \psi_i)$.174				
Obs	3998840		3998840		
Firm	86165		86165		
Fact 3: Systematic Differences in Compensation Provision Across Firms and Jobs more types (b) Basic Insurance (d) Stock Option (a) Advanced Insurance (c) Backloading Wage 0.10 0.10 10.05 0.05 0.2 0.05 0.00 methect.Decile Lect Decilie Decile Job Effect Decile Job Effect Decile ^{Job} Effect Decile ^{Job} Effect Decile 10 10 10 10 (e) Coworker Quality (f) Training (g) Weekend, Holiday, Fixed Work-Time (h) Work(-Time) Flexibility 0.4 0.2 0.10 0.2 0.1 10.05 .ct.Decile effect De

34/60

Fact 4: Hedonic Regression Results are Mixed but in A Systematic Way

	(1)	(2)	(3)
Advanced Insurance	.117**	.087**	.014**
	(.001)	(.001)	(.001)
Backloading Wage	.054**	.030**	.010**
	(.001)	(.001)	(.001)
Stock Option	.114**	.058**	.087**
	(.001)	(.001)	(.001)
Coworker Quality	.140**	.059**	.024**
	(.001)	(.001)	(.001)
Work-Flexibility	.046**	.032**	.010**
	(.001)	(.001)	(.001)
Basic Insurance	062**	046**	025**
	(.000)	(.000)	(.000)
Training	057**	012**	003**
	(.001)	(.001)	(.001)
Work-Time	113**	081**	021**
	(.001)	(.000)	(.000)
Education FE	\checkmark	\checkmark	\checkmark
Experience FE	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark
C∖ <i>comp</i>		\checkmark	\checkmark
Firm FE			\checkmark
Adj. R ²	.506	.633	.738
No. Obs	3998840	3998840	3998840

Summary of Empirical Findings & Implications on Theory

1. Firms use common non-wage compensations to attract job seekers: insurance, work-time, extra pay, workplace, ...

 \rightarrow endogenous rather than exogenous variations in firm cost functions (& variations in worker preference?)

2. Non-wage compensations explain posted wage variance mainly via their correlations with job/firm effects

 \rightarrow sorting is productivity-based; limited importance of compensating differential or co-determination with wage

- 3. Diff firms in diff jobs have distinct compensation-provision patterns → important mechanism of compensation provision linked with firm/worker quality
- 4. Hedonic regression shows systemically mixed results of compensating differential \rightarrow reason of the empirical failures linked with the provision patterns
- $\rightarrow~$ These findings are inconsistent with the settings/views of compensating differential

Unobserved Worker Ability \rightarrow Compensation Inequality?

A phantom of unobserved ability

Can Existing Theories Explain Positive Wage-Amenity Relationship?

- Hwang et al. (1992); Mortensen (2005): income effect
- Hwang et al. (1998): firms with low amenity-providing cost use both better amenity and higher wage to attract workers
- Problem 1: income effect cannot explain why it is low-pay firms provide leisure but not high-pay firms (e.g. notorious 996 working culture in Chinese IT industry)
- Problem 2: amenity-producing cost cannot explain why it is high-pay firms provide many superior amenities like insurance or backloading wages
- Problem 3: sorting is purely from exogenous heterogenous amenity-producing costs (and/or heterogenous worker preference) or wage-queue tradeoff

Model Overview

- We suggest a new theory that extends Compensating Differential with "Efficiency Compensation" and productivity-based firm-worker Sorting
- Key idea: "Efficiency" dimension
 - 1. Many compensations observed in data are (in)efficiency compensation
 - 2. The level of efficiency depends on firm & worker productivity
- Mechanism: A new channel works in addition to compensating differential
 - 1. When a compensation is efficient, it counteracts compensating differential effect
 - 2. When a compensation is inefficient, it magnifies compensating differential effect
 - 3. Extent of this (in)efficiency channel depends on firm-worker productivity sorting
- $\rightarrow\,$ This simple modification reconciles all findings and generates many important general implications

Model Setting: Worker

- A continuum of worker with heterogenous productivity $q \in [0, 1]$ and additively separable (quasi-linear) utility function $U(C, a, h) = C + \phi_a a \frac{h^{1+\phi_h}}{1+\phi_h}$
 - C is monetary consumption
 - $a \in \{0, 1\}$ is the indicator of a discrete amenity, e.g. insurance
 - h is a continuous disamenity, e.g. additional working hour

(Abstract from heterogenous preference)

Model Setting: Firm

- Firms are ex-ante homogenous with O-Ring production function:
 - $Y_j = AN_j^{1+\alpha} \prod_{i=1}^{N_j} q_i e(a, h)$
 - N is assumed to be fixed exogenously <a>can relax
 - Compensations are (in)efficient: $e(a, h) = 1 + \gamma_a a + \frac{h^{\gamma_h}}{\gamma_h}$

(microfoundations: e.g. less exogenous or endogenous exit(Hwang et al., 1998; Dey and Flinn, 2005); convexity in hour productivity (Goldin, 2014))

- Firm pay direct cost κ for a and compensate wage w for h

(Abstract from heterogenous (dis)amenity production function)

Competitive Equilibrium & Matching

- Competitive equilibrium in this economy is defined as an assignment of worker types to firms and a utility schedule, u(q) such that
 - Firms maximize their profits
 - Labor market clears
- Complementary production function & additively separable utility function ensure positive assortative matching (PAM) even under imperfect transferable utility

ightarrow each firm will employ workers with same q

(Abstract from other-types of sorting)

Firms' Optimal Choices

- A firm chooses $\{q, a, h, w\}$ to maximize profit s.t. market utility schedule \bigcirc firm problem

-
$$a^* = \begin{cases} 1, & \text{if } q \ge q_a \\ 0, & \text{if } q < q_a \end{cases}$$
, and $\underbrace{AN^{\alpha}q_a^N\gamma_a + \phi_a}_{\text{mb}} = \underbrace{\kappa}_{\text{mc}}$

- If *a* is not efficient, i.e. $\gamma_a = 0$, return back to the canonical compensating differential
- If unit cost is $q\kappa$, higher q firms are still more likely to provide a
- $h^* = (AN^{\alpha}q^N)^{\frac{1}{1+\phi_h-\gamma_h}}$ increases in q

- $h^*(q)$ will be fully compensated by w(q), thus provision cost ex-post depends on q

Market Wage market utility

- Recall $\gamma_a \bar{A} q^N \kappa = -\phi_a$ when $q = q_a$ and can be positive when $q \uparrow$ \rightarrow offsetting compensating differential
- $\frac{(\bar{A}q^N)^{1+\omega}}{(1+\omega)(1+\gamma_h)}$ is the efficiency gain from *h*; $\frac{(\bar{A}q^N)^{\omega}}{1+\gamma_h}$ is the compensation for *h* \rightarrow magnifying compensating differential

Model Implications

1 Testing compensating differential: Compensating effects can be confounded with productivity effects; Available variations for wage-amenity packages can be limited conditional on worker

 \rightarrow Field/choice experiments (WtP) or RCT-like experiments (exogenous variations) not necessarily capture the whole picture of how labor market works

- 2 Labor market inequality: Efficiency compensations can enlarge both utility dispersion & wage dispersion
 - ightarrow Increased sorting or better use of efficiency compensations increases wage inequality
- 3 Job mobility: The set of non-wage compensations that can justify job moves to low wage-premium firms is likely limited to inefficient amenities
 - \rightarrow Potential implications for gender wage gap and etc.

Outline

Chapter 1. Establishment Dynamics in Post-War Japan

Chapter 2. Post Wage Inequality

Chapter 3. Post Compensation Inequality

Chapter 4. Japanese Programmer and Technology Adoption

Research Questions

- Who (should) provide human capital investment for new skills under new tech? Firms (Training)? Workers (Learning)?
- Literature suggests both can, but their incentives diverges
 - Becker (1964): only workers have incentive in competitive labor market
 - Acemoglu and Pischke (1998, 1999a,b): firms also have incentive under labor market imperfections
- Less stress on efficiency differences:
 - Assume that can achieve optimal investment as long as one party is sufficiently incentivized
 - If efficiency differences exist, there can have mismatch with incentive structures
- Market structures and institutions that determine the incentive structures often exogenously given

This Paper

- Study human capital investment and technological adoption behaviors/outcomes under different markets by comparing the IT industries in Japan and China
 - Utilize online vacancy data to identify otherwise hard-to-observe info data source
- Find distinct empirical features
 - Japanese IT firms: lower edu/exp requirements; more on-the-job training; less advanced technologies and skills; less wage premium organicationality.com
- Build a simple model to explain why distinct qualitative results
 - Assume workers have higher investment efficiency than firms for IT technology
 - Illiquid labor market in Japan suppresses worker investment but encourages firm investment, despite its relative inefficiency
- Show that this model can also explain why endogenous labor market institutions emerge and/or resist to changes
 - Key is to allow relative efficiency contingent on the prevailing technological regime
 - Incumbent firms have limited incentives to change the institutions

Requirements on Education

Requirements on Experience

Provision of Training <- distribution of training text length

IT Skills and Technologies Mentioned

(A) Programming Language

51/60

Posted Wage

Japanese Census Data (BSWS)

Model Environment

A simple two-periods model of training/learning and production

- 1st period: a mass one of works and a mass one of firms match one-to-one randomly and then produce
- To simplify, assume homogenous endowments (and risk neutral agents; no discounting)
 - Workers have initial general human capital $h_0 = 1$
 - Firms have productivity $z = z_1$
- Production technology: $f(z, h) \equiv zh$
- Training technology (invest noncooperatively): $\Delta h(k, l) = Ak^{\alpha} l^{(1-\alpha)}$
 - Workers' input can be effort or leisure, with utility cost $\kappa \frac{l^{1+\gamma}}{(1+\gamma)}$ (thus no credit constraint)
 - Firms' input can be capital or any other training costs, with unit cost r

Model Environment (cont')

- 2nd period: there is a large mass of potential new entrants of firms
 - They can pay an entry cost *c* to open a vacancy
 - Assume they draw productivity $z = z_2 > z_1$
- Labor market is frictional; Employed workers do on-the-job search (abstract from unemployment)
 - Number of new matches: $m = M(v, s) = \xi v^{\phi} s^{1-\phi}$
 - Matching rate for workers: $p = \xi(v/s)^{\phi}$; for poaching firms: $q = \xi(v/s)^{\phi-1}$
 - Normalize search effort: s = 1 (can endogenize search effort)
- Wages are determined by Nash bargaining, with worker bargaining power β

Value Functions

- Worker value: W(I; k, v) =

 $\beta z_{1} - \kappa \frac{l^{1+\gamma}}{(1+\gamma)} + \left[(1 - p(v)) \beta z_{1} + p(v) (z_{1} + \beta(z_{2} - z_{1})) \right] (1 + \Delta h(l, k))$

- Worker's outside option when bargaining with new firm is $\beta z_1(1 + \Delta h(l, k))$
- Firm value: $F(k; l, v) = (1 \beta)z_1 rk + (1 p(v))(1 \beta)z_1(1 + \Delta h(l, k))$
- Free entry condition: $q(v)(1-\beta)(z_2-z_1)(1+\Delta h(l,k)) \ge c$

Investment/Training Under Different Technologies

Equilibrium (and Inefficiency)

Model Implications

- The optimal investment requires different labor market structures under different technological regimes
 - If worker's efficiency in training is high in IT technology (small α), the illiquid labor market in Japan will generate large incentive mismatch and result low skill acquisition or tech adoption (Δh)
 - Wage premium will be low due to both low Δh and low p
- A similar logic can explain why the Japanese labor market institutions built at early post-war periods
 - Heavy manufacturing industries require firms to have incentive to invest
- Existence of a large amount of well-established incumbent firms will likely to generate resistance for regime changes
- We conjecture that China circumvent the Japanese path by utilizing separate labor markets (state-owned illiquid & private liquid markets) details

Increase in Technology Gap z_2

Thanks!

Appendix for Chapter 1.

