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Abstract

We study welfare and profit impacts of peak-load pricing in the context of a dining
reservation platform that allows restaurants to set variable prices. Using unique data
on reservations and a measure of restaurant traffic, we estimate a model where equilib-
rium prices respond to both time-varying consumer price sensitivity and restaurants’
capacity constraints. We find peak-load pricing, rather than intertemporal price dis-
crimination, is the primary driver behind the observed price variation. We show that
variable pricing increases social welfare by 8.6%, demonstrating the vital role of pric-
ing in improving efficiency in the context of platform markets. We also find vari-
able pricing can reduce the profit of the platform, which thus might lack the incentive
to provide the variable-pricing technology despite its welfare benefits. Notably, this
supply-side incentive misalignment is most salient when the platform and firms share
their joint profit, thus offsetting the relative efficiency of profit-sharing contracts over
per-unit-fee contracts.
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1 Introduction

Peak-load pricing is a pricing strategy where firms charge higher prices during peak periods
to redirect consumers to off-peak periods that are less capacity-constrained. This strategy
is commonly studied in the context of public infrastructure services, such as electricity
supply and highway toll pricing. However, many profit-maximizing firms also face time-
varying demand and a limited capacity, and their use of peak-load pricing and its welfare
consequences are not well understood. Airlines, hotel chains, and theme parks employ
sophisticated algorithms to adjust prices across days and times. Uber’s surge pricing, higher
airfare during holiday periods, and Disney tickets whose price depends on the day of week,
are typical examples. In contrast, many platforms maintain inflexible pricing despite their
sellers facing significant demand fluctuations and capacity constraints—notable examples
include dining platforms (OpenTable), salon booking apps (StyleSeat), and taxi-hailing
services (Curb).

We study the welfare-improving role of peak-load pricing in a platform market with
profit-maximizing firms. Peak-load pricing diverts demand from capacity-constrained peak
periods to off-peak periods, thereby relaxing capacity constraints and improving welfare
through increased overall supply. This pro-social implication contrasts with intertemporal
price discrimination, in which the firm extracts surplus by inducing sorting among con-
sumers with heterogeneous preferences across times, a form of second-degree price dis-
crimination that often leads to a distorted pricing schedule. However, because the firm’s
peak-load pricing and intertemporal price discrimination incentives often coexist, their
overall welfare impact remains theoretically ambiguous. We separate the two mechanisms
by identifying whether firms’ variable pricing is primarily driven by capacity constraints
or by heterogeneous consumer price sensitivities. We show substantial welfare gains can
result when the incentive for price variability primarily arises from capacity constraints.

We also show that peak-load pricing in a platform market can reduce the profit of the
platform, which thus might lack the incentive to allow variable pricing even when it bene-
fits participating firms and consumers. In many platform markets, participating firms serve
customers both through the platform and through a direct sales channel: typical examples
include restaurants serving Opentable reservations and walk-in diners, and taxi companies
serving Curb reservations and street-hailed taxis. In such markets where limited firm ca-
pacity is shared between platform and off-platform transactions, peak-load pricing on the
platform can shift the platform sales to relatively unprofitable off-peak times, and divert
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more profitable peak sales to off-platform markets. This sales diversion does not benefit
the platform, creating a supply-side incentive misalignment that has welfare consequences.
In particular, we show that this incentive misalignment is most pronounced under profit-
sharing arrangements between the platform and firms, but it largely disappears when the
platform instead charges fixed per-unit fees. Thus, this incentive misalignment under ca-
pacity constraints partly offsets the well-known efficiency gains from profit-sharing con-
tracts in avoiding double-marginalization between firms and the platform.

Our empirical environment is a dining reservation platform. The platform is marketed
to restaurants as a new technology to generate incremental revenue by filling otherwise
underutilized capacity during off-peak hours. Specifically, the platform serves a small seg-
ment of price-sensitive consumers that is separate from the restaurant’s existing customer
base. Restaurants can offer discounts to platform users that vary by time of day and day
of week. Platform users who make reservations receive the percentage discount applied to
their entire bill. The platform earns a commission as a fixed fee per reservation. Because
only platform users receive the time-varying discounts, peak-load pricing in this market
corresponds to reallocating the platform demand across times for a given inflow of walk-in
(off-platform) diners. Restaurants set the platform discount rates ahead of time, managing
their time-varying capacity constraints that arise from variable walk-in traffic, while also
attempting to price discriminate between platform customers with potentially time-varying
price elasticities. We obtain internal data on consumer reservations and restaurants’ dis-
count rate schedules, and we augment these data with a measure of walk-in traffic for each
restaurant and time slot.

This market environment provides two key advantages to the study. First, the observed
volume of walk-in traffic allows us to infer how the restaurants’ time-varying capacity
constraints affect their platform pricing. Accounting for capacity constraints is crucial to
separate firm incentives for peak-load pricing from price discrimination, because, absent
data on capacity, both incentives create similar intertemporal price patterns (Hendel and
Nevo, 2013). Second, the demand for dining reservation lacks dynamics. In other markets
where peak-load pricing is employed, capacity often gradually fills over time (e.g., airlines,
hotels), and firms employ dynamic inventory control, which significantly complicates the
analysis.1 In contrast, the vast majority of demand in our focal market consists of walk-

1Most existing papers on hotel and airline pricing assume fixed consumer travel time for model tractability
(Cho et al., 2018, Williams, 2022), thereby assuming away the core mechanism of peak-load pricing — using
intertemporal price variation to affect consumers’ choices between peak and non-peak times.
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in customers and last-minute reservations. The static nature of demand provides a unique
laboratory-like setup in which the firm’s capacity control problem collapses to a single-
period model, where it optimizes platform reservations given the expected walk-in traffic.

We start by documenting substantial price variation on the platform across times of the
day. For an average restaurant, the gap between the highest and lowest price on a typical day
is about 20% of the menu price. We demonstrate that the intra-day price patterns are highly
correlated with the walk-in traffic pattern of the restaurant, and that platform customers
are willing to move their reservation time to a lower-priced, off-peak hour within the same
day, suggesting that peak-load pricing is the primary driver of intra-day price variation.
We also document modest heterogeneity in customer price sensitivity, suggesting that price
discrimination between platform customers is limited.

We next construct and estimate a model of demand and supply to separate the firm mo-
tives for peak-load pricing and intertemporal price discrimination. In the demand model,
platform customers arrive first and make a reservation decision. Each platform customer
has an ideal dining time and can be motivated to switch to other dining times and/or restau-
rants by lower prices. We also allow consumers’ price sensitivities to vary across time,
thereby creating restaurants’ intertemporal price discrimination incentives. Given platform
customers’ reservations, walk-in customers arrive exogenously and fill the available ta-
bles. Because restaurants must honor reservations, if the capacity constraint binds, plat-
form reservations displace walk-in customers who would otherwise pay the regular price,
creating an opportunity cost for the restaurant. This opportunity cost gives the restaurant an
incentive to use prices to redirect platform customers to a less-capacity-constrained dining
time.

We estimate the model using data on reservations, prices, and restaurant traffic and
identify both consumers’ time-varying price sensitivity and restaurants’ time-varying op-
portunity cost due to sales displacement. The fact that restaurants’ capacity constraints
arise from variable walk-in traffic, which is separate from the platform market, allows us
to utilize preference externality (Waldfogel, 2003), greatly simplifying identification. We
find a price elasticity of around -10, with little intertemporal variability. Consumers are
more willing to substitute within a restaurant across times, rather than substituting to other
restaurants. On the supply side, we find restaurants face meaningful capacity constraints.
Approximately 40% of the restaurants expect their peak capacity to bind with at least 50%
probability, and their platform prices account for the possible revenue loss due to this bind-
ing capacity. These findings indicate that the platform is an ideal market for exercising
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peak-load pricing, matching capacity-constrained restaurants with users who are willing to
shift dining times and not substitute to competitors. We find that counterfactually eliminat-
ing the capacity constraints decreases the intertemporal price variability of a restaurant by
88%, suggesting that peak-load pricing is the primary driver of the observed price patterns.

We use the model to evaluate the efficiency gains from peak-load pricing. Specifically,
we compare the welfare the platform generates under variable pricing against that of a
counterfactual scenario in which each restaurant is constrained to a uniform discount rate
within a day. We find that with uniform pricing, reservations concentrate more on peak
periods and displace a larger number of walk-in customers than variable pricing. Each
reservation displaces 0.21 walk-in customers (or displace one 21% of the time) under the
uniform-pricing scenario, whereas the displacement rate drops to 0.15 under the variable-
pricing scheme. Peak-load pricing hence decreases the displacement of walk-in customers
by 30%. Due to more efficient capacity allocation, variable pricing increases the total wel-
fare generated by the platform, and the profit of the restaurant and the platform, by 8.6%,
8.0% and 9.6%, respectively. Peak-load pricing thus provides substantial efficiency gains
and increases welfare, even when the firm’s motivation is profit maximization. Notably,
our findings indicate that the per-unit-fee contract between restaurants and the platform
observed in the data produces a roughly even split of the gains among market participants.

