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Abstract

We study the problem of designing a dynamic reassignment mechanism when agents’
preferences over objects change over time. In the context of Norway’s system for
(re)assigning patients to general practitioners (GPs), we provide direct evidence of mis-
allocation under the current mechanism—patients waiting for each others’ GPs, but who
cannot trade—and estimate a structural model of GP switching behavior to evaluate
alternatives. Introducing Top Trading Cycles (TTC) would, on average, reduce waiting
times and increase patient welfare. However, patients endowed with less desirable GPs
would be harmed. Prioritizing these patients can avoid these harms while preserving
most of the gains from TTC.
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I Introduction

Centralized (non-price) assignment mechanisms are used to allocate many important resources
in the economy, including schools, jobs, housing, and healthcare. A rich theoretical and
empirical literature has studied the design of such mechanisms. Much of this work has focused
on providing good matches for participants’ current needs. However, in many of these markets,
agents’ preferences may change over time. Students may wish to transfer schools; public
housing residents may want to down-/up-size as household composition changes; workers
may want to relocate. Much less is known about how to design markets when there are
repeated matching opportunities. Even in markets with sophisticated centralized assignment

mechanisms, aftermarkets and reassignment systems are often less carefully designed.

This paper studies the problem of dynamically re-assigning agents to objects, when agents’
preferences change over time. We make three conceptual and empirical contributions. First,
we provide direct empirical evidence of unrealized gains from trade in an important dynamic
assignment market—the market for general practitioners (henceforth, GPs) in Norway. Sec-
ond, we introduce an alternative mechanism that adapts a standard tool for centralized
reassignment—the Top Trading Cycles (TTC) algorithm—to a dynamic environment, and
clarify the incentive and distributional challenges that arise. Finally, we develop and estimate
a model of patient preferences and choice over GPs and evaluate counterfactual mechanisms

within a dynamic stochastic equilibrium model of a patient-GP (re)assignment system.

Our empirical setting is the Norwegian primary care system. As in many national health
insurance schemes, every individual in Norway has a formally assigned GP who acts as a first
point of contact and gatekeeper to secondary care. In principle, individuals (or hereafter,
patients) have free choice of GP. In practice, each GP has a cap on the number of patients
they can have on their “panel,” creating capacity constraints that limit patients’ effective
choice of GP.! In an effort to facilitate GP switching, in 2016 Norway began allowing patients
to join waitlists for oversubscribed GPs while keeping their spot on their current GP’s panel.
Patients are permitted to stand on at most one GP’s waitlist a time, and are then reassigned

from the waitlist on a first-come, first-served basis to vacancies on the desired GP’s panel.

The starting point for the paper is the observation that under this reassignment system,
there may be patients waiting for each others’” GPs, but who have no means by which to trade.

Patients can only be reassigned to a vacant slot, precluding exchanges. These unrealized gains

ISimilar constraints exist in many primary care systems around the world, as well as in the context of Health
Maintenance Organizations (HMOs) in the US.



from trade naturally motivate the use of Top Trading Cycles, a centralized matching algo-
rithm specifically designed to find mutually beneficial trades among individuals with endowed
objects.? The algorithm looks for not only bilateral trades among pairs of patients, but also
for “cycles” of trades among an arbitrary number of patients.> Applying TTC to our data,
we find that 15 percent of patients on a waitlist in December 2019 (the last month of our
data) could have been immediately reassigned through the algorithm. Moreover, a simple
mechanical simulation suggests that if TTC had been run every month since the inception of
waitlists—holding patients’ GP choices fixed—the number of patients standing on waitlists

would have been 23 percent lower at the end of 2019.

Despite this clear evidence of unrealized gains from trade, the equilibrium consequences
of incorporating TTC into a reassignment system of this type are not immediately obvious.
Relative to a static environment, dynamics introduce two issues. First, TTC is not “strategy-
proof” in a dynamic setting, meaning it is not necessarily optimal for a patient to request
the GP they most prefer. Instead, patients’ GP choices will likely respond to changes in
waitlist lengths and in their beliefs about how quickly waitlists will move, both of which may
vary across mechanisms.? The gains from TTC will therefore depend not only on the value of
resolving trades that exist at a given point in time, but also on patients’ equilibrium responses
to the change in the mechanism. Second, introducing TTC in a dynamic setting may not offer
a Pareto improvement. Only patients with an over-subscribed GP, whose endowments are
scarce resources, have the opportunity to trade. As a result, patients with under-subscribed
GPs are effectively de-prioritized, and may experience systematically longer waiting times and
lower welfare. Ultimately, the size of both the average gains from introducing TTC and any

associated harms are an empirical question.

The rest of the paper studies the equilibrium impacts of introducing TTC and other related
matching algorithms into Norway’s waitlist system. Doing so requires economic modeling on

two fronts. We first formulate a model of patient demand to switch GPs. A key input to

2In a static environment, TTC also yields a Pareto improvement relative to the status quo allocation. That
said, it does not necessarily have any optimality properties in a dynamic setting, where theoretical work has
yet to fully characterize optimal mechanisms. See section V for a discussion.

3For example, suppose patient A is on the waitlist for the GP of patient B, who is on the waitlist for the GP
of patient C, who is on the waitlist for the GP of patient A. A three-way exchange (“trading cycle”) among
the three patients can leave all with their requested GP.

40ur primary mechanisms of interest maintain the restriction that a patient may stand on at most one
waitlist at a time. This amounts to limiting submitted rank-order lists to length two, in which case TTC is
not strategy-proof even in a static setting. However, even if patients could submit unrestricted preference
lists (as in the canonical TTC mechanism), they would have an incentive to truncate their submitted lists
under TTC in the dynamic model we consider. See Section V.D for further discussion.



the model is patients’ beliefs about each GP’s waiting time, which depend on the waitlist
mechanism in use. We then introduce a dynamic stochastic equilibrium model of a patient-
GP reassignment system. In the model, patients’ desire to switch GPs arises stochastically
through shocks to preferences and circumstances. The gains from introducing TTC are likely
to be larger when (a) patients largely disagree on their desired GP, and (b) frequent changes
in preferences and/or circumstances leave patients highly mismatched with their current GP.
Furthermore, in a dynamic environment, patients’ sensitivity to waiting time also impacts
the value of such a reform through equilibrium waiting times and the value of the matches
patients request. Our empirical analysis is designed to shed light on each of these elements in

turn.

The demand model has two parts. First, each month, a subset of patients exogenously “pay
attention” and actively consider requesting to switch GPs. This part of the model explains
the fact that empirically, individuals rarely request to switch.® Second, “attentive” patients
select their desired GP, taking into account both the flow utility they would derive from each
GP as well as how long they expect to have to wait to be reassigned. The parameters we need
to estimate include (i) the probability different patients are “attentive,” i.e., make an active
choice; (ii) the flow utility patients would derive from different GPs; and (iii) the discount

rate, which governs sensitivity to waiting time.

We estimate the demand model parameters via a Gibbs’ sampler using monthly adminis-
trative data on Norway’s GP assignment system. Our estimates imply substantial horizontal
differentiation across GPs. Much of this differentiation is driven by geographic location, but
we also find that patients have strong preferences for a doctor of the same gender (worth
the equivalent of 4-7 minutes of travel time) and similar age (1-2 minutes). Moves are a
particularly important driver of mismatch between patients and their GPs, and strongly pre-
dict switch requests. Patients’ preferences over GPs do not seem to be strongly influenced
by their health, though patients with a chronic health condition do request to switch GP
more often. Our preferred specification estimates an annual discount factor of approximately
0.91, consistent with descriptive evidence that patients’ GP choices are responsive to waitlist

lengths.

We apply these estimates within a dynamic stochastic equilibrium model of Norway’s

patient-GP reassignment system. The model is calibrated to match the basic elements of

SInertia or switching costs are common alternative explanations for infrequent switching behavior in repeated
choice environments. Several descriptive patterns in the data weigh against these explanations here and
motivate our focus on erogenous inattention. See section III for further discussion.



the Norwegian setting, including the distribution of patient and GP characteristics and the
rate at which patients stochastically age, die, and move between municipalities. We define an
equilibrium in which there is a fixed point between patients’ beliefs about waiting time and
their optimal GP decisions, where beliefs match the long-run stationary distributions gener-
ated by optimal behavior. Our simulations imply that under Norway’s status quo mechanism,
11 percent of the population would be standing on a waitlist in the stationary equilibrium,

and the average patient would expect to wait over a year to switch to their chosen GP.

Our primary counterfactual is to run the TTC algorithm at the end of each month, after all
naturally arising vacancies have been filled from waitlists. We find that relative to the status
quo, the gains from introducing TTC are equivalent to reducing patients’ travel time to their
GP by 0.7 minutes for every patient in the economy. About a quarter of this improvement is
directly due to patients obtaining closer GPs, with the remainder due to better matching on
other dimensions. These gains are economically meaningful, representing a welfare increase
equivalent to what would be achieved by increasing every GP’s capacity by approximately 2.5
percent under the status quo allocation mechanism. Overall, TTC benefits the majority of
patients. Especially large benefits accrue to younger and female patients and recent movers,
who are most likely to request to switch GPs and to use waitlists. Benefits accrue roughly

evenly to sicker and healthier patients.

As in our mechanical simulation, however, some patients are harmed. In particular, patients
with undersubscribed GPs face longer waiting times and are worse off due to TTC. This harm is
driven both directly by the fact that TTC prioritizes patients with desirable endowments, and
indirectly by these patients’ resulting increased willingness to wait for the most desirable GPs.
Since it may seem unfair to disadvantage patients who already have less desirable GPs, we
consider two alternative mechanisms intended to mitigate these distributional consequences.
First, we implement the patient-proposing deferred acceptance (DA) algorithm instead of
TTC. This mechanism strictly respects first-come first-served waiting time priority, and thus
does represent a Pareto improvement relative to the status quo.” However, it produces almost
negligible gains, illustrating a fundamental trade-off in this setting between respecting first-
come first-served priority and exploiting gains from trade. Second, we implement a “TTC

with priority” (TTCP) algorithm that prioritizes patients with undersubscribed GPs for panel

6As of February 2024, 6.5 percent of the population was standing on a GP waitlist, more than twice the
number at the end of our sample period. Our prediction that waitlists would continue to grow dramatically
is thus qualitatively consistent with what has actually occurred.

"DA is distinct from Norway’s status quo mechanism because DA allows trades among patients at the top of
each waitlist, whereas Norway’s system requires a vacancy before any reassignments can be made.
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vacancies.® The results are encouraging. TTCP achieves 56 percent of the welfare gains from
TTC, while leaving patients with undersubscribed GPs just as well off as under the status

quo.

In a final analysis, we compare Norway’s current mechanism to one in which there are not
formal waitlists to ration excess demand for GPs, as is the case in most other primary care
systems in which patients are formally assigned to GPs. Specifically, we simulate a mechanism
in which patients may only choose from among GPs that have open slots at the moment they
consider switching, meaning there is a substantial degree of “luck” involved.? Strikingly,
mean patient welfare is slightly higher than under Norway’s current mechanism. However,
median welfare is lower. The gains from eliminating waitlists are concentrated among a
minority of patients who are highly mismatched with their current GP. These patients prefer
an environment with more limited choice and no waiting times, whereas most patients prefer
the ability to choose from a wider set of GPs. While suggestive only, these findings may partly
explain why waitlists are rarely seen in other primary care systems. In contrast, the TTC and
TTCP mechanisms reduce waiting times while also keeping the benefits from the increased

choice that waitlists afford.

Related Literature. This paper contributes to a growing empirical literature on the design
of centralized allocation mechanisms. In studying dynamic reassignment, we build on two
specific strands of prior work. The first is static reassignment, in which all agents and objects
are matched at a single point in time, and agents may have an endowed object. Canonical
examples are the housing allocation problem with existing tenants and paired kidney exchange
(Shapley and Scarf, 1974; Abdulkadiroglu and Sénmez, 1999; Roth, Sonmez and Unver, 2004).
In this context, the TTC algorithm is known to be efficient and strategy-proof (Ibid.).!° These
properties motivate adapting TTC to a dynamic environment, but as we will demonstrate, may
break down when participants face dynamic incentives. The second is dynamic assignment,
in which agents and objects arrive stochastically over time, but agents do not arrive with

endowments. Examples include waitlists for public housing (Waldinger, 2021; Lee, Ferdowsian

8This idea is similar in spirit to the priority given to blood type O patients for blood type O donors in organ
allocation. We are grateful to Al Roth and Itai Ashlagi for this suggestion.

9Importantly, this simulation does not allow patients to “check back later” if their desired GP is not available
when they first consider switching, which would add an element of patient effort to the rationing mechanism.
We therefore view this simulation as simply a suggestive benchmark for what a “no waitlists” environment
might look like. See Section V.D for further discussion.

0TTC has also been applied in settings of static assignment in which agents do not have endowments,
particularly in the context of school choice (Abdulkadiroglu and Sénmez, 2003; Pathak and Sethuraman,
2011; Leshno and Lo, 2020). This literature highlights a tension between efficiently assigning students and
respecting school priorities, which features prominently in our setting.



and Yap, 2024), deceased donor kidneys (Agarwal et al., 2021), and hunting licenses (Verdier
and Reeling, 2022). Like in our setting, the trade-off for participants between shorter waiting
times and a preferred assignment is central to the optimal design of such mechanisms, as well

as in revealed preference analysis of choice data.!!

In the context of dynamic reassignment, Combe et al. (2022) study the reassignment system
for French teachers in an infinite horizon environment, but model teachers as truthfully re-
porting their static preferences. Narita (2018) and Kapor, Karnani and Neilson (2024) study
models of school choice with aftermarkets in which agents can exhibit forward-looking behav-
ior, but limit consideration to two periods. Our work builds on these studies by considering
the combination of an infinite horizon and forward-looking agent behavior, which raises a new
set of issues regarding how agents think about waiting times. Larroucau and Rios (2022) also
study a setting (college major choice) in which both these elements are present. Their focus
is on learning and congestion externalities without the possibility of waitlists, while our focus
is on finding gains from trade and the distributional issues that arise when agents may choose
to wait. Waiting time is a natural market-clearing mechanism for processing reassignments in
many settings (e.g., public housing, public schools, university parking spots), and our study

represents a first step in understanding its equilibrium implications.

Finally, as in other countries, the existence of a national health insurance scheme in Norway
motivates using a non-price mechanism to allocate healthcare resources at the point of service.
Our paper contributes to a literature studying the optimal design of such mechanisms, and is
among the first to bring the tools of market design to bear on this topic. The existing literature
has largely focused on service-level allocation, in which context early work studied whether
limiting capacity and running waitlists for non-emergency services could deter low-value care
(Nichols, Smolensky and Tideman, 1971; Propper, 1990, 1995; Gravelle and Siciliani, 20085).
Subsequent work has studied the design of prioritization schemes on such waitlists (Gravelle
and Siciliani, 2008a; Shen et al., 2020; Gruber, Hoe and Stoye, 2023) as well as the relative
merits of price versus waiting times as the rationing mechanism (Russo, 2023). Our work,

in contrast, considers the issue of provider-level allocation, where the potential for repeated

HGeveral theoretical papers study how dynamic incentives impact the optimal design of dynamic assignment
mechanisms (e.g., Su and Zenios, 2004; Bloch and Cantala, 2017; Arnosti and Shi, 2020; Baccara, Lee and
Yariv, 2020; Leshno, 2022; Che and Tercieux, 2023). To our knowledge, there is no theoretical characteriza-
tion of optimal mechanisms for the class of dynamic reassignment models we consider. Existing theoretical
work largely abstracts from strategic behavior, or focuses on a limited form of agent heterogeneity (Ashlagi,
Nikzad and Strack, 2022; Akbarpour, Li and Gharan, 2020; Akbarpour et al., 2023; Combe, Tercieux and
Terrier, 2022). Work that has considered strategic behavior largely focuses on characterizing strategy-proof
and stable mechanisms (Narita, 2018; Feigenbaum et al., 2020; Pereyra, 2013).



interactions raises the issue of whether patients may wish to be reassigned. In a setting closely
related to ours, Mark (2021) studies the Canadian primary care system, in which the process
for switching GPs is decentralized and patients who wish to do so must exert costly effort to
find vacancies. We see our work as complementary in that we study the design of a centralized

mechanism, allowing us to apply tools from the field of market design.

The paper proceeds as follows. Section II introduces our setting and data and demonstrates
the existence of gains from trade among waiting patients. Section III presents the structural
model of a patient’s choice of GP. Section IV describes our estimation procedure and parameter

estimates. Section V presents our counterfactual simulations. Section VI concludes.

II Background, Data, and Descriptive Evidence

II. A  Empirical Setting

Norway has a comprehensive national health insurance scheme primarily financed by general
taxation. Patient cost-sharing at the point of service is nonzero for most outpatient care, but
is still limited. Healthcare utilization is primarily managed via supply-side forces. Central
among these forces is a gate-keeping system whereby patients need a referral from a primary
care provider before receiving specialist care. Such providers therefore play a central role in

the healthcare system.

Primary care is almost exclusively provided by GPs.'? GP care is organized via a patient
panel system, whereby every person enrolled in the national health insurance scheme is as-
signed to a specific GP. Patients enrolled on a given panel are in general only permitted to
visit that GP for their primary care needs.'® Similar primary care systems exist in coun-
tries such as Canada, Great Britain, Italy, and Sweden, as well as in the context of Health
Maintenance Organizations (HMOs) in the US. The key reason for maintaining a central-

ized administrative linkage between a patient and a specific GP is to allow for a “capitated”

12 As of 2023, nurses in Norway do not have prescribing or referring authority outside of a few special cases.
While it is common for nurses to handle well visits for children and adolescents, adult patients must typically
consult a GP for the majority of their primary care needs (Robstad et al., 2022; Hansen, Boman and
Fagerstrom, 2020). Primary care needs could include periodic well-visits, non-urgent sick visits, obtaining
prescriptions or referrals to specialist care, or receiving documentation for sick leave through the national
sick leave scheme.

3There are some exceptions; for example, patients have the right to seek a second opinion from another GP
on a matter already discussed with their own GP.



payment model under which GPs receive a fixed payment for each person enrolled on their
patient panel. Norway uses a partially capitated payment model, meaning GPs receive a
fraction of their revenue from capitated payments (on average 30 percent) and the remainder

from fee-for-service payments.

The supply of GPs is regulated through a fixed number of government contracts.!* Similar
to Medicare and Medicaid physician contracts in the US, government contracts involve take-
it-or-leave-it payment terms, with some exceptions made to attract physicians to rural areas.
One important difference in Norway is that at the time a GP enters into a government contract,
both parties must agree on a maximum number of patients that the GP’s panel can take.!® In
entering into the contract, the GP agrees to take on a workload sufficient to serve all patients
that enroll on their panel, up to the agreed panel cap. GPs are required to be able to provide
an appointment to patients within 5 working days, which in part motivates the existence of

panel caps (Lovdata, 2012).

Patients make GP enrollment elections via a nationally centralized online platform.'® The
system operates on a rolling basis, without any special enrollment periods or forced re-
enrollment decisions. Enrollment changes take effect on the first day of the next month,
and GPs have no way to control which patients enroll on their panel. When a GP retires or
quits, patients receive six months’ notice and can either switch GP or remain on the panel of
the replacement GP.'" Newborns are by default assigned to their mother’s GP, regardless of

whether the panel cap is violated. Every patient is thus assigned to a GP panel at all times.

While patients in principle have free choice over GPs, in practice the panel caps generate
capacity constraints. A GP with no open slots on their panel is listed as “unavailable” on the
online enrollment platform. Patients that wish to switch GP immediately may therefore only
choose among the set of GPs with open slots on their panels (henceforth, “open panels”). Prior

to 2016, a patient would simply need to check back later if their desired GP was unavailable.!®

MWhile GPs can also practice outside of the national health insurance scheme, the market for private practice
primary care remains small or non-existent in most of the country (The European Observatory On Health
Systems and Policies, 2023)

5Qperationally, local municipal governments work with GPs to set panel caps and negotiate any other id-
iosyncratic features of a GP’s contract, such as reduced working hours or coverage for parental leave spells.

16The online platform is publicly available at https://tjenester.helsenorge.no/bytte-fastlege. Appendix Figure
E.1 provides a screenshot of the interface. Patients are permitted to switch GPs at will up to two times per
year (though this constraint rarely binds), with additional switches granted for qualifying life events.

I7If the replacement GP has a lower panel cap, a randomly selected subset of patients are administratively
reassigned, without their explicit consent, to another GP in the local area.

18In fact, a cottage industry arose of private companies that automated the process of monitoring the central



In November 2016, a new functionality was introduced whereby patients could join a waitlist.
Patients are permitted to join only one waitlist at a time, but can switch which waitlist they
are on as often as they would like.!® Panel slots that become available are filled from the
waitlist on a first-come, first-served basis, according to when each patient joined that waitlist.
Once a patient joins a waitlist, they commit to being reassigned to the target GP once they
reach the front of the list; there is no opportunity to renege except to remove oneself from the

waitlist before it is too late.

II.B Data

Our data are derived from two main sources. First, we observe detailed administrative data
on the GP assignment system itself (Fastlegedatabasen). These data include a full history of
patient enrollment, waitlist spells, and GP characteristics. We can therefore reconstruct the
state of each GP’s panel and waitlist at any point in time. Second, we link these data to
register data on health utilization and individual demographics, including age, gender, family
relationships, income, education, and monthly municipality of residence. Further details are
provided in Appendix A.1. We have data for the years 2014-2019.%°

Figure 1 shows the number of GP switches and waitlist use over time. GP switches take
one of two forms: (i) standard switches to an open panel, and (ii) switches that occur once
an individual reaches the front of a waitlist and is reassigned. Between 2014 and 2019, there
were an average of 5,259,076 patients per month in the GP allocation system. An average of
31,856 patients (0.6 percent) switched their GP each month. Once waitlists were introduced
in November 2016, an average of 28 percent of switches were executed via a waitlist, whereas
the remaining 72 percent were switches to an open GP panel. The total number of switches
per month did not change dramatically, but the waitlists have grown steadily since their
introduction. By the end of 2019, 133,538 people were standing on a waitlist (2.5 percent
of all patients). As of February 2024, this number had risen to 326,506 (6.5 percent of all
patients).

Patients. Our primary restriction on patients is to exclude those who are under 16 years

web platform for when GP panel slots became available and selling an email /text alert service to consumers
for a monthly fee.