"Employer" and "Nonemployer"

- Could it be more "nonemployer" turning to "employer" that drug down average size?
- Not likely. Because i) These two groups have similar trend on entry rate; ii) Nonemployers have more shares in Wholesale&Retail and Service sectors, where we see the least decline in average size; iii) There are larger initial and on-going costs for "employer", thus a change in organization type can be regarded as a de-facto "entry"

Declining Entry Rate by Industry • Back

- This decline is pervasive across all sectors and industries
- This decline is also shown in firm statistics firm entry rate

Low and Stagnated Exit Rate

- Calculated based on entry rate
- Declined before 1970 but then stagnated at very low level (2% per year) thereafter until the end of 1990s
- Decreasing entry rate could contribute to this low exit level since young establishments are more likely to exit

One Natural Result is The Aging of Businesses in Japan

- A nature result of declining entry and low exit rate is the decreasing share of the young business units in the economy and aging of the establishment population in Japan
- In 2001, nearly 35% of the employees in Japan work at an establishment of 27+ years old

Firm Entry/Exit Rate

Average Size Declines Diverge by Industry • Back

- Manufacturing and Construction industries decline the first (since early 1960s) and the most
- Wholesale&Retail and Service sector seems to be more resilient to this decline, and recovered since 1980s.
Average Size Decline Diverges by Age

- Before 1980, the average size declines in most age groups
- However since 1980, the average size of the young establishments began to recover, while elder ones kept declining in census
- Note that the change of the average size of an age group over time depends on two dimensions: initial level and life cycle growth

Birth Cohort Effect Also Diverges by Industry

- With large difference in average entrant size over time in Manufacturing and Construction, we see clear birth cohort effect
- In Wholesale&Retail and Service sector, it seems that the life cycle growth paths are more likely to converge despite the time-variant average entry size

Life Cycle Growth of Early Cohorts • Back

- Using the same imputation method, we can confirm the non-converged life cycle growth even for cohorts born in 1960s and even before
- Moreover, we can confirm that the forces that led to the decline in avg. size in 1960s and 1970s also affected the elder groups, generating average size decline for even aging establishments

Conjectured Average Entrant Size in Early Periods

- Apply the average life-cycle growth of the birth cohorts in 1969-1981 to the average size of old groups in census after 1981, we back out the average entry size in early periods when no age data exist
- Just like the trend of average size, the average entry size saw a turning point in around 1960

Life Cyle Growth in Manufacturing (Hsieh & Klenow 2014)

Employment growth by age 10–14 and age 30–34 relative to age <5. Indian data are from plants in the 2009–2010 ASI/NSS. Data for France, Italy, and Spain are for firms in the 2006–2007 Amadeus Database. U.K. data are for plants from 1997–2001 to 2002–2006 in the ARD. Canadian data are for plants from 1999–2001 to 2004–2006 in the Canadian ASM. See Appendix I for additional details.

Summarizing Facts

- 1. Persistent decline in market dynamism in Japan since 1950s
 - Potential fundamental long-term deriver since early post-war period
 - Less likely for drivers stressed during lost decades: e.g. "zombie" firms or financial policy
- 2. Establishment size decline in 1960s and 1970s
 - A strong force reduce average est. sizes for all ages esp. in manufacturing and construction sectors
 - Puzzle as literature documents a positive relationship between development and firm size (except Portugal 1980-2010)
- 3. Lifecycle growth downward shifted over time
 - Entrants size decline thus has a feedback effect over time through the cohort effect of life cycle growth (esp. strong given the low levels of entry/exit)
 - Thus history matters for recent est. dynamics and demographics

Benchmark Model: Calibrating to Period Average

- Value of β , θ follows the literature; η is the peorid average value from data; and the others parameters are calibrated jointed

Parameters	Values	Definition	Calibration
β	0.96	Discounter factor	Assigned
θ	0.64	Labor share ("span of control")	Assigned
η	0.02	Average labor force growth rate	Assigned
Ce	76.050	Entry cost (in unit of product)	Jointly Calibrated
C_{f}	2.123	Operation cost (in unit of labor)	Jointly Calibrated
а	0.008	Drift in AR(1)	Jointly Calibrated
ρ	0.966	Persistence in AR(1)	Jointly Calibrated
σ_{ε}	0.181	Std. of AR(1) shocks	Jointly Calibrated
μ_{G}	1.200	Mean of entrant productivity (log normal)	Jointly Calibrated
σ_{G}	0.527	Std. of entrant productivity (log normal)	Jointly Calibrated

- Entry cost c_e is large in order to pin down the low entry and exit rate in Japan

Benchmark Model: Life Cycle Growth and Survival Rate

- The benchmark model simulates a life cycle growth similar to the early period of the data. The model growth would be higher in elder period because the evolution of productivity (AR1) in model is non-decreasing in expectation
- The survival curve shows that in our model around 50% of the entrants can survive for 20 years

Declining Labor Force Can Drive Long-Run Entry Decline

- Quantitatively, the labor force growth decline can account for at least 2.4 percent points in the 3.5 percent points entry rate decline btw. 1969-2006

Declining Labor Force Can Drive Long-Run Entry Decline But

- The simulated entry rate is completely driven by the changes in labor force growth rate
- In theory, a decline in entry rate would lower exit rate and enlarge average size due to changes in age composition
- These changes should generate feedback effects through incumbent est. labor demand, further reducing entry rate over time. But we don't see these effects here

Labor Force Growth Rate

(Source: Labor Force Survey)

Feedback Effect Is Weak And At Odds With Data

- In our empirical case, due to the fairly low exit rate and life cycle growth in Japan, these feedback effects are very week
- Also these potential effects are qualitatively at odds with the changes of exit rate and average size in the data
- There is also no effect on entry size and life cycle growth.

Combined Labor Force Decline With Traditional Explanations

	Benchmark	Labor Growth	Entry Cost	Exit Value	Fixed Cost
η, %	2.00	0.00	0.00	0.00	0.00
Ce	76.05	-	99.88	-	-
V ^x	0.00	-	-	-10.35	-
Cf	2.12	-	-	-	1.39
W*	0.98	0.98	0.89	0.96	1.03
\bar{X}^*	1.32	1.32	1.09	1.09	1.09
Entry Rate, %	5.62	3.43	2.46	2.46	2.46
Exit Rate, %	3.62	3.43	2.46	2.46	2.46
Avg. Entry Size	13.57	13.57	17.29	14.22	11.30
Avg. Entry Size (after exit)	14.89	14.89	18.15	14.90	11.86
Avg. Est. Size	16.82	17.31	18.98	15.57	12.40
LifeCycle Growth Rate 10y, %	21.88	21.88	9.01	8.74	9.01
LifeCycle Growth Rate 20y, %	29.72	29.72	10.68	10.36	10.68

A 2pp decline in labor force growth rate + A further 1pp entry rate decline led by other derivers

- Now all 3 cases generate moderate decline in lifecycle growth

- The case of fixed cost decline also well fits a decline in both entrant and overall average size
- However robust? And the nature of the fixed cost is quite abstract, which mainly implies a cost decline in the operation of the young establishments.

Empirical Problems with Distortion Explanation

(Source: Manufacturing Census)

- The distortion should be generated in 1960s and 1970s
- Wage inequality across establishment size groups in manufacturing declines in early 1960s and doesn't increase too much thereafter
- Other implicit labor cost distortions?

Appendix for Chapter 2.

Data Concerns & Reliefs Grack Intro Grack Data

- Vacancy data may be selective or less representative
 - Vacancy data is incline to young and more educated workers, esp. here
 - Not all jobs on the internet or different post frequency than job composition
 - Ideal match but not real match results
 - Only entry wage thus missing (re-)bargaining, discrimination, promotion, rent-sharing, revealing of worker ability or matching productivity, ...

(Valid issue for all vacancy data; Partially justified in the literature; Extent is an empirical question; Can improve with better data and adjust composition; Better fit liquid labor market; Not all bad for estimation)

- Our wage measure incorporates variation in hours
 - One might worry that wage variation could be thus over-estimated
 - One might worry that those efficient compensations are solely compensating more working hours

(Often additional pay for overtime hours; Variation is limited comparing to wage; Inequality is often considered on overall compensation level; Need to think hour and wage as a package)

Trends on Collected Vacancies

A Sample Vacancy Back Intro Back Data

Job Title iOS开发工程师 Wage 18k-22k 薬畑/经验1年以下/本科及以上/web前端/全駅 内容原風 短視風 Basic Job Info 字节跳动 2018-09-10 发布于拉勾网 Post Info	☆ exa ○ = ○	副 完善在线周历 之上传明件阅历
查看原职位详谓 。 取位诱惑: 六脸一金,弹性工作,免费三顿,顿补、租房补贴,带薪休暇,扁平管理。1	Job Benefits 晋升空间, 团队氛围好	同業務額の Firm Info
聚位描述: Job Descrip 职位推进: 1. 负责产品进代说道及每运新产品的开发: 2. 参与每户性能。体验优化及质量监护评估体方建设: 3. 参与每户端基础组合发现问试:推进对发效率: 4. 参与15分时首署据道: 插件, React Native 等动态技术调研。 职位要求: 1. 本档及以上学历,计算机组长专业: 2. 地方学校生的可能其在, 通常进行一一种规定, 他们更可正, 0. 4. 电力学校生的可能其在, 通常进行一一种规定, 他们更可正, 0.		字节跳動 ● 88 内容測測規模機 ビ D始及以上 品 2000人以上 G http://www.bytedance.com

Java

4、熟悉 iOS平台原理。具备将产品逻辑抽象为技术方案的能力;

5、关注用户体验,能够积极把技术转化到用户体验改进上

6、对新技术保持热情,具备良好的分析、解决问题的能力。

工作地址

深圳 - 南山区 - 广东省深圳市南山区南海大道2163号来福士广场15层 Work Address 查看地图

Sample Cleaning

- Drop vacancies with not full-time jobs, outlier wages, job descriptions less than 20 words, nonChinese content
- Drop vacancies in 2013
- Drop vacancies from firms with less than 10 posts and from all the locations that have less than 1000 vacancies
- Drop duplicated vacancies based on job descriptions and education and experience requirements
- Drop vacancies with occupations not in selected major occupations

Data: Occupation Classification Back Data

- No ready-for-use occupation classification
- Match to a set of selected 6-digit occupations ("minor") in six 2-digit occupations ("major") in U.S. SOC 2018
- Key idea: an occupation is defined by a bundle of skills and tasks
- 1st step: for each occupation choose several exclusive keywords, and find the set of just-match vacancies as the "learning" sample
- 2nd step: use the "learning" group to train a Naive Bayes classifier based on the job titles and job descriptions
- 3rd step: apply the trained classifier to both the "unknown" sample and the "learning" sample <a>confusion matrix

Confusion Matrix of Occupation Assignment

Scientist -0.03000.0077 001 E 0000 04700 0112 0222 001 E 001 Support 4.03650.04940.0011 2228 1 1614 1054 1014 1014 1014 1003 10.000 000 0018 0014 0014 0014 002 10 002 10 000 01396 000 10 103 004 10 002 10 0 Designers of the other other other costs costs and and the second of the other othe Developer of 1997 1318 0348 0357 0080 0240 1091 CAMPAGE AND ADDRESS AND ADDRES Setting to a 15 th a 17 th a 1 - th a 10 - th a 10 - th a 17 th a 10 - th a 17 th a 10 - th a 17 th a 10 - th a 10 -We A ON TO THE OWN FOR THE OWN FOWN FOR THE OWN Designed & ANNE ON RE ON RECOMPTION FOR BOOK FOR MARK 11 TO WHAT OUT FOR BOOK FOR BOOK FOR BOOK ON RECOMPTION FOR WY CY 6. 000 00.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0 Mode & along along onen open open coop coop coop soon along 00070 0070 00500 00030 01440 012 D 00390 00270 00070 Francel Hamager 6, 02 420 032 W 032 The rest is a state of the rest in the rest of the res Predart Manager d. 00780 03480 03480 03480 03480 03980 00390 Texter 4 1000 0128 0010 0010 0010 0010 0000 0010 0100 0100 0100 0100 0010 00270 02740 00070 00070 00070 00070 001400 00140 01140 00170 00440 00240 00070 00070 00070 00070 00070 00070 00070 10310 00140 00010 00040 00040 01210 03999 031440 04810 00240 00410 00110 00040 00050 00540 0026 10110 0178 0548 00440 00220 00800 00540 0038 COLUMN DIST. D FOOT SOTTO STATE OF THE DESIGN FOR THE ASSOCIATION ASSOCIATION OF A DESIGN FOR THE ASSOCIATION ASSOCIA 0.440,002.0,00970,00070,00070,00070,005670,00040,000270,160380,0 Ergineer # 0.018 0.018 0.0010 0.0010 0.0010 0.0010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0000 0430 04660 0563