We next show that alternatively considering profit-sharing contracts between restaurants
and the platform can lead to a supply-side incentive misalignment problem. Specifically, we
show that while a profit-sharing contract substantially enhances the efficacy of peak-load
pricing, it incentivizes the platform less to allow such a pricing strategy. On the one hand,
we find that, under a profit-sharing scheme, variable pricing increases the overall welfare
and the restaurants’ profit by 11.5% and 12.5%, respectively, which amounts to 130% -
150% of the gains under the observed per-unit-fee scheme. By lowering the restaurants’
marginal costs (akin to eliminating double marginalization), a profit-sharing scheme allows
restaurants to reduce off-peak prices further, creating a larger intertemporal substitution and
improving capacity utilization. This finding thus adds to our conventional wisdom on the
relative efficiency of profit-sharing contracts over per-unit-fee contracts. On the other hand,
we also find that the same profit-sharing contract limits the platform’s gains from variable
pricing to only 3.1%. In particular, variable pricing on the platform reduces the platform’s
profit from 53% of the restaurants. These restaurants primarily use price variability to
shift platform sales to off-peak times and increase off-platform sales during the peak time,
reducing their platform profits. Our results suggest that the platform may not allow these
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restaurants to use variable pricing despite the welfare benefits: excluding these restaurants,
we find the welfare gain from variable pricing is limited at 7.7%. Thus, the incentive
misalignment can offset a substantial portion of the relative efficiency of profit-sharing
contracts over per-unit-fee contracts.

Our study is among the first to present empirical evidence that the ability to flexibly
adjust prices, even if it is employed by profit-maximizing firms, can result in substan-
tial welfare improvements when firms face capacity constraints. Our unique environment
allows for clear separation of peak-load pricing incentive from intertemporal price discrim-
ination, making this welfare evaluation feasible. Because costly capacity investments often
serve as an entry barrier, markets in which pricing power is a welfare concern often exhibit
firm capacity constraints (e.g., airlines and hotels). Our result suggests the same capacity
constraint can encourage firms to implement pro-social pricing, thus contributing to policy
debates on firm pricing power in such markets.

We also present evidence of previously unexplored supply-side incentive misalignment
in platform markets. Although profit-sharing contracts avoid double marginalization from
per-unit-fee contracts, in markets with external capacity constraints they also create incen-
tive misalignment problems in which the platform may not allow the full welfare benefits
to materialize. These findings highlight the importance of accounting for the platform’s

incentive in implementing a socially desirable pricing strategy: in many platform markets,
sellers only serve a small market niche and hence lack scale to justify the adoption of flex-
ible pricing technology outside of the platform (e.g., short-term rentals, restaurants). Thus,
the welfare consequence can hinge exclusively on whether the platform is willing to offer
the pricing flexibility (e.g., Airbnb) or not (e.g., OpenTable). Our finding that the profit-
sharing contract, a contract that we tend to consider as most efficient, creates misaligned
incentives with majority restaurants, indicates that a substantial welfare loss can arise from
improperly designed contracts in platform markets.

Related literature. Our primary contribution is to the literature on peak-load pricing,
particularly in the context of profit-maximizing firms operating in platform markets. The
closest literature studies firms’ dynamic pricing strategies under capacity constraints, in-
cluding Williams (2022) on airlines, Cho et al. (2018) on hotels, Sweeting (2012) on con-
cert tickets, and Sanders (2024) on fresh food. Whereas these markets implicitly have
peak-load pricing considerations—the opportunity costs of selling now varies with how
likely a unit is to sell in the future—the existing models rarely capture such an incentive.

6



A key limitation is that models of dynamic inventory control typically assume that con-
sumers do not time their purchases strategically, thereby removing the channel through
which prices may influence purchase timing and help balance capacity utilization. In con-
trast, our paper studies a market environment where dynamic pricing is absent, permitting
a static model that explicitly characterizes how prices affect consumers’ choices between
peak and off-peak periods, an essential channel in firms’ peak-load pricing considerations.

Our paper also builds on the extensive literature on peak-load pricing in public infras-
tructure contexts. The long-standing theory literature has outlined peak-load pricing as a
way to balance demand and supply for electricity, water, and other publicly-supplied goods
facing a capacity constraint (Williamson, 1966, Turvey, 1968). More recent works docu-
ment consumer responses and social outcomes when peak-load pricing regimes are imple-
mented in regulated markets of electricity and natural resources (Joskow, 2012, Borenstein,
2012, Brecko and Hartmann, 2023). We extend this literature’s insights to private markets,
where prices are set by profit-maximizing firms and the pricing technology is provided by
a platform.

Finally, we highlight a novel mechanism in platform markets where the platform may
lack incentives to provide flexible pricing technology despite its welfare benefits. The pre-
vious works on pricing technology primarily focuses on pricing algorithms as a way to
automate price-setting decisions (Aparicio and Misra, 2023, MacKay et al., 2023, Castillo
and Mathur, 2023). The specific incentive misalignment we identify regarding the provi-
sion of variable pricing technology highlights market inefficiencies in platform-mediated
transactions.

2 Empirical Setting

2.1 A Dining Reservation Platform

Our research setting is a dining reservation platform in Germany. The platform is marketed
to restaurants as a new technology to generate incremental revenue by utilizing otherwise
unused capacity during off-peak hours. Specifically, the platform attracts a small segment
of price-sensitive consumers that is separate from the restaurants’ existing customer base.
Participating restaurants can offer discounts that vary by both day of week and time of day,
in 30-minute intervals. For each day and time slot (e.g., 8:30pm on Saturdays), restaurants
choose a discount rate ranging from 0% to 50%, in 10 percent increments. When a customer
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books a table through the platform, the selected discount is applied to the total bill with
no upper limit. For example, if a customer reserves a table with a 10% discount, they
may order freely from the regular menu, and the final bill — covering all food and most
drinks — is reduced by 10%. In this sense, the discount is equivalent to a uniform price
discount across items on the regular menu.2 The platform earns a commission as a fixed
fee per reservation. Although restaurants’ existing customers can also substitute to booking
through the platform, we show below that most diners do not seem aware of the platform,
leading to limited cross-market substitution.

Restaurants’ primary pricing objective on the platform is to accommodate the price-
sensitive platform users during off-peak times with a lower price, while limiting their access
during the peak times by raising the price. Because platform users are more price sensitive
than regular diners, accepting their reservations during the peak time, potentially crowding
out regular dining demand, is socially wasteful. Thus, motivating the price-sensitive seg-
ment to less capacity-constrained times through time-varying prices — “peak-load pricing”
in our focal market — not only increases profit, but can also enhance welfare.

Restaurants can also use variable pricing for intertemporal price discrimination among
platform users. If platform users themselves exhibit heterogeneous price sensitivities and
different preference across times, variable pricing can induce consumer sorting, in the form
of second-degree price discrimination. Notably, unlike the peak-load pricing incentive, this
price-discrimination incentive does not require restaurant capacity constraints. Separating
out these two pricing incentives — by measuring how prices reflect the intertemporal vari-
ation in off-platform traffic and in the price sensitivity of platform users — is the main
identification task of this paper. We exploit the unique nature of the market that these two
incentives arise from different markets.

The platform operates in multiple cities in Germany and the U.K., with the largest
presence in Berlin. By March of 2020 (pre-pandemic period), 231 restaurants in Berlin
operated with the platform. The vast majority of participants are lower to mid-range, small-
scale restaurants not affiliated with a chain. The platform only recruits restaurants above a
certain Google Review score of approximately 4.1. Because restaurants themselves often
possess limited ability to vary prices due to their high menu costs, the platform essentially
serves as the sole provider of flexible pricing technology in the market.3 By nature of the

2Each restaurant may impose exclusion (e.g., high-end liquor items). For the vast majority of cases, such
exclusions only apply to a small fraction of items in the menu.

3To the best of our knowledge, no other platforms offer the pricing ability at this level of flexibility.
Although many restaurants also offer coarse discounts in the form of happy hours, the discounts on the
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platform, participating restaurants are not a random subset of the restaurants in the city,
but are ones that benefit the most from variable pricing. The set of platform users are also
more price sensitive than average diners. We discuss implications of the non-representative
market in the result section.

2.2 Data

The original data covers the universe of reservations made through the platform for restau-
rants in Berlin between October 2018, which is the inception of the platform, and Novem-
ber 2020. For each reservation, we observe consumer and restaurant identifiers, along with
the date and time of the reservation. Additionally, we observe the full set of time slots and
discount rates offered by all participating restaurants on each day—regardless of whether
a transaction occurs. We also have access to several restaurant characteristics, including
name, location, cuisine type (e.g., American, Asian), regular price per person, and average
Google rating. The regular price reflects the average amount a typical diner would pay
without a discount. This metric is collected by the platform and displayed to customers
when browsing the platform.

The prices are not determined at the time of reservation, because they depend on the
actual items ordered. We define the price consumers expect to pay for each time slot as
P = Regular Price × (1 − Discount Rate). We assume consumers make their reservation
decisions based on this expected price.

To complement the platform data, we construct a measure of restaurant traffic using
data from Google Maps. Each restaurant’s Google Maps page displays a plot indicating
the volume of traffic by day of the week and hour of the day. This metric is created from
aggregated Google device location data and is scaled between 0 and 100, where 0 represents
either the restaurant is closed or no guests are dining, and 100 represents the busiest time
during the week. Our data contains a snapshot of the traffic measure for each restaurant
× hour of day × day of week tuple. We use this traffic measure as the measure of the
restaurant’s “walk-in” traffic, that is, the set of diners either without a reservation or from
other reservation channels, excluding platform users. Although the measure also includes
customers from the platform, we show below that the volume of platform transactions is
quite small compared to a typical restaurant’s size. It is thus safe to assume the platform
customers’ traffic has a negligible impact on this measure.4 Notably, walk-in customers

platform are often deeper in magnitude and carry far less exclusions.
4This traffic measure is not a direct measure of capacity constraints, as it does not account for the restau-
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do not face the platform discounts (because most are not aware of the platform), explicitly
ruling out a reverse-causality from the discount to the traffic measure.