9The centralized web platform provides real-time information on the number of patients on each waitlist, and
if a patient is logged in, on their current position on the waitlist they are standing on (see Appendix Figure
E.1).

20 An exception is health utilization data, which we only have for 2014-2017.



Figure 1. Number of GP Switches and Waitlist Use Over Time
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Notes: The figure shows the number of GP switches per month and the stock of individuals
standing on a waitlist each month between 2014 and 2019, including both adults and children.
GP switches are decomposed into standard switches to an open GP panel (light blue) and switches
that occur only after going through a waitlist (dark blue).

old. Children’s interactions with the healthcare system, including GP enrollment, are for-
mally managed by parents until a child turns 16. There are also special exceptions given to
children that allow them to bypass GP panel caps in certain situations, as well as to switch
GPs alongside a parent without themselves going through a waitlist. As these factors would

substantially complicate our analysis, we limit our focus to the experience of adults.

Table 1 provides summary statistics on patients, focusing on the three-year period from
2017 to 2019. The sample is an unbalanced panel at the patient-month level (panel entry
occurs at age 16 or immigration; panel exit occurs at death or emigration). The first column
describes the full sample. There are 4.78 million unique patients, representing the universe of
over-16 individuals registered as resident in Norway and covered under the national insurance
scheme. Patients are on average 47 years old and earn 425,374 NOK annually. Just over 7
percent of individuals are temporary residents, 32 percent have post-secondary education, 32
percent have a chronic health condition, and 10 percent moved to a new municipality at least
once during 2017-2019.2

In terms of GP choice, 19 percent of patients requested to switch their GP at least once,

2IDemographic characteristics such as age, gender, education, income, and presence of chronic health con-
dition are only available for permanent residents. Where means of these variables are reported, they thus
condition on the individual being a permanent resident. Monthly municipality of residence is available for
all individuals. Appendix A.1 provides additional details on the construction of these variables.
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and 4 percent of patients did so more than once. The average travel time by car to a patient’s
GP was 10.7 minutes; the median was 5.8 minutes.?> More than half (58 percent) of patients
have a GP of the same gender as themselves. In terms of waitlist use, 9 percent of individuals
were at any point on a waitlist over this period. Conditional on ever being on a waitlist, the

average number of months on a waitlist was 6.5.

Table 1. Patient Summary Statistics

Full Never used waitlist Ever
Sample demographic Sample Never switched FEver switched used waitlist
Number of individuals 4,780,647 3,875,753 497,111 407,783
Pct. of individuals® 0.81 0.10 0.09
Demographics
Pct. female 0.50 0.48 0.51 0.64
Age 47 49 40 42
Pct. with post-secondary education 0.32 0.31 0.32 0.37
Annual income (000 NOK) 425 437 358 390
Pct. with chronic condition 0.32 0.32 0.30 0.34
Pct. temporary resident 0.07 0.07 0.08 0.08
Pct. rural 0.30 0.31 0.30 0.28
Pct. ever moved 0.10 0.06 0.34 0.26
Choice of GP
Pct. ever switched to open GP 0.13 — 1.00 0.28
Travel time to current GP (min.) 10.7 9.5 17.1 14.3
Pct. with GP of same gender 0.58 0.57 0.59 0.56
Use of waitlists
Pct. ever on a waitlist 0.09 — — 1.00
Number of months on a waitlist | > 0 6.5 6.5
Pct. waiting for GP of same gender 0.64 0.64
Travel time to wl. GP — curr. GP (min.) -6.8 -6.8

Notes: The table provides summary statistics on adult patients present in the data from 2017-2019. Except where otherwise
specified, all values in the table represent means over patient-months. “Ever” means at any point during 2017-2019. Moves are
counted only if they are across municipalities. Age, gender, education, health, and income data are not available for temporary
residents; these means therefore represent only permanent residents. TFor readability, all percentages are reported as proportions
(e.g., 0.20 = 20%).

The remaining three columns of Table 1 break up the full patient sample into three sub-
groups: (i) patients who never switched their GP nor joined a waitlist, (ii) patients who
switched GP but never joined a waitlist, and (iii) patients who joined a waitlist (and may or
may not have successfully switched their GP). Several patterns are apparent. First, gender
homophily appears to be a driver of switching behavior. While 56 percent of patients on

waitlists currently held a GP with the same gender as themselves, 64 percent of them were

22Travel time is measured between the population-weighted centroid of patients’ municipality of residence and
the address of their GP’s office.
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waiting for a GP of the same gender. Second, patients who requested to switch GPs (either
via an open panel or a waitlist) are 7-9 years younger on average than patients who never
requested to switch. They are not, however, commensurately less likely to have a chronic
condition, suggesting that switching patients have overall worse age-adjusted health status.
Waiters are also disproportionately female, which could be driven by a scarcity of female GPs

and/or a stronger gender homophily preference among female patients.

Finally, there is a striking pattern with respect to moves. Among patients who never
requested to switch their GP, only 6 percent of individuals moved municipality. Among those
who switched GP but never used a waitlist—meaning they switched to an open GP—34
percent of individuals moved. Among those who used a waitlist, 26 percent moved. The even
higher move rate among patients who only open-switched is consistent with patients who are
far from their current GP being less selective, i.e., more likely to simply settle for an open GP.
These facts suggest that geographic proximity is an important factor in GP choice. Indeed,
the last row of the table shows that among patients who used a waitlist, the waitlist GP was
on average 6.8 minutes closer than their current GP (on a base of 14.3 minutes travel time to
current GP).

GPs. Table 2 provides summary statistics on the 6,470 GP panels active during 2017-2019.
As with patients, the data consist of an unbalanced panel at the GP panel-month level.?> There
is an important distinction between a GP panel and a GP. A GP panel is the administrative
unit to which patients are actually linked. Each panel is then served by a GP (a licensed
medical doctor). The GP that serves a given panel may change over time, independently of

the patients enrolled on that panel.

The first column of Table 2 describes the full set of GP panels. The average panel had a cap
of 1,138 patients and had available slots for 36 percent of months. Across all months between
2017 and 2019, the average GP serving these panels was 47 years old, 42 percent of GPs were
female, and 11 percent were temporary GPs.?* The average GP panel-month had 18 people

standing on its waitlist, and the average enrollment-to-cap ratio was 94 percent.

The remaining two columns of Table 2 separate GP panels into two subgroups: (i) those
that were not consistently oversubscribed, and (ii) those that were. We define “consistently

oversubscribed” to mean that a given GP panel was at capacity for more than 75 percent of the

23The average GP panel appears in the data for 28 months (out of 36 possible). At a given time, between
4,840 and 5,106 panels are in operation.

M Temporary GPs (vikar) are used while the primary GP (fastlege) is on parental leave or while the position
is vacant and the municipality is actively searching for a new permanent GP.
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Table 2. GP Panel Summary Statistics

All Undersubscribed Oversubscribed

Number of GP panels 6,470 3,532 2,938

Pct. of GP panelsf 0.55 0.45
Panel characteristics

Enrollment cap 1,138 1,143 1,135

Pct. months with available slots 0.36 0.70 0.06

Pct. rural 0.37 0.44 0.30
GP demographics

Age 47 47 48

Pct. months with female GP 0.42 0.34 0.50

Pct. months with temporary GP  0.11 0.15 0.08
Panel enrollment stats.

Num. enrollees on a waitlist 18 21 14

Num. waiting on waitlist 18 4 30

Num. enrollees / cap 0.94 0.87 1.00

Notes: The table provides summary statistics on the set of GP panels present in the data from 2017-—
2019. Except where otherwise specified, all values in the table represent means over GP panel-months.
Oversubscribed GP panels are those which are at capacity for more than 75 percent of months. Enrollment
and waitlist use statistics reflect the full population, including children under 16. TFor readability, all
percentages are reported as proportions (e.g., 0.20 = 20%).

months that it appeared in the data from 2017-2019. There are several notable patterns. First,
GP panels in urban areas and those served by female GPs are more likely to be oversubscribed,
while GP panels served by temporary GPs are more likely to be undersubscribed. Second,
among the current enrollees of undersubscribed panels, an average of 21 patients (2.1 percent
of enrollees) were themselves standing on a waitlist—and therefore, trying to leave the panel.
Among oversubscribed panels, this is true for fewer patients—an average of 14 people per
panel (1.2 percent of enrollees). Thus, while some GPs are systematically more demanded
than others, there are still many patients requesting to switch away from over-demanded GPs.
Finally, capacity utilization in the system is high. Even for consistently undersubscribed GPs,

87 percent of panel slots were occupied.

II.C Unrealized Gains from Trade

Stylized Example of TTC. Consider a hypothetical example of three GPs (A, B, and C),
each of whom has a waiting list. Though each GP’s panel is currently full, slots will periodically
become available as patients on each panel die or switch to other GPs’ panels. Under Norway’s

current system, waiting patients are assigned to these open slots on a strictly first-come, first-
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served basis. Trades among patients standing on waitlists are not permitted.?> At any given
time, however, there may be patients waiting for one another’s GPs. Such patients could in
principle just switch with one another, obtaining their desired GPs sooner while still respecting

capacity constraints.

The purpose of the TTC algorithm is simply to take this idea further. Suppose there is a
patient who currently has GP A but who is waiting for GP B, a patient who currently has GP
B but is waiting for GP C, and a patient who currently has GP C but is waiting for GP A. A
three-way exchange (“trading cycle”) among the three patients can leave all with their desired
GP, just as in the bilateral case. Appendix Figure E.3 provides a depiction. In the three-way
cycle, no pair of patients exchanges GPs, but each patient can be successfully reassigned while

another patient in the cycle takes their former slot.

In general, there could be many such cycles in the GP waitlist system at any given time.
And moreover, a given patient could have several different feasible trading partners through
different cycles that exist simultaneously. The T'TC algorithm systematically finds and exe-
cutes trading cycles of the kind described above, with no prescribed limit on the number of
patients that could participate in a given cycle (the longest cycle we find involves 342 pa-
tients). At each iteration, the algorithm finds a cycle of patients and their GP slots, reassigns
those patients to their requested GP, and removes them and their GP slots for the remainder
of the algorithm (Shapley and Scarf, 1974; Abdulkadiroglu and Sénmez, 1999). It repeats this
process until there are no more cycles, meaning there are no remaining patients on GP wait-
lists who would wish to trade with one another. Patients who are not successfully reassigned

through TTC retain their current GP and keep their current waitlist position.

Double Coincidence of Wants at a Point in Time. We use the TTC algorithm to provide
direct evidence of unrealized gains from trade among patients on Norway’s GP waitlists. This
prima facie evidence motivates the structural model and counterfactual simulations developed
in the remainder of the paper. We begin by running TTC at a single point in time: the last
month of our data, December 2019. At the end of this month, there were 133,332 individuals
standing on a waitlist. These waiters were currently enrolled on almost every existing GP
panel (4,963 out of 5,010), but were standing on the waitlist for only 3,695 unique GPs.?

The TTC algorithm takes two primary sets of inputs in our setting: (i) the set of partici-

Z>Even when two people are each at the front of the waitlist for one another’s GP, this “trade” cannot occur
until there is a vacancy on one of the two panels, allowing one waiting patient to vacate their spot for the
other.

26 Appendix Figure E.2 provides a histogram of waitlist lengths across these 3,695 waitlists.
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pating patients and their rank-order preference lists over GPs, and (ii) the set of participating
GPs and their rank-order priority lists over patients. Patients have preference lists of length
at most two. Patients standing on a waitlist first prefer their waitlist GP, and then their cur-
rent GP. Patients not standing on a waitlist prefer only their current GP. GPs first prioritize
all patients currently on their panel, guaranteeing each patient an assignment no worse than
their current GP. GPs then prioritize the patients on their waitlist in descending order of
waiting time. Appendix B.1 describes the exact algorithm we use to find and clear cycles, as
well as other implementation details. We run the algorithm and find that 20,377 people (15
percent of waiters) could have been immediately reassigned.?” Appendix Table E.1 describes
the demographics of these patients (among adults only). Successfully reassigned patients tend
to have a larger difference in travel time between their current and waitlist GPs, consistent

with location preference heterogeneity being a key driver of gains from trade.

The fact that gains from trade exist tells us that patients must differ—at least to some
extent—in their preferred GP. We explore the sources of this horizontal preference hetero-
geneity descriptively using a conditional logistic regression predicting which GP a patient
chooses, conditional on making a switch request. Appendix B.2 provides a detailed descrip-
tion of these results. We find that indeed, the most important source of horizontal preference
heterogeneity is patients geographic location relative to GP offices. We also find that patients

have a preference for a same-gender and similar-age GP.

Impact on Evolution of Waitlists. The static analysis suggests that the gains from trade
among patients with oversubscribed GPs may be substantial. The welfare impact of these
trades, however, will depend on the extent to which they affect patients’ waiting times and
GP assignments in a dynamic environment. We can begin to get a sense of these dynamic
effects through a simple mechanical simulation of how the waitlist would have evolved if
trades were processed periodically in the first three years the waitlists were operational. From
November 2016 through December 2019, we run the TTC algorithm on the remaining waitlists
at the end of each month. Importantly, patients” actions—GP switch requests—are held fixed
as observed in the data. We then compare the number of reassignments and waiting times to
those under the status quo mechanism. Appendix B.1 provides additional details about the

implementation of this analysis.

2"There is substantial geographic heterogeneity in the fraction of waiters that could be reassigned. In rural
Asnes municipality, it is only 2 percent (out of 420 waiters, where waiters represent 6 percent of the popula-
tion). In urban college town Bergen, it is 26 percent (out of 7,991 waiters, where waiters represent 3 percent
of the population).
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Figure 2 presents the results of this exercise, comparing the status quo waitlists mechanism
(Waitlists) to the counterfactual monthly implementation of TTC. Panel (a) shows the number
of people on waitlists each month. By the end of 2019, there would have been 23 percent
fewer waiting patients under TTC. Panel (b) shows the realized waiting times. The blue
series shows the average elapsed waiting time among the stock of individuals standing on
waitlists each month, while the red series shows the average waiting time among the flow of
individuals successfully reassigned from a waitlist each month. Among reassigned patients,
average waiting times would have been 29 percent shorter under TTC, suggesting that trades

generated by TTC may lead to significant reductions in waiting times.
Figure 2. Results of Running TTC on Historical Data

(a) Number of Persons on Waitlists (b) Realized Waiting Times
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Notes: The figure shows outcomes from a mechanical simulation in which TTC is run each month on the
historical waitlists data, holding all patient actions fixed. Panel (a) shows the number of persons standing on
waitlists each month. Panel (b) shows the average elapsed waiting time among the stock of patients standing
on waitlists each month (blue) and the average waiting time among the flow of patients who were successfully
reassigned from a waitlist each month (red).

While TTC reduces average waiting time, it does not offer a Pareto improvement relative
to the status quo. Some patients are harmed, in the form of longer waiting times. This can
happen because a slot that would have been taken by the first person on the waitlist might
be filled earlier by a different patient who is further back on the waitlist but participated in a
cycle with the patient previously in that slot. Appendix B.3 provides stylized examples of this
phenomenon. Appendix Figure E.4 shows the distribution of waiting time differences among
patients in our simulation. A minority of patients (4.5 percent) have longer waiting times

under TTC because they are effectively de-prioritized relative to the status quo.
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While this analysis suggests there could be significant welfare gains from introducing TTC,
it has two important limitations. First, the simulation holds patient behavior fixed. If the
implementation of TTC changed the distribution of waitlist lengths, patients might have
requested different GPs. Indeed, analysis in Appendix B.2 shows that patients’ choice of GP is
responsive to waitlist length. Moreover, if patients understand that TTC may allow them to be
reassigned faster, expected waiting times would fall even conditional on waitlist lengths, again
potentially influencing patient choices. A second limitation is that the market was far from a
steady state during our sample period. Use of waitlists rose rapidly after their introduction,
and has continued to do so after the end of our sample. The long-run stationary distribution
of Norway’s GP allocation system—and the associated impact of introducing TTC—may be
different when queues are systematically longer. Our counterfactual simulations will rely on
a stationary demographic evolution and GP switching process, allowing us to evaluate the
impacts of TTC in a long-run equilibrium. Before moving to these more realistic simulations,

we first estimate the primitives on which they will be based.

III Model of Demand for GP Switching

Section III.A presents a model of patient demand to switch GPs. The model has two parts.
The first is a model of limited attention in which patients stochastically consider switching
GPs. The second is a model of GP choice in which “attentive” patients decide which GP to
request to switch to. Section III.B then presents a belief model under which patients map
waitlist lengths into beliefs about waiting time, which is an important input into patients’

choice over GPs.

III.A Attention, Preferences, and Choice

Patients are indexed by i, GPs by j, and time by ¢. Time is continuous. At any given time
t, patient i has observable attributes Xj;, and her preferences over GPs are represented by
the indirect flow utility she would derive from being assigned to each GP, denoted v; =

(Vitgs -, Vige) € R7. Across time, she discounts future flow utilities at exponential rate p.

As indicated in Figure 1, patient requests to switch GP are in fact quite rare, occurring for
each patient on average once every 13 years. We therefore need to take a stand on how to

interpret this infrequency. This pattern could simply indicate that patients for the most part
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have their most-preferred GPs. Alternatively, patients could be aware that a preferred GP
is available, but choose not to switch because switching is costly. Yet alternatively, patients
could be unaware that a preferred GP is available because they are not “paying attention.”
For our purposes, the important distinction between these explanations is that they have
different implications for how switching behavior would respond to alternative mechanisms.
Empirical relationships in our data, discussed in more detail below, lead us to prefer the
third explanation. We therefore proceed within a model of exogenous “inattention.” Patients
actively consider switching GPs (“pay attention”) only periodically, according to a stochastic

and exogenous process. When attentive, patients make an endogenous, fully-informed choice

of GP.

We model the rate at which patients pay attention as following a memoryless Poisson
process.?® A patient might pay attention due to an event we observe, such as a recent move,
or for reasons we do not observe, such as a health event or an interaction with their GP. The
rate pj, at which patients pay attention is thus a function of patient observables X;;. When
a patient pays attention, two things happen: (i) she draws new preferences v;; ~ F(- | Xy),

and (ii) she considers switching GPs.?

When considering switching, an attentive patient makes a discrete choice among GPs, in-
cluding her own current GP. To make this choice, she evaluates the net present value of
requesting to switch to a given GP, imagining that she will remain with that GP forever.
Choosing a GP with available slots would allow the patient to switch GPs and realize these
benefits immediately. Choosing a GP with a waitlist would instead delay the benefits to some

point in the future.®® If at time ¢, patient ¢ is currently assigned to GP j, and must wait

28Because our data are at the monthly level, we will estimate monthly attention probabilities and assume that
patients can only be attentive once within a month. In reality, patients do make GP selections continuously
throughout the month, and our counterfactuals will simulate within-month patient arrival times.

29This formulation treats a patient’s flow payoff from their GP as constant between attention spells. Of course,
a patient’s assigned GP only matters in an ex-post sense at moments when they wish to consume healthcare.
The specification of flow payoffs here abstracts away from specific health episodes and GP visits, and should
be interpreted in an ex-ante sense. When choosing a GP, a patient does not necessarily know when they will
want to see their doctor, but when they do, it will be valuable to be able to be assigned to a doctor who is
convenient and pleasant to visit, and who provides good care.

30If a patient chooses her own current GP, she does not need to wait on the waitlist and can enjoy that
assignment immediately.
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T > 0 periods to be reassigned to GP j, the net present value of requesting GP j is

t+T o0
NPV = / e Ty dr + / e T vy dr
=t T:t+T
1 —oT
- p [Vijor + €™ (Vige — vijor) ] - (1)

The first line in Equation 1 shows that the net present value of requesting a given GP can be
decomposed into two parts. The first is the (dis)utility derived from staying with the current
GP jp between now and time 7T, while standing on the waitlist for the new GP j. The second
is the utility derived from being assigned to the new GP j from time 7" and forever after.
The second line of Equation 1 shows how this expression can be simplified. The patient is
essentially maximizing the incremental utility derived from GP j relative to GP jy, discounted

T periods into the future.

The patient formulates beliefs, discussed in Section III.B below, about waiting times 7;; for
each GP. Given these beliefs, and letting 7 denote the set of all GPs, the attentive patient’s
choice problem can now be written

max E [e7"79] (vijr — vijor) - (2)

This choice problem maximizes the value of being assigned to GP j after some waiting time
T,

ij, accounting for uncertainty in waiting time and acknowledging that the patient will remain

with her current GP while waiting.

This formulation has several implications. First, there is no explicit cost of waiting. The
distaste for waiting time arises only due to discounting of the future benefit from switching.
An attentive patient will therefore be predicted to always request to switch to another GP
as long as there is some other GP in the choice set that delivers higher flow utility than the
patient’s current GP, regardless of wait times. Our model thus interprets any switch request
in the data as implying both that (i) the consumer received an attention shock, and (ii) the
requested GP is preferred to the current GP. Any patient who does not request to switch, on
the other hand, may be either simply inattentive, or else attentive but prefer their current GP
to all others. A second implication of our model is that patients do not necessarily request to
switch to their most-preferred GP, in the sense of delivering the highest flow utility. A patient
may choose a less preferred GP with a shorter waitlist in order to wait for less time. Finally,
an attentive patient who is relatively satisfied with her current GP is less likely to request to

switch. But conditional on requesting to switch, such a patient is more likely to be willing to
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wait for her most-preferred GP, due to a high “outside option” while waiting.

Discussion of Modeling Choices. The goal of our model of attention and GP choice is to
predict how patients might change their behavior when faced with different perceived waiting
times under alternative waitlist mechanisms. A number of our modeling choices warrant

specific discussion.

First, we choose to focus on inattention rather than switching costs as the explanation for
why GP switch requests are infrequent within patient. This choice is not without loss of
generality. A model in which there is a cost of making a switch request would predict that
more patients would request to switch should aggregate waiting times fall, while a model of
exogenous inattention would not.*® We choose to neutralize this channel and focus only on
exogenous inattention because GP switch request rates do not appear to respond to local
changes in aggregate waiting times. Specifically, we test in the data whether the number of
switch requests responds to short-run changes in the average waitlist lengths of all nearby
GPs, exploiting a technical change in the reassignment algorithm made during our sample
period. Appendix B.5.1 presents this analysis. We do not find any evidence that patients are
more likely to request to switch when waitlists for nearby GPs are particularly short. While we
cannot rule out the possibility of a longer-term increase in switch requests as patients become
aware that the mechanism has improved, the evidence points toward focusing on modeling

which GP a patient requests, rather than the decision to switch at all.??