Data: Summary Statistics - back

	Pooled			Major Oc	cupation		
	-	Computer	Design_ Business_ Financial_		Sales	Admin	
			Media	Operations	Legal		
Vacancy #	3,999,005	1,330,001	561,236	1,162,404	214,661	452,771	277,932
- share	1.00	.33	.14	.29	.05	.11	.07
Avg # Words	108.91	104.26	103.05	115.60	110.69	120.31	95.09
Wage (1k CNY):							
- Mean	13.64	17.38	10.68	14.19	11.95	10.21	6.32
- SD	9.24	9.79	6.31	9.52	9.19	6.53	3.90
Firm:							
- #	86,330	67,369	68,092	78,244	41,285	58,847	59,016
- Avg Posts	46.32	19.74	8.24	14.86	5.20	7.69	4.71
 Median Posts 	20.0	9.0	4.0	6.0	2.0	3.0	2.0
Firm Size (share):							
15	.03	.03	.05	.02	.02	.03	.03
- 15-50	.18	.17	.25	.16	.15	.19	.20
- 50-150	.23	.21	.26	.22	.22	.23	.26
- 150-500	.21	.21	.21	.22	.23	.20	.23
- 500-2000	.15	.16	.12	.16	.18	.15	.14
- 2000+	.20	.23	.11	.22	.21	.19	.13
Education (share):							
 Vocational College 	.33	.24	.38	.29	.27	.51	.52
- Bachelor	.54	.66	.47	.61	.63	.22	.24
 Master/Doctor 	.01	.02	.00	.01	.03	.00	.00
 Not Specified 	.12	.08	.15	.09	.07	.27	.23
Experience (share):							
- 0	.22	.12	.21	.16	.25	.48	.50
- 1-3	.37	.33	.48	.37	.36	.31	.38
- 3-5	.31	.41	.25	.33	.26	.16	.10
- 5-10	.11	.14	.05	.14	.13	.05	.03

90/60

Education, Experience, Occupation \subset {Skills, Tasks}

- One way: *X* = {EDU, EXP, OCC} results compare with *X* = {EDU, EXP} bias correction
- All are different subspaces of the full skill/task space
- In theory, an occupation is a subset in the skill/task space
 - A pre-defined bundle of different skills/tasks
 - Lack of within-occupation skill/task variations
- In practice, occupation info of vacancy data is generated by mapping job title or content to the official categories
 • occupation classification
- Below, we directly exploit all information in vacancy texts to create proxy variables for various skills/tasks
 - By doing this, we also show a data-driven skill/task structure

Variance Decomposition • Back

	Pooled		Comp	uter	Design	Media	Admin		
	Comp.	Share	Comp.	Comp. Share		Share	Comp.	Share	
Var(In <i>w</i>)	.360	-	.279	-	.251	-	.164	-	
Panel A: X={ED	U, EXP}								
$Var(\theta_i)$.102	.283	.052	.188	.053	.212	.050	.307	
Within-Firm:									
$Var(heta_i - ar{ heta}_j)$.072	.199	.037	.133	.036	.144	.033	.204	
$Var(\epsilon_i)$.132	.367	.089	.318	.078	.310	.061	.371	
Between-Firm:									
$Var(ar{ heta}_j)$.030	.084	.015	.055	.017	.068	.017	.102	
$Var(\psi_j)$.076	.212	.102	.365	.086	.342	.041	.253	
$2 \operatorname{Cov}(\bar{\theta}_j, \psi_j)$.049	.137	.036	.130	.034	.136	.011	.069	
Panel B: X={ED	U, EXP, C)CC } (Ch	nange fro	m Panel	A)				
$Var(\theta_i)$	+.045	+.124	+.012	+.044	+.008	+.031	+.002	+.013	
Within-Firm:									
$Var(heta_i - ar{ heta}_j)$	+.031	+.087	+.012	+.043	+.004	+.015	+.002	+.010	
$Var(\epsilon_i)$	031	087	012	043	004	015	002	010	
Between-Firm:									
$Var(ar{ heta}_j)$	+.013	+.037	+.000	+.002	+.004	+.017	+.001	+.005	
$Var(\psi_j)$	012	033	006	021	007	028	001	008	
$2 \operatorname{Cov}(\bar{ heta}_j, \psi_j)$	001	003	+.005	+.018	+.003	+.012	+.001	+.005	
Obs	39988	340	13252	260	5488	08	2603	64	
Firm	8616	65	6262	28	5566	64	41448		

Variance Bias Correction • Back

	Poole	ed	Compu	uter	Design.	Media	Admin		
	Comp. Share Cor		Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>W</i>)	.360	-	.279	-	.251	-	.164	-	
Panel A: Plug	-In								
$Var(\theta_i)$.102	.283	.052	.188	.053	.212	.050	.307	
$Var(\epsilon_i)$.132	.367	.089	.318	.078	.310	.061	.371	
$Var(\psi_i)$.076	.212	.102	.365	.086	.342	.041	.253	
$2 \operatorname{Cov}(\theta_j, \psi_j)$.049	.137	.036	.130	.034	.136	.011	.069	
Panel B: Homoscedasticity Correction (Change from Panel A)									
$Var(\theta_i)$	000	+.000	+.000	+.000	+.000	+.000	000	+.000	
$Var(\epsilon_i)$	+.003	+.009	+.004	+.016	+.009	+.035	+.011	+.070	
$Var(\psi_j)$	003	008	004	016	009	035	011	070	
$2 \operatorname{Cov}(\theta_j, \psi_j)$	+.000	+.000	000	+.000	000	+.000	+.000	+.000	
Panel C: KSS	(Leave-C	Out) Corr	ection (C	Change f	rom Pane	el A)			
$Var(\theta_i)$	000	+.000	+.000	+.000	000	+.000	000	+.000	
$Var(\epsilon_i)$	+.003	+.007	+.004	+.014	+.007	+.029	+.010	+.060	
$Var(\psi_j)$	003	007	004	015	007	028	010	060	
$2 \operatorname{Cov}(\theta_j, \psi_j)$	+.000	+.001	000	+.000	+.000	+.000	000	+.000	
Obs	39988	340	13252	260	5488	08	260364		
Firm	8616	55	6262	28	5566	64	41448		

1st step: extract the useful information in vacancy text

- First we transform the vacancy text into an indicator matrix C with dimension N × K where each entry c_{ik} is an indicator of a token (word/phrase) k in vacancy i and the total vocabulary set is V
- Then we use (regularized linear) Lasso regression (L1 penalization):

$$\hat{\zeta} = \arg\min_{\zeta} \sum_{i=1}^{N} \left(\ln w_i - \sum_{k=1}^{K} c_{ik} \zeta_k \right)^2 + \lambda \sum_{k=1}^{K} |\zeta_k|$$

Feature Selection: Tune Lasso • Overview

- Following the suggestion in the literature, we use BIC as the criterion to gauge the hyperparameter λ : min BIC $(\lambda) = \frac{\|\ln \mathbf{w} \mathbf{C}\hat{\zeta}_{\lambda}\|^2}{\sigma^2} + \hat{d}f_{\lambda}\log N$
- The estimation results 700-3100 features (V') with nonzero coefficients

	Pooled	Computer	Design₋ Media	Admin
λ^*	332.0	190.3	238.5	155.0
MSE	.162	.149	.142	.100
R^2	.566	.494	.461	.418
BIC/N	.446	.527	.561	.613
df	3,144	1,922	929	691
К	109,123	51,602	39,306	24,896
Ν	3,999,005	1,330,001	561,236	277,932

Feature Selection: Inference and Interpretation on Lasso Results

Overview

- In general, features selected and their coefficients in high-dimensional penalized model are not interpretable due to multicollinearity and flexibility
- Inference via subsampling (10x10) shows that our selected features/tokens are rather robust (small confidence interval)
 subsampling results
- Interpretation on coefficients are still forbidden, but now we can inspect important features to see if they make some intuitive sense
 top positive tokens
 top negative tokens

Feature Clustering: Word Embedding • Overview

2nd step: examine what are these selected features (beyond eyeballing)

- Indicator matrix **C** tells nothing about the meaning of the words
- We train a word embedding model, Word2Vec (CBOW), to learn the relationship between tokens
 - it maps each word to a latent vector space (with dimension H = 100), which best predicts the probability of a word given the context (adjacent words)
- The result is a $K \times H$ embedding weight matrix **U**, where each row of the matrix, \mathbf{u}_k , is the representation vector of the word k in the latent embedding space
- We only use the part of the selected features: $U' \equiv \{u_k\}$ where $k \in V'$

Feature Clustering: K-Means Clustering . .

- We now can use unsupervised clustering algorithms to cluster our selected features
- We use K-Means classifier, which finds the centroids for the clusters $\{V'_p\}$ in the embedding space to minimize the sum of within-cluster Euclidean distances: $\arg\min_{\{V'_1, V'_2, ...,, V'_p\}} \sum_{p=1}^{P} \sum_{k \in V'_p} \left\| \mathbf{u}_k - \frac{1}{|V'_p|} \sum_{j \in V'_p} \mathbf{u}_j \right\|^2$
- P is the predetermined cluster numbers, and we set P = 8 (arbitrary)
- Visualization of clustering results in 2D (through t-SNE only for demonstration):
 - Pooled
 Computer
 Design & Media
 Admin

Dimension Reduction • Overview

3rd step: further reduce the dimension of these features

- Instead of PCA (unsupervised), we use partial least squares (PLS) (supervised) regression which uses the covariance of the predictive and target variables
- Transform the indicator matrix $\mathbf{C}'_p \equiv {\mathbf{c}_k}$, $k \in V'_p$ of each cluster p into a low dimensional representation Ξ_p ; Set reduced dimension Q = 3 (arbitrary)
- Thus for each occupation, we now have 8 proxy matrices (linear combination) $\Xi_1, \Xi_2, \ldots, \Xi_8$ corresponding to 8 clusters V'_1, V'_2, \ldots, V'_8
- OLS regressions show that they preserve over 95% predictive power (R^2) of the Lasso regression

Confidence Intervals on Lasso Coefficients via Subsampling

Feature Selection: Top Features (Positive)

Pooled				Computer			Design_Media			Admin		
	token	coef	feq	token	coef	feq	token	coef	feq	token	coef	feq
1	14th month pay	.152	.014	15th month pay	.181	.010	14th month pay	.193	.011	undergraduate	.161	.014
2	three meals	.143	.014	three meals	.148	.014	lead	.155	.025	undergraduate	.157	.156
3	large platform	.131	.019	14th month pay	.140	.017	three meals	.129	.015	president	.120	.014
4	master degree	.126	.015	master degree	.109	.027	c++	.121	.017	ceo	.117	.010
5	lead	.107	.041	lead	.089	.038	crisis	.113	.011	build	.117	.016
6	c++	.092	.051	golang	.080.	.017	games	.098	.180	lead	.105	.017
7	algorithm	.082	.061	guru	.079	.047	europe & america	.090	.011	government	.103	.030
8	guru	.082	.028	deep learning	.078	.022	engine	.090	.046	high salary	.089	.018
9	famous	.079	.019	famous	.070	.014	4a	.090	.014	translation	.083	.012
10	machine learning	.077	.016	high salary	.070	.018	six insurance & one fund	.086	.046	bachelor degree	.082	.018
11	formation	.076	.013	maestro	.068	.012	finance	.084	.016	strategy	.077	.015
12	undergraduate	.074	.319	overseas	.067	.010	undergraduate	.078	.238	large scale	.076	.030
13	overseas	.072	.026	go	.065	.027	listed company	.076	.021	landing	.070	.018
14	react	.072	.020	c++	.064	.144	finance	.076	.031	project management	.067	.011
15	development	.071	.374	algorithm	.064	.164	outsourcing	.074	.012	overseas	.066	.021
16	undergraduate	.066	.029	react	.064	.061	guru	.070	.022	background	.064	.032
17	high salary	.063	.028	machine learning	.061	.045	overseas	.068	.024	develop	.063	.097
18	landing	.060	.067	landing	.061	.037	journalists	.068	.011	13th month pay	.063	.019
19	strategy	.057	.047	development	.059	.776	13th month pay	.068	.023	unified recruitment	.058	.031
20	live streaming	.056	.014	audio & video	.058	.012	c4d	.066	.021	budget	.057	.021
21	listed company	.055	.027	unified recruitment	.054	.044	famous	.065	.023	major	.055	.019
22	large scale	.055	.072	beijing	.053	.012	unity	.065	.043	decoration	.055	.016
23	responsibilities	.055	.048	live streaming	.052	.011	high salary	.064	.016	resources	.053	.043
24	shuttle	.054	.018	recommend	.052	.023	management	.063	.010	promote	.051	.029
25	finance	.054	.070	management	.051	.016	3d	.063	.106	finance	.051	.036
26	six insurance & one fund	.053	.055	ai	.051	.015	large scale	.063	.043	english	.050	.054
27	python	.052	.066	stock	.049	.025	performance	.063	.016	business negotiations	.048	.010
28	director	.052	.022	undergraduate	.048	.365	unified recruitment	.059	.019	optimization	.046	.079
29	unified recruitment	.051	.042	salary	.048	.049	undergraduate	.059	.023	responsibilities	.046	.035
30	hive	.051	.013	supplementary	.045	.019	ip	.057	.017	integrated planning	.046	.02ුම1/60
				-								

