In Public Debt Growth-Enhancing or Growth-Reducing?

Real Arai ^a Takuma Kunieda ^b Keigo Nishida ^c

^a Graduate School of Social Sciences, Hiroshima University
 ^b Department of Economics and Finance, City University of Hong Kong
 ^c Faculty of Economics, Fukuoka University

June 4th, 2014 @University of Tokyo

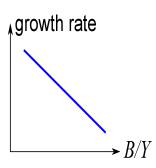
Abstract

Question:

How does the accumulation of public debt affect economic growth ?

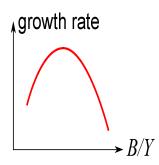
- \blacktriangleright A well-known effect is the crowd-out effect .
- Recent empirical studies provides mixed evidence.
 - \rightarrow Probably, other effects exist.
- Result:

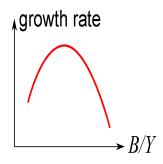
We construct a theoretical model that can generate the "inversed-U" relationship.


Motivation

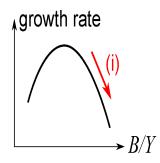
- Growth effects of the accumulation of public debt?
- Mixed evidence.
 - Negative & threshold effect of public debt.
 - ★ Reinhart and Rogoff (2010, AER)
 - ★ Kumar and Woo (2010, IMF WP)
 - ★ Balassone et al. (2013, Oxford Handbook)
 - Inverted U-shaped relationship.
 - ★ Baum et al. (2013, JIMF)
 - ★ Checherita-Westphal and Rother (2012, EER)
 - ★ Checchetti et al. (2011, BIS WP)
 - Questioning the threshold effect.
 - ★ Kourtellos et al. (2013, J Macro)
 - ★ Panizza and Presbitero (2013, SJES)

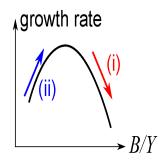
Motivation


- Growth effects of the accumulation of public debt?
- Public debt $\uparrow \Rightarrow$ growth \downarrow [Saint-Paul (1992, QJE)]

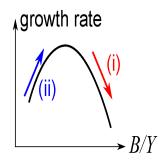

because of the crowd-out effect. (debt $\uparrow \Rightarrow$ private investment \downarrow)

Motivation (Cont.)


• The crowd-out effect on economic growth? Empirical evidence \rightarrow Not only! We consider public debt's crowd-in effect.

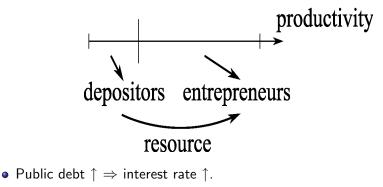


- (i): (crowd-out) > (crowd-in).
- (ii): (crowd-out) < (crowd-in).
 crowd-in effect [Woodford (1990, AER p&p)]:
 Public debt 1 ⇒ private investment 1


/ 28

- (i): (crowd-out) > (crowd-in).
- (ii): (crowd-out) < (crowd-in).
 crowd-in effect [Woodford (1990, AER p&p)] :
 Public debt 1 ⇒ private investment 1

- (i): (crowd-out) > (crowd-in).
- (ii): (crowd-out) < (crowd-in). crowd-in effect [Woodford (1990, AER p&p)] : Public debt ↑ ⇒ private investment ↑



- (i): (crowd-out) > (crowd-in).
- (ii): (crowd-out) < (crowd-in). crowd-in effect [Woodford (1990, AER p&p)] : Public debt ↑ ⇒ private investment ↑

@University of Tokyo

Intuition

- In our model, individuals
 - have two saving methods: investment or saving.
 - face iid productivity shock.

Less productive individuals: a investor ⇒ a depositor.
 → The number of investors ↓.

- 2 Interest rate $\uparrow \Rightarrow$ depositor's income \uparrow .
 - \rightarrow Investment \uparrow in the next period by relaxed borrowing constraints.