Second, our formulation of the choice problem rules out behaviors that would be optimal if
patients were fully forward-looking. In particular, patients do not anticipate future preference
changes and switching opportunities; they choose a GP as if it will be permanent. This
assumption is relatively innocuous for estimation because switch requests are rare at the
individual level, and because the identity of a patient’s current GP does not affect their
ability to switch GPs under the current system. The assumption is stronger, however, for a
counterfactual mechanism with TTC. Because patients’ expected waiting times will depend
on whether their current GP is oversubscribed, they may consider not only a GP’s current
value, but also its future “trading value.”” In our view, it is unlikely that patients would

systematically engage in this type of behavior, for a few reasons. Since switch requests are

31Geveral papers have considered both exogenous inattention and endogenous switching behavior as explana-
tions for persistent choices (Ho, Hogan and Scott Morton, 2017; Hortacsu, Madanizadeh and Puller, 2017;
Abaluck and Adams-Prassl, 2021; Heiss et al., 2021).

32Note that in our counterfactual simulations, the number of switch requests is still endogenous because the
mechanism may change patients’ current GPs when they consider switching. If a patient’s current GP is
preferable to all others when they are attentive, they will not request to switch.
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rare, a GP’s trading value is limited by the fact that any gain from modifying one’s chosen GP
would likely be realized far into the future. Furthermore, patients often fail to fully exploit
strategic opportunities even within the relatively simple current system. For example, it might
be optimal for a patient to simultaneously switch to an open GP and join the waitlist for an
even more preferred GP, which is allowed under the current mechanism. While there are
instances of this type of behavior in the data, they are rare—simultaneous open-switches and
waitlist joins occur in only 3 percent of patient-months in which a switch request was made.
Finally, we test whether patients are more likely to request to switch GP in regions where the
waitlists are growing more quickly (Appendix B.5.2). We do not find evidence of additional

switching when the value of future switching opportunities is falling more quickly.

Finally, we ignore the value of a long-term relationship with your GP. In principle, we
could allow a patient’s taste for their current GP to depend on the length of the relationship.
However, our ability to credibly estimate this object is limited by the fact that we rarely
observe the same patient switching multiple times after being assigned to different GPs. Our
counterfactual simulations suggest that the rate of switch requests would change very little
under alternative mechanisms, even though patients’ specific GP choices would adjust in
equilibrium. We therefore believe that the mechanism design changes we study would have

limited impact on patient-GP relationship capital.

III.B Waiting Time Beliefs

It remains to specify patients’ information and beliefs about waiting time. Modeling beliefs is
a key challenge in empirical market design, where market participants often do not have direct
access to the information they need to understand the payoffs from different actions. In our
setting, patients can easily observe the length of each GP’s waitlist, but must infer how this
would map into a waiting time. We propose a tractable model of beliefs that approximates
the structure of a first-come, first-served queue in a way that depends on a small number of
parameters that can be directly estimated from the data. Combined with the choice model,
this belief model allows us to translate patients’ observed responsiveness to waitlist lengths

under the current system to similar responses under alternative mechanisms.

Beginning in waitlist position w, a patient’s total waiting time 7' can be thought of as
the sum of their waiting time in each position on the waitlist until they are reassigned. The
patient must first move from position w to position w — 1, which takes time T,,; then from

w — 1 to w — 2, which takes time T,,_1; and so on up to the time it takes to move from
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position 1 to being assigned, which takes time 7;. So, a patient can form beliefs about their
total waiting time by forecasting their waiting time in each position, and then summing across
positions. The time the patient spends in position s will depend on the rate at which slots
become available on the GP’s panel through departures of incumbent enrollees, and the rate at
which patients ahead on the waitlist abandon it before being reassigned. Incumbent enrollees
may depart their panel in the event of death, emigration, or a switch to another GP. Patients
standing on waitlists may abandon it in the event of death, emigration, or actively removing

themselves from the waitlist.

We assume that patients perceive that slot vacancies and waitlist abandonments follow
independent Poisson processes in continuous time. That is, patients believe that each slot on
a GP’s panel becomes vacant at exponential rate 7, and each waiting patient abandons the
waitlist they are on at exponential rate .3 If these processes are independent, then the time
Tjs a patient spends in position s waiting for GP j (before moving to the next position, s — 1)
follows an exponential distribution with parameter N;n + (s — 1)k, where N; is GP j’s panel

cap. A patient’s expected total waiting time when entering GP j’s waitlist at position w is
iid
7= T Tjs ™ exp(Njy + (s = D).

For a given patient, Ty and T, are independent for s # s’. Therefore, a patient’s total expected

waiting time is
w

2T

s=1

E[T; | w] = E

= 1
:;Njn—l—(s—l)m’ (3)

and the expected discount factor is

w w

N. S — K
E e | w] = 1_[11[‘3 [e=e] = 1_[1 p +]J<7fj:7rjr (s i)l)“ ’ .

where Equations 3 and 4 are derived using the facts that the waiting times in each position

T}, are independent and exponentially distributed.

This belief model embeds three primary simplifications. First, it assumes assignments occur
in continuous time at the moment vacancies become available. In practice, assignments are

processed at the end of each month.>* Second, it assumes that patients only consider the

330f course, these rates are an equilibrium outcome of the reassignment mechanism used in the system. Though
we condition on them in estimation, we will endogenize patients’ beliefs about these rates in counterfactuals.

34In addition, at least 10 slots must be available before any patients are assigned from the waiting list. This
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length of each waitlist in isolation when forming waiting time predictions. In principle, the
fact that GP k’s waitlist is unusually long—or that all nearby GPs have long waitlists—may
predict how quickly GP j’s waitlist will move. Third, patients believe that the parameters n
and k are constant across GPs. In principle, these parameters could vary across GPs, with
calendar time, or with other factors. Given that in practice patients have limited information
about the mapping from waitlist lengths to waiting times and are likely unaware of how this

differs for individual GPs, we believe our belief model is a reasonable approximation.

IV Estimation

IV.A Sample and Parameterization

Geographic Subsample. For computational tractability, we estimate demand using a geo-
graphic and time-period subsample of our data. Geographically, we restrict to patients resid-
ing in the Trondelag region. Trondelag is attractive for this purpose because it is a populous
region with a major population center (Trondheim), but the region boundaries are sparsely
populated.?® Its population accounts for about 8 percent of the country. In terms of time
period, we focus on the 12 month period from December 2018 to November 2019, by which
time GP waitlists were well-established. Appendix Table E.2 provides a comparison of key
demographic characteristics between Trondelag and all of Norway over this period. Nothing
about the two areas appears substantially different, with the exception that Trondelag is on

average more rural.

In addition to geographic and time period restrictions, we also restrict patient choice sets.
Our baseline choice set definition is a driving time radius of 60 minutes around a patient’s
municipality of residence.?® Details about the construction of the demand estimation sample
are provided in Appendix A.2. Our final demand estimation sample represents 4,213,049
patient-months (379,330 unique patients) and 457 unique GP panels.

is done to provide a buffer in case there are multiple births to patients already on the GP’s panel.

35 Of the 11 administrative regions (fylke) in Norway, Trondelag has the lowest outside-region GP enrollment.
Only 1.7 percent of residents of Trondelag enroll with a GP outside of the region, compared to 7.7 percent
of residents of the Oslo region. Appendix Figure E.5 provides a map of Norway and of Trondelag.

36This definition is motivated by the fact that 97 percent of patients enroll with a GP within 60 minutes. Our
estimates are not sensitive to adjusting the choice set definition between 45 and 90 minutes.
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Parameterization. We parameterize the attention process and GP choice models as follows.

Aip Bernoulli(p*(X;;)) (5)

Vijt = _dijt + 5]' + Xijtﬁ + €ijt (6)

The attention shock )\ is drawn independently each period according to a probability p*(Xy)
that depends on patient observables. Motivated by regression evidence in Appendix B.4,
X includes patient demographics (age, gender, permanent residency status, health status),
whether the patient has recently or will imminently move, and if so, the distance of the move.?”
An attentive patient (A\; = 1) draws new taste shocks €;;; YN (0,02(X;j1)) for each GP and
then makes a GP choice. Inattentive patients simply remain with their current GP and retain
their current taste shocks. The flow payoff v;;; from being assigned GP j depends on travel
time d;;; between patient ¢’s municipality of residence and the GP’s office; a GP fixed effect ¢;
capturing the common component of j’s desirability, including any unobserved factors (Berry,
Levinsohn and Pakes, 2004); interactions X, ;3 between patient and GP characteristics, cap-
turing common components of patient-GP specific match value; and the idiosyncratic taste
shock. Motivated by evidence in Appendix B.2, X;;; includes indicators for whether the pa-
tient and GP are of the same gender and same age, and we allow the degree of age/gender
homophily to vary across patient demographics and health status. We allow the variance
of the idiosyncratic taste shock and GP fixed effects to vary by patient age and residency

status.?®

When reporting results, we normalize scale in the model by fixing patients’ (dis)taste for
travel time at -1. Travel time thus acts as a numeraire in the absence of prices, as is common
in empirical market design applications (Abdulkadiroglu, Agarwal and Pathak, 2017; Agarwal
and Somaini, 2018). We normalize location by setting the fixed effect for one GP to zero. This

leaves us with the following model parameters to estimate: {p,d, 3, o, p*}.

37Other patient demographics, including income and education, are not included in the attention or choice
models. We found in exploratory analyses that these variables had limited explanatory power for switching
frequency or GP choice conditional on the other variables included in our model.

38In estimation, we normalize the standard deviation of the idiosyncratic taste shock to 1, allow the coefficient
on distaste for travel time to vary by patient age and residency status, and estimate common GP fixed effect
coefficients. This specification implies heterogeneous variances of idiosyncratic tastes and GP fixed effects
when flow payoffs are normalized by patients’ distaste for travel time.
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IV.B Estimation Procedure & Identification

We estimate the model in two steps. We first estimate the parameters governing patient
beliefs using the empirical analogs of the objects described in section III.B. We then jointly
recover the attention and preference parameters that best describe the observed data given

our model and patient beliefs.

Waiting Time Beliefs. We estimate the belief parameters (7, x) using all waitlist-month
observations in our demand estimation sample. Out of 5,140 total GP panel-months considered
(representing 457 unique GPs), 2,161 were panel-months in which the panel had a waitlist
(representing 298 unique GPs). Among these panel-months, we then calculate the average
panel slot vacancy rate and the average waitlist abandonment rate, yielding the following

belief parameters, which should be interpreted as monthly rates:

n = 0.00181 (Panel slot vacancy rate)
k = 0.01704 (Waitlist abandonment rate)

The average waitlist length over these months was 28, and the average panel cap was 1,084.
Using our formula for expected waiting time (Equation 3), this panel cap and waitlist length
coupled with our belief parameters would imply an expected waiting time of 12.8 months.
For comparison, the average elapsed waiting time among patients on waitlists as of December
2019 was 7.9 months, which is a lower bound on the waiting time those patients ultimately

experienced.

Attention and Preferences. We estimate the attention and GP choice model using Markov
Chain Monte Carlo (MCMC) methods. We use a Gibbs’ sampler with data augmentation
to draw attention shocks \;; and flow utilities v;;; from their posterior distributions, and a
Metropolis-Hastings step to update the discount rate p (McCulloch and Rossi, 1994; Gelman
et al., 2013). We assume conjugate priors of (5,3) ~ N(ug,¥0), p* ~ Beta(a,p), and
o2 ~ ITW (99 10). The steps of the Gibbs’ sampler can be written as follows for iteration

b, where each step also conditions on patients’ observable characteristics (Z) and choices (y):

(i) Ob, By | Vo1,024 1, 0, Xo
(11) 0-62,b | Vb—175b7ﬁba \IIO VO

€7 €

(111) Pb | 51)751)70_3,177?/’ Z
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(IV) )‘b |pl))\71761)76b70-62,b7y72
(v) Py | Aos v,

(VI) Vi | )‘bv 5()7 Bba 0-5271)7 Pv, Y, Z

Appendix C provides additional details on the updating steps. Though our estimator is
Bayesian, it is asymptotically equivalent to maximum likelihood estimation (see, e.g., Van der
Vaart 2000, Theorem 10.1, Bernstein von Mises) and computationally less demanding.?® We
interpret the posterior means and standard deviations in a frequentist manner for the purposes

of inference.

Identification. We can think of identification in three steps: identifying (i) the distribution
of flow payoffs, (ii) the discount rate, and (iii) the attention parameters. Beliefs are assumed

known.

First, suppose the discount rate p is known and attention is observed. The distribution
of flow payoffs is non-parametrically identified by variation in travel time between patients’
residences and GP offices. This argument treats travel time as a special regressor (Berry
and Haile, 2014; Agarwal and Somaini, 2018) and requires that unobserved determinants of
preferences for GPs are uncorrelated with patients’ proximity to GP offices, conditional on
observables. The key economic assumptions are that patients do not choose where to live
based on access to primary healthcare, and that GPs do not locate their offices close to where
patients live who particularly value seeing those GPs. We believe this is plausible in our

context.

Second, given the distribution of flow payoffs, the discount rate is identified by the sensitivity
of patients’ choices to waitlist lengths (Waldinger, 2021).%° A key identification challenge is
that more desirable GPs will tend to have longer waitlists. However, because panel vacancies
and waitlist departures are stochastic events, queue lengths naturally fluctuate due to events
outside the control of a patient considering switching. This generates exogenous variation
in the relative waitlist lengths of different GPs for patients who consider switching GPs at
different times. Our empirical specifications therefore estimate a fixed effect for each GP,

effectively isolating sensitivity to waiting time conditional on GP quality. A key identifying

39Because discounting is multiplicative, the full likelihood would not have a tractable closed-form even if we
assumed e was distributed Type-1 Extreme Value.

4OThough we estimate a common discount rate for all patients, one could allow it to depend on observed
characteristics. In practice, it was difficult to obtain precise estimates of p for different subgroups, and we
could not reject that our point estimates were the same among subgroups in the specifications we tried.
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assumption is that patients do not time when they request to switch based on the waitlist
lengths of specific GPs. In a first-come fist-served queue, when there is no direct cost of
standing on a waitlist, there is no benefit to delaying a switch request until a patient’s desired
GP’s queue is unusually short. We therefore view this threat as unlikely. It is also possible
that a component of GP desirability is time-varying, so that a GP’s waitlist tends to grow
when the GP becomes more desirable. To the extent that this occurs, it would lead us to

underestimate the discount rate.

Finally, the attention parameters are separately identified by attention shifters that are
uncorrelated with preferences for specific GPs. In the ideal experiment, imagine a group of
patients who pay attention with probability one (Abaluck and Adams-Prassl, 2021). If their
preferences are drawn from the same distribution as the general population, their choices
identify the other model parameters. We can then recover attention probabilities for the
remaining patients by comparing their frequencies of switch requests and GP choices to those
of always-attentive patients. In the data, we observe that patients who move a long distance
are much more likely to request to switch GPs than patients who move shorter distances or stay
put. Our identifying assumption is that conditional on other observables, the distribution of
GP preferences is uncorrelated with when or how far patients move. In practice, some patients
wait years to switch GPs even after a long move, so we rely on parametric assumptions to

jointly estimate patients’ preferences and attention probabilities.

IV.C Estimates

We estimate three specifications. All specifications allow attention probabilities to differ flex-
ibly by patient age, gender, whether the patient has a chronic health condition, and whether
the patient is about to or recently moved. In the first specification, flow payoffs depend only
on distance and interactions between patient and GP age and gender, where the strength
of age and gender homophily varies flexibly by patient chronic health status. The second
specification adds GP fixed effects to allow for persistent differences in GP desirability. The
third specification allows the standard deviations of the idiosyncratic taste shock and GP fixed

effects to vary by patient age and permanent residency status.

Table 3 presents the parameter estimates. Column (1) reports considerable sensitivity to
waiting time, with an annual discount factor of 0.942. When GP fixed effects are added in
columns (2) and (3), this value falls to 0.915, reflecting the fact that more desirable GPs have

longer waitlists. We estimate strong homophily by gender and age. By gender, estimates in
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column (1) imply that a female patient under age 45 without a chronic condition would travel
4.9 minutes farther than a male patient under 45 to see a female GP (5.6 minutes for female vs
male patients over 45). Estimates imply greater gender homophily for patients with a chronic
condition. By age, patients under 45 would travel approximately 1-2 minutes farther than
a patients over 45 to see a GP under 45. Adding GP fixed effects and heterogeneity in the

variance of the taste shock to the model yield similar magnitudes.

Column (3) allows the variance of the idiosyncratic taste shock and GP fixed effects to
vary by patient age and residency status, which can be equivalently thought of as allowing for
heterogeneity in the distaste for travel time relative to GP quality and idiosyncratic factors.
We find that the distaste for travel time is highest for older permanent residents, and lowest for
younger permanent residents. In both columns (2) and (3), we estimate considerable variation
in overall GP desirability as well as in the value of the idiosyncratic taste shock. Column (2)
estimates a standard deviation of GP fixed effects of 19.8 minutes, and a standard deviation
of idiosyncratic shock of 11.7 minutes. In column (3), the standard deviation of GP fixed
effects is between 18.2 and 21.6 minutes, and the standard deviation of idiosyncratic shock is

between 10.6 and 12.6 minutes.*!

Table 4 presents parameter estimates for the attention model. Estimates are similar across
specifications, so we focus on column (3). Our estimates imply that non-movers consider
switching GPs far less often than patients who have recently moved, consistent with observed
switching patterns (see Table 1). Among non-movers, temporary residents pay attention most
often—1.17 percent chance per month (approximately once every 6.5 years)—while older men
consider switching just once every 25 years. Conditional on age and gender, patients with
a chronic health condition make active choices 20-50 percent more frequently than patients

without a chronic condition.

Patients who have moved consider switching an order of magnitude more often. We estimate
separate attention probabilities for short and long moves, where short means less than 30
minutes’ drive time between origin and destination municipality, and long means over 30
minutes. We also allow attention to differ by whether the move is imminent (occurring this
month or next month) or recent (in the past 6 months), reflecting the fact that we see a large

immediate impact of moving on the probability of switching GPs in the data (see Appendix

41Variance in the idiosyncratic shock may in part reflect the fact that we observe only a patient’s municipality
of residence rather than their exact address, introducing measurement error in travel time. Using data from
an earlier time period in which we had exact address, we investigated whether measurement error in travel
time from observing municipality rather than exact address is correlated with other patient characteristics,
and found essentially no relationship.
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Table 3. Preference Parameter Estimates

(3)

Variable B SE B SE B SE
Annual Discount Factor 0.942  0.002 0.916  0.009 0.915 0.009
Travel time (minutes) —1.0007 —1.0007 —1.0007
S.D. GP Fixed Effects 19.761  1.032
S.D. GP Fixed Effects, Temp. res. 19.084 1.382
S.D. GP Fixed Effects, Perm. res. age < 45 21.572  1.240
S.D. GP Fixed Effects, Perm. res. age > 45 18.199 1.234
Male GP
x Temporary resident —-3.070  0.338 0.0007 0.000f
X Perm. res. female, no chron., age < 45 —1.122  0.367 —4.906 0.465 —5.368 0.518
x Perm. res. female, no chron., age > 45 —0.484 0.410 —4.779  0.987 —4.534  0.942
x Perm. res. female, chronic, age < 45 —1.902 1.322 —6.244  1.456 —6.649  1.403
x Perm. res. female, chronic, age > 45 0.325 0.426 —3.924  0.562 —-3.616 0.561
X Perm. res. male, no chron., age < 45 3.799  1.299 —0.104 1.226 —0.315  1.356
X Perm. res. male, no chron., age > 45 5.075  1.444 0.914 1.338 0.641 1.174
x Perm. res. male, chronic, age < 45 6.182  0.576 0.436  0.871 0.528  0.920
X Perm. res. male, chronic, age > 45 6.136  0.518 0.397  0.840 0.212 0.814
GP age > 45
x Temporary resident —1.548  0.359 0.0007 0.000f
X Perm. res. female, no chron., age < 45 —0.784  0.387 —2.551 0.366 —2.754  0.449
x Perm. res. female, no chron., age > 45 —0.012 0.433 —2.211  1.000 —1.990 0.852
x Perm. res. female, chronic, age < 45 —2.138  1.356 —4.345  1.359 —4.567  1.588
x Perm. res. female, chronic, age > 45 —0.168  0.455 —2.230 0417 —2.067 0.483
X Perm. res. male, no chron., age < 45 —2.028 1.321 —3.297  1.089 —3.676 1.128
x Perm. res. male, no chron., age > 45 —0.380 1.397 —1.779  1.269 —1.661 1.066
x Perm. res. male, chronic, age < 45 —0.977  0.555 —3.129  0.755 -3.379  0.827
x Perm. res. male, chronic, age > 45 —0.223 0.534 —2.219 0.671 —2.064 0.648
S.D. idiosyncratic shock 14.194  0.263 11.698  0.382
S.D. idiosyncratic shock, Temp. res. 11.116  0.607
S.D. idiosyncratic shock, Perm. res. age < 45 12.567  0.494
S.D. idiosyncratic shock, Perm. res. age > 45 10.603  0.574

Notes: The table reports parameter estimates from the GP choice model described in Section IV. We
simulate 40,000 draws from the Markov chain and drop the first 20,000 for each specification. The table
reports the mean and standard deviation of the remaining draws as the point estimate and standard error of
each parameter (respectively). Columns (2) and (3) include a fixed effect for each GP, with one normalized
to zero. Column (3) allows the standard deviation of the idiosyncratic shock and GP fixed effects to differ

by residency status and age. 'By normalization.