Feature Selection: Top Features (Negative)

Pooled				Computer			Design_Media			Admin		
	token	coeff	feq	token	coeff	feq	token	coeff	feq	token	coeff	feq
1	freshmen	155	.018	graduates	205	.013	freshmen	188	.017	five insurance	070	.052
2	five insurance	136	.030	five insurance	197	.016	internship	133	.011	graduates	061	.082
3	graduates	128	.033	vocational college	134	.072	five insurance	132	.033	vocational school	059	.038
4	vocational major	100	.036	social insurance	121	.012	graduates	132	.030	freshmen	057	.048
5	two-day weekend	098	.166	vocational major	119	.030	two-day weekend	090	.176	internship	056	.012
6	vocational college	094	.148	two-day weekend	115	.147	recent graduate	072	.026	interns	053	.017
7	assistant	079	.011	recent graduate	106	.011	vocational college	070	.144	two-day weekend	051	.214
8	customer service	075	.030	test cases	067	.068	social insurance	068	.023	player	046	.024
9	social insurance	073	.028	installation	067	.048	vocational major	066	.041	mandarin	046	.172
10	accounting	071	.019	th	066	.014	ltd.	059	.012	women	038	.015
11	accommodation	067	.016	computer	065	.011	any major	055	.011	social insurance	037	.060
12	administration	067	.027	after sales	061	.011	humanization	055	.019	qq	037	.036
13	commissioner	063	.011	young	060	.013	comics	053	.014	easy	035	.043
14	taobao	059	.015	five insurance & one fund	059	.273	cad	052	.010	website	033	.032
15	assistance	058	.164	business trip	051	.030	photoshop	049	.235	cleaning	030	.015
16	ps	056	.029	records	048	.015	cdr	047	.012	health	029	.024
17	ltd.	056	.012	hardworking	048	.015	website	047	.180	clerks	029	.014
18	installation	055	.020	holidays	046	.059	assistance	046	.131	attendance	029	.104
19	photoshop	052	.039	clients	046	.078	ps	045	.142	e-commerce	029	.031
20	careful	050	.032	easy	043	.017	hardworking	044	.023	input	028	.044
21	hardworking	050	.032	software testing	043	.047	anime	044	.019	shift	028	.013
22	verification	048	.011	wechat	041	.042	easy	044	.033	answer the phone	027	.101
23	human resources	047	.032	.net	041	.034	contact	042	.011	administration	027	.256
24	website	047	.090	patience	040	.023	editor	039	.204	perfect attendance award	026	.032
25	any major	047	.020	website	039	.101	artwork	038	.032	apply for the job	025	.018
26	humanization	046	.012	focused	038	.011	forum	038	.034	mobile	025	.013
27	excel	046	.047	network equipment	037	.016	taobao	038	.024	hardworking	025	.055
28	mandarin	045	.027	bug	036	.053	young	038	.034	join	024	.041
29	explanation	044	.013	works	035	.023	commission	037	.017	games	024	.039
30	young	044	.025	holiday	034	.037	clients	037	.096	front desk	023	.088
31	contact	044	.010	dividend	034	.012	wechat	037	.172	department manager	023	.01402/60

Feature Clustering: Visualization (Pooled)

103/60

Feature Clustering: Visualization (Computer)

104/60
Feature Clustering: Visualization (Design_Media) - Back

Feature Clustering: Visualization (Admin)

Feature Clustering: General vs Specific 🚥

Variance Bias Correction • Back

	Poole	ed	Compu	uter	Design.	Media	Adm	in	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.362	-	.281	-	.253	-	.164	-	
Panel A: Plug	-In								
$Var(\theta_i)$.163	.450	.082	.291	.084	.331	.067	.408	
$Var(\epsilon_i)$.096	.267	.071	.252	.065	.255	.050	.304	
$Var(\psi_i)$.051	.141	.074	.263	.062	.243	.035	.216	
$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.054	.193	.043	.171	.012	.072	
Panel B: Hom	oscedas	ticity Co	rrection	(Change	from Pa	nel A)			
$Var(\theta_i)$	+.000	+.000	000	+.000	000	+.000	+.000	+.001	
$Var(\epsilon_i)$	+.002	+.006	+.004	+.012	+.007	+.029	+.009	+.057	
$Var(\psi_j)$	002	006	004	012	007	029	009	057	
$2 \operatorname{Cov}(\theta_i, \psi_j)$	000	+.000	+.000	+.001	000	+.000	000	002	
Panel C: KSS	(Leave-C	Out) Corr	ection (C	Change f	rom Pane	el A)			
$Var(\theta_i)$	000	+.000	+.000	+.000	+.000	+.000	000	001	
$Var(\epsilon_i)$	+.002	+.005	+.003	+.012	+.006	+.024	+.008	+.048	
$Var(\psi_j)$	002	005	003	012	006	024	008	048	
$2 \operatorname{Cov}(\theta_i, \psi_j)$	+.000	+.000	+.000	+.001	+.000	+.002	+.000	+.001	
Obs	39988	340	13252	260	5488	08	260364		
Firm	8616	55	6262	28	5566	64	4144	18	

	Poole	ed	Compu	uter	Design_Media		Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In w)	.305	-	.407	-	.226	-	.097	-
Panel A: $X = \{EE$	U, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.079	.258	.069	.169	.036	.159	.014	.146
$Var(\epsilon_i)$.115	.377	.111	.273	.084	.372	.049	.512
$Var(\psi_i)$.068	.222	.138	.339	.075	.333	.029	.298
$2 \operatorname{Cov}(\theta_i, \psi_j)$.044	.143	.089	.219	.033	.145	.005	.047
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$Var(X_{ext})$.079	.258	.069	.169	.036	.159	.014	.146
$2 \operatorname{Cov}(X_{int}, X_{ext})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{int}, \psi_j)$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.044	.143	.089	.219	.033	.145	.005	.047
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.004	.001	.003	.001	.005	.000	.002
$Var(\Xi_m)$.005	.018	.010	.024	.004	.016	.003	.031
$Var(\Xi_s)$.047	.153	.036	.087	.021	.094	.007	.068
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.001	.004	.001	.002	.000	.004
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.006	.021	.003	.008	.003	.012	.001	.009
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.018	.058	.017	.043	.007	.032	.003	.032
$2 \operatorname{Cov}(\Xi_g, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_m, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_s, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.003	.010	.005	.013	.002	.008	.000	.002
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.008	.027	.024	.060	.006	.029	.002	.022
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.032	.106	.059	.146	.024	.108	.002	.023
Ohe	8581	17	1///1	22	10/10	60	1202	/1

Conditional On EXP=1-3 (Back)

	Poole	ed	Compu	uter	Design.	Media	Adm	in
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.204	-	.195	-	.140	-	.104	-
Panel A: $X = \{EC$	DU, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.062	.302	.034	.174	.022	.158	.027	.259
$Var(\epsilon_i)$.081	.396	.064	.331	.057	.407	.049	.468
$Var(\psi_i)$.043	.213	.068	.348	.048	.343	.024	.235
$2 \operatorname{Cov}(\theta_i, \psi_j)$.018	.088	.029	.147	.013	.095	.004	.036
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$Var(X_{ext})$.062	.302	.034	.174	.022	.158	.027	.259
$2 \operatorname{Cov}(X_{int}, X_{ext})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{int}, \psi_i)$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.018	.088	.029	.147	.013	.095	.004	.036
Panel C: Further	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.003	.000	.002	.000	.002	.000	.001
$Var(\Xi_m)$.005	.024	.004	.020	.002	.013	.005	.051
$Var(\Xi_s)$.036	.177	.021	.106	.016	.116	.013	.126
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.006	.000	.002	.000	.001	.000	.005
$2\operatorname{Cov}(\Xi_g,\Xi_s)$.005	.023	.002	.009	.001	.006	.001	.012
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.014	.068	.007	.036	.003	.020	.007	.066
$2 \operatorname{Cov}(\Xi_g, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_m, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_s, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_g, \psi_i)$.001	.005	.001	.007	.000	.003	.000	.000
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.006	.031	.009	.046	.005	.034	.003	.031
$2 \operatorname{Cov}(\Xi_s, \psi_i)$.011	.052	.018	.094	.008	.058	.001	.005
Ohe	1/157/	(30	4320	77	2544	56	8803	20

Conditional On EXP=3-5 (Back

	Poole	ed	Compu	uter	Design.	Media	Adm	in
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.202	-	.167	-	.162	-	.192	-
Panel A: $X = \{EE$	DU, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.043	.212	.020	.121	.021	.129	.047	.246
$Var(\epsilon_i)$.079	.390	.055	.332	.060	.368	.085	.442
$Var(\psi_i)$.054	.266	.065	.392	.061	.374	.049	.254
$2 \operatorname{Cov}(\theta_i, \psi_j)$.027	.132	.026	.156	.021	.129	.013	.067
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$Var(X_{ext})$.043	.212	.020	.121	.021	.129	.047	.246
$2 \operatorname{Cov}(X_{int}, X_{ext})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{int}, \psi_i)$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(X_{ext}, \psi_i)$.027	.132	.026	.156	.021	.129	.013	.067
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.000	.002	.000	.000	.000	.000	.001	.004
$Var(\Xi_m)$.004	.019	.002	.013	.001	.008	.010	.054
$Var(\Xi_s)$.026	.129	.013	.080	.016	.096	.024	.125
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.000	.001	.000	.001	.001	.005
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.003	.015	.001	.005	.001	.009	.002	.009
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.009	.044	.004	.023	.002	.014	.011	.056
$2 \operatorname{Cov}(\Xi_g, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_m, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_s, X_{int})$.000	.000	.000	.000	.000	.000	.000	.000
$2 \operatorname{Cov}(\Xi_g, \psi_i)$.001	.007	.001	.006	.001	.007	.000	.000
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.007	.035	.007	.041	.005	.030	.007	.038
$2 \operatorname{Cov}(\Xi_s, \psi_i)$.018	.090	.018	.109	.015	.092	.006	.029
Obs	12220	72	5330	40	127/	17	172/	17

Conditional On EDU=C

	Poole	ed	Compu	uter	Design_Media		Admin	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.244	-	.211	-	.200	-	.106	-
Panel A: $X = \{EE$	OU, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.111	.454	.072	.342	.066	.330	.033	.307
$Var(\epsilon_i)$.085	.349	.064	.303	.059	.293	.046	.428
$Var(\psi_j)$.038	.154	.052	.245	.047	.234	.024	.229
$2 \operatorname{Cov}(\theta_i, \psi_j)$.011	.044	.023	.109	.028	.142	.003	.028
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.033	.135	.028	.134	.024	.119	.010	.095
$Var(X_{ext})$.046	.188	.026	.122	.024	.121	.013	.122
$2 \operatorname{Cov}(X_{int}, X_{ext})$.032	.130	.018	.085	.018	.090	.010	.091
$2 \operatorname{Cov}(X_{int}, \psi_j)$.005	.021	.014	.065	.012	.062	.002	.015
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.005	.022	.009	.044	.016	.080	.001	.013
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.004	.000	.002	.000	.001	.000	.003
$Var(\Xi_m)$.002	.010	.001	.005	.001	.005	.001	.008
$Var(\Xi_s)$.028	.114	.019	.092	.018	.090	.009	.084
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.000	.001	.000	.001	.000	.001
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.005	.019	.002	.009	.002	.008	.001	.007
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.009	.037	.003	.013	.003	.017	.002	.020
$2 \operatorname{Cov}(\Xi_g, X_{int})$.003	.012	.001	.006	.001	.005	.001	.005
$2 \operatorname{Cov}(\Xi_m, X_{int})$.005	.022	.002	.011	.003	.013	.002	.014
$2 \operatorname{Cov}(\Xi_s, X_{int})$.023	.096	.014	.068	.014	.072	.008	.072
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.001	.003	.001	.004	.001	.003	000	.003
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.001	.005	.002	.010	.002	.011	.001	.008
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.004	.015	.007	.031	.013	.066	.001	.008
Obs	13021	1/1	3083	3.0	1083	01	1275	A7