To consider periods with stable demand and supply conditions, we remove from the
sample the first 11 months of observations (the platform’s launch periods), as well as all
observations after March 8th, 2020 that exhibit a substantial impact of COVID-19. We also
restrict our focus to the set of restaurants that received at least 10 reservations during the 6-
month sample period, as well as the set of customers who made at least three reservations.5

Finally, we consider time slots between 3pm and 9:30pm (i.e., the maximum of 14 time
slots per day with a 30-minute increment), which include the peak dinner times and off-
peak times around them and include approximately 75% of the reservations. Details of our
sample selection process are available in Appendix B.

2.3 Summary Statistics

The data cover 6,035 reservations by 1,326 customers across 80 restaurants during 190 days
between September 1st, 2019 and March 8th, 2020. Panel (A) of Table 1 shows summary
statistics at the restaurant level. On average, restaurants offer 12.5 half-hour time slots
per day among the 14 slots we consider in the analysis, indicating that most restaurants
are available throughout the day. 73% of restaurant-date pairs show all 14 slots listed as
available on the platform.

Restaurants set discount rates ranging from 0% to 50%, with an average rate of 26%,
indicating that the discounts offered are economically meaningful. The resulting average
discounted price per person is C13.2, with prices ranging from C4.30 to C54.00. Ap-
proximately 80% of available options are priced below C15 per person, suggesting that
participating restaurants are concentrated at the lower end of the price spectrum. On av-
erage, a restaurant receives one reservation every two days, although there is considerable
heterogeneity. The most popular restaurant receives an average of 3.28 reservations per
day, while the least popular receives just 0.06. The relatively low volume of platform-
based reservations suggests that the platform accounts for a small share of the restaurants’

rant’s seating capacity. We use our supply-side model to uncover the time-varying occupancy rates that best
rationalize the observed prices. The usefulness of this traffic measure is that it provides the crucial informa-
tion on how capacity constraints shift over time, even though we need to estimate the (time-invariant) seating
capacity. We discuss further details of the measure in Appendix A.

5We focus on repeat users, because we exclude each user’s first reservation from the likelihood. Including
the first reservation causes a potentially misspecified likelihood, because we do not observe whether or not
the user was active on the platform prior to her first reservation. Consumers with three or more reservations
account for approximately 22% of consumers and 54% of reservations in the data.
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Table 1: Summary Statistics

Mean Std. Dev. Min Max

(A) Restaurant-level:
Number of Available Slots (per Day) 12.638 2.811 2 14
Discount Rate 0.256 0.102 0 0.5
Price (per Person, euro) 13.208 7.598 4.3 54
Number of Reservations (per Day) 0.509 0.940 0 9
Walk-in Traffic 48.927 24.190 0 100

(B) Customer-level:
Number of Reservations 4.551 3.318 1 41
Average Discount Rate Booked 0.317 0.052 0.1 0.5
Average Price Booked (per Person) 10.681 3.169 5.7 37.6

Number of Restaurants 80
Number of Customers 1,326
Number of Reservations 6,035

Note: In panels (A) and (B), the unit of observation is a distinct restaurant - date - time combination
and a distinct consumer, respectively, unless otherwise noted.

overall traffic.6 Finally, our walk-in traffic data show that restaurants operate at nearly half
(48.9%) the volume relative to their highest level throughout a typical week.

Panel (B) of Table 1 shows summary statistics at the consumer level. On average, con-
sumers make 4.5 reservations during the 6-month period. The average discount obtained
in their bookings is 32%. Additional details on other variables used for demand estimation
and histograms of prices and bookings are available in Appendix C.

3 Descriptive Evidence

In this section, we document empirical patterns in pricing and reservation behavior ob-
served in the data. We first show that platform discounts are closely aligned with fluctua-

6The scale of the platform does not undermine the validity of our analysis. We evaluate how walk-in traffic
influences firms’ behavior on the platform, rather than how the platform affects total traffic. Restaurants
flexibly adjusting discounts across times in the data also indicates that they indeed make rational decisions
on the platform. The fact that they raise prices during the peak time indicates that even a small number
of platform reservations may crowd out walk-in customers at the margin, allowing us to infer that many
restaurants operate near full capacity.

11



tions in walk-in traffic — i.e., variable pricing seems to be responsive to expected capacity
utilization. Second, we document that platform consumers primarily react to price variabil-
ity by shifting their dining times within the same day, rather than across days. Lastly, we
provide evidence indicating a limited scope for intertemporal price discrimination among
platform users, as their responses to discounts appear relatively homogeneous.

3.1 Restaurants’ Pricing Behavior

Panel (a) in Figure 1 shows the intra-day variation in average platform discount rates (solid
line) and average walk-in traffic volume (dashed line). We observe a substantial variation
in the discount rates within the day, from 15% at 7pm to 34% at 4pm. The lowest discount
rates are observed between 7pm and 8pm, henceforth referred to as ”peak time”. The dis-
count rate also reflects the volume of expected foot traffic: the negative correlation implies
restaurants lower the discount rates when they expect higher volume of walk-in traffic. A
simple regression of the discount rates (in %) on the traffic measure and restaurant fixed
effects yields a coefficient of -0.12 that is statistically significant: a one-unit increase in the
measure of walk-in traffic is associated with a 0.12 percentage point (pp) lower discount
rate for a given restaurant. This negative correlation is consistent with the hypothesis that
pricing reflects capacity constraints.7

Panel (b) depicts the average number of reservations per restaurant by time of day,
plotted against the average discount rates. Contrary to the walk-in traffic, platform sales
peaks at 6:30pm, just before 7pm when the discount rate drops sharply. There are two
other local peaks of reservations: at 4pm when the discount rate is highest, and at 9pm
just after the sharp increase in the discount rates. These initial observations are consistent
with the practice of peak-load pricing. That is, restaurants use within-day price variation to
drive platform reservations to less occupied time slots and allocate their peak time slots to
walk-in customers, who pay the regular price.

These figures also present suggestive evidence that the platform discounts do not draw
meaningful substitution from the market of walk-in diners. Panel (b) shows that despite an
average discount of 30% during off-peak times, restaurants only receive about 0.4 off-peak
reservations per day, indicating limited awareness of the platform among general diners.
All but one restaurants even offer discounts during the peak times — hence walk-in diners

7Because walk-in customers do not face online discounts, this correlation explicitly rules out reverse
causality from the price to the walk-in traffic. However, the relationship may still not be purely causal,
because the volume of walk-in traffic is likely correlated with the demand on the platform.
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Figure 1: Discounts, Traffic and Reservations by Hour of Day
Note: The lines correspond to per restaurant and time, averaged across restaurants and dates.

should be strictly better off by switching to platform reservation while still dining at their
preferred time — and yet receive an average of only 0.1 peak-time reservations. Thus, we
view the peak-time discount as restaurants exercising price discrimination between walk-in
diners and the (small) price-sensitive segment of platform users, in the absence of substitu-
tion from walk-in to platform due to the platform’s lack of public awareness.8

Restaurants also vary discount rates across days of week, but the magnitude of such
variation is much less pronounced than that of intra-day variation. The largest gap in dis-
count rates across dates, observed at 4pm between Sundays and Mondays, is approximately
7.5 percentage points, which is about half of the intra-day price gaps. The smaller price
variability across days seems to indicate that the restaurants’ primary motivation is to move
customers within a day to other slots, rather than moving them to other dates. In Appendix
D, we present the price variability across days.

Restaurants rarely adjust their price schedule. Among 80 restaurants in the sample, 20
never adjusted their price schedule, and among the remaining 60 restaurants, the average
frequency of any price adjustment is once in 73 days. In contrast, the vast majority of
reservations are made last minute. In particular, 88.5% of the reservations are made on the
day of dining, and less than 3% of the reservations are made more than three days ahead.
This comparison suggests that, unlike hotels and airlines, restaurants’ discount rates are set

8We account for this third-degree price discrimination between markets in the model, but we keep this
incentive fixed throughout the paper as we study the implication of time-varying prices, which is the focus of
this paper.
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far in advance of reservations and are not adjusted dynamically as capacity fills. Moreover,
nearly all time slots remain available on the platform until the last minute (e.g., 30 minutes
before the dining time), suggesting that reservations alone — whether through the focal
platform or other (unobserved) reservation channels — saturate the full restaurant capacity.
Thus, a reservation can crowd out a walk-in customer, but not another customer with a
reservation.

3.2 Consumer Responses to Price Variation

We next examine how platform customers respond to price variation by shifting their reser-
vations toward time slots offering higher discounts. This form of intertemporal substitution
is central to the effectiveness of peak-load pricing, which aims to redistribute demand away
from congested peak hours toward less busy, lower-priced periods.

To this end, we estimate a linear regression of restaurant-level reservations on its effec-
tive prices across time slots:

log(Rj,t,τ ) = α0+α1 log(Pj,t,τ )+α2 log(P̄j,t,τ±1)+α3 log(P̄j,t±1,τ )+λj,dow(t),τ+ϵj,t,τ . (1)

where Rj,t,τ represents the number of reservations for restaurant j on day t at time slot
τ , Pj,t,τ denotes the price, P̄j,t,τ±1 is the average of the prices at two adjacent time slots,
and P̄j,t±1,τ is the average of the prices at the same time on two adjacent days. α1, α2 and
α3 represent own elasticity, intra-day cross elasticity to nearby slots, and inter-day cross
elasticity, respectively.