Table B.2). Finally, we allow mover attention to depend on gender and residency status.
Movers exhibit stark differences in attention probabilities along all three dimensions. Patients
are most attentive in the month prior to or of a move. A temporary resident moving over 30
minutes this or next month has an 18.33 percent chance of considering switching GPs. The

probability remains high, but falls to 6.85 percent per month in the six months following the
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move. Permanent residents exhibit a qualitatively similar pattern. Distance of move is also
highly predictive. A female permanent resident moving less than 30 minutes has only a 22
percent cumulative attention probability in the 8 months around that move. If the move were
over 30 minutes, this rises to 38 percent. Attention around move events will be important
for counterfactual simulations, because patients are most attentive when they are also most

mismatched with their current GP.
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Table 4. Monthly Attention Probability Estimates

(1) (2) (3)

Variable p SE p SE p SE
No Recent or Imminent Move
x Temporary resident 1.18 0.02 1.18 0.03 1.17  0.03
x Perm. res. female, no chron., age < 45 0.72 0.01 0.72 0.02 0.72 0.02
x Perm. res. female, no chron., age > 45 0.41 0.01 0.46 0.02 0.47 0.02
x Perm. res. female, chronic, age < 45 0.97 0.02 1.08 0.03 1.08 0.04
x Perm. res. female, chronic, age > 45 0.51 0.01 0.57 0.01 0.57 0.01
x Perm. res. male, no chron., age < 45 0.44 0.01 0.44 0.01 0.44 0.01
x Perm. res. male, no chron., age > 45 0.30 0.01 0.30 0.01 0.30 0.01
x Perm. res. male, chronic, age < 45 0.48 0.02 0.60 0.08 0.60 0.08
x Perm. res. male, chronic, age > 45 0.33 0.01 0.39 0.03 0.40 0.03
Moved <30 minutes, this or next month
x Temporary resident 6.90 1.14 6.90 1.14 6.93 1.14
X Perm. res. female 4.51 0.39 451 0.38 451 0.38
x Perm. res. male 3.32 0.33 3.32 033 3.32 0.34
Moved <30 minutes, prev. 6 months
x Temporary resident 3.10 0.54 3.09 0.54 3.08 0.53
X Perm. res. female 2.12 0.17 211 0.17 211  0.17
X Perm. res. male 1.58 0.15 1.58 0.14 1.58 0.14
Moved > 30 minutes, this or next month
x Temporary resident 18.25 2.24 18.30  2.26 18.33  2.29
X Perm. res. female 8.62 0.64 8.59 0.66 8.62 0.65
X Perm. res. male 37.81 1.13 29.67 13.73 29.89 13.61
Moved >30 minutes, prev. 6 months
x Temporary resident 6.81 1.08 6.87 1.11 6.85 1.11
X Perm. res. female 3.42 0.27 342 0.28 3.42  0.28
x Perm. res. male 2.60 0.24 2.61 0.23 2.61 0.23

Notes: The table reports parameter estimates from the attention model. Parameters represent the
probability a patient is attentive in a given month, reported in percentage points. These parameters
are estimated jointly with the preference parameters reported in Table 3. The categories are mutually
exclusive and exhaustive. A patient has No Recent or Imminent Move if they did not change their
municipality of residence in the six months prior to or one month after the current month. After a
patient has been attentive during a given move spell, they are treated as a non-mover during the
rest of that move spell.
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V Counterfactual Simulations and Welfare

We now use our estimates to predict equilibrium outcomes under alternative waitlists mecha-
nisms. Section V.A describes the simulated dynamic economy and defines our counterfactual
mechanisms. Section V.B defines an equilibrium. Section V.C presents equilibrium outcomes,

and section V.D discusses extensions.

V.A Counterfactual Simulations

Dynamic Economy. We consider an economy with a finite set of patients and GPs. The set
of GPs is given by J = {ji, ..., jm}. Each GP’s type includes their age, gender, office location,
panel cap, and fixed effect d;. All GP characteristics are fixed over time. The set of patients
is given by I = {iy,...,i,}. Each patient’s type x € X includes their age, gender, residency
status, chronic health status, and location of residence (one of the 45 municipalities in the
Trondelag region). Patient characteristics evolve over time according to a stationary Markov
process M : X — X. Patients also have a chance of dying, in which case they immediately
experience a “rebirth” in which they are removed from their current GP and reassigned to the

current GP of a randomly selected young woman living in their same location of residence.*?

We initialize the set of patients and GPs in the economy based on the observed distribution
of types in the Trondelag region in December 2019. We calibrate the patient type transition
process M based on type transitions observed in Trondelag over the period 2017-2019. Ap-
pendix Table D.1 provides summary statistics on the set of patients and GPs in the simulated
economy. Appendix D.1 provides additional details on the initial conditions in the economy

as well as on the transition process M.

Simulation Procedure. In each period, the following steps occur (in order):

1. (Demographic transitions) Patients draw a new type and a death shock. Patients that
die are removed from their current GP panel as well as any waitlists they are on, and

added to the GP panel of the mother to whom they are reborn.

2. (Attention) Patients draw attention shocks according to the probabilities p*(z) reported
in Table 4.

42The simulation therefore allows for panel vacancies to arise naturally but, given the standard practice of
enrolling babies with their mother’s GP, less frequently on GP panels with many young women.
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3. (GP Choice) Attentive patients sequentially arrive to the mechanism. Upon entry, they
draw new preferences (¢;;) for all GPs, formulate flow indirect utilities v;; based on pa-
rameter estimates in Table 3, and report their GP request(s) to the mechanism. Patients
who request to stay with their current GP or switch to an open GP are immediately
reassigned and exit the mechanism. Patients who request a full GP are placed on the

waitlist.

4. (Matching Algorithm) The patient-GP matching algorithm is executed. Patients that
are successfully reassigned exit the mechanism. All other patients remain there until

the following period.

Realizations of the demographic transition process, the receipt of attention shocks, and draws
of idiosyncratic preferences are held fixed across simulations of alternative mechanisms. Ap-

pendix Table E.3 summarizes these realizations.

Allocation Mechanisms. We consider three primary counterfactual allocation mechanisms,
in addition to the status quo mechanism. First, we run the TTC algorithm on top of Norway’s
existing waitlists algorithm, just as in the mechanical simulations from Section B.1, but where
we can now endogenize patient responses. We then consider two alternatives intended to
address the distributional and fairness concerns that—as we saw in the naive simulations—
may arise under TTC. Each of these mechanisms is described below and formally defined in

Appendix Section D.2.

Waitlists. This is the mechanism currently used in Norway. The matching algorithm iteratively
advances waitlists to fill open GP slots until there are no patients waiting for GPs with open

slots. Patients are prioritized in order of waiting time.

Waitlists with Top Trading Cycles (TTC). This mechanism is the same as Waitlists but with a
different matching algorithm. This matching algorithm consists of first running the Waitlists
matching algorithm and then running the TTC algorithm on any remaining patients. Patients

are prioritized in order of waiting time.

Waitlists with Top Trading Cycles and Priority (TTCP). This mechanism is identical to
TTC except that the matching algorithm prioritizes patients with undersubscribed GPs above
patients with oversubscribed GPs. Within each group, patients are still prioritized in order of

waiting time. A GP is undersubscribed if it has at least one open slot on its panel.** TTCP

43We classify a patient’s current GP as over/undersubscribed at the moment they enter the mechanism. While
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attempts to address some of the adverse distributional consequences from introducing TTC.
Rather than preventing waiting patients from exchanging their GPs, TTCP gives patients

who are unlikely to benefit from cycles priority for other open GP slots.

Waitlists with Deferred Acceptance (DA). This mechanism is the same as Waitlists but with
a different matching algorithm, namely the patient-proposing deferred acceptance (DA) algo-
rithm. Relative to Waitlists, the key advantage of DA is to allow trades among patients at the
front of their respective waitlists. Relative to TTC, however, an attractive property of DA is
that, like Waitlists, it strictly respects waiting time priorities. No patient may “jump” to the
front of the queue and be reassigned to a GP for whom another patient was waiting longer.**
Nevertheless, by strictly respecting waiting time priority, DA may substantially limit trading

opportunities relative to TTC.

Measures of Welfare. We consider two cardinal measures of patient welfare. The first is
simply the mean (or median) per-period flow payoff v;; experienced by each patient in the
economy, weighing all patients and all time periods equally. The mean flow payoff would
be relevant to a utilitarian planner interested in maximizing the present discounted value of

future payoffs in the economy.

Our second measure isolates how the value of switching opportunities changes across mech-
anisms. It is based on patients’ perceived net present value of making an optimal GP choice.
Appendix D.4 provides details on how this measure is constructed.*> We scale the net present
value by patients’ discount rate p (estimated to be 0.0075) to yield the equivalent perpe-
tuity per-period flow payoff, as given by Equation 7 below. This allows for comparison to
the first welfare measure, which is also expressed in per-period payoffs. Aggregate welfare is
then represented by the mean (or median) value across all attentive patient-months. Since

this measure places more weight on time periods shortly after a patient receives an attention

it is possible that a GP could transition to/from being over/undersubscribed while their patient remains in
the mechanism, these transitions rarely occurred in our simulations, and modeling patient beliefs about this
possibility would be highly complex.

4 This idea reflects DA’s well-known property of stability (Gale and Shapley, 1962), which is also known as
elimination of justified envy (Abdulkadiroglu and Sénmez, 2003). Further, because patient-proposing DA
yields the patient-optimal stable match with respect to reported preferences, it represents the best any
algorithm in this class can do without violating first-come first-served priority (i.e., generating envy).

45 A complication with constructing such a measure in a dynamic economy is that the value of a patient’s
choice problem depends on their current GP, and a patient’s current GP at any given time may differ across
mechanisms for two reasons: (i) due to GP switching events (attention spells) that occurred earlier in time,
and (ii) due to contemporaneous differences in the ease with which an attentive patient can switch GPs
due to changes in equilibrium waiting times. To highlight the latter channel, we measure the value of an
attentive patient’s choice problem holding the patient’s current GP fized at its value under Waitlists.
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shock, it captures the idea that one might care more about improving patients’ experience at
the moment they wish to change GPs, rather than in all time periods equally. This measure
also allows us to compare patient welfare as a function of characteristics that are endogenous

to the mechanism, including whether the patient currently has an over- or undersubscribed
GP.

V.B Beliefs, Decisions, and Equilibrium

Let wy = {wi1g, ..., wip} € Ni denote patient 7’s waitlist position if she were to select each GP
at time ¢.%° In all of our counterfactuals, attentive patients choose a GP by solving the choice
problem in Equation 2, conditioning their beliefs about waiting time on observed waitlist
lengths:

max E [e™7"9 | Wit (vije — vijor) - (7)

Counterfactual mechanisms will not only change the number of patients on the waitlist at

a given time wy, but also patients’ beliefs about the speed with which waitlists move, i.e.,
Ti]'

the expected discount factor function [E [e*p wit} . How these beliefs adjust will determine
patients’ equilibrium responses to alternative mechanisms. To accommodate the additional

complexity of TTC, we must adapt the belief model from Section III.B.

As before, patients have beliefs about how quickly a waitlist moves from the front (7), and
how often waiting patients depart the waitlist before reaching the top (k). Under TTC, beliefs
must also account for the fact that a patient can be successfully reassigned before reaching
the top of the waitlist if they participate in a cycle. Further, patients ahead in the queue may

depart because they are assigned through a cycle, as well as due to exogenous departures.

We modify the belief structure as follows. In each position s, a patient will either (i) move
to position s — 1 due to a waitlist departure or assignment from the front of the queue, or
(ii) be reassigned through a cycle. We assume that these two events are perceived to follow
independent, memoryless arrival processes. We allow the rate of being assigned through a
cycle x,,s to depend on a patient’s position s as well as on whether their current GP jj

is undersubscribed.?” Patients are assigned from the top of GP j’s waitlist at rate N;n.

461f a GP has open slots or patient 4 is already on that panel, then i’s waitlist position is zero. If the patient
is already sitting on GP j’s waitlist, she would retain that position.

4"In principle, Xjos could depend in a complex way on the state of the mechanism, including the lengths of
all GP waitlists and number of open slots on each GP’s panel, as well as the GP the patient has requested.
Our simplification strikes a balance between capturing the most important determinants of waiting times
and having low complexity.
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Each patient on the waitlist departs at rate x, which now includes both abandonments and
reassignments through a cycle. A patient’s expected discount factor when entering GP j’s

waitlist at position s can now be written

m is s s m is _ » .

Ble s | o] = T N (X T ety |y 5 - 1))
Pt Mjs + Xjos \Mjs T Xjos  Mjs T Xjos

ons mjs

— _|_ Ee—pTij .,5—1, 8
P+ Mis+ Xjos P+ Myjs + Xjos [ [ Jo ] ®)

where m;s = N;n + (s — 1)k is the rate at which the patient moves forward in the queue.*®

Equation 8 provides a recursive formula for the expected discount factor at any position s.
We parameterize x;,s such that it equals zero for patients with an undersubscribed GP (who
have no chance of participating in a cycle), and is log-linearly related to waitlist position-
relative-to-panel cap for patients with an oversubscribed GP: x;,s = 1[jo oversub.]exp(xo +
x1log(s/N)).% In addition to being parsimonious, Appendix Figure E.6 shows that this
parameterization does a good job fitting the probabilities of being reassigned through a cycle
in our equilibrium simulation of TTC. Note that if x;,s is restricted to zero for all patients,
this formulation of beliefs collapses to the original beliefs structure relevant for Waitlists and
DA.

We compute counterfactual equilibria in which belief parameters are consistent with the
waiting times implied by patients’ optimal decisions. Appendix D.3 describes our procedure
in detail. The algorithm iteratively updates patients’ optimal decisions given the state of
the simulation algorithm and the belief parameters implied by the simulation, until the belief

parameters (and hence decisions) converge. Appendix Table D.2 reports equilibrium beliefs.

V.C Equilibrium Outcomes

Table 5 reports equilibrium outcomes from a 5-year window at the end of our simulation period,

when the economy has reached a stationary equilibrium. In the long-run stationary equilibrium

48The intuition behind this formula is as follows. The next event that occurs is either participating in a cycle
or moving one position forward in the queue. If these two processes are independent and memoryless, then

the next event occurs at exponential rate m ;s +x;,s- The ratio % is the expected discount factor for
Jjs TXidgs

the time of that event. Given that an event occurs, it is participating in a cycle with probability XX#,
jos js

in which case assignment is immediate and the subsequent discount factor is 1. The probability the event is

moving up a position is x%’ and the subsequent discount is simply E[e=*T# | jo,s — 1].
josTMjs

49Tn the TTCP mechanism, we additionally allow patients with undersubscribed GPs to have different beliefs
about k, since any patients ahead of them on a waitlist will also have undersubscribed GPs and thus have
no chance of departing the waitlist by participating in a cycle.
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of Norway’s current mechanism (Waitlists), 11 percent of patients are on a waitlist, and 81.3
percent of GPs have a waitlist. Patients’ expected waiting time to switch to the average GP
(including zeros for GPs without waitlists) would be 18.8 months. Each month, an average
of 2,368 patients receive attention shocks and consider switching GPs (see Appendix Table
E.3). Among these patients, 83.1 percent choose to join a waitlist, while the rest choose a GP
with open slots or to remain with their current GP. The average attentive patient expects to
successfully obtain their chosen GP after 18.8 months.”® Despite considerable sensitivity to
waiting time, many patients are willing to wait for their first-choice GP. The average rank of

a patient’s requested GP in their true preference list is 1.80.

Table 5. Outcomes under Alternative Mechanisms

Waitlists TTC DA TTCP
GP waitlists
Pct. of population on a waitlist 11.0 10.4 11.0 11.0
Pct. of GPs with a waitlist 81.3 78.9 81.3 79.9
Mean E(waittime) | curr. GP undersub. 18.8 23.9 18.7 19.1
| curr. GP oversub. 18.8 12.0 18.7 13.5
Attentive patient choices
Mean E(waittime) at chosen GP 18.8 15.6 18.8 16.6
Pct. waitlist joins 83.1 83.9 83.1 84.1
| curr. GP undersub. 79.1 75.3 79.0 77.6
| curr. GP oversub. 83.8 85.5 83.8 85.1
True pref. rank of chosen GP 1.80 1.63 1.80 1.63
| curr. GP undersub. 1.9 2.2 1.9 2.0
| curr. GP oversub. 1.8 1.5 1.8 1.6
Realized assignments
Travel time to current GP, mean (med.) 14.8 (6.4) 14.6 (6.4) 14.8 (6.4) 14.8 (6.4)
Pct. with same gender GP | young female 58.1 58.9 58.1 59.1
| young male 60.0 59.2 60.0 59.0
Welfare
Flow payoff from current GP, mean (med.) -t 0.72 (0.42)  0.01 (-0.00)  0.40 (0.26)
Perpituity equiv. of GP choice, mean (med.) ~T 154 (0.71)  0.01 (0.00) 1.36 (0.43)

Notes: The table reports statistics on outcomes generated in months 492-551 of the simulation, out of 600
total months. Statistics are first computed within month and then averaged across simulation months.
E(waittime) is the expected waiting time implied by patient’s equilibrium beliefs and current waitlist
lengths. True pref. rank of requested GP is the rank of a patient’s requested GP in their true flow payoff
ordering. "By normalization.

Relative to the status quo, introducing TTC reduces waiting times and increases patient
welfare. The average attentive patient now successfully obtains their chosen GP after 15.6

months, and a smaller share of patients are on a waitlist at a given time. Measured by realized

50Relative to our data, these longer equilibrium waiting times reflect the fact that the waitlists were still
growing rapidly during our sample period.
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flow payoffs, mean patient welfare increases by the equivalent of 0.72 minutes’ driving time.
More than one quarter of these gains are attributable directly to patients being matched with
closer GPs, with the remainder driven by improved match quality on both observable and
unobservable dimensions. The equivalent perpetuity payoff perceived by the average attentive

°l These average improvements are reflected in patients’ behavior:

patient is 1.54 minutes.
they become more likely to request their first-choice GP, with the average preference rank of

chosen GPs falling to 1.63.

To aid in interpreting the magnitude of these welfare effects, Figure 3 plots the mean flow
payoff that our model predicts would arise if GP panel caps were raised under the status quo
mechanism (Waitlists). We find that the welfare gains from TTC are equivalent to a capacity
increase of approximately 2.5 percent, suggesting that the impacts of simple market design
changes can have benefits that are comparable to substantial investments in system capacity.
The figure also shows that, unsurprisingly, additional capacity has diminishing returns. In

the limit, welfare implied by infinite GP capacity yields a mean flow payoff of 6.89.%2

Distributional Implications. Table 6 summarizes welfare outcomes using the perceived
perpetuity equivalent by subgroups of attentive patients. In terms of demographics, the wel-
fare gains from T'TC conditional on being attentive are concentrated among younger patients.
Female patients also derive especially large benefits because they are more likely to be atten-
tive than male patients. Patients who moved in the last 12 months also realize large benefits
from TTC (3.0 minutes), reflecting the fact that these patients tend to be highly mismatched
with their current GP and thus stand to gain substantially from shorter waiting times. How-
ever, patient moves are not the only dynamic driving patient-GP mismatch; patients who have
never moved also benefit (1.1 minutes). In terms of geography, patients in both urban and

rural areas benefit, but the gains are largest among rural patients (3.5 minutes), who tend to

51The difference between the experienced flow payoff and perceived perpetuity equivalent welfare measures
reflects three things. First, the perceived perpetuity equivalent is the result of a hypothetical exercise in
which each attentive patient is imagined to have the same current GP as they were assigned under Waitlists
at any given time, even though their actual GP may be different under an alternative mechanism. Second, the
perceived perpetuity equivalent re-weights patient months relative to the experienced flow payoff measure
because it is calculated in attentive patient months only, and from there discounts future payoffs. Since
attentive patients are weakly improving their situation (relative to being inattentive), welfare gains tend to
be larger according to the perpetuity equivalent measure than according to the flow payoff measure. Finally,
patients are over-optimistic about the flow of welfare gains they will receive over an infinite horizon because
in reality they experience subsequent shocks (e.g., moving or dying), the probability of which they do not
take into account at the moment of attention.

52In reality, GP quality would likely be affected if panel caps were eliminated. Infinite capacity is presented
only as a benchmark of the maximal possible welfare that could be implied by our model.
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Figure 3. Comparison to Welfare Effect of Capacity Increases Under Status Quo
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Notes: The figure shows the welfare effect (in terms of mean experienced flow payoffs) of increasing capacity
under the status quo mechanism (Waitlists). Panel capacity is increased by a fixed percentage for all GPs in
the economy. We run the simulation for 1, 2, 3, 5, and 10 percent capacity increases (0 percent corresponds
to the original Waitlists simulation). The dotted line shows a quadratic fit. For comparison, welfare
associated with TTC, TTCP, and DA are also shown. In the limit, welfare implied by infinite GP capacity
yields a mean flow payoff of 6.89.

face the longest travel times and thus have the greatest potential for geographic mismatch.
Interestingly, gains are similar for patients with and without a chronic health condition. Al-
though chronic patients tend to consider switching more frequently than non-chronic patients
of the same age and gender, the value of their GP choice increases by a similar amount. Fi-
nally, it is worth noting that for most groups, welfare gains are also positive and economically
significant at the median, suggesting that gains are widely spread rather than concentrated

among a minority of patients.

Although TTC benefits the majority of patients, it has particularly uneven consequences
along an important dimension—whether a patient’s current GP is oversubscribed. Table 5
shows that while TTC reduces waiting times for the average GP by 6.8 months (from 18.8
to 12.0) for patients with oversubscribed GPs, it increases waiting times (from 18.8 to 23.9
months) for patients with undersubscribed GPs. Patients’ GP choices reflect the disparity
along this dimension. Patients with undersubscribed GPs become less selective under TTC,
choosing GPs with an average preference rank of 2.2 (instead of 1.9 under Waitlists), and

joining waitlists less frequently. Patients with oversubscribed GPs, on the other hand, become
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Table 6. Distribution of Welfare Gains Relative to Waitlists

Frac. of
attn. pats. TTC DA TTCP

All attentive patient-months 1.00 1.5(0.7)  0.0(0.0) 1.4(04)
Patient demographics

Perm res. male<45 0.20 1.8 (0.8) 0.0 (0.0) 1.6 (0.5)
Perm res. male>45 0.16 1.4 (0.6) 0.0 (0) 1.2 (0.3)
Perm. res. female<45 0.28 1.7(0.9) 0.0 (0.0) 1.5(0.6)
Perm. res. female>45 0.22 1.3(0.7) 0.0(0.0) 1.1(0.4)
Temporary resident 0.14 1.5 (0.6) 0.0 (0) 1.4 (0.3)
Months since move

Moved in last year 0.16 3.0 (1.0) 0.0 (0) 2.8 (0.6)
Moved over a year ago 0.35 1.4 (0.7)  0.0(0.0) 1.3(0.4)
Never moved 0.49 1.1 (0.7) 0.0 (0.0) 0.9(0.4)
Geographic location

Rural 0.19 35(0.8)  0.0(0) 3.3 (0.6)
Suburban 0.37 1.2 (0.7) 0.0 (0) 1.1(0.5)
Urban (Trondheim) 0.45 1.0 (0.7) 0.0 (0.0) 0.8 (0.4)
Current GP oversubscribed

No 0.16 0.6 (-0.3) 0.0 (0) 0.1 (0)
Yes 0.84 1.9 (0.9) 0.0 (0.0) 1.6 (0.5)
Chronic health condition

No 0.55 1.6 (0.7) 0.0 (0.0) 1.4 (0.4)
Yes 0.31 1.5 (0.7) 0.0 (0.0) 1.3 (0.5)

Notes: This table reports mean (and median) welfare in terms of the perceived perpetuity equivalent of
attentive patients, among different patient subgroups. Patient type is defined at the moment the patient is
attentive. Statistics are calculated across all attentive patient-months in months 492-551 of the simulation,
holding each patient’s current GP fixed at their assignment under Waitlists.

more selective, choosing better-matched GPs and becoming more likely to join a waitlist.