Brief Description of the Model

Based on Kunieda and Shibata's (2012) model.

- Closed economy.
- The economy consists of
 - Infinitely-lived agents:
 - * Consume and save (by investment and/or deposit).
 - ★ Invest 1 unit \Rightarrow produce ϕ_t^i units general goods.
 - * Productivity ϕ_t^i is determined by an iid shock.
 - * Individuals can borrow when they invest but face borrowing constraints.
 - government:
 - ★ follows a certain fiscal policy rule (to be explained).
 - financial intermediary:
 - ★ Deposits \Rightarrow lending/buying public debt in a competitive market.
 - * The financial market is competitive, so it acquires zero profits.

Agents

Agents' utility maximization problem:

$$\max U_t = E\left[\sum_{s=t}^{\infty} \beta^{s-t} \ln c_s(\omega^s) \middle| \Phi^t(\omega^t) \right], \tag{1}$$

subject to

$$k_{s}(\omega^{s}) + b_{s}(\omega^{s}) = [A\Phi_{s-1}(\omega_{s-1})k_{s-1}(\omega^{s-1}) + r_{s}b_{s-1}(\omega^{s-1})](1 - \tau_{s}) - c_{s}(\omega^{s}),$$
(2)

$$b_{s}(\omega^{s}) \geq -\lambda a_{s}(\omega^{s}), \qquad (3)$$

$$k_{s}(\omega^{s}) \geq 0. \qquad (4)$$

- $a_s(\omega^s)$ is the net-worth $[:= k_s(\omega^s) + b_s(\omega^s)]$.
- $\mu := \lambda/(1+\lambda)$ is also the extent of financial market imperfections.

Agents (Cont.)

The Euler equation:

$$\frac{1}{c_t(\omega^t)} = \beta E\left[\tilde{R}_{t+1}(1-\tau_{t+1})\frac{1}{c_{t+1}(\omega^{t+1})} \left| \Phi^t(\omega^t) \right],$$
 (5)

where $\tilde{R}_s := \max\{r_s, \frac{A\Phi_{s-1}-r_s\mu}{1-u}\}$. The law of motion of an agent's net worth $a_t(\omega^t)$:

> $a_{t+1}(\omega^{t+1}) = \beta \tilde{R}_{t+1}(1 - \tau_{t+1})a_t(\omega^t).$ (6)

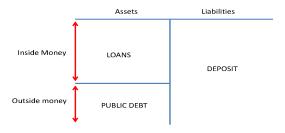
Govenment

- A government follows a certain fiscal policy rule:
 - Constant government spending/GDP ratio: θ .

$$\frac{E_t}{Y_t} = \theta. \tag{7}$$

• Income tax rate τ_t is determined by B_{t-1}/Y_{t-1} .

$$\tau_t = \tau \left(B_{t-1} / Y_{t-1} \right).$$
 (8)


Issuance of public debt is determined by the budget constraint.

$$B_t = r_t B_{t-1} + E_t - T_t. (9)$$

Financial Intermediary (FI)

FI collects deposits and uses it to

- lend to investors, or
- purchase public debt.

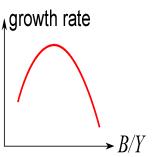
Balance Sheet of the financial intermediary

June 4th, 2014 CUniversity of Tokyo

Cutoff ϕ_t and Public-debt-to-GDP Ratio

From the market clearing condition on public debt,

$$\frac{B_t}{Y_t} = \frac{\beta(1-\theta)[G(\phi_t)-\mu]}{1-\mu-\beta[G(\phi_t)-\mu]}.$$
(10)


Proposition

The PDG ratio, B_t/Y_t , is an increasing function of the cutoff ϕ_t .

Economic Growth Rate

Assumption $\beta F(G^{-1}(\mu)) > G^{-1}(\mu)(1-\mu).$

• Under the assumption, "inversed-U relationship" can be derived. [Prop. 2, 3] .

Economic Growth Rate (Cont.)