Because the platform is marketed as a tool for restaurants to adjust prices in response
to variable demand, observed prices may be endogenous to unobserved demand shifts.
Identifying instruments for prices is also challenging, as most price variation appears to
be sorting consumers across time slots.9 To address this endogeneity concern, we exploit
the observed stickiness in restaurants’ variable pricing schedules. In practice, restaurants
rarely fine-tune their discount rates on a day-to-day basis. Instead, they typically assign
a fixed pricing schedule to each day of the week and maintain it over extended periods,
often several months. We argue that such infrequent adjustments are likely responses to
gradual, long-run shifts in demand, and the precise timing of any schedule update is plau-
sibly uncorrelated with daily demand shocks. Following this identification strategy, we

9Our walk-in traffic measure is not a valid instrument due to its correlation with the ideal dining time
among platform customers.
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include restaurant × day-of-week × time-of-day fixed effects, denoted by λj,dow(t),τ . These
fixed effects absorb persistent heterogeneity in pricing and demand at the restaurant, day-
of-week and time-of-day level, allowing us to exploit the occasional changes in effective
prices across calendar days within each day-of-week and time-of-day combination.

Table 2 reports the regression results. Column (1) presents the benchmark specification
without fixed effects, which may reflect potential confounding due to endogenous pricing
decisions. Column (2) includes fixed effects and shows an own-elasticity of -9.27. Column
(3) accounts for the substitution effect within a day and across dates. The results reveal that
consumers exhibit a meaningful willingness to shift their dining times within a given day,
but show limited responsiveness across days. The cross elasticity to the adjacent slot of the
same day is 2.09, whereas that to the same time slot to the adjacent day is 0.02. Combined
with the relatively limited variation in prices across dates, these results suggest that the
primary channel through which peak-load pricing operates is intra-day substitution, rather
than inter-day reallocation of demand.

Table 2: The Effect of Prices on Reservations

(1) (2) (3) (4)
Pj,t,τ -0.840 -9.272 -10.453 -0.039

(0.027) (0.421) (1.039) (0.006)
P̄j,t,τ±1 2.092 0.006

(0.869) (0.005)
P̄j,t±1,τ 0.021 0.0003

(0.998) (0.005)
j-dow(t)-τ FE No Yes Yes Yes
Observations 149,899 149,878 111,977 111,977

Note: The dependent variable is Rj,t,τ . j, t and τ correspond to restaurant,
date and time, respectively. In columns 1-3, both the dependent and the
independent variables are in logarithms. We add 10−10 to Rj,t,τ to keep
log(Rj,t,τ ) well-defined in case of zero reservations. Standard errors are
reported in parentheses.

Because a large share of observations report zero reservations, the log specification
of elasticity may be noisy. As a robustness check, we replicate the regression using lev-
els rather than logarithms for both the dependent and independent variables. The results,
shown in Column (4), yield quantitatively similar patterns. The implied own-price elas-
ticity, evaluated at the sample mean, is -12.85, and the intra-day cross-price elasticity for
adjacent time slots is 1.99.
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These results collectively demonstrate that the observed price variation effectively prompts
platform customers to shift their reservations from peak to off-peak hours. This behavior
aligns with the patterns illustrated in panel (b) of Figure 1. For restaurants facing peak-
time capacity constraints, such intra-day time shifting helps increase the overall capacity
utilization. Appendix F reports similar elasticity estimates utilizing other sources of iden-
tification, including a specification accounting for substitution beyond adjacent slots.

3.3 Possible Role of Price Discrimination

In addition to peak-load pricing, restaurants can also use the variable-pricing ability for
intertemporal price discrimination. Higher peak-time prices allow restaurants to extract
surplus when platform customers exhibit heterogeneous price sensitivities — for instance,
less price-sensitive platform customers may have stronger preference for peak hours than
more price-sensitive ones. In this environment, price differences reflect heterogeneity in
consumer willingness to pay across time slots, in addition to restaurants’ incentives for
capacity management.

A direct implication of the price discrimination hypothesis is that consumers who re-
serve during peak versus off-peak times should differ in their sensitivity to price. To test
this, we compare the price sensitivity of peak-time and off-peak-time customers, using
the (leave-one-out) average discount rate chosen by the customer. This measure captures
the customer’s revealed preference for discounts, excluding the focal reservation to avoid
mechanical correlation. Panel (A) of Figure 2 displays the distributions. Uncolored bars
represent the distribution of average discount rates (across other reservations) for customers
who booked a peak-time slot (defined as 7–8pm), while colored bars show the correspond-
ing distribution for customers who booked off-peak times. We observe suggestive evidence
that off-peak diners are more price-sensitive: on average, they select higher-discount op-
tions (32.4%) in their other bookings, compared to peak-time diners (30.6%).10

The observed difference in price sensitivity arises from consumer sorting between peak
and off-peak time slots. We find that, conditional on making an off-peak reservation, a
customer books another off-peak time slot in 84% of their other reservations, and a peak
time slot in only 16%. In contrast, among those who make a peak-time reservation, the
corresponding probabilities are 75% for another peak-time booking and 25% for an off-

10Kolmogorov–Smirnov tests confirm statistically significant differences between the two distributions.
Results are robust to alternative specifications that include the focal reservation in the customer’s average
discount rate. See Appendix Figure 15.
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peak one.
These results serve as some evidence that variable pricing induces consumer sorting

across time slots, indicating a possible role of intertemporal price discrimination. How-
ever, we also note the economic magnitude is relatively modest: the difference in average
discount rates chosen by off-peak versus peak-time diners is only 1.8 percentage points.
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Figure 2: Distribution of Average Characteristics Between Consumers Choosing Peak and
Off-peak Times

Note: Colored and uncolored bars represent the distribution of consumer characteristics by reser-
vations at off-peak and peak slots, respectively. Kolmogorov-Smirnov test statistics are 0.15 (av-
erage chosen discount), 0.02 (concentration of reservations), 0.03 (total reservations), and 0.05
(party size).

In panels (B) through (D) of Figure 2, we further examine additional customer charac-
teristics to assess potential differences between peak-time and off-peak-time diners. Specif-
ically, we analyze: (i) the concentration of a customer’s reservations at the focal restaurant,
shown in Panel (B), which serves as a proxy for the breadth of their choice set; (ii) the total
number of reservations made by the customer (Panel C); and (iii) their typical party size
(Panel D). In general, there are minimal differences in observable characteristics across
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customer groups. Kolmogorov-Smirnov tests find statistically significant differences only
in party size.

Overall, these descriptive statistics suggest possible, but limited scope for intertemporal
price discrimination on the platform. Several factors unique to this platform may explain
the relatively homogeneous nature of the platform’s user base. Customers who join the
platform are likely those actively seeking deals and, on average, more price-sensitive than
typical walk-in diners. Additionally, it is possible that the restaurants participating on the
platform tend to attract a similar clientele—further reinforcing the homogeneity in con-
sumer responsiveness to price. In our structural model, we allow for heterogeneity in both
price sensitivities and time preferences to explicitly account for price discrimination as a
potential alternative mechanism. We discuss the theoretical framework next.

4 Model

We develop a model of customer dining reservations and restaurant pricing behavior on
the platform. On each day, platform users arrive first and make a reservation decision.
Because the data suggests lack of cross-market substitution, we treat the platform as a sep-
arate market from that of walk-in customers and assume no substitution between the two.
Each restaurant also receives an exogenous and stochastic flow of walk-in customers in
each time slot. Restaurants set platform prices while accounting for capacity constraints—
specifically, a platform reservation may displace a walk-in customer who would otherwise
pay the regular (full) price, creating an opportunity cost for the restaurants.

4.1 Platform Demand

On each date t, consumer i arrives at the platform and decides whether to make a reservation
by choosing among all available restaurant-time slot combinations (which we refer to as
“products”). The utility of choosing product j is given as follows:

uijt = Xjtβ
X
i − pjtβ

p
i,τit

− (τj − τit)
2βτ

i,τit
+ ζirjt + (1− σi)εijt,

where Xjt are product characteristics, pjt is the price, τj is the time slot of product j (e.g.,
4pm), and τit is the most preferred dining time of consumer i on that day. The cost of
switching dining time is quadratic in the distance between the chosen and the ideal time
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slots, with coefficient βτ
i,τit

. We normalize the utility of the outside option to zero, which
represents not making a reservation on the platform for that day.