Conditional On EDU=B (Back

	Poole	ed	Compu	uter	Design.	Media	Adm	in
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>w</i>)	.313	-	.244	-	.244	-	.223	-
Panel A: $X = \{EE$	U, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.129	.411	.063	.259	.085	.349	.101	.455
$Var(\epsilon_i)$.094	.299	.070	.287	.071	.291	.073	.326
$Var(\psi_i)$.052	.166	.070	.286	.054	.220	.037	.166
$2 \operatorname{Cov}(\theta_i, \psi_j)$.039	.124	.041	.167	.035	.142	.010	.045
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.043	.138	.027	.113	.036	.145	.036	.160
$Var(X_{ext})$.052	.165	.022	.091	.026	.108	.036	.163
$2 \operatorname{Cov}(X_{int}, X_{ext})$.034	.108	.014	.056	.023	.095	.030	.133
$2 \operatorname{Cov}(X_{int}, \psi_j)$.014	.044	.013	.054	.016	.067	.008	.036
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.025	.081	.028	.113	.018	.075	.002	.009
Panel C: Further I	Decompo	ose X _{ext} ·	Terms					
$Var(\Xi_g)$.001	.003	.000	.001	.000	.001	.001	.004
$Var(\Xi_m)$.002	.006	.001	.004	.001	.004	.002	.009
$Var(\Xi_s)$.034	.110	.017	.069	.020	.080	.025	.112
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.003	.000	.001	.000	.001	.000	.001
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.005	.016	.001	.005	.002	.007	.003	.012
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.009	.027	.003	.011	.003	.014	.005	.023
$2 \operatorname{Cov}(\Xi_g, X_{int})$.003	.009	.001	.003	.001	.006	.002	.008
$2 \operatorname{Cov}(\Xi_m, X_{int})$.005	.015	.002	.007	.003	.013	.005	.022
$2 \operatorname{Cov}(\Xi_s, X_{int})$.026	.084	.011	.045	.019	.077	.023	.103
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.002	.006	.001	.005	.001	.005	001	.005
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.003	.010	.004	.015	.003	.011	.003	.013
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.020	.064	.023	.093	.014	.058	.000	.002
Obs	21/25	:03	8635	23	2/81	13	5578	26

If $\Xi_m \equiv \{ \mathsf{EDU}, \underline{\Xi}_3, \underline{\Xi}_4 \}$

	Poole	ed	Compu	uter	Design.	Media	Adm	in
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>W</i>)	.362	-	.281	-	.253	-	.164	-
Panel A: $X = \{ED\}$	U, EXP,	Ξ2,,3	E ₈ }					
$Var(\theta_i)$.163	.450	.082	.291	.084	.330	.067	.409
$Var(\epsilon_i)$.098	.272	.074	.264	.071	.279	.058	.353
$Var(\psi_i)$.049	.136	.071	.251	.056	.219	.027	.168
$2 \operatorname{Cov}(\theta_i, \psi_j)$.052	.142	.054	.193	.043	.170	.012	.072
Panel B: Decomp	ose θ Ter	ms						
$Var(X_{int})$.042	.115	.028	.099	.030	.119	.016	.096
$Var(X_{ext})$.072	.199	.035	.126	.030	.117	.030	.184
$2 \operatorname{Cov}(X_{int}, X_{ext})$.049	.136	.019	.067	.024	.094	.021	.129
$2 \operatorname{Cov}(X_{int}, \psi_i)$.017	.048	.017	.060	.018	.072	.004	.025
$2 \operatorname{Cov}(X_{ext}, \psi_i)$.034	.094	.037	.133	.025	.099	.008	.047
Panel C: Further	Decompo	se X _{ext} .	Terms					
$Var(\Xi_g)$.001	.003	.000	.001	.000	.001	.000	.002
$Var(\Xi_m)$.017	.048	.007	.026	.006	.025	.018	.109
$Var(\Xi_s)$.022	.062	.014	.051	.011	.045	.003	.019
$2 \operatorname{Cov}(\Xi_q, \Xi_m)$.004	.010	.001	.003	.001	.004	.002	.011
$2 \operatorname{Cov}(\Xi_q, \Xi_s)$.005	.012	.001	.005	.001	.004	.001	.003
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.023	.064	.011	.039	.009	.037	.007	.041
$2 \operatorname{Cov}(\Xi_q, X_{int})$.004	.011	.001	.004	.001	.005	.001	.006
$2 \operatorname{Cov}(\Xi_m, X_{int})$.020	.054	.006	.022	.011	.042	.017	.102
$2 \operatorname{Cov}(\Xi_s, X_{int})$.026	.071	.011	.041	.012	.047	.003	.020
$2 \operatorname{Cov}(\Xi_q, \psi_i)$.002	.007	.002	.007	.001	.005	.000	.001
$2 \operatorname{Cov}(\Xi_m, \psi_i)$.014	.040	.015	.052	.012	.048	.007	.040
$2 \operatorname{Cov}(\Xi_s, \psi_i)$.017	.048	.021	.075	.012	.046	.001	.007
Ohe	2008	240	13252	260	5/88	08	2603	64

If $\Xi_m \equiv \{ \mathsf{EDU}, \underline{\Xi}_3, \underline{\Xi}_4, \underline{\Xi}_5 \}$ (Back)

-		Pool	ed	Compu	uter	Design.	Media	Adm	in
		Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share
	Var(In <i>w</i>)	.362	-	.281	-	.253	-	.164	-
	Panel A: $X = \{EE$	DU, EXP,	Ξ2,,	E ₈ }					
	$Var(\theta_i)$.163	.450	.082	.291	.084	.331	.066	.405
	$Var(\epsilon_i)$.098	.272	.074	.264	.071	.279	.058	.352
	$Var(\psi_j)$.049	.136	.071	.251	.056	.219	.027	.168
	$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.054	.194	.043	.171	.012	.070
	Panel B: Decomp	ose θ Ter	ms						
	$Var(X_{int})$.042	.115	.028	.099	.030	.119	.016	.096
	$Var(X_{ext})$.072	.199	.035	.125	.030	.118	.029	.180
	$2 \operatorname{Cov}(X_{int}, X_{ext})$.049	.136	.019	.067	.024	.094	.021	.129
	$2 \operatorname{Cov}(X_{int}, \psi_j)$.017	.048	.017	.060	.018	.072	.004	.025
	$2 \operatorname{Cov}(X_{ext}, \psi_j)$.034	.094	.038	.134	.025	.099	.007	.046
	Panel C: Further	Decompo	ose X _{ext}	Terms					
	$Var(\Xi_g)$.001	.002	.000	.001	.000	.001	.000	.001
	$Var(\Xi_m)$.021	.057	.015	.055	.008	.033	.020	.122
	$Var(\Xi_s)$.018	.051	.007	.024	.010	.038	.002	.011
	$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.004	.011	.002	.005	.001	.005	.002	.012
	$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.004	.011	.001	.003	.001	.004	.000	.002
	$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.024	.066	.010	.037	.010	.038	.005	.032
	$2 \operatorname{Cov}(\Xi_g, X_{int})$.004	.011	.001	.004	.001	.005	.001	.006
	$2 \operatorname{Cov}(\Xi_m, X_{int})$.022	.062	.012	.041	.013	.050	.018	.109
	$2 \operatorname{Cov}(\Xi_s, X_{int})$.023	.063	.006	.022	.010	.039	.002	.014
	$2\operatorname{Cov}(\Xi_{g},\psi_{j})$.002	.007	.002	.007	.001	.005	.000	.001
	$2 \operatorname{Cov}(\Xi_m, \psi_j)$.017	.047	.025	.089	.014	.053	.007	.041
	$2 \operatorname{Cov}(\Xi_s, \psi_j)$.015	.041	.011	.038	.010	.041	.001	.003
	Obc	2008	2/0	13250	240	5/188	ng	2603	61

Firm Wage Premium: Difference Between Occupations • robustness • Back

Firm Wage Premium: Firm Size and Firm Location • robustness • Back

		Pooled			Compute	r		Design_Mec	lia	Admin		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
fsize.15-50	.019**	.018**	.023**	.011+	.013*	.019**	.022**	.013**	.020**	.006	.005	.005
	(.004)	(.003)	(.003)	(.006)	(.005)	(.004)	(.005)	(.005)	(.004)	(.006)	(.006)	(.006)
fsize.50-150	.042**	.037**	.050**	.037**	.032**	.038**	.050**	.033**	.045**	.020**	.018**	.021**
	(.004)	(.003)	(.003)	(.006)	(.005)	(.004)	(.005)	(.005)	(.004)	(.006)	(.006)	(.005)
fsize.150-500	.067**	.057**	.067**	.072**	.054**	.051**	.086**	.058**	.063**	.035**	.031**	.030**
	(.004)	(.004)	(.003)	(.006)	(.005)	(.005)	(.005)	(.005)	(.004)	(.006)	(.006)	(.006)
fsize.500-2000	.095**	.078**	.085**	.108**	.074**	.066**	.127**	.087**	.086**	.050**	.043**	.040**
	(.005)	(.004)	(.004)	(.007)	(.006)	(.005)	(.006)	(.006)	(.005)	(.007)	(.007)	(.006)
fsize.2000+	.121**	.102**	.120**	.140**	.084**	.082**	.161**	.107**	.108**	.064**	.055**	.058**
	(.005)	(.005)	(.004)	(.008)	(.007)	(.006)	(.007)	(.007)	(.006)	(.008)	(.008)	(.007)
Job Effect ($\bar{\theta}$)		.287**	.201**		.643**	.498**		.391**	.292**		.118**	.063**
		(.004)	(.003)		(.007)	(.006)		(.006)	(.005)		(.008)	(.008)
const	.146**	-1.115**	633**	.222**	-2.684**	-1.905**	030**	-1.759**	-1.208**	.024**	478**	166**
	(.003)	(.016)	(.015)	(.005)	(.030)	(.027)	(.004)	(.028)	(.024)	(.006)	(.036)	(.033)
Location FE			\checkmark			\checkmark			\checkmark			\checkmark
Adj. R ²	.016	.096	.377	.016	.168	.436	.022	.100	.390	.006	.014	.229
No. Obs	86165	86165	86165	62628	62628	62628	55664	55664	55664	41448	41448	41448

Firm Wage Premium: Difference Between Occupations

Firm Wage Premium: Firm Size and Firm Location • Back

		Pooled			Computer			Design_Me	dia	Admin		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
fsize.15-50	.019**	.018**	.023**	.012	.011	.014+	.049**	.035**	.045**	032	039	034
	(.004)	(.004)	(.003)	(.010)	(.009)	(.008)	(.011)	(.010)	(.008)	(.038)	(.034)	(.033)
fsize.50-150	.044**	.038**	.050**	.043**	.034**	.032**	.083**	.058**	.073**	023	038	035
	(.004)	(.004)	(.003)	(.010)	(.009)	(.007)	(.010)	(.010)	(.008)	(.038)	(.034)	(.033)
fsize.150-500	.069**	.059**	.068**	.079**	.053**	.043**	.127**	.087**	.094**	009	032	032
	(.004)	(.004)	(.003)	(.010)	(.009)	(.008)	(.011)	(.010)	(.009)	(.038)	(.034)	(.033)
fsize.500-2000	.099**	.081**	.086**	.119**	.070**	.053**	.176**	.121**	.120**	.015	014	019
	(.005)	(.004)	(.004)	(.011)	(.009)	(.008)	(.012)	(.011)	(.009)	(.038)	(.035)	(.033)
fsize.2000+	.125**	.105**	.121**	.154**	.077**	.065**	.213**	.140**	.134**	.028	005	006
	(.005)	(.005)	(.004)	(.011)	(.010)	(.008)	(.013)	(.012)	(.010)	(.038)	(.035)	(.034)
Job Effect ($\bar{\theta}$)		.284**	.200**		.793**	.622**		.479**	.395**		.262**	.171**
		(.004)	(.003)		(.009)	(.008)		(.010)	(.009)		(.020)	(.018)
const	.148**	-1.101**	630**	176**	-3.946**	-3.018**	.157**	-1.931**	-1.488**	.175**	919**	468**
	(.003)	(.016)	(.015)	(.010)	(.042)	(.037)	(.010)	(.046)	(.040)	(.038)	(.079)	(.073)
Location FE			\checkmark			\checkmark			\checkmark			\checkmark
Adj. R ²	.017	.096	.381	.025	.243	.515	.053	.190	.473	.014	.062	.292
No. Obs	84023	84023	84023	30658	30658	30658	13871	13871	13871	5592	5592	5592