• From the definition of aggregate output and the aggregate investment,

$$\frac{Y_{t+1}}{Y_t} = \frac{\beta A(1-\theta)F(\phi_t)}{1-\mu-\beta(G(\phi_t)-\mu)},$$
(11)
where $F(\phi_t) = \int_{\phi_t}^{h} \Phi_t(\omega_t) dG(\Phi_t).$

- Two effects: Public debt $\uparrow \Rightarrow$ interest rate $\uparrow \Rightarrow ...$
 - ► cutoff \$\phi_t\$ ↑ ⇒ \$F(\phi_t\$)\$. The number of investors \$\phi\$ = crowd-out effect .
 - Interest rate ↑ ⇒ Public debt is a beneficial asset to store value. ⇒
 Less productive agents are given better saving opportunity. ⇒ Many of them will become productive agents. Investment ↑ = crowd-in effect .

Economic Growth Rate (Cont.)

• From the definition of aggregate output and the aggregate investment,

$$\frac{Y_{t+1}}{Y_t} = \frac{\beta A(1-\theta) F(\phi_t)}{1-\mu - \beta (G(\phi_t) - \mu)},$$
(11)
where $F(\phi_t) = \int_{\phi_t}^{h} \Phi_t(\omega_t) dG(\Phi_t).$

- Two effects: Public debt $\uparrow \Rightarrow$ interest rate $\uparrow \Rightarrow ...$
 - ▶ cutoff ϕ_t ↑ ⇒ $F(\phi_t)$. The number of investors \downarrow = crowd-out effect .
 - Interest rate ↑ ⇒ Public debt is a beneficial asset to store value. ⇒
 Less productive agents are given better saving opportunity. ⇒ Many of them will become productive agents. Investment ↑ = crowd-in effect .

Economic Growth Rate (Cont.)

• From the definition of aggregate output and the aggregate investment,

$$\frac{Y_{t+1}}{Y_t} = \frac{\beta A(1-\theta) F(\phi_t)}{1-\mu - \beta (G(\phi_t) - \mu)},$$
(11)
where $F(\phi_t) = \int_{\phi_t}^{h} \Phi_t(\omega_t) dG(\Phi_t).$

- Two effects: Public debt $\uparrow \Rightarrow$ interest rate $\uparrow \Rightarrow ...$
 - ▶ cutoff $\phi_t \uparrow \Rightarrow F(\phi_t)$. The number of investors $\downarrow =$ crowd-out effect .
 - Interest rate ↑ ⇒ Public debt is a beneficial asset to store value. ⇒
 Less productive agents are given better saving opportunity. ⇒ Many of them will become productive agents. Investment ↑ = crowd-in effect .

Public Debt and the Growth Process

• From the market clearing condition on public debt,

$$\underbrace{\frac{\beta(1-\theta)(G(\phi_{t})-\mu)}{1-\mu-\beta(G(\phi_{t})-\mu)}}_{\Psi(\phi_{t})} = \underbrace{\frac{(1-\tau(\phi_{t-1}))\phi_{t-1}(G(\phi_{t-1})-\mu)}{F(\phi_{t-1})} + \theta - \tau(\phi_{t-1})}_{\Lambda(\phi_{t-1})}.$$
(12)

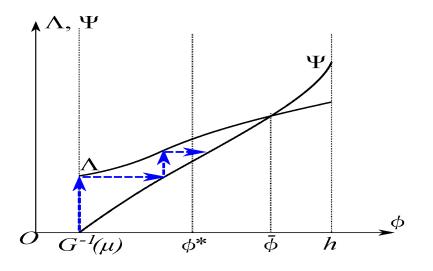
- $\Psi(\phi_t)$: Aggregate demand of public debt per GDP (determined in the financial market).
- $\Lambda(\phi_{t-1})$: Aggregate supply of public debt per GDP (determined by fiscal policy).