We assume that consumer preferences over restaurant characteristics (e.g., cuisine type)
are fixed across days and drawn from a finite set of discrete types, with the probability mass
function G(βi). In contrast, consumers’ ideal dining times are allowed to vary across days
and are orthogonal to their restaurant preferences. These time preferences follow the dis-
tribution Ft(τit), varying by day of the week, to capture systematic temporal patterns in
consumer habits during the week. We let consumer’s price sensitivity (βp

i,τit
) and cost of

deviating from their ideal dining time (βτ
i,τit

) be unique to each combination of the dis-
crete preference type and the ideal dining time, allowing flexible correlations between a
consumer’s price sensitivity and her preferred dining time. This specification thus allows
time-varying price elasticity — for instance, a consumer can be more price sensitive and is
more willing to switch dining time when she prefers to dine early, because an early dinner
is typically associated with a casual dining occasion with some scheduling flexibility.11

We assume that εijt follows a Type 1 Extreme Value distribution, and that ζirjt is i.i.d.
at the restaurant level (which we denote by rj) and follows a distribution such that ζirjt +
(1 − σi)εijt also follows a Type 1 Extreme Value distribution (Cardell, 1997). Thus, the
choice probability of a customer is given by the following nested logit choice probability,
where each nest corresponds to a restaurant:

Prit(j|Xt, pt, τt) =
exp(δijt/(1− σi))

(∑
j′∈r exp(δij′t/(1− σi))

)−σi

1 +
∑

r(
∑

j′∈r exp(δij′t/(1− σi)))(1−σi)
, .

where δijt = Xjtβ
X
i − pjtβ

p
i,τit

− (τj − τit)
2βτ

i,τit
, and Xt, pt and τt are the collections of

observed characteristics, prices, and time-of-day’s for all products available on day t.
Among M platform customers, the total demand for product j is qτjt = M×Prt(j|Xt, pt, τt),

where Prt(j|Xt, pt, τt) is the per-customer choice probability, integrated over consumer
preferences and the ideal dining time, as follows:

Prt(j|Xt, pt, τt) =

∫
βi

∫
τit

Prit(j|Xt, pt, τt)dFt(τit)dG(βi).

11Note that even without time-varying βτ
i,τit

, consumer preference for each time slot is heterogeneous
across segments. βτ

i,τit
thus serves as an extra layer of intertemporal variation to further increase the model

flexibility to capture the restaurant incentive for intertemporal price discrimination.
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4.2 Restaurant Pricing Problem

We model the restaurants’ pricing problem on the platform as a static Bertrand competition
among multi-product firms. On each calendar day t, each restaurant r offers a set of time
slots denoted by Jrt. We treat this set Jrt as given to the restaurant, because the presence of
the platform does not affect restaurant operating hours. We define a restaurant’s total profit
as the sum of its profit from platform reservations and from walk-in customers, as follows:

πrt =
∑
j∈Jrt

(
qτjt(pjt − cr − cp) + E[min{nτjt, Lr − qτjt}](pregularr − cr)

)
, (2)

where cr is the marginal cost of serving a customer, cp is a per-reservation fee the restaurant
pays to the platform, nτjt is the size of walk-in demand for time slot τj on day t, Lr is
the total capacity of the restaurant, and pregularr is the regular price charged to walk-in
customers, assumed as given and constant across time slots.12

The first term of expression (2) is the restaurant’s profit from platform customers, net
of the fees it pays to the platform. The second term corresponds to the profit from walk-in
customers. Because customers with a reservation are prioritized, the number of walk-in
guests the restaurant can serve at each τj is the minimum of the walk-in demand (nτjt) and
the available capacity (Lr − qτjt). This sales crowd-out creates the restaurant’s incentive to
raise prices (lower discounts) on the platform in time slots where capacity constraints are
more likely to bind.

Because nτjt is unknown at the time of pricing, the restaurant takes expectation over
its realizations.13 Let xτjt = Lr − nτjt be the difference between the restaurant capacity
and the number of walk-in guests at time τj , which represents the number of tables the
platform can sell on the platform without crowding out walk-in customers. We assume that
xτjt is independent across τj and t, and follows a Poisson distribution with rate λτjt. In our

12Prices are measured per person, and hence a unit sales in Expression (2) corresponds to one guest. This
formulation is without loss of generality: In Appendix G, we show that even when the average party size
exceeds one and potentially differs between the platform and walk-ins, it only affects the interpretation of Lr

and nτjt.
13In principle, the platform reservation is also a random variable whose realization is unknown at the time

of pricing. We include its expected value as part of the capacity constraint term (Lr − qτjt) and abstract from
calculating its full expectation jointly with the expectation on nτjt. The latter approach creates a computa-
tionally intractable first-order condition with respect to pjt.
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empirical application, we parameterize λτjt as follows:

λτjt =Lr − (γ1rgτjt + γ2rg
2
τjt︸ ︷︷ ︸)

n̄τjt

−
2∑

τ ′=1

(γ3rτ ′gτj+τ ′,t + γ4rτ ′g
2
τj+τ ′,t)︸ ︷︷ ︸

n̄τj+τ ′,t

, (3)

where gτjt is our measure of walk-in traffic at period τj on date t, as constructed using
Google Maps data. We assume that the expected walk-in demand (denoted by n̄τjt) is
quadratic in the concurrent value of the traffic measure. In addition, if guests occupy the
table for more than 30 minutes, a reservation at time τj may also displace walk-in cus-
tomers in later periods. Although fully accounting for this intertemporal dependence in
capacity constraints is computationally costly, we allow for this possibility in a parsimo-
nious manner, by allowing λτjt to also depend on expected walk-in demand in subsequent
periods (denoted by n̄τj+τ ′,t). Accounting for subsequent traffic volume allows the model
to capture the restaurant incentive to proactively adjust the price in anticipation of traffic at
later times. We assume that restaurants consider up to two subsequent 30-minute periods
and each n̄τj+τ ′,t is a quadratic function of its concurrent value of gτj+τ ′,t.

Each restaurant chooses prices (denoted by {pjt}j∈Jrt), subject to the constraint that
platform prices do not exceed the regular price. By structure, the per-unit margin from
platform customers is weakly lower than that from walk-in customers. Solving the maxi-
mization problem yields the following first-order conditions:

qτjt +
∑
j′∈Jrt

∂qτj′ t

∂pjt
(pj′t − cr − cp)−

∑
j′∈Jrt

Pr(qτj′ t > xτj′ t
)
∂qτj′ t

∂pt
(pregularr − cr) = 0,

∀j ∈ Jrt s.t. pjt ≤ pregularr .

(4)

The first two terms are equivalent to the standard condition that equates the marginal
revenue to the marginal cost. The third term represents the opportunity cost of accepting
one additional reservation. With probability Pr(qτj′ t(pt) > xτj′ t

), the capacity binds at
time τj′ and the restaurant needs to turn away one walk-in customer, leading to a profit loss
equal to pregularr − cr. The Bertrand equilibrium is established when all restaurants’ prices
for all time slots satisfy Expression (4) given the prices of other restaurants.

This pricing model captures the two key incentives underlying variable pricing. First,
consumers whose most preferred dining time is τj may exhibit different price sensitivi-
ties than those who prefer another time τj′ , creating an incentive for intertemporal price
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discrimination. Second, variation in the expected residual capacity xτjt across time slots
creates an incentive for peak-load pricing. Specifically, restaurants have an incentive to
raise prices during peak hours, while lowering them at nearby, less-congested times, to
induce consumer substitution away from peak times.

5 Parametrization, Identification, and Estimation

5.1 Parametrization and Identification

On the demand side, we assume that the preference distribution G(βi) is bimodal, repre-
senting two discrete consumer types for preferences over restaurant characteristics. We
identify these types and their shares by leveraging the systematic difference in reservation
patterns across users.

We also assume that consumers’ ideal dining time distribution (denoted by Ft(τit))
mirrors that of walk-in consumers. Specifically, we proxy Ft(τit) using the empirical dis-
tribution of our walk-in traffic measure across time for each day of week, aggregated across
restaurants. We argue the realized walk-in dining times match with the ideal dining times,
because walk-in customers likely choose their most preferred time in the absence of plat-
form discounts.14 We discuss more details on the construction of Ft(τit) in Appendix A.

To identify the price coefficients, we exploit the stickiness in restaurant pricing, the
strategy we used in Section 3.2. We assume that the control variables (Xjt) accounts for all
predictable demand shifts across restaurants and times, and that the residual price variation
is orthogonal to contemporaneous demand shocks: the changes in pricing schedules are
infrequent and likely are a response to a gradual, long-term shift in demand rather than
its daily fluctuations. Although the identification was established with multiple interactive
fixed effects in Section 3.2, we aim to mimic the identification strategy with a smaller set
of variables in Xjt for computational performance.

We include in Xjt the following variables: restaurant Google review rating, regular
price, the restaurant’s relative popularity at each day of week × time of day, local restau-
rant density in the neighborhood, cuisine type fixed effects, and district fixed effects. In
addition, we include fixed effects for year-month pairs and for weekend days. To measure

14The realized dining time may underestimate the true dining demand at peak times due to restaurant
capacity constraints. To address this concern, we reestimate the demand exclusively using the traffic distri-
bution among restaurants that we identify as not facing capacity constraints. Our results are robust to this
modification.
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a restaurant’s relative popularity at a given time slot, we use the ratio of its specific traffic
value (gτjt) to the aggregated market-level traffic at that time. Local restaurant density is
measured by the number of restaurants within a 1 km radius, using auxiliary data from
Google Maps that includes restaurants both on and off the platform.15 In Section 6.1, we
show that including these control variables produces structural elasticity estimates similar
to the reduced-form results in Section 3.2, providing empirical support for utilizing these
control variables.

On the supply side, the parameters of interest are the marginal cost cr and the expected
available capacity at each time slot, λτjt, which is parameterized with the intercept, Lr,
and the coefficients of the traffic measure, γr. We allow these parameters to be restaurant-
specific. We assume cp, the fee to the platform, is known and fix it at the (restaurant-
specific) value we learned through the conversation with the platform. We identify cr using
periods in which the capacity constraint does not bind: the third term of Expression (4)
is near zero, and the expression collapses to the standard pricing first-order condition in
which cr is the only unknown term. The terms Lr and γr are identified by how prices vary
with walk-in traffic, gτjt and gτj+τ ′,t.16 Intuitively, when a restaurant sets a price that is
different from what would be justified solely by demand elasticity and the residual prices
are correlated with walk-in traffic, we interpret this pricing behavior as indicative of peak-
load pricing incentive.