These differences in waiting times and behavioral responses are reflected in patient welfare.
Table 6 reports that attentive patients with an undersubscribed GP are substantially worse off
under TTC—the perpetuity equivalent of 0.6 minutes’ travel time. Although these harms are
offset by larger gains for patients with oversubscribed GPs, they may raise equity concerns.
In particular, it may seem unfair to disadvantage patients who already have a less desirable
GP. This motivates exploring alternative mechanisms that attempt to improve outcomes for

this group of patients.

Addressing Harms using DA and TTCP. The third column of Table 5 shows that DA

achieves essentially no improvement over the status quo mechanism. Recall that DA does not

40



execute trades that violate FCF'S priority; patients may only swap GPs if they are both at the
front of their respective waiting list. As a result, the waiting time reduction under DA is very
small. This finding demonstrates a fundamental trade-off between eliminating envy—here,

not allowing patients to “cut” in line—and finding additional gains from trade.®

TTCP instead attempts to directly advantage patients with undersubscribed GPs, without
preventing feasible trades. Patients with undersubscribed GPs are prioritized above those with
oversubscribed GPs, in effect ensuring that vacant slots are first offered to patients unlikely
to benefit from cycles. The fourth column of Table 5 shows that TTCP achieves more than
half of the welfare gains of TTC as measured by mean flow payoffs. Compared to TTC, more
patients are standing on a waitlist at a given time, and patients expect to wait 1 month longer
for their chosen GPs. For a patient with an oversubscribed GP, the expected waiting time for
the average GP in their choice set rises from 12.0 to 13.5 months. However, this is offset by
a much larger drop in expected waiting times for patients with undersubscribed GPs, from
23.9 to 19.1 months. These patients become more selective, requesting a GP with an average
preference rank of 2.0 instead of 2.2, while patients with oversubscribed GPs become slightly
less selective. Column 4 of Table 6 shows that patients with an undersubscribed GP are as well
off under TTCP as under Waitlists, while patients with oversubscribed GPs are still better
off by 1.6 minutes.

One reason why TTCP yields smaller welfare gains than TTC is that prioritizing patients
with undersubscribed GPs may reduce the total number of switches. When a patient with
an undersubscribed GP is reassigned, the slot they vacate on their current GP’s panel is
unlikely to be demanded by another patient. Thus, the “chain” created by their assignment
to a vacancy is short. Rather than facilitating more assignments, as would often occur under
TTC, assignments to a vacancy under TTCP usually end with the assigned patient. Indeed,
the rate at which the waitlist moves from the front is 30 percent lower under TTCP than under
TTC (see Appendix Table D.2). Patients with undersubscribed GPs still benefit because they

are placed higher on the waitlist, but the waitlists move more slowly overall.

Despite yielding smaller improvements than TTC, the results from TTCP are encouraging
insofar as they address some of the distributional concerns with introducing TTC in a market
where some patients have more desirable endowments than others. The harms to patients
with undersubscribed GPs are eliminated—they are slightly better off than under the status
quo (see Table 6). At the same time, patients with oversubscribed GPs retain the benefits of

53The result that DA heavily restrict gains from trade mirrors empirical findings in other studies, e.g., Combe
et al. (2022).
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being able to trade GPs, and are still considerably better off than under the status quo.

V.D Discussion and Extensions

We find that simple changes to the assignment algorithm and priority rules of Norway’s GP
allocation mechanism can significantly reduce waiting times and increase patient welfare.
In this section, we consider the implications of three extensions: eliminating GP waitlists,
relaxing the limitation to a single waitlist, and relaxing incentive compatibility constraints.
For all these cases, our ability to predict equilibrium outcomes is limited to some degree, so

we view these results as suggestive only.

Eliminating Waitlists. Many primary care systems that are otherwise similar to the one in
Norway— including, to our knowledge, all HMOs in the U.S.—do not allow patients to join a
waitlist for a GP who is currently not taking patients. A natural question is therefore whether
introducing waitlists, as Norway did in 2016, in fact improves patient welfare. The answer is
not obvious. Eliminating waitlists may mean that at any given time, more GPs are available

immediately, but also that many GPs are not available to choose at all.

To attempt to evaluate this trade-off, we run a benchmark simulation, No Waitlists, in which
an attentive patient may only choose among the GPs with open slots at the moment they
consider switching. GPs are thus effectively rationed by “luck” due to stochastic availability,
rather than through a first-come first-served priority system. We emphasize that outcomes
arising from this simulation are not necessarily an equilibrium. In reality, patients would
have an incentive to exert effort (e.g., frequently checking the website until a spot opens up)
to obtain their desired GP. Nonetheless, this benchmark helps us assess whether eliminating

waiting times would likely come at a significant cost in terms of post-assignment match quality.

Appendix Table D.3 summarizes outcomes under this simulation. We find that patients’
mean flow payoff is just above its level under the status quo (0.10 minutes). Patients are
reassigned to less-preferred GPs on average, but because waiting times are eliminated, patients
spend less time mismatched with their current GP. This offsetting effect is especially valuable
for patients with highly mismatched current GPs. It is therefore not so surprising that while
mean welfare increases slightly, median welfare decreases by 1.43 minutes. While patients
with a highly-mismatched current GP benefit from the full elimination of waiting times, the
majority of patients prefer an environment with more options and some waiting time. We

interpret these results as suggesting that the desirability of introducing waitlists depends on
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how the gains for highly mismatched patients are weighed against the losses for patients who

would prefer to wait for a more desirable option.

Joining Multiple Waitlists. An important restriction in all of the mechanisms analyzed
so far is that patients may only sit on one GP’s waitlist at a time. This restriction limits the
mechanism’s ability to find gains from trade because patients may only express that one GP is
preferred to their current assignment. Unfortunately, assessing the equilibrium implications of
allowing patients to rank multiple GPs is challenging because such a change adds considerable
computational complexity to a patient’s choice problem.” We therefore instead consider a
benchmark simulation, Truthful TTC, in which patients truthfully report their full preference
list to the mechanism. This mechanism in effect allows patients to join an unlimited number
of waitlists, but assumes they join the waitlists for all GPs preferred to their current GP. The
mechanism is formally described in Appendix D.5, and the results are reported in Appendix
Table D.3.

Qualitatively, Truthful TTC has similar impacts to No Waitlists: it nearly eliminates wait-
ing times, but leads to lower post-assignment match quality. Almost all patients can be
reassigned to some preferred GP at the end of the same month in which they are attentive
because most patients prefer many GPs to their current one (often including at least one un-
dersubscribed GP), and because horizontal preference heterogeneity generates many feasible
trades. The reduction in waiting times does come at the cost of a less preferred assignment.
The average preference rank of a patient’s chosen GP is 2.73 under Truthful TTC, compared
to 1.80 under Waitlists and 1.63 under T'T'C. It is nonetheless striking that even when patients
cannot choose to wait longer for a more highly preferred GP, most are still reassigned to one

of their top few choices.

Quantitatively, however, the loss in match quality under Truthful TTC is smaller than under
No Waitlists, and the resulting welfare gains greater, because Truthful TTC also finds gains

from trade among waiting patients rather than only allowing assignments to vacancies. In fact,

4]n static implementations of DA or TTC with unrestricted preference lists, patients can do no better than
truthfully reporting their ordinal preferences. In a dynamic implementation of these algorithms, “strategy-
proofness” would no longer hold. It may be optimal for a patient to truncate their true preference list
to ensure that they receive a more desirable GP, even if they must wait longer. Calculating a patient’s
optimal truncation point requires calculating their continuation value from every possible truncated list.
Even mechanisms which allow patients to rank a small number of GPs becomes complex in a market with
many alternatives—if joining two waitlists were allowed, there are (‘;) possible rank-order lists. Further,
these alternative designs would require modeling patients’ beliefs about the joint distribution of waiting
times across multiple waitlists, as well as modeling their strategic behavior under much more complex choice
problems than those considered so far.
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mean patient welfare is higher under Truthful TTC than under any of the focal mechanisms.
In terms of realized flow payoffs, patients are on average 1.30 minutes better off relative to
Waitlists (compared to 0.72 minutes under TTC). However, as under No Waitlists, these gains
are concentrated among a minority of patients; the median patient is 0.61 minutes worse off. In
contrast, TTC and TTCP modestly reduce waiting times while improving post-reassignment

match quality, yielding more widely distributed gains.

Optimal Mechanisms. Finally, a natural question is what an optimal allocation mechanism
would look like in this environment. This question is challenging to answer. We are unaware
of theoretical characterizations of optimal mechanisms in models with the types of agent and
object heterogeneity considered here. Such mechanisms could involve complex choice and
priority rules that depend on the current state of the entire GP system. In principle, it is
still possible to solve computationally for an optimal mechanism, but this is an extremely

high-dimensional problem in our model.

Despite these difficulties, we can make some progress toward assessing how large the gains
from optimal mechanisms might be by solving a simpler problem. Specifically, we compute
a Greedy First-Best allocation in which the planner can observe patients’ preferences and
computes the utilitarian-optimal reassignments among all patients who become attentive and
wish to switch GPs each month. This allocation is not a true first-best because it ignores
potential gains from having some patients wait for future arrivals of GP slots that are not
available today. Nonetheless, this allocation helps us to assess the degree to which relaxing

incentive compatibility and FCFS priority constraints could improve the allocation.

Appendix Table D.3 shows that the Greedy First-Best improves patient welfare by a mean
flow payoff of 4.80. This amount, achieved at status quo capacity, is equal to a striking 70
percent of the welfare achievable under infinite GP capacity. Capacity constraints are thus
not, on their own, preventing large increases in patient welfare. Whether a more sophisticated
choice and priority system could achieve most of these gains given patients’ incentives is an

important question that we leave for future work.

VI Conclusion

This paper studies the problem of dynamically reassigning a set of agents to a set of objects

when agents’ preferences over objects may change over time. Our application is Norway’s
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primary healthcare system, in which individuals are matched with a GP throughout their
whole life, and may over time wish to switch their assigned GP. We provide direct evidence
of unrealized gains from trade under Norway’s current reassignment mechanism, and analyze
alternative mechanisms which find and execute such trades. To predict outcomes under alter-
native mechanisms, we estimate a structural model of patient demand for GPs and apply the

estimates within a dynamic equilibrium model of a GP reassignment system.

Our results suggest that applying straightforward ideas from the market design literature—
particularly the TTC algorithm—can reduce waiting times and improve patients’ ability to
obtain a well-matched GP. However, our results also highlight the fact that tools designed for
static environments may have unintended consequences in a dynamic setting. In particular,
introducing TTC within a dynamic reassignment system can leave some agents worse off
relative to operating strictly first-come first-served waitlists. Patients who are matched with
the least demanded GPs are especially disadvantaged. We then show that modifications to
the priority system can eliminate harms to these patients while preserving more than half of

the gains from TTC.

The existence of formal waitlists in our empirical setting makes unrealized gains from trade
directly visible to the researcher, but similar gains could well be present in other settings
where there is currently no formal way to register a desire to be reassigned. Canonical mar-
ket design applications such as public housing, specialized labor markets, public school seats,
and hunting permits share many of the features of our present study, and often lack central-
ized reassignment mechanisms. Reassignment mechanisms that do exist—for example, public
housing transfer systems in the U.S.; and public school reassignment systems in New York

City and Chile—often use waitlists in way that is similar to Norway’s current system.

Our analysis leaves several design questions unexplored. Within the class of mechanisms we
have considered, one could optimize on several dimensions we simply hold fixed—for example,
the frequency with which the matching algorithm is run, the information made available to
patients, or as discussed, the ability to join multiple waitlists. More broadly, this study
raises the question of how scarce resources should be rationed in dynamic assignment settings
where prices do not clear the market. Many, if not most, settings of this type do not use
formal waiting lists, and instead require agents to “check back later” for availability, effectively
rationing desirable objects through agent effort and luck rather than by waiting times. Finally,
there is a question of whether to impose formal capacity constraints (as in Norway), or to
allow the market to clear through endogenous quality degradation from overcrowding (as in

England). With some extension, our framework could be useful for studying these questions.
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Appendix A Data Details

A.1 Data Sources

The data for this study are primarily derived from Fastlegedatabasen, maintained by the
Norwegian Directorate of Health, as well as the administrative registries at Statistics Norway
(SSB). Individuals in the data (both patients and GPs) are each assigned a unique identifier,
which can be merged across datasets. Patients’ municipalities of residence are identified at the
monthly level using information from Fastlegedatabasen. Monthly municipality of residence is
carefully tracked in this data because municipalities make monthly transfer payments to one

another when a patient residing in one municipality enrolls with a GP located in another.

The raw GP enrollment and waitlist data are provided at the enrollment spell and waitlist
spell level, respectively. Enrollment spells start and end only on the first and last days of
a month, and so are in increments of full months. Waitlist spells can begin and end in
continuous time. The time at which an individual joins a waitlist governs their priority in
the waitlist. We convert the spells data to an individual-month panel. If an individual is on
multiple waitlists in the course of a month, we take the most recent waitlist they were on. For
our descriptive analyses, we make only three restrictions: (i) dropping individual-months that
occur after the individual’s registered date of death, (ii) dropping individuals under age 16,
and (iii) dropping individual-months in which no current GP was registered. Appendix Table
A.1 shows the number of individual-months dropped by these restrictions. Children under

age 16 represent 17 percent of the data and population.

Table A.1. Sample Construction Statistics

2017 2018 2019
Criteria Number  Pct. of initial ~ Number  Pct. of initial =~ Number  Pct. of initial
Initial patient-months 63,437,631 63,813,290 64,212,740
Registered after death 1,918 <0.01 48 <0.01 27 <0.01
Age < 16 11,475,019 0.18 10,694,796 0.17 9,918,551 0.15
No current GP 1,801 <0.01 2,066 <0.01 2,810 <0.01
Final total 51,958,893 53,116,380 54,291,352

Notes: This table shows the number of patient-months each year dropped due to each sample selection
criterion (in the order in which drops were made). The primary restriction on the data is to remove
children under the age of 16.

With respect to the demographic characteristics reported in Table 1, temporary residents

are defined as individuals whose national identity number is a “D-number,” rather than a
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“Birth number.”®® Our measure of annual income corresponds to an individual’s total labor
earnings, plus capital income and government transfers. Our flag for post-secondary education
corresponds to an individual having completed any educational degree beyond high school.
We classify municipalities as “urban” or “rural” based on the municipality’s Centrality Index,
a classification maintained by Statistics Norway.”® We classify centrality indices [1, 2, 3] as

urban, and [4, 5, 6] as rural.

Information on whether a patient has a chronic health condition is drawn from healthcare
utilization data in the year 2017. These data are derived from the Norwegian Patient Registry
(NPR) and the Control and Payment of Health Reimbursements Database (KUHR). The
data contain the universe of publicly-financed healthcare encounters that occurred in both
office-based and hospital-based settings in 2017. Importantly, the data contain diagnosis
codes (ICD-10), which allow us to determine whether an individual presented with a chronic
condition diagnosis in that year. We classify an individual has having a chronic condition if,
based on the diagnoses recorded in 2017, their Charlson Comorbidity Index score is greater

than zero.?”

A.2 Construction of Demand Estimation Sample

We estimate our model using the set of (adult) patient-months where the patient is resident
in the Trondelag region and the month is between December 2018 and November 2019. Once
we have limited to patients in Trondelag, for practical reasons we do not wish to allow these
patients to choose from among all possible GPs in all of Norway. We therefore make further

restrictions relating to the definition and construction of patients’ GP choice sets.

Our baseline choice set definition is a 60 minute drive time radius around each patient’s
municipality of residence. Any individuals that were enrolled with or joined a waitlist for a GP
further than 60 minutes driving time are dropped from the analysis. Because this restriction
will in particular exclude instances of patients that moved far but did not immediately switch
their GP, we exclude all patient-months in which a patient recently or imminently moved over

60 minutes (i.e., within months [—6,1]).°® In addition, we drop patient-months in which the

®For more information, see https://www.norden.org/no/info-norden/norsk-identitetsnummer.
3For details, see https://www.ssb.no/en/klass/klassifikasjoner/128.

5TFor a description of the Charlson Comorbidity Index and the 16 chronic conditions it covers, see for example:
https://reference.medscape.com/calculator /879 /charlson-comorbidity-index-score-cci-score.

58In our counterfactuals, we will recover the attention probabilities for patients who moved a long distance by
extrapolating the relationship between attention and move distance estimated at shorter move distances.
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current or requested GP exited during the subsequent month. Finally, for patient-months
in which no GP switch was requested, we drop observations where the patient was currently
standing on a waitlist. These months reflect the outcome of a prior decision to join a waitlist,

which we already capture in the set of patient-months where was a switch was requested.

Appendix Table A.2 describes the observations dropped at each step. We are left with
4,194,737 patient-months in which a switch was not requested, and 18,312 months in which a
switch was requested. These observations together are informative about when patients are
attentive and consider switching GPs. Conditional on making a switch request, the switcher-

month observations are informative about which GP characteristics patients value.

Table A.2. Demand Estimation Sample Construction

Non-switches Switches
Criteria Number Pct. of initial Number Pct. of initial
Initial patient-months in Trondelag region 4,617,667 29,937
Moved further than 60 min. in months [t-6, t+1] 80,105 2 5,964 20
Requested a GP further than 60 minutes 2,865 10
Current GP further than 60 minutes 118,257 3 2,309
Current GP exiting next month 157,832 3 394
Requested an exiting GP 93 <1
Currently on a waitlist 66,736 1
Final total 4,194,737 18,312

Notes: This table describes the sample selection criteria used in constructing the demand estimation sample.
The unit of observation is a patient-month, and location of residence is measured at the monthly level.
“Switches” are patient months in which the patient either joined a waitlist or else switched to a GP with open
slots. “Non-switches” are patient months where a patient took no action. Both switches and non-switches are
used in demand estimation.

Given the large size of the data, we proceed with estimation using all switcher patient-
months and a random sample of 15,000 non-switcher patient-months. In estimation, we then
re-weight the sampled non-switcher observations such that they represent the full set of ob-
servations. Given that patients with recent moves are disproportionately likely to be excluded
from demand estimation because they hold a GP further than 60 minutes, we also adjust
the sampling weights to match the original observed proportion of movers versus non-movers
in both the non-switcher and switcher samples. Finally, once the random sample of non-
switchers is drawn, we enforce a final restriction that all GPs remaining the analysis are
chosen a sufficient number of times for a GP fixed effect to be estimated. We require each GP
to be present in at least 400 individuals’ choice sets. GPs that do not meet this requirement
are dropped from all choice sets, and all patients that choose such a GP are also dropped.

Taken together, these collected restrictions effectively drop all patients who move into or out
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of Trondelag during the sample period. The exception would be if the move was from/to
a neighboring municipality where the prior GP was still within 60 minutes, and where the
prior GP was within 60 minutes for at least 400 patients in Trondelag. But, as discussed in
footnote 35, Trondelag was selected in the first place for the rarity of such occurrences. Our

final estimation sample consists of 14,820 non-switcher months and 17,864 switcher months.

Appendix B Additional Analysis

B.1 Mechanical Simulations: Implementation Details

Implementation of TTC. Only patients on waitlists participate in the TTC algorithm, as
any patient not standing on a waitlist retains their slot on their current GP’s panel. TTC
is thus run to find a matching between (a) the set of patients standing on waitlists, and (b)
the set of GP panel slots currently held by those patients. Preferences are all strict and are

determined as follows:
(a) Patients standing on a waitlist first prefer their waitlist GP, then their current GP.

(b) GPs first prefer all their incumbent patients who are participating in TTC. Since these
patients must be waiting on a waitlist, they have a global priority order determined
by the moment in time at which they joined that waitlist. GPs prefer their incumbent
patients in order of this global priority. GPs then prefer all the patients on their waitlist
in the order in which they joined.

We iteratively look for cycles within chains that begin with a patient, starting with the
patient who is highest on the global priority list and going down the list from there. Our
procedure is based on the “you request my house, I get your turn” algorithm first proposed
by Abdulkadiroglu and Sénmez (1999).

Mechanical Simulation of TTC on Historical Data. We implement the TTC algorithm
monthly on the historical waitlists data between November 2016 and December 2019. The
purpose of this exercise is to generate a naive estimate of how TTC would have changed the
waiting lists had it been in place during this period. In that spirit, we hold all of the following
objects fixed as they are observed in the data: patient entry (births or immigration), patient

exit (deaths or emigration), administrative auto reassignments of patients, GP entry, GP exit,
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GP panel caps, and, critically, patient actions. A patient’s action each month can be (a) doing
nothing and remaining with their current GP, (b) switching to an open GP, or (c) joining a
waitlist for a full GP. We then run the TTC algorithm on all patients standing on waitlists
each month. Patients who can participate in a cycle are reassigned to their desired GP’s panel

and removed from waitlists.

B.2 Preferences for GP Characteristics

This section investigates patient preferences for GP characteristics using a conditional logit
analysis of GP choice. Given the size of the data, we limit attention to the demand estimation
subsample described in Section IV.A and Appendix A.2. Further, for the purposes of this
specific analysis, we limit to the set of patient-months in which the patient requested to
switch their GP, either by switching to an open GP or else by joining a waitlist. Within this

subsample, we estimate the following conditional logistic regression specification:
Uijr = —dije + Wi + 05 + XS + 0c€ije

where d,j; is driving time between patient ¢’s municipality of residence and GP j’s office, w;jq
is the number of patients on GP j’s waitlist at the beginning of the month ¢ when patient ¢
made their switch request, J; is a GP fixed effect, X;;; includes interactions between patient
and GP age and gender as well as the patient’s chronic health status, and ¢ is a type-1
extreme value idiosyncratic shock. When reporting results, we normalize the coefficient on

driving time to -1.