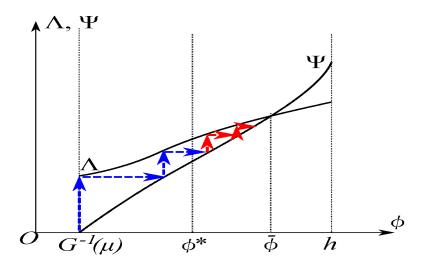
We assume that the government enacts the following fiscal policy rule:

$$\tau(\phi_{t-1}) = 1 - \alpha (1 - (\phi_{t-1})^2), \tag{13}$$

where $\alpha > 0$ is a policy parameter.

- The government conducts public debt management with Eq. (13) so that the PDG ratio does not diverge.
- Given the value of ϕ_{t-1} , a greater (smaller) value of α yields a smaller (greater) value of $\tau(\phi_{t-1})$.
 - In the case of a greater value of α, the issuance of public debt plays a central role to finance government spending.
 - In the case of a smaller value of α, the issuance of public debt plays a minor role to finance it.


Assuming $\mathcal{G}(\Phi) = \Phi$, $\Lambda(\phi_{t-1})$ (the RHS of (12)) becomes:


$$\Lambda(\phi_{t-1}) = \alpha(\phi_{t-1} - \mu)^2 + \alpha(1 - \mu^2) + \theta - 1.$$
(14)

- Our interest is in investigating the mechanism that creates the inverted U-shaped relationship between the accumulation of public debt and economic growth.
 - We focus on the simplest case in which Λ(φ) is monotonically increasing and there is a unique steady state φ̄.
 - We impose the following parameter assumption:

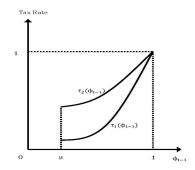
Assumption

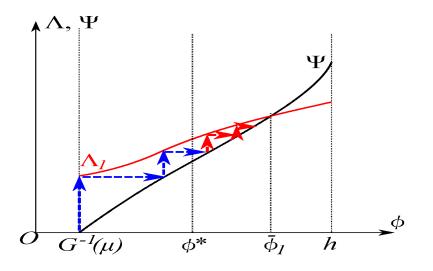
$$\tfrac{1-\theta}{1-\mu^2} < \alpha < \tfrac{1-\theta}{2(1-\beta)(1-\mu)}.$$

- On the dynamic transition path,
 - When B/Y is low, $B/Y \uparrow \Rightarrow$ growth rate \uparrow ,
 - When B/Y is high, $B/Y \uparrow \Rightarrow$ growth rate \downarrow ,

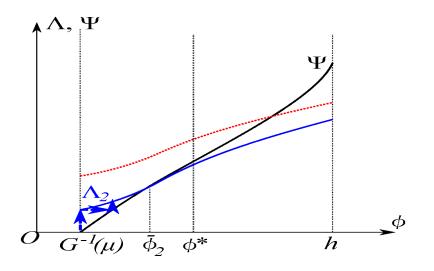
Growth Patterns subject to Fiscal Policy Rules

- How are economic growth patterns subject to fiscal policy rules?
- We compare two types of fiscal policy rules.




Fig. 2: Two different fiscal policy rules

June 4th, 2014


τ₁(φ_t): a "more expansionary" policy. α is bigger
 τ₂(φ_t): a "less expansionary" policy. α is smaller.

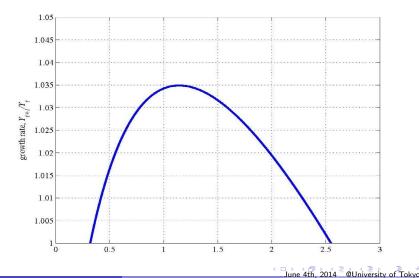
@University of Toky

Growth Patterns subject to Fiscal Policy Rules (Cont.)

Growth Patterns subject to Fiscal Policy Rules (Cont.)