This identification strategy exploits the uniqueness of our market structure, in which
the two pricing incentive arises from separate channels. On the one hand, variable walk-in
demand affects peak-load pricing incentives, but does not create intertemporal price dis-
crimination, because walk-in diners themselves do not face platform discounts. On the
other hand, heterogeneous platform consumers can create an intertemporal price discrimi-
nation incentive, but the small platform demand by itself does not create peak-load incen-
tives. Our identification is hence akin to preference externality (Waldfogel, 2003), in which
restaurant pricing in a ”small” (platform) market is influenced by demand shocks in ”large”
(walk-in) markets, but prices do not affect the outcomes of large markets. This structure
substantially simplifies an otherwise nontrivial separation task: if such an external shift
in capacity does not exist (e.g., suppose instead no external market exists and peak-load

15This term is included to control for aggregate demand shifters in the area and we do not intend to struc-
turally interpret its coefficient. The coefficient is negative if higher density results in a higher competitive
pressure, whereas it could be positive if higher restaurant density suggests a more active business landscape.

16The restaurant-specific coefficients on these terms also account for the fact that gτjt is scaled at the
restaurant level. Although gτjt is not directly comparable across restaurants, our estimates of λτjt are.
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pricing is also triggered by the volume of platform users), separating these two incentives
typically requires separation between the intertemporal shift in demand levels (affecting
capacity constraints), and that in demand slopes (affecting price discrimination incentives),
rendering the separation less transparent and more data-intensive.

5.2 Estimation

We estimate the model in two steps. First, we estimate the demand with maximum likeli-
hood. Formally, the likelihood function is given as follows:

L(θ) =
∏
i

∫
βi

189∏
t=ti

(∫
τit

Prit(jit|Xt, pt, τt)dFt(τit)

)
dG(βi)

 .

For each consumer i, the likelihood corresponds to the joint probability that the consumer
takes the observed action (jit) on each day during the sample period. We denote by ti the
first day that consumer i is observed in the data, which we define as the day following their
first reservation.17

We estimate the supply-side parameters using generalized method of moments (GMM).
For each restaurant, we stack its first-order conditions across days and time slots and min-
imize the squared sum. Estimation is separable across restaurants because both the set of
supply-side parameters and the set of first-order conditions are restaurant-specific.18

6 Estimation Results

6.1 Demand

Table 3 reports the parameter estimates of the demand model. We estimate two consumer
segments. Segment 1 represents the majority—accounting for 75.6% of the customer base.
Both segments show low intercepts, driven by the fact that an average consumer makes
only four reservations over the six-month period. For each segment, we estimate four price

17We exclude periods prior to the first reservation because we cannot observe whether the consumer was
active on the platform during that time. Additionally, we drop the first reservation itself because, by construc-
tion, the first observed choice always corresponds to an “inside good.”

18We choose the number of γr terms unique to each restaurant, to balance model fit and statistical power
at the restaurant level. We discuss further details of the estimation in Appendix I.
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coefficients and the cost of switching time slots, corresponding to the consumer’s most
preferred dining time being each 60-minute interval, except for the late night in which we
consolidate coefficients into a single 120-minute interval.

Segment 1 Segment 2

Intercept -6.779 (0.472) -12.275 (1.435)
Price (τit ∈[3pm, 4pm]) -0.395 (0.007) -0.712 (0.017)
Price (τit ∈[4:30pm, 5:30pm]) -0.420 (0.009) -0.763 (0.042)
Price (τit ∈[6pm, 7pm]) -0.348 (0.005) -0.625 (0.015)
Price (τit ∈[7:30pm, 9:30pm]) -0.373 (0.006) -0.612 (0.017)
Switching cost (τit ∈[3pm, 4pm]) -0.409 (0.069) -0.036 (0.026)
Switching cost (τit ∈[4:30pm, 5:30pm]) -0.392 (0.100) -10.92 (228.6)
Switching cost (τit ∈[6pm, 7pm]) -0.273 (0.038) -0.961 (0.265)
Switching cost (τit ∈[7:30pm, 9:30pm]) -0.445 (0.056) -1.132 (0.397)
Review Ratings -0.301 (0.088) 0.240 (0.294)
Popularity 0.087 (0.025) 0.240 (0.065)
Regular Price 0.227 (0.001) 0.522 (0.002)
Nest Parameter 0.696 (0.019) 0.061 (0.076)
Fraction Segment 1 0.756 (0.014)

Note: Standard errors are reported in parentheses. The specification also includes fixed effects for year-
month pairs, for weekend days, for restaurant locations (at district level), cuisines and for quartile bins
of restaurant density in the neighborhood. The coefficients of these fixed effects are segment-specific. In
addition, we include interactions between restaurant locations and cuisines whose coefficients are common
across segments.

Table 3: Demand Parameter Estimates

Among segment 1 consumers, we find that price sensitivity is mostly flat during the day.
The differences across time periods are economically small though statistically significant.
The estimated cost of switching between time slots is lowest when τit is between 6 and
7 pm. The willingness to accept to switch to the adjacent time slot—given by the ratio
between the switching cost parameter and the price coefficient— have a relatively narrow
range within a day, between C0.78 (for τit between 6 and 7 pm) and C1.19 (for τit after
7:30 pm). Segment 2 has a large negative intercept, indicating this segment rarely dines
out. This segment exhibits a slightly higher price sensitivity during early times, with larger
intertemporal variation in switching costs. Their lowest switching cost is observed when
their preferred time is early, representing a near-zero cost to switch to an adjacent slot.
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These consumers also do not substitute to other slots when their preferred time is between
4:30 and 5:30 pm.19 Overall, both segments show willingness to shift their dining time in
response to discounts (with the exception of segment 2 around 5 pm), with approximately
C1 in savings (or about 22% of the average discount offered in the data) being sufficient to
induce a 30-minute shift in their dining time.

The coefficients on control variables largely align with expectations. The estimated
coefficients for restaurant popularity and regular (pre-discount) price are both positive and
statistically significant. Conditional on the actual discounted price, the regular price likely
proxies for perceived restaurant quality, thereby increasing consumer utility. The coef-
ficient on review ratings for segment 1 shows an unexpected sign. This may be due to
the limited variation in the data: the platform only recruits restaurants with high Google
ratings, leading to the rating’s interquartile range of just 0.2 (from 4.2 to 4.4). As a re-
sult, review scores may carry limited informational value for consumers. Finally, the nest
parameters indicate that segment 1 consumers mostly switch to other slots of the same
restaurant, whereas segment 2 are more willing to substitute across restaurants.
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Figure 3: Demand Model Fit
Note: The lines correspond to the average across restaurants and dates.

Figure 3 shows the model fit for the within-day reservations. Overall, the model tracks
the key patterns of the data well, including the timing and magnitude of peak and off-peak

19The large standard error is because any switching cost that is consistent with lack of substitution is
rationalized.

26



−
1
2

−
1
1
.5

−
1
1

−
1
0
.5

−
1
0

−
9
.5

E
la

s
ti
c
it
y

15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time of Day

(a) Own Elasticity

0
.2

.4
.6

C
ro

s
s
 E

la
s
ti
c
it
y

15:00 16:00 17:00 18:00 19:00 20:00 21:00
Time of Day

To Other Slots To Other Restaurants

To Outside Option

(b) Cross Elasticity

Figure 4: Across-time Elasticity Variations within a Day
Note: In Panel B, “To Other Slots” corresponds to the average cross elasticity to other time slots
within the restaurant at each date, averaged across dates, “To Other Restaurants” is the average
cross elasticity to other restaurant - time slot pairs, averaged across restaurants and dates, and “To
Outside Option” is the cross-elasticity to the outside option, averaged across dates.

periods.
In Panel A of Figure 4, we show the average own-price elasticity within the day and

across time slots. We estimate an own-price elasticity between -10 and -12, indicating that
consumers on the platform are quite price sensitive, likely more so than average diners. The
model-implied price elasticities are close to the reduced-form estimates presented in Table
2, suggesting that the model’s control variables can capture unobserved demand relevant to
pricing decisions, to a similar degree as the granular interacted fixed effects in the reduced-
form specification. We also conduct further robustness checks of the selection of control
variables in Appendix H. We also find declining elasticity over time: Diners during the
early hours are more price sensitive than ones in later hours, a variation that explains the
drop in reservations around 5 pm.20 As we show in Section 7.1, this shift in elasticity is not
large enough to enable meaningful intertemporal price discrimination.

Panel B of Figure 4 displays the average cross-price elasticities with respect to (i) other
time slots at the same restaurant, (ii) other restaurants, and (iii) the outside option. The
results show that nearly all substitution occurs toward other time slots within the same

20The model mechanically generates lower elasticity at the start and the end of the day, because these slots
lack one adjacent slot. Figure 4 excludes these corner periods. The lower elasticity at the corner does not
affect our other results, because these are the periods with small demand and sales.
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restaurant (as per the solid line), while substitution to other restaurants is negligible. Al-
though the estimated elasticity with respect to the outside option is small, substitution to the
outside good is large in absolute magnitude because consumers choose the outside option
approximately 98% of the time.