Appendix Table B.1 reports results from three specifications. Column (1) excludes GP
fixed effects and interactions between patient and GP characteristics. It controls only for
GP age and gender, such that all horizontal GP differentiation comes from travel time and
idiosyncratic taste shocks. Younger and female GPs are chosen more often, as are GPs with
shorter waitlists. Column (2) adds observable patient-GP match-specific heterogeneity based
on age, gender, and patient health status.”® Compared to male patients, female patients have
a strong preference for female GPs; they would be willing to travel more than 6 minutes
longer to see one, both with or without a chronic health condition. There also appears to

be homophily on age, though it is weaker and not always statistically significant. All patient

59Temporary residents are treated as a distinct category because their demographic information is not available.
We explored other GP and patient characteristics, and found few that were statistically and economically
significant in explaining patients’ GP choices.
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groups prefer younger GPs, but compared to a patient over age 45, a younger patient would

travel about a minute longer to see a GP who is also under 45.

Table B.1. Preferences for GP Characteristics: Conditional Logit

(1) (2) 3)

Variable B SE B SE B SE
Travel time (minutes)? —1.000 —1.000 —1.000
Waitlist length —0.031 0.002 —0.031 0.002 —0.113 0.006
Female GP 1.361 0.091
x Temporary resident 2.506 0.247
x Perm. res. female, non-chronic, age 1645 4.006 0.202 1.432 0.304
x Perm. res. female, non-chronic, age 45+ 3.457 0.254 0.626  0.342
x Perm. res. male, non-chronic, age 16-45 —2.427 0.221 —4.905 0.330
x Perm. res. male, non-chronic, age 45+ —3.219 0.316 —5.833 0.398
x Perm. res. female, chronic, age 16-45 3.873 0.294 1.326  0.370
x Perm. res. female, chronic, age 45+ 2.755 0.277 —0.079 0.359
x Perm. res. male, chronic, age 1645 —2.598 0.455 —5.097 0.504
x Perm. res. male, chronic, age 45+ —2.244 0.386 —4.871 0451
GP age 45+ —2.081 0.092
x Temporary resident —1.670 0.252
x Perm. res. female, non-chronic, age 1645 —2.471 0.197 —0.744 0.313
x Perm. res. female, non-chronic, age 45+ —1.674 0.254 0.025 0.351
x Perm. res. male, non-chronic, age 16-45 —2.523 0.219 —0.681 0.327
x Perm. res. male, non-chronic, age 45+ —1.063 0.294 0.758 0.381
x Perm. res. female, chronic, age 16-45 —3.049 0.302 —1.251 0.384
x Perm. res. female, chronic, age 45+ —1.684 0.278 0.031 0.368
x Perm. res. male, chronic, age 1645 —2.529 0.441 —0.647 0.500
x Perm. res. male, chronic, age 45+ —1.826 0.378 —0.018 0.444
Coeff. on epsilon shock 6.868 0.103 6.852 0.102 6.721 0.115
GP FE N N Y
Dep. variable mean 0.005 0.005 0.005
# Observations 3,293,694 3,293,694 3,293,694

Notes: This table reports coefficient estimates from conditional logistic regressions predicting the GP choices
of patients who requested to switch GP. The unit of observation is a (patient-month, GP) pair. The sample of
switcher-months corresponds to those used in the demand estimation sample, described in Section IV.A. The
average patient-month has 192 GPs within choice set. Since this analysis conditions on requesting to switch,
we exclude each patient’s current GP from choice set. The outcome variable is an indicator for whether the
patient requested to switch to a specific GP. GP FE indicates whether the specification includes a fixed effect
for each GP, with one GP’s fixed effect normalized to zero. In column (3), temporary residents serve as the
omitted category for interactions between GP and patient characteristics. By normalization

Column (3) adds GP fixed effects, absorbing any persistent GP-specific differences in desir-
ability. The coefficients related to match specific heterogeneity—age and gender interactions

and the standard deviation of the idiosyncratic shock—are very similar to column (2).%° How-

60The levels of the coefficients are different than in column (2) because column (3) normalizes the preferences
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ever, adding GP fixed effects more than triples the magnitude of the estimated coefficient on
waitlist length. This is consistent with more desirable GPs having longer waitlists. Column
(3) isolates responsiveness to variation in the length of the same GP’s waitlist (relative to
other waitlists) over time. This type of variation occurs naturally in queues due to statistical
fluctuations in the number and types of agents and objects arriving over time (Waldinger,
2021; Leshno, 2022). The sensitivity of patients’ choices to waiting time (information) will
be a key determinant of the equilibrium implications of changing the design of the waitlist

mechanism.

B.3 TTC is Not Pareto Improving: Styled Examples

This section constructs simple examples in which TTC is and is not Pareto improving over
Norway’s status quo mechanism (Waitlists). We also compare to the patient-optimal stable
match produced by DA, which is always Pareto improving over Norway’s status quo mecha-
nism. As in our mechanical simulations, each example holds initial assignments and patient
switch requests fixed across assignment algorithms, and maintains FCFS priority among wait-

ing patients. Appendix Section D.2 formally describes each algorithm.

Example 1. We begin with an example in which TTC generates a Pareto improvement.

Appendix Figure B.1 illustrates an economy with the following primitives:

o There are five patients (i, is, i3, 14, 75) and three GPs (A, B, and C), each with a panel

cap of two.

o At t =0, 4, and iy are assigned to A; i3 and i4 are assigned to B; and i5 is assigned to

C. As a result, A and B have full panels, while C has an open slot.

o At t =0, iy requests to switch from A to B, while i3 requests to switch from B to A.
Since there are no other waiting patients, each patient is placed at the front of their

requested GP’s waitlist.

o At t = 2, patient i5 requests to switch from C to B, and is placed behind patient i; on

B’s waitlist.

o At t =10, patient i4 requests to switch from B to C, which can be immediately executed

because there is an open slot.

of temporary residents for GP age and gender to zero, but the difference between any two coefficients is
similar.
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o At t = 20, patient iy dies, vacating a slot on A’s panel.

Figure B.1. Example 1: TTC Generates a Pareto Improvement

We now consider when each patient is reassigned under each assignment algorithm:

Waitlists: Under Norway’s status quo mechanism, patients ¢; and 73 cannot trade immediately,
even though each is waiting for the other’s GP. Instead, they must wait for a vacancy on either
A’s or B’s panel. A vacancy arises at ¢t = 10, when i4 requests to switch from B to C. Since
C has an open slot, the following steps occur: 4 is assigned to C, creating a vacancy on B’s
panel; 4, is assigned to B from the front of the waitlist, creating a vacancy on A’s panel; i3
is assigned to A from the front of the waitlist, creating another vacancy on B’s panel; and
15 is assigned to B, creating a vacancy on C’s panel. At this point, no patients remain on a

waitlist. Thus, all patients who have requested to switch GP are reassigned at ¢t = 10.

DA: We next consider the allocation produced by running patient-proposing DA each month,
after filling any vacant slots from waitlists. At ¢t = 0, ¢; and i3 are allowed to “trade” GPs
since each is at the top of their respective waitlist. During the DA algorithm, ¢; first proposes
to B, and 3 first proposes to A; since neither patient is rejected, the algorithm terminates
with each patient reassigned to their requested GP. Between ¢t = 0 and ¢ = 10, only patient
15 is waiting to switch GP, so DA produces no additional reassignments. i5 must still wait
until ¢ = 10, when i4 open switches from B to C, to be reassigned to B. Thus, compared to
Waitlists, DA allows patients i; and i3 to be reassigned at ¢t = 0 instead of ¢ = 10, while i5
is still reassigned at ¢ = 10. This is a Pareto improvement because ¢; and i3 wait for strictly

less time, whereas i5 waits for the same amount of time.

TTC: In this example, the TTC algorithm produces the same allocations as DA. At t = 0,
pairs (i1, A) and (i3, B) immediately form a cycle, so the two patients are reassigned. TTC

produces no additional reassignments, and patient i5 is reassigned to B at t = 10, after patient
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14 switches to C. Like DA, TTC generates a Pareto improvement relative to Waitlists.

Example 2. Figure B.2 illustrates an example that is identical to Example 1 except that (i)
patient i5 requests GP A instead of B, and (ii) patients i5 and i3 request A in reverse order:
i5 requests to switch from C to A at ¢t = 0, while i3 requests to switch from B to A at t = 2.

We again consider when each patient is reassigned under each algorithm.

Figure B.2. Example 2: TTC is not Pareto Improving

Waitlists: As in the previous example, no reassignments occur until ¢ = 10. At ¢t = 10, patient
14 open switches to C’s panel, leaving a vacant slot on B’s panel; patient i, is reassigned to the
vacant slot on B’s panel, leaving a vacant slot on A’s panel; and patient i5 is reassigned to the
vacant slot on A’s panel, leaving a vacant slot on C’s panel. No further reassignments occur
this period, and patient 73 remains on the waitlist for A. At ¢ = 20, patient i, dies, vacating a
slot on A’s panel which is reallocated to patient ¢3. No further patients are waiting to switch

GP. Thus, all waiting patients are reassigned at t = 10 except i3, who is reassigned at ¢t = 20.

DA: In this example, patients i; and 73 could execute a mutually beneficial trade beginning
in t = 2, when i3 joins GP A’s waitlist. However, the DA algorithm will not execute this
trade while patient 75 remains on A’s waitlist because it would violate waiting time priority

to reassign i3 before i5. The specific steps would be as follows:

o In each period t = 2,3, ...,9, the DA algorithm would reassign zero patients, despite the
potential gains from allowing ¢; and i3 to trade. The sequence of proposals would be
as follows. i first proposes to B and i5 and i3 propose to A; A provisionally holds i5’s
proposal and rejects i3, who is lower on the waitlist. In the next round, i3 proposes to B
(their current GP), who then rejects ;. In the next round, 7; proposes to A, who then
rejects i5, who then proposes to C. At this point, all waiting patients propose to their

current GPs, and since no patient is rejected, the algorithm terminates.
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o Att =10, DA reassigns the same patients that are reassigned under Waitlists (all except
i3). To see this, note that this is the patient-optimal stable match; reassigning i3 would

require not reassigning i5, which would violate waiting time priority.

o At t = 20, patient i3 is reassigned to A after patient i, dies.

Thus, in this example, DA produces exactly the same outcomes as Waitlists because it cannot

violate waiting time priority.

TTC: In this example, TTC produces a different allocation than Waitlists and DA, and in the
process, harms patient i5 (while benefiting patients ¢; and i3). At ¢ = 2, when i3 requests to
switch from B to A, i; and i3 form a cycle and trade GPs when the TTC algorithm is run.
Patient i5 remains on the waitlist for GP A. At ¢ = 10, patient i, open switches to panel C,
vacating a slot on B’s panel. This slot remains vacant since there are no patients waiting for
B, and 75 remains on the waitlist for GP A. At ¢t = 20, patient i5 is reassigned to the slot

vacated by 4o, who dies.

Compared to Waitlists and DA, patients i; and i3 are reassigned 8 and 18 periods earlier,
respectively, since they trade GPs at t = 2 instead of being reassigned at (respectively) ¢t = 10
and t = 20. However, patient i5, whose GP is not oversubscribed, waits 10 periods longer,
being reassigned at t = 20 instead of ¢ = 10. This example illustrates how TTC not only
moves reassignments forward in time, but also reallocates slots towards patients that can
facilitate trades. Specifically, TTC allows patient i;’s slot on A’s panel to be reallocated
sooner, reducing the total amount of time waited in the economy. However, it also reallocates

11’s slot from patient i5, who cannot form a cycle, to i;, who can.

B.4 Predictors of Switching GPs

A number of patient characteristics appear predictive of a desire to switch GPs. For example,
Table 1 shows that 34 percent of patients who had switched to an open GP and never used
a waitlist over the period 2017-2019 had moved at some point during that period, compared
only 6 percent of patients who had neither switched GP nor used a waitlist. To investigate
the relative importance of various factors that may motivate GP switching, we regress an
indicator for a GP switch request on patient characteristics. A GP switch request includes
either an immediate switch to an open GP or a waitlist join. Our focal patient characteristics

include time-invariant patient demographics and the timing of a switch relative to a move.
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Appendix Table B.2 reports these results. The outcome variable is a switching indicator.
The indicator is scaled by 100 for readability, so coefficients should be interpreted as percentage
points. The overall probability of observing a switch request is 0.718 percent. Specification
(1) includes only a set of nine mutually exclusive and exhaustive patient demographic types.
We find that temporary residents are substantially more likely to request to switch GPs
than permanent residents, with a baseline probability of 1.501 percent. Among permanent
residents, patients with a chronic health condition and younger patients (particularly females)

are more likely to switch.

Specification (2) introduces information on timing relative to a patient move. Conditional
on a move being observed in the past 6 months, the current month, or the next month, we
create four categories of moves based on an intersection of timing and distance of move. We
find that switches are substantially more likely to occur in the month concurrent with or
directly preceding the month of a move, and also that switches are far more likely to be
associated with longer moves relative to shorter moves. For example, a female moving over
30 minutes away either this month or next month (i.e., in month [t, t+1]) has an extra 12.708
percent chance of requesting to switch GPs, relative to a female who has not recently or
imminently moved. Variation induced by moves therefore appears, unsurprisingly, to be an

important determinant of when patients request to switch GPs.

B.5 Evidence on Endogenous Switch Requests

An important implication of our demand model is that the rate of GP switch requests does not
depend on current or future waiting times for different GPs, but only on the set of GPs that
can be chosen. This rules out induced demand for switching in our counterfactuals if waiting
times change, as well as other types of forward-looking behavior. This section tests these
model predictions empirically. We first use a change in the waitlist rules that reduced waitlist
lengths to test whether this led to additional switch requests. We then test whether switch
requests are sensitive to future waiting times. We fail to find evidence that the number of
switch request responds to the returns to switching as a function or current or future waiting

times.
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Table B.2. Predictors of Switching GPs

(1) (2)
Variable B SE I6] SE
Temporary resident 1.501 0.005 1.177 0.005
Perm. res. female, non-chronic, age 16-45 1.135 0.002 0.892 0.002
Perm. res. female, non-chronic, age 45+ 0.462 0.001 0.415 0.001
Perm. res. male, non-chronic, age 16-45 0.762 0.002 0.583 0.002
Perm. res. male, non-chronic, age 45+ 0.348 0.001 0.306 0.001
Perm. res. female, chronic, age 16-45 1.260 0.004 1.024 0.003
Perm. res. female, chronic, age 45+ 0.557 0.002 0.512 0.002
Perm. res. male, chronic, age 1645 0.871 0.004 0.704 0.004
Perm. res. male, chronic, age 45+ 0.421 0.002 0.385 0.002
Moved <30 minutes, this or next month
x Temporary resident 7.509 0.174
x Perm. res. female 3.738 0.048
X Perm. res. male 2.700 0.040
Moved <30 minutes, prev. 6 months
x Temporary resident 2.277 0.075
x Perm. res. female 1.577 0.021
X Perm. res. male 1.200 0.017
Moved >30 minutes, this or next month
x Temporary resident 21.634 0.187
X Perm. res. female 12.708 0.057
X Perm. res. male 8.924 0.047
Mowved >30 minutes, prev. 6 months
x Temporary resident 3.746  0.063
X Perm. res. female 3.561 0.021
X Perm. res. male 2.887 0.018
Dep. variable mean 0.718 0.718
R? 0.009 0.022
# Observations 154,793,455 154,793,455

Notes: This table investigates observable predictors of requesting to switch GPs. The
unit of observation is the patient-month. The sample includes all adult patients in Nor-
way over the period January 2017 to November 2019. Regressions are linear probability
models where the outcome variable is an indicator for a GP switch request (either a
waitlist join or a switch to a GP panel with open slots). All covariates are indicator
variables. For readability, the outcome variable is scaled by 100; coefficients should
therefore be interpreted as percentage points.

B.5.1 Responsiveness to Aggregate Waitlist Length

An important question in our counterfactuals is whether more patients would request to switch

GPs if expected waiting times fell systematically. Such a response would be predicted by a
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model where patients pay a “switching cost” at the time they request to switch GPs. In
contrast, our model of exogenous inattention rules out this type of response. As there is no
direct switching cost at the time of requesting to switch GP, an attentive patient will always

request to switch GP if any GP is preferable to their current one.

Testing for such a response is challenging because it requires variation in aggregate waitlist
lengths, holding other demand and supply conditions fixed. One observation we can make
is that the rates of switch requests have remained steady since waitlists were introduced in
November 2016, and the number of waiting patients has grown almost linearly since then.
If patients were more likely to make switch requests when waiting times were shorter, we
would have expected a spike and then decline in switch requests after the introduction of
waitlist. The time series evidence therefore weighs against a fully attentive model. However,
it is also possible that patients gradually became aware of the new waitlist system, offsetting a
deterring effect of increasing waiting times. We therefore also look for shorter-term variation

in aggregate waitlist lengths.

Another source of variation that occurred during our sample period—but before the period
used for structural estimation—systematically reduced both perceived and actual waiting
times. Until October 2017, Norway maintained a “buffer” of 20 slots on each GP’s panel,
and only assigned waiting patients after 20 slots were available.’* The buffer was intended
to prevent other additions to a GP’s panel, such as births and administrative reassignments,
from violating the panel cap. However, recognizing that this buffer kept patients waiting
for GPs with open slots, the buffer was reduced from 20 to 10 slots in October 2017. GPs
with 10-19 open slots had their panels filled with patients from the waitlist at the end of the
month, resulting in a one-time drop in aggregate waitlist lengths. We use this variation to
test whether aggregate switching rates increased immediately after this policy change, both

overall and differentially by the amount different geographic regions were impacted.

Appendix Figure B.3 plots the monthly share of patients requesting to switch GP in a
two-year window around the month of the buffer change. Monthly switching rates range
between 0.5 percent and 1 percent, but there is no visible increase in the aggregate number of
switch requests beginning in October 2017. While there is not a clear aggregate response in
switching requests, there was substantial variation across municipalities in the extent to which
the change in the waitlist buffer affected waitlist lengths. In particular, smaller municipalities

were much more affected. We can therefore explore geographic heterogeneity in the impact of

61The algorithm would fill all of the open slots once the buffer was exceeded, so a given GP did not always
have 20 extra slots.
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the buffer change.

Figure B.3. Probability of GP Switch Request: Event Study
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Notes: The figure shows the average rate of GP switch requests in Norway over time, where
a switch request includes both joining a waitlist and switching to an open GP. Waiters were
introduced in November 2016. The waitlist buffer was reduced from 20 to 10 in October
2017.

The GPs directly impacted by the buffer change were those with 10-19 slots available prior
to the change. For these GPs, all available slots were filled once the buffer was reduced to
10, but would not have been had the buffer remained at 20. We measure exposure to the
buffer change in two ways. First, we calculate the fraction of GPs in each municipality who
are near the buffer (“Near-Buffer”), meaning they had 10-19 open slots on their panel as of
September 2017. Second, since waitlist lengths varied among Near-Buffer GPs, we multiply
each municipality’s Near-Buffer share by the average change in the length of the waitlist among
Near-Buffer GPs. This measure isolates the average change in the length of all GP waitlists
induced by the buffer change, which is more than 1.5 patients in the median municipality.
We interact both measures with indicators for 1-3 and 4-12 months after the buffer change.
Appendix Table B.3 reports these results. We find no differential impact of these exposure
measures on switching rates, regardless of whether or not we control for a linear time trend

in switching rates.
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Table B.3. Switch Requests by Exposure to Buffer Change

Near Buffer Waitlist Change
(1) 2) (1) (4)
Variable Ié] SE Jé] SE B SE Jé] SE
Oct.-Dec 2017 x 1 S.D. Exposure 0.120 0.153 0.121 0.153 0.000 0.117 —0.000 0.117
Jan.-Oct 2018 x 1 S.D. Exposure 0.153 0.135 0.154 0.135 —0.155 0.117 —0.155 0.117
Trend —0.000 0.011 —0.000 0.011
Municipality FEs Y Y Y Y
Month FEs Y N Y N
Dep. variable mean 0.009 0.009 0.009 0.009
# Observations 10,424 10,424 10,424 10,424

Notes: The table reports estimates from linear regressions predicting the share of residents within a
municipality-month who request to switch GP, weighted by population. The sample includes all municipality-
months between October 2016 and October 2018. The outcome variable is the share of residents who requested
during that month to switch to a new GP. In Columns (1) and (2), exposure is defined as the share of GPs
“Near Buffer,” i.e. with 10-19 open slots as of September 2017. In Columns (3) and (4), exposure is defined as
“Waitlist Change,” the change in waitlist length from September to October 2017 interacted with an indicator
for GPs being near the buffer. Both measures are in standard-deviation units. All coefficients and standard
errors are scaled by 1,000 for readability.

B.5.2 Responsiveness to Waitlist Growth Rates

The structural model also rules out the possibility that switch requests depend on the relative
current and future returns to switching. If patients are forward-looking, they may adjust the
timing of their switch requests to make them when waiting times are short. Since the waitlists
were growing during our sample period——so waiting times are usually shorter today than
in the future—our estimated attention probabilities may be biased for long-run stationary

equilibria.

We test this assumption in two ways. First, we ask whether in aggregate, switch request
rates are elevated in the months right after the introduction of waitlists. If patients strategi-
cally time their switch requests based on current and future waiting times, they would have an
incentive to make a switch request as quickly as possible after the waitlists were introduced,
when waiting times tended to be shortest as few patients had joined the newly opened wait-
lists. Second, to adjust for confounding time-varying factors, we test whether these rates were
relatively more elevated in places where GP waitlists grew more quickly after the initial few
waitlist months.®?> The analysis is done for all of Norway to maximize power and geographic

variation.

Appendix Figure B.4 plots the raw number of switch requests in Norway each month from

62We are grateful to an anonymous referee for this suggestion.
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2016 through 2019, also broken out by whether the request was a switch to an open GP or
a waitlist join. A few things are apparent. First, there is some seasonality in the number
of switch requests, which we abstract away from in the structural model but will need to
account for here. Second, switch requests increased after the waitlists were introduced, and
remained elevated thereafter. This is consistent with our model because the waitlists expanded
patients’ choice sets; GPs that would not have been available under the prior system because
their panels were full could now be chosen. Third, there is a general positive trend in switch
rates, including during 2017-2019. This trend combines increasing waitlist join rates and

decreasing open switch rates.