Quantitative Analysis

In any cases in equilibrium including the dynamic growth process and the steady state, the following two equation determine both PDG ratio and growth rate through the cutoff ϕ_t .


$$\frac{B_t}{Y_t} = \frac{\beta(1-\theta)[G(\phi_t)-\mu]}{1-\mu-\beta[G(\phi_t)-\mu]}.$$
(15)

$$\frac{Y_{t+1}}{Y_t} = \frac{\beta A(1-\theta) F(\phi_t)}{1-\mu - \beta (G(\phi_t) - \mu)}.$$
(16)

We calibrate the model and derive the growth-maximizing PDG ratio from these two equations

- $G(\Phi) = \Phi$.
- The subjective discount factor (a year): $\beta = 0.96$
- The severity of credit constraints: $\mu = 0.57$ (benchmark case).
 - ▶ Producers' net worth-to-investment ratio $a_t(\omega^t)/k_t(\omega^t) = 1 \mu$ in our model can be regarded as owners' equity-to-total assets ratio in the actual balance sheet.
 - According to the Quarterly Financial Report created by the United States Census Bureau in 2006, the average of owners' equity-to-total assets ratio for all corporations in the NAICS manufacturing sector is around 0.43 in 2006.
- The government-spending-to-GDP ratio: $\theta = 0.157$.
 - We follow the procedure employed by Hayashi and Prescott (2002).
- The scaling parameter: A = 1.48.
 - We use the average growth rate and the average PDG ratio over the period 1996-2006 in the US with eqs. (14) and (15).

The inverted U-shaped relationship between the accumulation of public debt and economic growth.

Arai, Kunieda, Nishida (2014) Public Debt Growth-Enhancing or Growth-Re

Table 1: Growth-maximizing PDG ratio and net growth rate

Parameters: A = 1.52, $\beta = 0.96$, $\mu = 0.50$, $\theta = 0.157$

$(B/Y)^{*}$	129%
$(Y_{t+1}/Y_t)^* - 1$	4.32%

Parameters: A = 1.48, $\beta = 0.96$, $\mu = 0.57$, $\theta = 0.157$

$(B/Y)^{*}$	114%
$(Y_{t+1}/Y_t)^* - 1$	3.49%

Parameters: A = 1.42, $\beta = 0.96$, $\mu = 0.70$, $\theta = 0.157$

$(B/Y)^{*}$	82%
$(Y_{t+1}/Y_t)^* - 1$	2.46%

Table 2: Robustness checks with $G(\Phi) = \Phi^2$

Parameters: A = 1.40, $\beta = 0.96$, $\mu = 0.50$, $\theta = 0.157$

$$\begin{array}{c} (B/Y)^* & 74.5\% \\ (Y_{t+1}/Y_t)^* - 1 & 2.38\% \end{array}$$

Parameters: A = 1.39, $\beta = 0.96$, $\mu = 0.57$, $\theta = 0.157$

$$\begin{array}{ccc} (B/Y)^* & & 62.5\% \\ (Y_{t+1}/Y_t)^* - 1 & & 2.30\% \end{array}$$

Parameters: A = 1.36, $\beta = 0.96$, $\mu = 0.70$, $\theta = 0.157$

$$\begin{array}{c} (B/Y)^* & 37.2\% \\ (Y_{t+1}/Y_t)^* - 1 & 2.50\% \end{array}$$

Concluding Remarks

- Question: How does the accumulation of public debt affect economic growth ?
 - Recent empirical evidence is mixed.
- Result: We construct a theoretical model that can generate the "inversed-U" relationship.
- Intuition: $B_t/Y_t \uparrow \Rightarrow$ interest rate $\uparrow \Rightarrow ...$
 - \blacktriangleright The number of investors $\downarrow = {\sf crowd}{\sf -out}$ effect .
 - ▶ ⇒ Public debt is a beneficial asset to store value. ⇒ Less productive agents are given better saving opportunity. ⇒ Many of them will become productive agents. Investment \uparrow = crowd-in effect .