6.2 Supply

In Figure 5, we show the distribution of marginal cost estimates. The average marginal
cost is C7.55, and the standard deviation is 6.63. The average profit margin is 59.8% of the
regular price or 45.1% of the discounted price. Our marginal cost estimates are statistically
significant for 77 out of the 80 restaurants.

Figure 5: Marginal Cost
Note:

Figure 6 shows the predicted capacity constraint at each time slot, λτjt. The value of
λτjt represents the expected number of tables the restaurant can sell on the platform with-
out crowding out the walk-in demand. Panel A displays the histogram across the whole
sample, excluding restaurant-time pairs that indicate less than one percent chance of bind-
ing capacity.21 In our data, 79% of observations exhibit more than one percent of binding
capacity, i.e., an informative λτjt value. The average and the median value of λτjt are 1.79
and 1.57, respectively, with the standard deviation of 0.96.

21Because each restaurants receive an average of only 0.5 reservations per day, most values of λτjt > 4
are as good as completely unbounded capacity and do not affect the platform prices. The estimates of λτjt in
this range is obtained as a pure parametric extrapolation and is completely uninformative and irrelevant for
our study.
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Figure 6: Capacity Constraints (λτjt)
Note: In Panel A, λτjt estimates that imply less than one percent chance of binding capacity are
not informative and hence are dropped. In Panel B, the dashed line corresponds to the median
value (across restaurants and dates) in each time slot, and the solid line corresponds to the average
traffic volume across restaurants and dates.

Panel B displays the intra-day variations in λτjt evaluated at the sample median. λτjt

is negatively correlated with the concurrent value of the traffic measure—the model cor-
rectly captures restaurants’ peak-load pricing incentives by linking higher observed prices
to periods of higher traffic volume.

In Figure 7, we present the sellout probability for each time slot—defined as the proba-
bility that the demand exceeds available capacity, namely Pr(qτjt > xτjt). Panel A displays
the overall distribution of sellout probabilities (colored bars), overlaid with the distribution
of each restaurant’s maximum sellout probability at the busiest time (uncolored bars). On
average, the sellout probability across all observations is 0.188, with a standard deviation
of 0.177. Focusing on the busiest time for each restaurant, we find that 32 restaurants (40%
of the sample) experience a sellout probability greater than 50%, and 2 restaurants exceed
80%. Panel B displays the within-day variation in sellout probability, evaluated at the sam-
ple median. During peak hours between 7pm and 8pm, restaurants face an average 30%
chance of hitting their capacity limit. These findings underscore the importance of peak-
load pricing: during high-demand periods, offering platform discounts incurs a substantial
opportunity cost for restaurants, reinforcing the incentive to raise prices when capacity is
tight.

Figure 8 shows the model fit for the intra-day pricing patterns. The solid line repre-
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Figure 7: Probability of Binding Capacity (Pr(qτjt > xτjt))
Note: In Panel A, “Most Binding Time” corresponds to the maximum value of Pr(qτjt > xτjt) for
each restaurant during the sample period. Panel B corresponds to the median (across restaurants)
of the average probability of binding capacity of each restaurant in each time slot.

sents the observed average prices across time slots, and the dashed line shows the model
predicted prices, computed by solving for the optimal prices for each restaurant at the esti-
mated parameter values. Overall, the predicted prices closely track the observed variation
throughout the day, although the model predicts the restaurants should raise the prices ear-
lier than observed in the data - as seen in panel (a) of Figure 1, the observed change in
discount rates lags the surge of the traffic. The average predicted price is C13.72, com-
pared to an average observed price of C13.21.

Overall, we find that this platform provides an ideal environment for restaurants to
exercise peak-load pricing. The platform matches restaurants facing substantial capacity
constraints with price-sensitive consumers who are willing to change their dining times
with relatively small compensation. Moreover, small cross-restaurant substitution reduces
the restaurant’s risk of losing customers to competitors due to variable pricing. Although
we model the supply side as a Bertrand equilibrium, the optimal prices resemble that of a
single-agent decision, and strategic interactions between restaurants are not relevant when
evaluating the welfare implications of variable pricing. Thus, the platform serves as an ideal
ground to evaluate the welfare-improving role of peak-load pricing in markets with profit-
maximizing firms, although we acknowledge that the our substantive findings should be
viewed as a best-case scenario rather than the representative of the overall dining markets,
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Figure 8: Model Fit for Prices
Note: The lines correspond to the average across restaurants and dates.

due to the selection of users and restaurants.

7 Welfare and Profit Implications of Peak-load Pricing

We now use the model to analyze the mechanisms and welfare implications of variable pric-
ing in our focal market. In Section 7.1, we show that the primary driver of observed price
variation is peak-load pricing rather than intertemporal price discrimination. In Section 7.2,
we show that variable pricing improves overall welfare and the profit of restaurants and the
platform, thus providing evidence that peak-load pricing improves welfare even when the
firm’s objective is profit maximization. In Section 7.3, we consider a profit-sharing scheme
between restaurants and the platform and show that it can create misaligned incentives be-
tween them. We show that, although peak-load pricing under profit-sharing scheme can
produce a substantially larger welfare gain than the observed fixed-fee contract, the plat-
form has less incentive to allow the use of such a pricing strategy. Thus, the incentive
misalignment partly offsets the relative efficiency of profit-sharing contracts over per-unit-
fee contracts.22

22In all counterfactual results, we recompute the equilibrium prices under the assumed regime.
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7.1 The Role of Capacity Constraints in Determining Prices

We begin by conducting two sets of counterfactual analyses to identify the relative mag-
nitude of peak-load pricing and intertemporal price discrimination as drivers of the restau-
rants’ pricing behavior. In the first scenario, we eliminate intertemporal price discrimina-
tion by assuming time-invariant consumer price sensitivity. Specifically, for each consumer
segment, we fix the price coefficient across all time slots at the average of the four estimated
coefficients for that segment. In the second scenario, we remove the incentive for peak-load
pricing by assuming that restaurants have unlimited capacity. These two counterfactuals
isolate the distinct contributions of price discrimination and capacity constraints.

Figure 9 displays the intra-day price variability under each scenario. The solid line rep-
resents the average prices under the baseline (factual) model, the short-dashed line shows
prices under time-invariant price sensitivity, and the long-dashed line depicts prices under
the assumption of unlimited capacity.

We find that capacity constraints have a substantial influence on the pricing schedule.
When we remove the capacity constraint, the average price drops by 15%, from C13.72 to
C11.62. This decline is more pronounced during peak periods than off-peak hours, leading
to a significantly flatter intra-day pricing profile. At the restaurant level, the standard devi-
ation of prices across time slots falls by 88% on average, representing a marked reduction
in price dispersion. In contrast, eliminating the intertemporal variation in consumer price
sensitivity has a more limited impact. Figure 9 shows the price patterns from this counter-
factual are virtually identical to the factual case. This result is consistent with our demand
estimates, which reveal limited variation in price sensitivity across times of day. Taken
together, these findings indicate that the observed intra-day price variability arises almost
entirely from restaurants’ peak-load pricing incentives, rather than from price discrimina-
tion between platform users.

7.2 Welfare Effects of Price Variability

We now formally quantify the welfare impact of peak-load pricing. Specifically, we com-
pare the welfare between the observed pricing regime and the counterfactual scenario in
which restaurants are constrained to a uniform discount rate across all time slots of the
day (allowing prices to vary across days).23 We hold other market conditions fixed, such

23Uniform discount scheme exclusively eliminates time-varying prices, while holding fixed the restaurants’
ability for third-degree price discrimination between the platform and walk-ins.
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Figure 9: Predicted Prices
Note: The lines correspond to the average across restaurants and dates.

as platform participation of users and restaurants, and restaurants’ opening hours.24 Our
welfare measure is defined as the sum of platform customers’ surplus, restaurant profits
and the platform profit. The restaurant profit is given in Expression (2) and includes profits
from both platform reservations and walk-in customers. The platform profit consists of a
fixed per-unit fee it collects from the restaurants.25 We assume the per-unit fee, cp, remains
unchanged in the counterfactual. Note that the surplus of walk-in customers is excluded
from our welfare calculation because it is unobservable. Because peak-load pricing always
(weakly) improves the surplus of walk-in customers through better table availability, our
analyses present a lower bound for the actual welfare improvement.26

The results are reported in Table 4. Columns (1) and (2) correspond to the variable-
and uniform-pricing scenario, respectively. Panel A reports the overall welfare outcomes,
documenting the welfare-improving role of variable pricing. Under variable pricing, the

24The former can be restrictive if the platform differentiates itself by this variable-pricing ability. The
data suggests that the platform offers restaurants access to new consumer segments, and hence restaurants
are likely better off staying even in the absence of variable pricing. Consumers are also strictly better off by
making a reservation with discounts than showing up as a walk-in, thus unlikely to substitute away merely
due to the lack of time variability in discounts.

25Formally, the platform profit from restaurant r on day t is given by πplatform,rt = cp
∑

j∈Jrt
qτjt.