Mean Residual for Work-Firm cells

Deming & Kahn (2018) • Back

Job Skills	Keywords a	and Phrases
	Deming & Kahn (2018)	Chinese Correspondents
Cognitive	Problem solving, research, analytical, critical thinking, math, statistics	解决,问题,研究,分析,批判,思考,数学,统计
Social	Communication, teamwork, collaboration, negotiation, presentation	交流,沟通,讨论,演示,展示,合作,团队,协作
	Matched Keyword	s and Phrases in V'
	V_g , $V_{arepsilon}$	V_{s1},\ldots,V_{s5}
Cognitive	分析判断(analysis & judgment); 思 考(reflections); 独立思考(independent thinking); 解決问题(problem solving); 数学(mathematics); 研究生(graduate students); 研究者(researchers); 统计学(statistics); 认真思考(think carefully)	统计(statistics); 统计分析(statistical analysis); 问 题解答(question answers); 商业分析(business analysis); 行业研究(industry research); 业务分 析(business analysis); 关键问题(key issues); 分 析(analysis); 分析报告(analysis report); 功能分 析(functional analysis); 可行性研究(feasibility study); 解决(solutions); 解决方案(solutions); 问 题(question); 市场分析(market analysis); 数据分 析(data analysis); 深入分析(in-depth analysis); 深入研究(in-depth research); 研究(research); 兼 容性问题(compatibility issues); 定位问 题(positioning issues); 疑难问题(difficult questions); 系统分析(system analysis); 面向对象 分析(object-oriented analysis)
Social	交流(communication); 人际沟通(interpersonal communication); 协作(collaboration); 合 作(cooperation); 团队(team); 团队精神(team spirit); 沟通(communication); 沟通交 流(communication);学术交流(academic exchange)	合作项目(cooperation projects); 沟通了 解(communication & understanding); 合作 方(partners)

Deming & Kahn (2018) • Back

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Cognitive	.045	.054	.027	.047	.013	.032	.011	.033
	(.000)	(.001)	(.000)	(.001)	(.000)	(.001)	(.000)	(.001)
Social	.035	.041	.030	.045	.020	.033	.025	.041
	(.001)	(.001)	(.001)	(.001)	(.000)	(.001)	(.001)	(.001)
Both required		012		026		024		029
		(.001)		(.001)		(.001)		(.001)
Ξ_g, Ξ_m			\checkmark	\checkmark			\checkmark	\checkmark
Ξ_s					\checkmark	\checkmark	\checkmark	\checkmark
Education FE	\checkmark							
Experience FE	\checkmark							
Occupation FE	\checkmark							
Year FE	\checkmark							
Adj. R ²	.582	.582	.604	.604	.636	.636	.641	.641

Firm Wage Premium Varies Across Occupations

- Shares of firm effect and sorting (job effect) are larger (smaller) in high-skill occupation than low skill occupation, despite of more features
- We also find for low-skilled occupations have estimated firm effects less consistent with the firm effects estimated in high-skilled occupation compare firm FE

Occupational Specific Specification

- Allow for firm wage premiums varying across major occupations $\ln w_i = X_i \beta + \psi_i^o + \iota_t + \epsilon_i$
 - Also compare with $\ln w_i = X_i\beta + \psi_j + o_i + \iota_t + \epsilon_i$
- Allow for skill prices varying across major occupations $\ln w_i = \sum_o \mathbb{1}_{[i \in o]} X_i \beta_o + \psi_j + \iota_t + \epsilon_i$

	Benchmark		$\psi_j\equiv\hat\psi_j$	$+ \hat{o}_i$	$\psi_j\equiv\hat{\psi}^o_j$		
	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>W</i>)	.362	-	.362	-	.360	-	
$Var(\theta_i)$.163	.450	.141	.391	.136	.378	
$Var(\epsilon_i)$.098	.272	.096	.265	.088	.245	
$Var(\psi_i)$.049	.136	.056	.156	.065	.182	
$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.068	.188	.070	.196	
Obs	3998840		3998840		3926231		
Firm	86165		8616	55	300079		

mean residual distribution

Shares Across Occupations

Shares Across Occupations

Posted Wage Variance Trend

Posted Wage Variance Trend Drivers $\bullet_{\psi_j = \psi_j^{\alpha}}$ new skills 2014-2016 2019-2020 2017-2018 Comp. Share Comp. Share Comp. Share Var(In w) .326 .357 .377 ---_

Panel A: $X = \{ EDU, EXP, \Xi_2, \dots, \Xi_8 \}$									
$Var(\theta_i)$.149	.455	.163	.457	.157	.417			
$Var(\epsilon_i)$.096	.294	.092	.258	.094	.249			
$Var(\psi_i)$.048	.148	.050	.141	.059	.157			
$2 \operatorname{Cov}(\theta_i, \psi_j)$.033	.103	.051	.144	.067	.177			
Panel B: Decompose θ Terms									
$Var(X_{int})$.039	.121	.043	.120	.041	.109			
$Var(X_{ext})$.069	.212	.071	.198	.068	.180			
$2 \operatorname{Cov}(X_{int}, X_{ext})$.040	.123	.049	.139	.048	.128			
$2 \operatorname{Cov}(X_{int}, \psi_j)$.011	.035	.018	.051	.022	.059			
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.022	.067	.033	.093	.044	.118			
Panel C: Further	Decomp	ose X _{ext}	Terms						
$Var(\Xi_g)$.001	.003	.001	.002	.001	.002			
$Var(\Xi_m)$.005	.016	.006	.017	.006	.015			
$Var(\Xi_s)$.039	.120	.039	.109	.037	.098			
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.002	.006	.002	.005	.002	.004			
$2 \operatorname{Cov}(\Xi_g, \Xi_s)$.007	.021	.006	.016	.006	.015			
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.015	.046	.018	.049	.017	.045			
$2 \operatorname{Cov}(\Xi_g, X_{int})$.004	.011	.004	.010	.004	.010			
$2 \operatorname{Cov}(\Xi_m, X_{int})$.009	.027	.011	.032	.011	.028			
$2 \operatorname{Cov}(\Xi_s, X_{int})$.028	.085	.034	.096	.034	.090			
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.002	.005	.002	.006	.003	.008			
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.007	.020	.010	.027	.011	.030			
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.014	.043	.022	.060	.030	.080			
Obs	9301	.49	14944	468	15658	366			
Firm	41750		6290	07	53662				

Take-Away Message

- 1. Vacancy data + ML \sim EE data + AKM
- 2. Specificity is (still) an important dimension to think about multidimensional skill/task space
- 3. Occ-specific & Exp-related skill/task variations are the most important for wage inequality & firm-worker sorting
- 4. Firms do pay differently for similar-looking jobs, but also varying across occupations
- 5. Increased posted wage variances in our data is largely due to increased firm-job sorting

Occupational Specific Skill Prices

	Benchmark		$X_e \beta_o$		Ξβ	Ξβo		Xβo		$X\beta_o,\psi_j^o$	
	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share	Comp.	Share	
Var(In <i>w</i>)	.362	-	.362	-	.361	-	.361	-	.359	-	
Panel A: $X = \{ EDU, EXP, \Xi_2,, \Xi_8 \}$											
$Var(\theta_i)$.163	.450	.166	.459	.169	.469	.170	.470	.141	.393	
$Var(\epsilon_i)$.098	.272	.095	.262	.092	.256	.092	.255	.085	.237	
$Var(\psi_i)$.049	.136	.050	.137	.049	.136	.049	.136	.063	.175	
$2 \operatorname{Cov}(\theta_i, \psi_j)$.051	.142	.051	.142	.050	.139	.050	.139	.072	.201	
Panel B: Decompose θ Terms											
$Var(X_{int})$.042	.115	.053	.146	.040	.111	.048	.134	.039	.108	
$Var(X_{ext})$.072	.199	.055	.152	.080	.221	.063	.175	.058	.162	
$2 \operatorname{Cov}(X_{int}, X_{ext})$.049	.136	.058	.161	.049	.136	.058	.161	.044	.123	
$2 \operatorname{Cov}(X_{int}, \psi_i)$.017	.048	.019	.053	.017	.048	.017	.048	.022	.061	
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.034	.094	.032	.089	.033	.092	.033	.091	.050	.141	
Obs	39988	340	39988	340	39988	340	39988	340	39262	231	
Firm	8616	55	8616	55	8616	55	8616	55	3000	79	

Work Types and Posted Wage by Firm Types

A Shortcut

Work Types and Posted Wage by Firm Types

Work Types and Posted Wage by Firm Types

Shares Across Occupations

Mean Residual for Work-Firm cells

Pooled

Computer

Design_Media

Admin

Posted Wage Variance Trend Drivers (ψ_i^o) -Back

	2014-2016		2017-2	2018	2019-2020	
	Comp.	Share	Comp.	Share	Comp.	Share
Var(In W)	.322	-	.354	-	.373	-
Panel A: $X = \{EI$	DU, EXP,	Ξ2,,	E ₈ }			
$Var(\theta_i)$.119	.370	.139	.392	.132	.354
$Var(\epsilon_i)$.086	.266	.082	.231	.083	.223
$Var(\psi_j)$.064	.199	.066	.186	.076	.203
$2 \operatorname{Cov}(\theta_i, \psi_j)$.053	.165	.068	.191	.082	.220
Panel B: Decomp	ose θ Ter	ms				
$Var(X_{int})$.038	.117	.041	.115	.039	.104
$Var(X_{ext})$.048	.148	.054	.153	.052	.138
$2 \operatorname{Cov}(X_{int}, X_{ext})$.034	.105	.044	.124	.041	.111
$2 \operatorname{Cov}(X_{int}, \psi_j)$.017	.053	.024	.067	.028	.075
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.036	.112	.044	.124	.054	.144
Panel C: Further	Decompo	ose X_{ext}	Terms			
$Var(\Xi_g)$.001	.003	.001	.002	.001	.002
$Var(\Xi_m)$.005	.014	.006	.016	.005	.013
$Var(\Xi_s)$.025	.079	.028	.078	.026	.071
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.004	.002	.005	.001	.004
$2\operatorname{Cov}(\Xi_g,\Xi_s)$.005	.015	.005	.014	.005	.013
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.011	.034	.014	.039	.013	.036
$2 \operatorname{Cov}(\Xi_g, X_{int})$.003	.009	.003	.009	.003	.009
$2 \operatorname{Cov}(\Xi_m, X_{int})$.008	.024	.011	.030	.010	.026
$2 \operatorname{Cov}(\Xi_s, X_{int})$.023	.072	.030	.084	.029	.077
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.003	.009	.003	.008	.004	.010
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.009	.028	.012	.034	.013	.036
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.024	.075	.029	.083	.037	.099
Obs	888345		1431781		1516033	
Firm	112096		167523		134233	