Figure B.4. Number of GP switch requests over time
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Notes: The figure shows the number of GP switch requests per month, overall and broken out
by open switches and waitlist joins.

Appendix Figure B.5 presents plots of residualized switch requests each month during 2016
2019, adjusting for seasonal patterns, longer-term trends, and the fact that switch requests
should increase due to the waitlists even without forward-looking behavior. Both panels
include an indicator for post-November 2016 (i.e., the waitlists period) in the regression.
Panel (a) controls for year and month-of-year fixed effects, whereas Panel (b) includes a linear
time trend. In both plots, there is no jump in switch rates in the first few months of the
waitlists period. In fact, one would be hard-pressed to guess in which month the waitlists
were introduced based on this plot. Although this is just a time series, it shows there was
not a temporary surge in switch requests when the waitlists were introduced. This weighs

against a model in which patients strategically time their switch requests. However, these
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patterns should be interpreted with caution, because other time-varying factors could have
also influenced switch request rates. For example, patients may have only gradually become
aware of the new waitlist system, and therefore many may not have taken advantage of the

initially short waitlists, though they would have liked to.

Figure B.5. GP switch requests by month, residualized
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Notes: Switch request rates by month residualized on calendar time. Both panel include an indicator for post-
November 2016, when the waitlists were introduced, and month-of-year fixed effects. Panel (a) controls for
year fixed effects, while panel (b) controls for a linear time trend.

Next, we looked for evidence that switch requests surged more in places where the waitlists
grew more quickly after they were introduced. A challenge here is that switch requests are
mechanically related to waitlist growth. We therefore separate the first three months in the
waitlist period (Nov 2016, Dec 2016, and Jan 2017) from later months, and measure the
growth rate in each municipality’s (or region’s) waitlist growth rate beginning in February
2017. We conduct our analysis at the municipality level and cluster standard errors at the

region level.

Appendix Table B.4 predicts the number of switch requests to GPs in a municipality each
month. Each specification includes municipality fixed effects as well as month-of-year fixed
effects and a linear time trend. Column (1) includes an indicator for the first three months
(first quarter) after the waitlists were introduced. There is a statistically significant increase in
switch requests, but, consistent with the earlier plots, it is estimated to be small in magnitude
— 0.25 switch requests per 1,000 enrolled patients, compared to a mean rate of 5.37. Column
(2) adds an interaction between the first-quarter indicator and the municipality’s waitlist
growth rate between February 2017 and December 2019. We estimate a small and statistically
insignificant coefficient for this interaction, suggesting that first quarter switch requests are
not differentially higher in municipalities where the waitlists grew more quickly afterwards.

Column (3) considers an alternative proxy for waitlist growth, the share of a municipality’s
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GPs that were near capacity in October 2016. Figure B.6 shows that this measure of capacity
utilization strongly predicts waitlist growth. This interaction is also statistically insignificant
and small in magnitude. Columns (4) and (5) repeat the specifications in the previous two

columns, but allow for the effect of time to vary by region. This yields nearly identical results.

Taken together, the evidence in this section is consistent with our model’s prediction that

the number of switch requests does not depend on the current or future returns to switching.

Table B.4. Switch Requests After Waitlists Introduced

Dependent Variable: Switches per 1,000 Enrollees

M @) ®) ) ®)

First quarter after waitlists introduced 0.246 0.249 0.116 0.240 0.0827
(0.0817) (0.129) (0.329) (0.130) (0.331)
X growth rate after Feb 2017 -0.00844 0.0160
(0.306) (0.307)
X share GPs near cap in Oct 2016 0.245 0.307
(0.572) (0.575)
Observations 15170 15170 15170 15170 15170
Kommune and Month-of-Year Fixed Effects Yes Yes Yes Yes Yes
Linear Time Trend Yes Yes Yes Yes Yes
Regional Trends No No No Yes Yes

Notes: The table presents OLS regressions predicting the monthly rate of switch requests in a municipality.
The unit of observation is a municipality month between November 2016 and December 2019. The 410
municipality’s that existed throughout 2016 to 2019 are included in the sample. The growth rate after Feb
2017 is the monthly change in the number of patients on the waitlist for a GP in that municipality, per 1,000
enrollees in that municipality. The share of GPs near cap refers to the fraction of GPs in the municipality that
had fewer than 20 available panel slots available in October 2016. The number of enrollees is also measured
in October 2016. All specifications include fixed effects for each municipality and month-of-year, as well as a
linear time trend. Columns (4) and (5) allow the fixed effects and time trend to be region-specific. Standard
errors, clustered by region, are in parentheses.
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Figure B.6. Subsequent Waitlist Growth by Share of GPs near Cap

.8

Monthly Rate per 1,000 enrollees

T T T T

o] .2 4 .6 .8 1
Share of GPs near capacity in Oct 2016

Notes: The figure shows a binned scatter plot of the monthly growth rate in the number of waiting
patients per 1,000 enrollees between February 2017 and December 2019, against the share of GPs
near their panel cap in October 2016 (the month prior to waitlist introduction). Enrollment is
measured as of October 2016. The unit of observation is a municipality. A GP is near their cap
if they have fewer than 20 open slots on their panel.

Appendix C Estimation Details

This section provides details on the Gibbs’ Sampler used to estimate the structural model
parameters. We first describe the restrictions that the choice data place on the model primi-
tives; then how we draw patient attention \; and flow payoffs v;;; and finally, how we update
the discount rate p. The updating steps for (5, 0.) are standard. Unless otherwise specified,

we condition on the month ¢ in what follows and omit it from the notation.

Restrictions on Primitives. Consider a patient ¢ with current GP j, who requests to switch
in a given month. We learn two things from this patient. First, since they requested to switch
GP, they were attentive: \; = 1. Second, their chosen GP j* must have higher expected net

present value than any other GP, given the patient’s preferences and waiting time beliefs:

E [6_'0Tij* WZ} (Uij* — Uijo) 2 E [e_pT“ | Wz] (Uz'j - Uijo) VJ c j, (9)
N ~ v ————
wjx(p) w; (p)

where we define w;(p) to be the expected discount factor to simplify notation. This set of
inequalities implies a lower bound on the flow payoff v;;« from the chosen GP, and an upper

bound on the flow payoff v;; from each GP that was not chosen:
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« Upper Bound: Rearranging Equation (9), for each j € J \ j*,

wi<(p)  wi(p) —w;(p)
. w;(p)

Ublj (UZJ »Vijg ;,0)

1J0 9

where the notation ub;;(v;j=, vijo; p) will be useful later.

o Lower Bound For chosen j*,

> max i), wir(p) = wi(p)
jeT\* wi+(p) wj(p)

Vi = ijo -

~
b+ (visp)

For patients who do not request to switch, it is not known whether they were paying attention.
If the patient was not attentive (A\; = 0), then not switching contains no information about
their preferences. If the patient was attentive (\; = 1), then not switching implies that their

current GP was preferable to all others: v;;, > max;.;, v;; .

Attention and Flow Payoffs. The Gibbs’ sampler uses data augmentation to draw patients’
attention and flow payoffs. The key challenge in drawing attention is calculating the likelihood

that a non-switcher was attentive. By Bayes’ Rule,

Pr(no switch | \; = 1, X, jo; 8)Pr(\; = 1)
Pr(no switch | X, jo;0)
Pr(no switch | \; = 1, X, jo; 0)Pr(\; = 1)
Pr(\; = 0) 4+ Pr(no switch | \; = 1, X, jo; 0)Pr(\; = 1)’

Pr(\; = 1] no switch, X, jo; 0) = (10)

where 0 = (p, 3, 0.(+), p*(-)) collects the model parameters. By definition, Pr(\; = 1) = p*(X;)
and Pr(\; =0) =1 — p*(X;), and we can express

Pr(no switch | \; = 1, X, jo; 0) = Pr(vi;, > max v;; | X;0)
J#3do

> ijo — Xij ijo — Xij
e (5o (5

where ®(-) and ¢(-) are the standard normal CDF and PDF, respectively. For each inattentive
patient, the estimator evaluates this integral using Gauss-Hermite quadrature. Each patient’s
A; is an iid Bernoulli draw with probability defined in Equation 11 for non-switchers. The

attention probabilities p*(x) are then drawn from their posterior Beta distributions, given
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attention draws across all periods t:

) [{da} ~Beta [at+ D> Ao+ > (=X, (12)

(’i,t):Xit:I (’L‘,t):X“:Z

where the prior is Beta(a, ¢). In practice, we resample the individual attention draws and

parameters every 10 iterations of the Gibbs’ sampler.

Drawing patients’ flow payoffs for each GP is more straightforward. For attentive patients,
we redraw the flow payoff from each non-chosen GP from a truncated normal distribution with
upper bound ub;;(v;j-, vij,; p), and the flow payoff v« for the chosen GP from a truncated

normal distribution with lower bound 1b;;«(v;; p).

Discount Rate. The discount rate is updated via a Metropolis-Hastings step which requires
calculating the likelihood of the data given the other parameters. The algorithm begins with
a previous draw p,_; and a proposal distribution F,(. | pp—1;7), which is truncated normal.%

Each iteration, the following steps occur:

(i) Take a draw pp ~ F,(. | pp—1)

(ii) Calculate the ratio r(py, pp—1) = L@Efi)l),

and the other current draws of the model parameters.

(iii) Set pb:{ po w.p. min{l,r(py, py-1)} }

where L(p) is the likelihood of the data given p

pp—1 w.p. 1 —min{l,r(pp, pp-1)}

The main difficulty in implementing this is calculating the likelihood

k#jo

L(p) =;5,=1 Pr (j* = argmax E [e_pT““] (vik — vijo) | Xi,wi,ﬁ,ag,p) (13)

for different values of the discount rate. This likelihood does not have a simple closed form,
but it can be approximated with a high degree of accuracy using quadrature and exploiting

the fact that the flow payoffs are conditionally independent given v;;,. Specifically, we can

63We experimented with an adaptive variance parameter 7, but settled on fixing 7 = 0.001.
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rewrite each probability in equation 13 as

+o0 o0
Lip) = / / Pr(vs < ubs(vysviini p) Yk # jojo | Br) dFy(vy) dFi(vis0)

ij0

A ubi (Vije, Vijo; p) — Xik 3
- / / Hk;éj*,jo‘l)< ’ g ) dFy(vig) dFijo(vijo ), (14)

30

where the last equality exploits conditional independence of v;;, given the flow payofts from the
patient’s current and chosen GPs. To reduce the dimensionality of the integral, we condition
on the value of v;;, when evaluating it, and evaluate the inner integral using Gauss-Laguerre

quadrature.

Appendix D Counterfactual Simulation Details

D.1 Simulated Dynamic Economy

As described in Section V.A, the simulated economy contains a finite set of patients I and
GPs J. Patients have type x € X, where X = {demographic type, health type, location of
residence}. There are five possible demographic types: {Perm. res. female < 45, Perm. res.
female > 45, Perm. res. male < 45, Perm. res. male > 45, Temp. res.}; two possible health
types: {chronic, non-chronic}; and 45 possible locations of residence (municipalities in the
Trondelag region). GPs are characterized by a demographic type (gender and over/under age
45), office coordinates, a GP fixed effect dictating their vertical quality, and a panel cap (an

integer greater than zero).

GP characteristics are fixed over time. Patient characteristics evolve according to a sta-
tionary Markov process M : X — X. Patients are assumed to indefinitely retain their gender
(where the three possible genders are {Perm. res. female, Perm. res. male, Temp. res.})
and their health status, so aging is the only relevant demographic transition. The transition
process can therefore be thought of as drawing two independent shocks: a moving shock and
an aging shock, where the probability of both shocks depends on a patient’s current demo-
graphic type and location of residence. We calibrate transition probabilities to match observed
transitions in Trondelag over 2017-2019. We then adjust the transition process to make it

stationary.®

64We begin with the probability mass distribution of patient types observed Trondelag in December 2019,
where there are |X| = 5245 = 450 distinct patient types. We then calculate the (monthly) probability
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Appendix Table D.1 reports details of the distribution of patient and GP types as well as
the patient type transition process. Panel A describes patients. Seven percent of patients
are temporary residents and 31 percent have a chronic health condition. Among permanent
residents, half are female (with the remainder male), and 46 percent are age 16-45 (with the
remainder 45 or older). Across all patients, the average probability of receiving an aging shock
is 0.19 percent and the average probability of receiving a moving shock is 0.21 percent. The
probability of aging is highest for temporary residents and lowest for females over age 45. The
probability of moving is highest for female under age 45 and lowest for females over age 45.
Conditional on moving, patients are more likely to move to a nearby location than a distant
location.®> Given the observed distribution of patient and GP locations, the average patient
has 94 GPs within 15 minutes’ driving time and 190 GPs within 60 minutes driving time, but
there is substantial heterogeneity. In some rural areas, patients have only 5 GPs within 60

minutes, while in the central city of Trondheim, there are 189 GPs within only 15 minutes.

Panel B of Table D.1 describes the 425 GPs in the simulated economy. 48 percent of GPs
are female, and 56 percent are under age 45. Among female GPs, however, 65 percent are
under 45, reflecting growth of gender equity in this profession in recent decades. The average
GP has a panel cap of 930 patients. The smallest GP has a cap of 80, while the largest has a
cap of 1,695. For the purpose of our simulations, we do not use the panel caps observed in the
data, but rather let them be determined based on the set of patients used in the simulation.
For GPs that have waitlists as of December 2019, we set their panel cap equal to the observed
number of patients that are enrolled with that GP and who reside in the Trondelag region.
For GPs without waitlists, we set their panel cap equal to their observed enrollment among

Trondelag patients times their observed ratio of enrollment to panel cap in the full data.

Finally, Panel C of Table D.1 describes the 45 possible locations where patients may live.
The largest location is Trondheim municipality, with a population of 163,939 (nearly half

the total population in the economy). The smallest location is Rgyrvik municipality, with a

with which a “young” (< 45) patient becomes an “old” (> 45) patient based on our patient-month panel
data from 2017-2019. In addition, we calculate the probability with which an “old” patient dies, which
our transition model interprets as them transitioning to being a “young” patient again (implemented in the
simulation via our “rebirth” procedure). We then also calculate the matrix of municipality-to-municipality
monthly transition probabilities, separately for each of the five patient demographic types, again based
on the 2017-2019 patient-month panel data. Combining these transition processes for demographics and
location, we have a candidate transition matrix M, but it is not stationary. We solve for the stationary
transition matrix M that minimizes the sum of squared differences between M and M.

65 Appendix Table E.3 reports the corresponding rate of attention shocks received in the economy. For moves
over 60 minutes, we determine the probability of an attention shock by extrapolating the relationship between
attention rate and move distance derived from our demand estimates.
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Table D.1. Fundamentals of Simulated Economy

Percentile

Mean Min 25th 50th 75th Max

Panel A: Patients (N = 371,536)
Demographic Type

Temporary resident 0.07
Perm. res. female, age 16-45 0.21
Perm. res. female, age 45+ 0.26
Perm. res. male, age 16-45 0.22
Perm. res. male, age 45+ 0.25
Other Characteristics
Prob. aging shock 0.002 0.001 0.002 0.002 0.002 0.007
Prob. moving shock 0.002 <0.001 0.001 0.002 0.002 0.012
Num. GPs within 15 min. 95 0 15 34 189 189
Num. GPs within 60 min. 190 ) 74 262 262 279
Travel time to avg. GP 94 47 47 60 118 528

Panel B: GPs (N = 425)
Demographic Type

Female, age<45 0.31
Female, age>45 0.17
Male, age<45 0.25
Male, age>45 0.27
Other Characteristics
Panel cap 930 80 794 936 1,098 1,695
Travel time to avg. municipality 210 97 100 134 277 747
Travel time to closest municipality 6 3 5 6 7 23
Panel C: Locations (N = 45)
Population 8,256 46 1,318 3,144 5,658 163,939
Pct. temp. res. 0.06 0.02 0.05 0.06 0.07 0.10
Pct. perm. res. female 0.47 0.41 0.46 0.46 0.47 0.54
Pct. perm. res. <45 0.37 0.21 0.33 0.36 0.40 0.52
Pct. perm. res. chronic 0.31 0.25 0.28 0.30 0.33 0.45

Notes: The table describes the fundamentals of our simulated economy. These fundamentals are
calibrated to match the Trondelag region as of December 2019. The 45 patient locations correspond
to municipalities in the Trondelag region. The reported probabilities of moving and aging shocks
are monthly.

population of only 46. The average location has 6 percent temporary residents, 47 percent
female permanent residents, and 37 percent young permanent residents. Urban locations have

a higher fraction of temporary residents as well as young permanent residents.
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D.2 Formal Description of Mechanisms

This section formally defines the allocation mechanisms studied in Section V. Let g be the
allocation at the start of a given period. Each GP j has capacity IV}, a set of currently enrolled
patients pi, 1(4), and a set of patients w; on their waitlist. Each patient on a waitlist has waited
a length of time ¢;. Let >; denote GP j’s (strict) preferences over patients, which encode the
priority rules of the mechanism. Under a first-come, first-served (FCFS) priority rule,
patients that have waited longer have higher priority: Vi, k ¢ pg'(j) and VI, k € uy*(j),
[ =; kiff { > t;. Under a priority rule that respects endowments, incumbent patients
always have higher priority than non-incumbent patients at their current GP: VI, k € I,
k=; Lif k € pg'(§) and I ¢ pg (). All priority rules we consider will respect endowments.

An attentive patient’s GP request takes the form of a rank-order preference list (ROL)
R;. In our primary mechanisms of interest, patients may join at most one waitlist, so R; has
length at most two. The requested (waitlist) GP is ranked first, and the current GP is ranked
second. A matching algorithm ¢ maps a set of patient-reported ROLs R, GP priorities >, and
panel caps N into an allocation p. An allocation mechanism is defined as the triplet [N, >, ¢],
in combination with rules regarding the maximum length of patients’ ROLs and how often
the matching algorithm is run. Our counterfactuals change both the priority rule > and the
matching algorithm ¢ applied each period. Patients’ reported ROLs respond endogenously to

these changes.

Waitlists. This is the allocation mechanism currently used in Norway. Priorities are FCFS.

The matching algorithm used is the following:

Step 1: For each GP j, let O; = N; — |5 (5)| be the number of open slots on j’s panel.
Assign the O; highest-priority patients on j’s waitlist to j’s panel; remove each of these

patients from their current GP’s panel and from the waitlist.
Step k: Repeat Step 1 for the panels and waitlists resulting from Step k — 1.
The algorithm terminates if no patients are reassigned in a step. When this occurs, there are

no patients waiting for GPs with open slots.

Waitlists with Top Trading Cycles (TTC). Priorities are still FCFS. The matching
algorithm first runs the Waitlists algorithm, and then runs the TTC algorithm. The TTC
algorithm works as follows. Each GP begins with pseudo-capacity Nj equal to their number of

open panel slots plus the number of their current patients who are currently in the mechanism
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hoping to switch away to another GP.

Step 1: Each patient “points to” their preferred GP according to R;, and each GP points
to their preferred patient according to ;. There is at least one cycle, i.e., an ordered
list {i1,J1, %2, J2, ---s ik, Jx } Where i1 points to ji, ji, points to ig, ... , and ji points to ;.
Further, each patient and GP can be part of at most one cycle. Each patient in a cycle is
assigned to the GP they point to and is removed from their current GP’s panel and the
algorithm. Each GP in a cycle has their pseudo-capacity reduced by one, and is removed

from the algorithm when their pseudo-capacity falls to zero.

Step k: Repeat Step 1 with the remaining patients and updated GP pseudo-capacities
from the end of Step k — 1.

The algorithm terminates when no patients remain in the algorithm.

Waitlists with Top Trading Cycles and Priority (TTCP). This mechanism is identical
to TTC, but modifies priorities so that patients with undersubscribed GPs are prioritized
above patients with oversubscribed GPs (while still respecting endowments). Formally, VI, k ¢
ot (5), 1 = ; k if [ currently has an undersubscribed GP and k currently has an oversubscribed
GP. Among patients with the same over/undersubscribed status, there is FCFS priority. A
GP is undersubscribed if it has at least one open slot on its panel. We classify a patient’s
current GP as over/undersubscribed at the moment they enter the mechanism.%

Waitlists with Deferred Acceptance (DA). Again, let Nj denote GP j’s pseudo-capacity.
The DA algorithm proceeds as follows:

Step 1: Each patient “proposes to” their preferred GP according to R;. Each GP j
provisionally accepts proposals from its Nj most preferred patients according to >; and

rejects any remaining proposals.

Step k: Any patients who were rejected in the previous round propose to their most-
preferred GP (according to R;) who has not yet rejected them. Each GP j provisionally
accepts proposals from its Nj most preferred patients according to >; and rejects any

remaining proposals.

The algorithm terminates when no patient is rejected.

66While it is possible that a GP could transition to/from being over/undersubscribed while their patient
remains in the mechanism, these transitions rarely occurred in our simulations, and modeling patient beliefs
about this possibility would be highly complex.
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D.3 Algorithm to Compute Equilibrium

For each mechanism, we compute a stationary equilibrium in which patients’ beliefs about
waiting time are consistent the waiting times implied by patients’ optimal decisions. We
initialize the economy to have no patients standing on waitlists (i.e., no patients in the reas-
signment mechanism). We draw a sequence of patient types (demographic type, location of
residence, identity of mother if reborn) and patient attention shocks for 600 periods (months)
for all 371,536 patients in our simulation. These draws are held fixed across counterfactual

mechanisms.

We search for a fixed point between patients’ belief parameters b = (7, k, kKos, X0, X1) and
their sample analogs within the simulated economy. The algorithm works as follows. Iteration

q begins with a vector of belief parameters b?. The following steps then occur:

(1) The simulation is run for 600 periods. Each period, the steps described in Section V.A
occur, with all demographic transitions and attention shocks predetermined. Each pe-
riod, attentive patients sequentially enter the reassignment mechanism and consider all
GPs in the economy, observing their current waitlist lengths. Patients form beliefs about
waiting time according to b? and then decide which GP to choose. If they choose their
current GP or an open GP, they are reassigned immediately and exit the mechanism. If
they choose a GP with a waitlist, they wait there until they are successfully reassigned

by the mechanism, they get another attention shock, or they die.