Posted Wage Variance Trend Drivers $(X\beta_o, \psi_i^o)$ $(X\beta_i, \psi_i^o)$

	2014-2	2016	2017-2	2018	2019-2020	
	Comp.	Share	Comp.	Share	Comp.	Share
Var(In <i>W</i>)	.322	-	.354	-	.373	-
Panel A: $X = \{EE$	DU, EXP,	Ξ2,,3	E ₈ }			
$Var(\theta_i)$.124	.384	.143	.405	.140	.376
$Var(\epsilon_i)$.083	.258	.079	.223	.081	.216
$Var(\psi_j)$.062	.192	.063	.179	.073	.195
$2 \operatorname{Cov}(\theta_i, \psi_j)$.059	.183	.068	.193	.077	.208
Panel B: Decomp	ose θ Ter	ms				
$Var(X_{int})$.036	.113	.039	.111	.037	.100
$Var(X_{ext})$.051	.158	.060	.168	.060	.160
$2 \operatorname{Cov}(X_{int}, X_{ext})$.036	.113	.044	.125	.043	.116
$2 \operatorname{Cov}(X_{int}, \psi_j)$.015	.046	.023	.065	.026	.070
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.044	.137	.045	.127	.051	.137
Panel C: Further	Decompo	ose X_{ext}	Terms			
$Var(\Xi_g)$.001	.002	.001	.002	.001	.002
$Var(\Xi_m)$.004	.013	.005	.015	.005	.013
$Var(\Xi_s)$.031	.095	.033	.092	.033	.089
$2 \operatorname{Cov}(\Xi_g, \Xi_m)$.001	.003	.001	.003	.001	.004
$2\operatorname{Cov}(\Xi_g,\Xi_s)$.002	.006	.005	.013	.007	.018
$2 \operatorname{Cov}(\Xi_m, \Xi_s)$.010	.033	.016	.044	.014	.037
$2 \operatorname{Cov}(\Xi_g, X_{int})$.002	.007	.003	.008	.003	.008
$2 \operatorname{Cov}(\Xi_m, X_{int})$.007	.023	.010	.028	.009	.023
$2 \operatorname{Cov}(\Xi_s, X_{int})$.026	.082	.032	.089	.032	.085
$2 \operatorname{Cov}(\Xi_g, \psi_j)$.005	.015	.003	.008	.001	.003
$2 \operatorname{Cov}(\Xi_m, \psi_j)$.010	.031	.011	.032	.013	.036
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.029	.091	.031	.088	.037	.099
Obs	888345		1431781		1516033	
Firm	112096		167523		134233	

New Skills/Tasks (Back)

	2014-2016		2017-2018		2019-2020	
	Comp.	Share	Comp.	Share	Comp.	Share
Var(In w)	.326	-	.357	-	.376	-
Panel A: $X = \{EDU$	J, EXP, Ξ	2,,Ξ4	3}			
$Var(\theta_i)$.148	.455	.163	.456	.156	.415
$Var(\epsilon_i)$.096	.294	.092	.257	.093	.248
$Var(\psi_j)$.048	.148	.051	.142	.060	.159
$2 \operatorname{Cov}(\theta_i, \psi_j)$.034	.103	.052	.145	.067	.178
Panel B: Decompo	se θ Tern	าร				
$Var(X_{int})$.040	.121	.043	.120	.041	.108
$Var(X_{ext})$.069	.211	.071	.198	.068	.180
$2 \operatorname{Cov}(X_{int}, X_{ext})$.040	.122	.049	.138	.048	.127
$2 \operatorname{Cov}(X_{int}, \psi_j)$.012	.035	.018	.052	.023	.060
$2 \operatorname{Cov}(X_{ext}, \psi_j)$.022	.067	.033	.093	.044	.118
Panel C: Further D	ecompos	e X _{ext} Te	erms			
$Var(\Xi_{new})$.000	.000	.001	.002	.001	.002
$Var(\Xi_{gm})$.008	.024	.008	.023	.008	.021
$Var(\Xi_s)$.038	.117	.035	.099	.033	.087
$2 \operatorname{Cov}(\Xi_{new}, \Xi_{gm})$.001	.002	.001	.004	.002	.004
$2 \operatorname{Cov}(\Xi_{new}, \Xi_s)$.001	.004	.003	.009	.003	.009
$2 \operatorname{Cov}(\Xi_{gm}, \Xi_s)$.021	.063	.022	.060	.021	.056
$2 \operatorname{Cov}(\Xi_{new}, X_{int})$.001	.002	.002	.005	.002	.005
$2 \operatorname{Cov}(\Xi_{gm}, X_{int})$.012	.038	.015	.042	.014	.038
$2 \operatorname{Cov}(\Xi_s, X_{int})$.027	.083	.033	.092	.032	.084
$2 \operatorname{Cov}(\Xi_{new}, \psi_j)$.001	.002	.002	.005	.002	.006
$2 \operatorname{Cov}(\Xi_{gm}, \psi_j)$.008	.026	.012	.034	.015	.039
$2 \operatorname{Cov}(\Xi_s, \psi_j)$.013	.040	.019	.054	.027	.073
Obs	9301	49	1494468		1565866	
Firm	41750		6290)7	53662	
Appendix for Chapter 3.

Related Literature

- 1. Literature on Compensating Differential:
 - Classic: Rosen (1974); Brown (1980); Rosen (1986); Hwang et al. (1992)
 - Recent: Mas and Pallais (2017); Maestas et al. (2018); Wissmann (2022) / Sorkin (2018); Taber and Vejlin (2020); Lamadon et al. (2022)
 → New insights & New theory that reconciles existed empirical failures
- 2. Literature on Compensation Provision:
 - Theory: Rosen (1974, 1986); Hwang et al. (1998); Hamermesh (1999); Mortensen (2005); Dey and Flinn (2005); Bonhomme and Jolivet (2009)
 - Empirical: Sockin (2022); Lachowska et al. (2022); Bana et al. (2022); Lamadon et al. (2022)

 \rightarrow New evidences & New theory that explains those new evidences

- 3. Literature on Efficiency Wage:
 - Salop and Salop (1976); Shapiro and Stiglitz (1984); Katz (1986); Krueger and Summers (1988); Bloesch et al. (2021)

 \rightarrow Apply the insights to a more suitable place: "Efficiency Compensation"

Unstructured Text Data

- V: full vocabulary set with 110,000+ tokens/features (i.e. words or terms)
- $V_{\text{comp}} \subset V$: compensation vocabulary set with 13,000+ features
 - Not all uniques: synonyms, different versions, typos
 - Common words or stop words
 - Irrelevant texts
- $\mathbf{C}_{comp} \in \mathbb{R}^{N \times |V_{comp}|}$: an indicator matrix to run regression
- So, high-dimensional data \rightarrow (basic) Machine Learning methods

Posted Compensation/Amenity Information

- Pros:
 - 1. Hard to observe in census or survey data
 - 2. Compensations or amenities that firms regard as important to attract workers
 - 3. Also observe detailed job information
- Cons:
 - 1. Not a full list of the compensations that a firm offer
 - 2. Mainly amenities, rare disamenities (strategic hiding?)
 - 3. Maybe cheap talk?
- Our empirical results will be mainly descriptive & exploratory
 - No priori, let the data speak
 - Find stylized facts of patterns & correlations in the data
 - Shed new insights in thinking theories

Lasso Regressions <a>Aback

- Lasso regression (L1 penalization):

$$\hat{\zeta} = \arg\min_{\zeta} \sum_{i=1}^{N} \left(\ln w_i - \sum_{k=1}^{K} c_{ik} \zeta_k \right)^2 + \lambda \sum_{k=1}^{K} |\zeta_k|$$

- BIC as the criterion to gauge the hyperparameter λ : min BIC $(\lambda) = \frac{\|\ln \mathbf{w} - \mathbf{C}\hat{\zeta}_{\lambda}\|^2}{\sigma^2} + \hat{d}f_{\lambda}\log N$
- Inference via subsampling (10x10)

Lasso Regression using V_{comp} : Top Features (Frequency > 1%) (lasso details)

	Top Positive			Top Negative		
	token	coef	freq	token	coeff	freq
1	14th month pay	.331	.013	five insurance	301	.020
2	large platform	.310	.016	commission	195	.022
3	three meals	.263	.013	young	186	.012
4	technology	.247	.025	easy	181	.014
5	guru	.223	.024	training	174	.018
6	flexibility	.149	.091	two-day weekend	154	.140
7	options	.146	.043	promotion	138	.068
8	shuttle	.144	.015	events	104	.010
9	remuneration	.124	.015	holiday	093	.017
10	six insurance & one fund	.121	.050	holidays	092	.046
11	platform	.114	.046	provide	084	.012
12	13th month pay	.114	.021	jobs	080	.097
13	supplementary	.107	.011	achievements	077	.010
14	stock	.099	.017	work system	076	.012
15	salary	.099	.025	travel	073	.058
16	good platform	.093	.010	entrepreneurship	069	.013
17	listed company	.091	.023	five insurance & one fund	068	.261
18	high salary	.074	.018	employees	066	.029
19	products	.073	.012	time	063	.012
20	lucrative	.069	.018	environment	062	.038
21	shareholding	.069	.012	double pay	055	.032
22	benefits	.068	.035	office	047	.018
23	motivation	.063	.016	company	043	.050
24	projects	.058	.030	wide	041	.012
25	year-end bonus	.057	.042	snacks	041	.013
26	team	.050	.108	growing	039	.025
27	ture et an evet	040	007	4	000	001

146/60

Lasso Regression using V: Top Features (Frequency > 1%) • Lasso Regression using V: Top Features (Frequency > 1%)

	Top Positive			Top Negative		
	token	coef	freq	token	coeff	freq
1	14th month pay	.152	.014	freshmen	155	.018
2	three meals	.143	.014	five insurance	136	.030
3	large platform	.131	.019	graduates	128	.033
4	master degree	.126	.015	vocational major	100	.036
5	lead	.107	.041	two-day weekend	098	.166
6	c++	.092	.051	vocational college	094	.148
7	algorithm	.082	.061	assistant	079	.011
8	guru	.082	.028	customer service	075	.030
9	famous	.079	.019	social insurance	073	.028
10	machine learning	.077	.016	accounting	071	.019
11	formation	.076	.013	accommodation	067	.016
12	undergraduate	.074	.319	administration	067	.027
13	overseas	.072	.026	commissioner	063	.011
14	react	.072	.020	taobao	059	.015
15	development	.071	.374	assistance	058	.164
16	undergraduate	.066	.029	ps	056	.029
17	high salary	.063	.028	ltd.	056	.012
18	landing	.060	.067	installation	055	.020
19	strategy	.057	.047	photoshop	052	.039
20	live streaming	.056	.014	careful	050	.032
21	listed company	.055	.027	hardworking	050	.032
22	large scale	.055	.072	verification	048	.011
23	responsibilities	.055	.048	human resources	047	.032
24	<u>shuttle</u>	.054	.018	website	047	.090
25	finance	.054	.070	any major	047	.020
26	six insurance & one fund	.053	.055	humanization	046	.012
27	nuthon	052	044	ovcol	044	047

147/60

Confidence Intervals on Lasso Coefficients via Subsampling

Compare Lasso Coefficients

Features

Posted-Wage Regression

- So the predictive power of non-wage compensations in part comes from their correlation with job skills/tasks; What about firms?
- Posted wage regression: ln $W_{i,j,t} = \theta_i + \psi_j + \delta_i + \iota_t + \epsilon_i$
 - $\theta_i \equiv X_i \beta$ (job/worker effect), $X_i = \{ EDU_i, EXP_i, \mathbf{c}'_{i, \setminus comp} \}$
 - ψ_j (firm fixed effect)
 - $\delta_i \equiv \mathbf{c}'_{i,\text{comp}} \gamma$ (compensation effect)
 - *ι*_t (year fixed effect)
 - In practice, further dimensional reduction on $\mathbf{c}'_{i,\text{comp}}$ & $\mathbf{c}'_{i,\text{comp}}$ using PLS
 - This posted wage regression does a similar job to the AKM framework (Zhu, 2022)
- Variance decomposition: var $(\ln w_i) =$ var $(\theta_i) + var(\psi_j) + var(\delta_i) + 2 cov(\theta_i, \psi_j) + 2 cov(\theta_i, \delta_i) + 2 cov(\psi_j, \delta_i) + var(\epsilon_i)$

Gather Important Types and Check Occurrence

- We can take a direct look on if high/low wage firms or jobs are accompanied with low/high valued amenities
- We do this by selecting a set of major, well-defined, and economic important compensations from V_{comp} based on the frequency & Lasso coefficient
- We gather all relevant terms by checking proximate terms in the embedding space of a work-embedding model trained on the whole job texts
- We then examine how the occurrence ratio for each type differ across different firms & jobs

Compensation Occurrence (More)