(2) The simulation provides data on the distribution of realized waiting times given the
optimal actions implied by beliefs b?. We use this information to construct the sample
analog of belief parameters, relying only on the last 100 periods of the simulation to

allow the economy to converge to a stationary distribution.

(3) Beliefs are then updated as a convex combination of the initial and implied values:
b7t = \7b? + (1 — A?)b’. The factor A? determines how quickly beliefs are updated.

Implied beliefs. Table D.2 reports equilibrium belief parameters. Under the status quo
Waitlists mechanism, 0.53 percent of panel slots become vacant each month. Under the
mechanisms with TTC, such natural vacancies arise less frequently (0.12 percent per panel
slot per month), since many incumbent patients who switch away no longer leave a vacant

seat in their wake.
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Table D.2. Equilibrium Beliefs

Waitlists ~ TTC TTCP DA

Panel vacancy rate (n) 0.0053  0.0012 0.0008  0.0053
Waitlist departure rate (k) 0.0075  0.0415 0.0076  0.0075
Waitlist departure rate, curr. GP oversub. (kog) - - 0.0338 -
Cycle participation rate, curr. GP oversub. (x1) -4.9981  -4.9156
Cycle participation rate, curr. GP oversub. (x2) -0.6331  -0.5987

Notes: The table reports equilibrium belief parameters. In the TTCP mechanism, patients beliefs about
the waitlist departure rate among waiters in front of them are x for patients with an undersubscribed
GP and x+ kpg for patients with an oversubscribed GP. In all other mechanisms, patients have common
beliefs about x. For patients with an oversubscribed GP, the perceived probability of participating in a
cycle in waitlist position s for a desired GP with panel cap N is given by x = exp(xo + x1 log(s/N)).

While TTC lowers the panel vacancy rate, it raises the waitlist departure rate, as waiters
may now participate in a cycle. Under TTC, all patients perceive this rate as 4.15 percent
per waiter ahead of them per month. Under TTCP, patients with undersubscribed GPs
perceive it to be only 0.76 percent, since the only patients ahead of them on waitlists are
other patients with undersubscribed GPs, who have no chance of participating in a cycle.
Under TTC, a patient with an oversubscribed GP who is 10th on the waitlist for a GP
with a panel cap of 1,000 believes they will participate in a cycle with probability 0.125 =
exp(—4.9981 — 0.6331 x log(10/1000)) each month. As their position-relative-to-panel-cap
increases, this probability declines log-linearly. The same patient expects to participate in a

cycle with monthly probability 0.029 in waitlist position 100.

Appendix Figure E.7 provides a depiction of how our beliefs model translated into expected
waiting times and discount factors across mechanisms. A patient with an oversubscribed GP
believes that the expected waiting time (in months) for a GP with panel size 1,000 with a
waitlist length of 100 would be 18.0 under Waitlists, 16.8 under TTC, 18.0 under TTCP,
and 18.0 under DA. For a patient with an undersubscribed GP, the corresponding beliefs
would be 18.0 under Waitlists, 37.5 under TTC, 97.6 under TTCP, and 18.0 under DA. Note,
however, that because patients with an undersubscribed GP get waitlist priority under TTCP,
they would rarely find themselves so far back on a waitlist. Appendix Figure E.8 reports the
density of observed chosen waitlist lengths across mechanisms. Under TTCP, almost all the
mass of chosen waitlist length is below a waitlist rank of 25. Finally, Appendix Figure E.9
provides a depiction of how our beliefs model interacts with panel capacities. Under the TTC
mechanism, a patient with an oversubscribed GP believes that for a GP with a waitlist length
of 50, expected waiting time would be 14 months if the GP had panel capacity of 750 and 11

months if capacity were 1,250. The average panel cap among GPs in our simulation is 930
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(c.f. Appendix Table D.1).

D.4 Perceived Perpetuity Equivalent Welfare Measure

The second welfare measure described in Section V.A, which we refer to in the main text as
the “perceived perpetuity equivalent,” is based on an attentive patient’s perceived net present
value (henceforth, NPV) of making their optimal GP choice. This is a natural way to compare
the attractiveness of switching opportunities across mechanisms because it accounts for both
the waitlist lengths patients face when making a GP choice as well as patients’ beliefs about
how fast waitlists will move. Such a comparison is complicated, however, by the fact that
at any given moment of attention, patients’ current GP may change across mechanisms due
to prior attention shocks. Since their degree of (dis)satisfaction with their current GP will
directly affect how long they are willing to wait for a new GP, a patient’s current GP is an
important factor driving optimal choices. It is therefore useful to decompose NPV differences
across mechanisms into (i) the component driven by a change in a patient’s current GP, and (ii)
the component driven by everything else, namely waitlist lengths, beliefs about how waitlist

lengths map to wait times, and patients’ optimal GP choice conditional on current GP.

To perform this decomposition, we introduce some additional notation. Throughout, we
consider a single attentive patient in a single period whose preferences are held fixed across
mechanisms. Express an attentive patient’s perceived NPV from choosing GP j while currently
enrolled with GP jj as

Tj o
/ e v, dr —i—/ e Tu;dr | W,§] , (15)
7=0 T:Tj

where w represents the vector of waitlist lengths for all GPs, £ represents the patient’s beliefs
about the mapping from waitlist lengths to waiting time 7}, and v; represents the per-period
flow utility the patient derives from GP j. Multiplying by p scales the measure so it can be
interpreted as a flow payoff received in perpetuity. The NPV derived from a patient’s optimal

choice of GP is then given by

NPV*(jo,w,§) = max NPV (j; jo, W, &), (16)
J

where J is the set of all GPs. We can now isolate differences in the value derived from

optimal behavior under each mechanism by differences in the arguments of NPV*. As in
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Section V.C, we use the current Waitlists mechanism as our reference point. To that end,
define the difference in the value derived from optimal behavior under focal mechanism M

relative to the reference mechanism W as
ANPVM=W = NPV*(j0", wh M) — NPV*(j5", w', ™), (17)

where ;! is the patient’s current GP under mechanism M, w™ is the vector of prevailing
waitlist lengths under mechanism M, and ¢ is the patient’s beliefs about the mapping from
waitlist lengths to wait times under mechanism M. Given this notation, we can then express

the decomposition as

ANPVM=W — NPy wM My — NPV*(5), wM, M) (i)
+ NPV, wM M)y — NP5, w" W), (ii)

where as noted above, line (i) is the component of the welfare difference driven by a change
in a patient’s current GP, and line (ii) is the component driven by everything else, namely
waitlist lengths, beliefs about how waitlist lengths map to wait times, and patients’ optimal GP
choice conditional on current GP. Because it more accurately represents the contemporaneous
difference in the value of switching opportunities under different mechanisms, component (ii)

is what is reported in the main text (Tables 5 and 6).

D.5 Benchmark Simulations

No Waitlists. An attentive patient may switch to any GP panel with open slots, but may
not request a GP whose panel is currently full. The GP choice action is therefore a discrete
choice among all open GPs plus the patient’s current GP. We run the simulation under the
assumption that patients are not strategic about when to request a GP (attention shocks are
exogenously timed). Because there are no waitlists, no patients remain in the mechanism

between periods.

Truthful TTC. This mechanism is identical to TTC with the exception that patients can
submit ROLs of arbitrary length. We run the simulation under the assumption that when
they arrive to the mechanism, attentive patients truthfully report their full ordinal preferences

over GPs, truncated at their current GP.
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Greedy First-Best. Reassignments maximize the sum of flow payoffs enjoyed by patients
in a given month. Patients participate in the mechanism in the month when they become
attentive. The set of GP slots includes all slots currently occupied by participating patients,

as well as any open slots. Assignments are calculated using the Hungarian Algorithm.

No Caps. Each GP’s panel cap is set to infinity, so an attentive patient may switch to
any GP immediately. This simulation provides an upper bound on the welfare that can be

achieved by any mechanism with capacity constraints.

Table D.3. Results from Benchmark Simulations

Waitlists TTC No Waitlists Truthful TTC Greedy No Caps
GP waitlists
Pct. of population on a waitlist 10.98 10.38 - 0.04 - -
Pct. of GPs with a waitlist 81.3 78.9 - 32.4 - -
Mean E(waittime) | curr. GP undersub. 18.8 23.9 - -
| curr. GP oversub. 18.8 12.0 - -
Attentive patient choices
Mean E(waittime) at chosen GP 18.8 15.6
Pct. waitlist joins 83.1 83.9 93.3
| curr. GP undersub. 79.1 75.3 93.4
| curr. GP oversub. 83.8 85.5 93.3
True pref. rank of chosen GP 1.80 1.63 3.00 2.73 1.68 1.00
| curr. GP undersub. 1.9 2.2 2.9 2.8 1.7 1.0
| curr. GP oversub. 1.8 1.5 3.1 2.7 1.7 1.0
Realized assignments
Travel time to current GP, mean (med.) 14.8 (6.4)  14.6 (6.4) 14.4 (6.5) 14.3 (6.4) 13.3(6.4)  16.8 (6.4)
Pct. with same gender GP | young female 58.1 58.9 57.4 574 63.9 70.2
| young male 60.0 59.2 58.7 59.1 54.5 46.8
Welfare
Flow payoff from current GP, mean (med.) -t 072 (0.42)  0.10 (-1.43) 1.30 (-0.61) 4.80 (2.12) 6.89 (4.13)

Notes: The table reports results under the benchmark simulations described in Section V.D. Results for
Waitlists and TTC are reproduced from Table 5 for comparison. Statistics are generated in months 492-551
of the simulation, out of 600 total months. They are first computed within month and then averaged across
simulation months. E(waittime) is the expected waiting time implied by patients’ equilibrium beliefs and
current waitlist lengths. True pref. rank of requested GP is the rank of a patient’s requested GP in their true
flow payoff ordering. This table is referenced in Section V.D. 'By normalization.
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Figure E.1. HelseNorge Screenshots

(a) Sorted Alphabetically (b) Sorted by Free Seats

Change GP ® Change GP @

You are on the waiting list for in p\acsnumberwn
- ) e fster on the waiting list
Youare on the waitinglist for| §in place number25 o tﬁg‘“e’“””‘ew“”“"g et You have 2 6P changes et n 2023, You can only be on ane waiting st st = time. (77
You have2 GP changes left n 2023. You can only be on one waiting st ot a ime. ()

Your current GP s ¢ 2
Your current 6P is —

Shouss hits on Sagene. Change area/search
Shows hits on Sagene . Change area/search -
Overview of GPs
Overview of GPs

A Hidefilter
v Visfilter

[] only show 6Ps you can switchto Age ~ Sex v Several choices
376Ps

Premises adapted
[[] for people with

L Number on 176ps reduced mobility
Free the waiting -
P &P office seats | Ust Handling ¢ [ Somespeakine

Number on

iti Doctors for Si0
storoklinikken 0 Free the waiting actors for Si
av

Andersen, Dan Michael 5 2 07 members
v | Nera Vitaminveien 7-2.4 Floor, o Puton s P GP office seals | it
ger 2000 gl Oficeswithpri [

S7yesrsold, male Storosenteret, 0485 OSLO

mary care teams
Chaudhari, Lugman Bentsebro Medical Center

v Tasadduq Sandakerveien 78, 0484 No waiting list
Bakken, Bjorg T« osLo 1600
akken, Bjorg Tove Sandaker Medical Office 0 " 4 years old, male
~ | T2yearsold,female Sandskerveien 59, 0477 outof | A i
40% temporary until 2 Oslo 1100

September 2023 Renning, Salmana

Hafsa Ata Torshovdzlen Legesenter A5

Hans Nielsen H, s o | o et

~ i2ns Nielsen Haugeszate N waiting fist

Ssgene locsl medical centre | () B yearsold, female gesg: 1500 g
av

~ | Barsnes,MariEllen Haug | yiaminveien 2, 2, £z 0485 151 100% temporery until 1 372, 0481 05L0
5T yearsold, female 800 January 2024

Oslo, 04850510

Basharat, Faiza Torshovdalen Legesenter &S Mukhtar, Zahid Sandsker Medical Office

t
t
7 outof
v | styearsold, female Hans Nielsen Haugesgate Oomet | | v | S2yearsold.male Sandakerveien 59,0477 oo No waiting st
Has temporary staff for 20% 1600 50% temporary until 31 oslo

37E,043105L0 December2023

Andersen, Dan Michael | Storoklinikken

0 outof B
o inveien 7o utona
Nerager Vitaminveien 7-8 4 Floor, 2000 o waiting list

57 yearsold , male Storosenteret, 0435 0SLO

Notes: The figure shows two screenshots from the “Change GP” (bytte fastlege) tool on Norway’s centralized
online health platform, HelseNorge. The page shows the list of 37 GPs located in the Sagene neighborhood
of Oslo. Panel (a) sorts this list alphabetically by GP last name (the default), and panel (b) sorts the list
by the number of free slots available on each GP’s panel. Only three GPs have available slots on their panel.
(Webpage translated from Norwegian to English using Google Chrome, which slightly affects the rendering of
graphics relative to the original.) Accessed August 18, 2023; available at https://tjenester.helsenorge.
no/bytte-fastlege?fylke=03&kommuner=0301&bydeler=030103. This figure is referenced at footnote 16.
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Figure E.2. Distribution of Waitlist lengths in December 2019

Fraction of GPs with waitlist

0 20 40 60 80 100

Number of persons on waitlist

Notes: The figure shows the distribution of waiting list lengths in Norway in December 2019,
among GPs that had a waiting list. Waitlist length is top-coded at 100 for readability. There
were 3,695 unique GPs with waiting lists (out of 5,010 total GPs). This figure is referenced in

footnote 26.
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Figure E.3. Example of Top Trading Cycles
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Notes: The figure shows an example of unrealized gains from trade on hypothetical GP waitlists. Each GP’s
waitlist is to their left, with the right-most patient at the front. Waiting patients are the same color as their
currently assigned GP, or black if they are assigned to a GP other than A, B, or C. The arrows illustrate
trades executed by a run of the TTC algorithm. There is a bilateral trade between the 5th patient on A’s
waitlist and the 7th patient on B’s waitlist. In addition, there is a trilateral trade in which the 4th patient on
B’s waitlist takes the slot of the 2nd patient waiting for A; their slot (on GP C’s panel) goes to the 3rd patient
on C’s waitlist, who is currently assigned to A; and their slot (on GP A’s panel) goes to the 2nd patient on
A’s waitlist, who is currently assigned to B. This figure is referenced in Section II.C.
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Table E.1. Patient Demographics by Outcome of Running TTC in December 2019

Full Not On a waitlist
Sample demographic Sample on a waitlist Reassigned Not reassigned
Number of individuals 4,573,170 4,463,532 18,667 90,971
Pct. of individuals 0.98 0.00 0.02
Demographics
Pct. female 0.50 0.49 0.66 0.66
Age 47 47 42 41
Years of education 13.1 13.1 134 13.3
Annual income (000 NOK) 413 414 397 373
Pct. temporary resident 0.07 0.07 0.04 0.12
Pct. ever moved 0.11 0.10 0.24 0.24
Choice of GP
Pct. ever switched to open GP 0.13 0.13 0.17 0.30
Travel time to current GP (min.) 10.8 10.7 15.8 14.5
Pct. with GP of same gender 0.58 0.58 0.55 0.53
Use of waitlists
Pct. ever on a waitlist 0.09 0.07 1.00 1.00
Number of months on a waitlist | > 0 6.4 4.9 7.9 10.7
Pct. waiting for GP of same gender 0.64 0.64 0.65 0.65
Travel time to wl. GP — curr. GP (min.) -6.8 -7.2 -8.4 -5.6

Notes: The table provides summary statistics on adult patients based on the outcome of running TTC
on waitlists as of December 2019. Summary statistics for each individual are calculated based on the
time period 2017-2019, not just as they were observed in December 2019. “Ever” means at any point
during 2017-2019. The first column reports means among all adult patients in the population. The
remaining three columns are a partition of patients based on whether they were not standing on a
waitlist in December 2019 and thus did not participate in TTC (“Not on a waitlist”), whether they were
on a waitlist and were successfully reassigned by the TTC algorithm (“On a waitlist/Reassigned”), and
finally those patients who were on a waitlist but were not successfully reassigned via TTC. This table is
referenced in Section II.C.

83



Figure E.4. Distribution of Waittime Differences Under Mechanical Simulation
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Notes: The figure shows the distribution of waiting time differences that result from the simple
mechanical simulation of TTC using the historical waitlist data. An observation is a waitlist
spell. The figure reports the difference between the number of months the patient waited under
the status quo mechanism (Waitlists) and that under the TTC mechanism (TTC). While most
patients wait for less time under TTC, 4.5 percent of patients wait for longer. This figure is
referenced in Section I1.C.
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Figure E.5. Population Density Map

(a) All of Norway (b) Trondelag Region
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Notes: The figure shows a population density map of all of Norway as well as just the Trondelag region. In
panel (a), the Trondelag region is shaded in gray. The outlined shapes within the map are municipalities.
There are 421 municipalities in Norway and 58 in Trondelag (using 2019 region boundaries). The population
center of Trondelag (the city Trondheim) lies at the center of the region in the darkest shaded municipality.
This figure is referenced in footnote 35.
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Table E.2. Comparison of Norway and Trondelag Region, 2019

Sample demographic All of Norway Trondelag
Panel A. Patient characteristics
Number of individuals 4,633,395 412,774
Demographics
Pct. female 0.50 0.49
Age 48 47
Pct. with post-secondary education 0.32 0.31
Annual income (000 NOK) 429 403
Pct. with chronic condition 0.31 0.30
Pct. temporary resident 0.07 0.07
Pct. ever moved 0.04 0.06
Choice of GP
Pct. ever switched to open GP 0.05 0.05
Travel time to current GP (min.) 10.7 10.8
Pct. with GP of same gender 0.58 0.57
Use of waitlists
Pct. ever on a waitlist 0.05 0.05
Number of months on a waitlist | > 0 5.0 4.9
Pct. waiting for GP of same gender 0.64 0.65
Travel time to wl. GP — curr. GP (min.) -6.7 -7.9

Panel B. GP characteristics

Number of GP panels 5,549 474
Panel characteristics

Enrollment cap 1,120 1,078

Pct. months with available slots 0.32 0.27

Pct. months with temporary GP 0.12 0.12
GP demographics

Pct. months with female GP 0.43 0.46

Pect. rural 0.37 0.52

Age 47 45
Panel enrollment stats.

Num. waiting on waitlist 24 22

Num. enrollees / cap 0.94 0.97

Notes: The table compares descriptive statistics between all of Norway and the Trondelag region in
2019. Panel A reports statistics on (adult) patients, and all values represent means over patient-months.
“Ever” means at any point during 2019. Moves are counted only if they are across municipalities. Age,
gender, education, and income data are not available for temporary residents, so those means are only
among permanent residents. Panel B reports statistics on GPs, and all values in the table represent
means over GP panel-months. GP enrollment and waitlist use statistics reflect the full population
(including children under 16). This table is referenced in Section IV.A.
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Table E.3. Summary Statistics on Realizations from Exogenous Processes

Mean SD
Number of patients 365,775 -
Number of attention shocks received 2,368 48
Number of moves 748 28
Number of deaths 342 19
Number of aging shocks 645 25
Number of moves in past 6 months 5,894 295
Number of attn. shocks in past 12 months 29,277 2,342

Notes: The table describes the realizations of exogenous processes in our simulated
economy. These include the demographic transition processes (patients aging, dying,
and moving) and the attention process (patients receiving attention shocks). Patients
that die are immediately reborn, so there are a fixed number of patients in all periods.
Statistics in the table are calculated across the 600 periods in the simulation. This table
is referenced in Section V.A.

Figure E.6. Relationship Between y and Waitlist Position Under TTC
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Notes: The figure shows a binned scatter plot of the log of the probability of being reassigned
through TTC next month (log(x)) versus the log of the ratio between the patient’s current waitlist
position and the panel size of the requested GP (log(s/N)). An observation is a patient-month in
the equilibrium simulation of the TTC mechanism. The sample is the set of observations in which
the patient stands on a waitlist and is currently assigned to an oversubscribed GP. Reassignment
probabilities are first calculated within 0.01-width bins of log(s/N) and then collapsed for the
binscatter. This figure is referenced in Section V.B.
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Figure E.7. Relationship Between Beliefs and Waitlist Rank by Mechanism
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Notes: The figure shows the relationship between beliefs and waitlist rank across our four focal mechanisms,
supposing all waitlists were for a GP with a panel cap of 1,000. Panels (a) and (b) report a patient’s expected
discount factor (EDF) as a function of waitlist rank. Panel (a) shows the EDF for a patient whose current GP
is undersubscribed, while panel (b) shows the EDF for a patient whose current GP is oversubscribed. Panels
(c) and (d) show the corresponding expected waiting times. This figure is referenced in Appendix D.3.
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Figure E.8. Distribution of Chosen Waitlist Lengths by Mechanism
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Notes: The figure shows the distribution of chosen waitlist ranks and the corresponding expected waiting
times among attentive patients in each of our focal mechanisms. Panels (a) and (b) report the distribution
of attentive patients’ chosen waitlist rank conditional on being less than 400. The dots (scaled on the right
axis) report the probability mass above this truncation point. Panels (¢) and (d) report the distribution of
corresponding expected waiting times, conditional on being below 36 months. Again, the dots (scaled on the
right axis) report the probability mass above the truncation point. This figure is referenced in Appendix D.3.
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Figure E.9. Relationship Between Beliefs and Waitlist Rank by Panel Cap (TTC Mechanism)
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Notes: The figure shows the relationship between patient beliefs and waitlist rank for three different GP panel
cap sizes, under the TTC mechanism. Panels (a) and (b) report a patient’s expected discount factor (EDF)
as a function of waitlist rank, if the waitlist considered was for a GP with a panel cap of 750, 1,000, or 1,250.
Panel (a) shows the EDF for a patient whose current GP is undersubscribed, while panel (b) shows the EDF
for a patient whose current GP is oversubscribed. Panels (c) and (d) show the corresponding expected waiting
times. A higher panel capacity will make the waitlist move faster, and thus expected wait-time lower (and
EDF higher). If a patient’s current GP is oversubscribed, they will understand that they have the possibility
of being reassigned via TTC, and thus have more optimistic expectations about waiting time. This figure is
referenced in Appendix D.3.
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