Hedonic Regression

	Pooled	Computer	Design_	Admin
			Media	
	(1)	(2)	(3)	(4)
Advanced Insurance	.014**	.016**	.009**	.002
	(.001)	(.001)	(.002)	(.003)
Backloading Wage	.010**	.013**	.022**	.011**
	(.001)	(.001)	(.002)	(.002)
Stock Option	.087**	.068**	.060**	.040**
	(.001)	(.001)	(.002)	(.003)
Coworker Quality	.024**	.016**	.005*	.008+
	(.001)	(.001)	(.002)	(.004)
Work-Flexibility	.010**	.007**	.009**	.005**
	(.001)	(.001)	(.001)	(.002)
Basic Insurance	025**	024**	017**	013**
	(.000)	(.001)	(.001)	(.001)
Training	003**	019**	003	.013**
	(.001)	(.001)	(.002)	(.002)
Work-Time	021**	018**	020**	022**
	(.000)	(.001)	(.001)	(.001)
Education FE	√	√	\checkmark	√
Experience FE	\checkmark	\checkmark	\checkmark	\checkmark
Year FE	\checkmark	\checkmark	\checkmark	\checkmark
Ξ ₂ ,,Ξ ₈	\checkmark	\checkmark	\checkmark	\checkmark
Firm FE	\checkmark	\checkmark	\checkmark	\checkmark
Adj. R ²	.738	.748	.730	.657
No. Obs	3998840	1325260	548808	260364

The Phantom of Unobserved Worker Ability - Back

- Yes, there still could be unobserved worker ability not-captured which cause bias in the estimation above (Rosen, 1986; Hwang et al., 1992)
- But would unobserved skill heterogeneity matter so much?
 - In our job vacancy data, the usually-unobserved job heterogeneity accounts for additional 5 percent of the posted wage variances
 - Unobserved job heterogeneity is typtically positively correlated with observed job heterogeneity
- Perhaps compensation differential is not the sole or the major force?
 - The toughness of the omitted-variable problem indicates other dominant mechanism of compensating dispersion

Firms' Problem

- Firm problem:
$$\max_{\substack{\{q_i\}_{i=1}^N, a, h, w(q) \\ \text{s.t.} \quad w(q) + \phi_a a - \frac{h^{1+\phi_h}}{1+\phi_h} \ge u(q) \quad \forall q \in \{q_i\}_{i=1}^N$$

- Complementary production function & additively separable utility function ensure positive assortative matching (PAM) even under imperfect transferable utility \rightarrow a firm will employ workers with same q
- Rewrite the firm problem given equilibrium allocation: $\max_{q,a,h} AN^{1+\alpha}q^{N}(1+\gamma_{a}a+\frac{h^{\gamma_{h}}}{\gamma_{h}}) - N\left(u(q) - \phi_{a}a + \frac{h^{1+\phi_{h}}}{1+\phi_{h}}\right) - a\kappa N$

- FOCs:
$$\frac{AN^{1+\alpha}q^{N-1}e(a,h) = u'(q)}{AN^{\alpha}q^{N}h^{\gamma_{h}-1} = h^{\phi_{h}}}$$

Market Utility Profile

$$- u(q) = \begin{cases} \frac{(\bar{A}q^N)^{1+\omega}}{(1+\omega)(1+\gamma_h)} + (1+\gamma_a)\bar{A}q^N + u_a, & \text{if } q \ge q_a \\ \frac{(\bar{A}q^N)^{1+\omega}}{(1+\omega)(1+\gamma_h)} + \bar{A}q^N + u_0, & \text{if } q < q_a \\ - & \text{where } \bar{A} \equiv AN^{\alpha}, \omega = \frac{1+\gamma_h}{1+\phi_h-\gamma_h}, u_0 = 0, \text{ and } u_a = \phi_a - \kappa. \end{cases}$$

If Firm Size Is Endogenous (Typical O-Ring Results)

- *N* is also a choice of the firm
- Additional FOC: $AN^{\alpha}q^{N}e(a, h)(1 + \alpha + N\ln(q)) = w + ac$
- Optimal choice on firm size: $N(q) = \frac{1+\alpha}{-\ln(q)}$
- Firm size increases in productivity q and is irrelevant to the choices of amenities
- All the relationships between productivity and amenity provision can be now directly translate to the firm size

Model Implications 1. Compensating Differential

- 1.1 Compensating effects can be confounded with productivity effects
 - Esp. for the up-end labor market where (in)efficiency forces are strong
- 1.2 The result of an empirical test on compensating differential will depend on the targeted labor market
 - If focusing on low-end labor market (close to q_a or $q < q_a$ with imperfectly mandated policies) \rightarrow easy to find clear evidence
 - If focusing on board or high-end labor market (& with heterogeneous usage in efficiency compensation or imperfect matching) \to tests likely to fail
- 1.3 Available variations for wage-amenity packages can be limited conditional on worker
 - Depends on exogenous heterogeneity v.s. endogenous heterogeneity
 - Constrains on both low-end and high-end markets

 \rightarrow Field/choice experiments (WtP) or RCT-like experiments (exogenous variations) not necessarily capture the whole picture of how labor market works

Model Implications 2. Labor Market Inequality

2 Efficiency compensations can enlarge both utility dispersion & wage dispersion

- Ignoring non-wage compensations can underestimate labor market inequality
- Moreover those compensations per se can actually be the drivers of wage inequality

 \rightarrow Increased sorting or better use of efficiency compensations increases wage inequality

Model Implications 3. Job Mobility & Choice

- 3.1 The set of non-wage compensations that can justify job moves to low wage-premium firms is likely limited to inefficient amenities
 - Work-time/effort is the most likely culprit for moving downgrade
- 3.2 Greater compensating than just "compensating differential"
 - A worker with a ϕ_h shock would suffer not only traditional compensation differential but also a worse matching & an inferior package of other compensations
 - Again, available choices for wage-amenities packages are limited
 - \rightarrow Potential implications for gender wage gap and etc.

Take-Away Message

1. Think explicitly about non-wage compensations: insurance/fund, work-time, pay schemes, work environment, fringe benefits, ...

 \rightarrow empirical focus & policy targets & intuition when back-out revealed preference

- 2. Different Firms in different jobs have distinct provision patterns \rightarrow compensating differential \neq provision inequality
- 3. (In)Efficiency compensations & productivity sorting reconciles empirical findings and generates important implications

ightarrow high-wage firms can also offer better compensations without wage discounts

Appendix for Chapter 4.

Related Literature

- Literature on the impact of human capital or labor market on technology adoption: Nelson and Phelps (1966), Greenwood and Yorukoglu (1997), Chari and Hopenhayn (1991), Adão et al. (2021), Galor and Moav (2000), Krueger and Kumar (2004a,b), Acemoglu and Zilibotti (2001); esp. due to the holdup problem: Acemoglu (2003), Acemoglu et al. (2006); esp. empirical evidences on IT technology: Bloom et al. (2012), Arora et al. (2013), Michaels et al. (2014)
- Literature on training and human capital investment under non-Walrasian market: Acemoglu (1996), Acemoglu (1997), Acemoglu and Pischke (1998), Acemoglu and Pischke (1999b), Acemoglu and Shimer (1999), Moen and Rosén (2004), Wasmer (2006), Doepke and Gaetani (2020), Engbom (2022)
- Literature on cross-country relationship between labor market turnover and training, development, or lifecycle wage growth: Blinder and Krueger (1996), Donovan et al. (2022), Ma et al. (2021), Engbom (2022)
- Literature on endogenous labor market institutions: Acemoglu et al. (2006), Acemoglu et al. (2017); esp. on the Japanese labor market institutions: Hashimoto (1979), Hashimoto and Raisian (1985), Morita (2001), Owan (2004)

Data Source

- Japan: vacancy data from Doda.com
 - Largest general Job boards in Japan
 - IT vacancy: 34,000 / All vacancy: 216,000
 - Time period: 2019/06-2020/03
- China: vacancy data from Lagou.com
 - Largest IT-centered job board in China
 - IT vacancy: 278,000 / All vacancy: 909,000
 - Time period: 2019/01-2019/12
- Only regular jobs, but same results applying to new graduates
- Confirm by using Labor Census data in Japan

Training Text in Japanese IT Vacancies

Posted Wage (Monthly)

Posted Wage (Real)

US Census Data (CPS)

Other Evidences from Literature

- IT capital productivity: Bloom et al. (2012) finds European affiliates of US multinationals have higher productivity in using IT capital than non-US multinationals and domestic firms, which can be accounted by different "people management" practices (promotions, rewards, hiring, and firing)
- Patent data: Arora et al. (2013) shows that Japanese firms were increasingly lagging behind US firms in IT-related invention during a software-biased shift in the innovation process in IT sectors
- Demand on skill: Michaels et al. (2014) shows that a positive correlation between high-skill(education) workers' demand/wages and ICT adoption(investment) across countries and industries

Fact Implications

- In the case of recent IT sectors, firm training (Japan) seems to be less efficient than worker learning (China) in technology adoption and innovation
- More generally, it implies that firm training and worker learning are not equally efficient or not perfect substitutes in human capital investment and their importances may vary across sectors and technologies, due to
 - Technological reasons: e.g. if reply on equipment or work environment
 - Contractual reasons: e.g. moral hazard problems, credit constraints
 - Often both
- It further implies that Japan might be trapped in its labor market institutions
 - The well-known Japanese labor market institutions featured by more-training, less-turnover, and less skill-premium seem to extend to the newly emerged IT sectors, despite of its inefficiency

Investment Choices

- FOCs:
$$\Gamma_l(1-\alpha)Ak^{*\alpha}I^{-\alpha} = \kappa I^{\gamma}$$
; $\Gamma_kA\alpha k^{(\alpha-1)}I^{*(1-\alpha)} = r$
- $\Gamma_l = (1-p)\beta z_1 + p((1-\beta)z_1 + \beta z_2)$ increases in p
- $\Gamma_k = (1-p)(1-\beta)z_1$ decreases in p

-
$$I^* = \left(\Gamma_I^{1-\alpha}\Gamma_k^{\alpha} A \alpha^{\alpha} (1-\alpha)^{1-\alpha} r^{-\alpha} \kappa^{\alpha-1}\right)^{\frac{1}{\gamma(1-\alpha)}}$$

-
$$k^* = \left(\Gamma_l^{1-\alpha}\Gamma_k^{\alpha+\gamma}A^{1+\gamma}\alpha^{\alpha+\gamma}(1-\alpha)^{1-\alpha}r^{-(\alpha+\gamma)}\kappa^{\alpha-1}\right)^{\frac{1}{\gamma(1-\alpha)}}$$

-
$$\Delta h^* = \left(\Gamma_l^{1-\alpha}\Gamma_k^{\alpha(1+\gamma)}A^{1+\gamma}\alpha^{\alpha(1+\gamma)}(1-\alpha)^{1-\alpha}r^{-\alpha(1+\gamma)}\kappa^{\alpha-1}\right)^{\frac{1}{\gamma(1-\alpha)}}$$

- An allocation is (constrained) efficient if it maximizes the net output of the economy subject to search frictions
- A social planner chooses training investment and vacancy opening to maximize the output in the second period: $\max_{l,k,v}[(1 - p(v))z_1 + p(v)z_2](1 + \Delta h(k, l)) - rk - \kappa \frac{l^{1+\gamma}}{(1+\gamma)} - cv$ s.t. $\Delta h(k, l) = Ak^{\alpha}l^{(1-\alpha)}$ and $p = \xi(v/s)^{\phi}$

Increase in Search Efficiency ξ

The Hypothesis

- Japan-China differences lay in the different labor market institutions developed to solve the firm hold-up problem in the early stage
- Japan: achieved by social norms or customs (under historical contingencies) which applies to the whole economy
- China: achieved by using a large state-owned sector with low turnover (Feng and Guo, 2021) and high investment (Song et al., 2011) but left an intact and fluid labor market in the private sector.
 - Along with structural transform, the government sectors dampened or reformed gradually (Hsieh and Song, 2015) and the new industries like IT grow entirely from a very fluid labor market in the private sector
 - The state-owned sector might be less efficient in solving the firm hold-up problem than the Japanese system because worker can still flow out to the private sector and there may have other moral hazard problems in SOEs

Labor Market Mobility and Economics Development

- Donovan et al. (2022): labor market liquidities are negatively correlated with development, with workers moving on and off the bottom rungs of the job ladder
- Ma et al. (2021): the levels of firm-provided training are positively correlated with development, suggesting a hold-up problem in firm training in LDCs with large portion of self-employment
- Engbom (2022): a positive relationship between labor market fluidity and lifecycle wage increase among European countries
- Our model suggests a U-shape relationship:
 - Low income countries need rigidity to solve the firm hold-up problem to catch-up
 - High income countries need liquidity to solve the worker incentive problem under new TC