26The level of the profits and welfare this platform generates is relatively small, due to the small scale of
the platform. Because our goal is to document the welfare benefits of peak-load pricing, we focus on the
percentage change in profits and welfare between the variable- and uniform-pricing regimes.
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(1) (2)
Variable Uniform

Panel (A): Gains Generated by the Platform
Total Welfare Generated by the Platform (per Day, C) 182.5 168.1
Restaurant Profits from Participation 69.85 64.66
Platform Profit 37.60 34.28
Platform Users’ Surplus 75.02 69.20

Panel (B): Effect on The Platform
Daily Reservations 30.57 28.23
Average Price Booked (C) 13.12 13.85
Fraction of Peak-Time Reservations (7-8 pm) 0.217 0.295
Restaurant Profit per Reservation (C) 4.060 4.789
Surplus per Reservation (C) 6.970 7.695

Panel (C): Effect on Walk-in Customers
Displaced Walk-in Customers per Reservation 0.151 0.209
Lost Profit due to Displacement per Reservation (C) 1.633 2.345

Note: The second through fourth rows of panel (A) sum to the first row. ”Displaced walk-in customers per
reservation” is given by the difference in the expected number of walk-in customers with and without the
platform reservations, divided by the number of platform reservations. ”Lost profit due to displacement”
is calculated analogously, but using the difference in the expected profit from walk-in customers as the
variable of interest. Formal definition of all the metrics is available in Appendix K.

Table 4: Impact of Variable Pricing

platform generates the welfare of approximately C183 per day, compared to C168 under
uniform pricing. This represents a lift of roughly 8.6%.

Almost all the restaurants benefit from adopting variable pricing. The total profit of
restaurants from platform participation — that is, the profit from platform reservations net
of displaced walk-in profit, summed across restaurants — is C69.9 per day under variable
pricing, compared to C64.7 under uniform pricing, representing a 8% increase. Figure
10 displays the distribution of the percentage profit change across restaurants. Approxi-
mately 60% of the restaurants see a modest profit increase of up to 10% relative to their
uniform-pricing baseline, while two restaurants experience profit gains of over 100%. One
restaurant exhibits a slight profit decline, likely due to intensified price competition, but the
magnitude of the loss is negligible (0.13%). These minor losses suggest that any competi-
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tive disadvantages from adopting variable pricing are rare and economically small.

Figure 10: Profit Increase due to Variable Pricing (% of Uniform Pricing Profit)
Note: The unit of analysis is a restaurant - date pair. The rightmost bar denotes an increase above
100%.

The platform also benefits from variable pricing. The total fee the platform collects
increases from C34.3 to C37.6 per day, a relative 9.6% increase. As we show in Panel
(B), variable pricing substantially increases the number of reservations on the platform
by lowering average prices, thereby increasing the fees the platform collects. The users’
surplus also increases by 8.4% from C69.2 to C75.0. Overall, these findings indicate that
variable pricing benefits both restaurants and the platform in a roughly equal manner under
the per-unit-fee contract in the data.

Panels B and C of Table 4 decompose the total welfare gain into on- and off-platform
transactions, thereby illustrating how peak-load pricing improves welfare through capacity
reallocation. Panel B focuses on outcomes within the platform. We find that, under uniform
pricing, 28.2 reservations are made daily across all the restaurants, at an average price of
C13.85. In contrast, under variable pricing, 30.6 daily reservations are made at a lower
average price of C13.12. Under uniform pricing, approximately 29.5% of all reservations
occur during peak hours (7 to 8pm), whereas this share declines to 21.7% under variable
pricing. Thus, the observed variable pricing redistributes the demand away from congested
time slots through lower off-peak prices, accompanied by a 8.3% net increase in reservation
volume.
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We find this shift to off-peak times reduces average restaurant profit per reservation
from C4.79 to C4.06, reflecting the lower price point booked. This decline is consistent
with the restaurant’s incentives to preserve capacity for walk-in customers, albeit at the
cost of sales substitution to lower-priced times on the platform. In particular, we find
that for the majority restaurants, their total profit from platform customers decreases even
after accounting for the increased reservation volume. This substitution of peak-period
sales to off-platform markets can affect the platform’s incentive to allow variable pricing
under alternative platform compensation schemes, a question we turn to in the next section.
Overall, the surplus a reservation generates on the platform (not accounting for displaced
walk-ins) decreases slightly: from C7.70 under uniform pricing to C6.97 under variable
pricing.

Panel C reports the welfare impact of platform reservations on walk-in customers. Un-
der uniform pricing, each reservation displaces, on average, 0.21 walk-in customers, result-
ing in a lost profit of C2.35 per reservation. This displacement accounts for approximately
30.5% of the surplus a reservation generates on the platform, indicating meaningful inef-
ficiency due to crowding out of walk-in demand. In contrast, under variable pricing, the
average number of displaced walk-in customers falls to 0.15 per reservation, and the cor-
responding profit loss drops to C1.63, or 23.4% of the welfare generated on the platform.
As a result, time-varying pricing reduces the inefficiency from demand displacement by
approximately 28% in terms of lost walk-in volume and by 30% in terms of displaced
profit, per reservation. Because these efficiency gains per reservation are quite large, we
find variable pricing reduces the total volume of displacement at the day level by 10.0%,
even after accounting for the larger reservation volume. Once again, because our measure
of welfare loss does not include the forgone surplus of walk-in customers, the welfare gains
we report from variable pricing represent a conservative estimate of the actual magnitude
in this market.

Our counterfactual analyses highlight the crucial role of peak-load pricing in improv-
ing efficiency by reducing the extent to which walk-in customers are crowded out by plat-
form bookings, while simultaneously increasing the platform users’ surplus through lower
prices. This reallocation of demand also increases profit of restaurants and the platform.
Collectively, the results offer new empirical evidence that profit-maximizing behavior by
firms can contribute to welfare improvements in markets characterized by capacity con-
straints.

36



7.3 The Role of Platform Compensation and Supply-Side Incentive
Misalignment

We next examine the role of platform compensation scheme in determining the gains from
variable pricing. In practice, our focal platform charges restaurants a flat fee per reserva-
tion, which corresponds to an increased marginal cost for the restaurants to serve platform
customers. The conventional wisdom posits that this form of compensation structure typi-
cally distorts the restaurant prices upward — because restaurants are “taxed” on the quan-
tity sold but not on the price, a mechanism akin to the double-marginalization problem
— and thus produces an inefficient outcome. Forming a profit-sharing scheme between
the platform and each restaurant typically eliminates this inefficiency, because fees propor-
tional to the restaurant profit do not distort the restaurant’s optimal prices.27 In this section,
we show that a profit-sharing contract also substantially enhances the efficiency gains from
adopting peak-load pricing, thus adding to the conventional wisdom on the relative effi-
ciency of profit-sharing contracts over per-unit-fee contracts. However, we also document
that under a profit-sharing contract, adoption of variable pricing can reduce the platform’s
profit, creating an incentive misalignment problem in which the platform may not allow the
full welfare benefits to materialize.

To formally characterize the restaurant pricing problem under this (counterfactual)
profit-sharing scheme, we define the restaurant’s profit as follows:

πrt =
∑
j∈Jrt

(
(1− ρ)× qτjt(pjt − cr) + E[min{nτjt, Lr − qτjt}](pregularr − cr)

)
,

where ρ corresponds to the fraction of profits from platform customers that is shared to the
platform.28 Correspondingly, the platform’s profit from the restaurant is given as follows:

πplatform,rt = ρ
∑
j∈Jrt

qτjt(pjt − cr).

27In the context of vertical contracts such a profit-sharing contract corresponds to a two-part tariff, in which
the linear price is zero (which is the platform’s marginal cost) and the fixed portion corresponds to a fraction
of the restaurant profit. Because the marginal price is zero, this compensation scheme does not affect the
restaurant’s pricing at the margin.

28Because only the profit on the platform is shared and not the walk-in profit, this profit sharing scheme is
not fully efficient, though as we show below it is still substantially more efficient than the observed per-unit-
fee contract.
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In what follows, we fix ρ at the value such that the platform’s profit under the baseline
case of uniform pricing is identical to the factual linear contract. In Table 5, we present
the market outcomes under this profit-sharing contract. Column 1 and 2 correspond to
the outcomes from variable- and uniform-pricing regimes under the profit-sharing contract.
Column 3 and 4 correspond to the factual per-unit fee structure and are identical to the
two columns of Table 4, presented for comparison. The metrics shown in the three rows
are identical to those shown in panel (A) of Table 4. Comparing columns 2 and 4, we
first confirm the conventional wisdom that, in the absence of variable pricing, a profit-
sharing contract outperforms a per-unit-fee contract. Holding the platform profit constant,
the profit-sharing contract generates welfare of C209.2 per day, as compared to C168.1 un-
der the per-unit fee, or an increase of 24%. The restaurants’ collective profits also increase
by approximately 13.6% from C64.7 to C73.5 per day. Thus, we find that a profit-sharing
contract can lead to a substantial efficiency gain by eliminating the distortion in the restau-
rants’ pricing incentives.

Profit Share Per-Unit Fee (Factual)
Variable Uniform Variable Uniform

(1) (2) (3) (4)

Welfare Generated by the Platform 233.2 209.2 182.5 168.1
Restaurants’ Profit 82.73 73.50 69.85 64.66
Platform Profit 35.35 34.28 37.60 34.28

Note: The metrics shown in the three rows are identical to the first three rows of Table 4. All the metrics
are per day, aggregated across restaurants.

Table 5: The Role of Platform Compensation

We next document the role of profit-sharing contract in improving the efficacy of peak-
load pricing. Comparing columns 1 and 2, we find the overall welfare increases by 11.5%
from C209.2 to C233.2, accompanied with a 12.5% increase in restaurant profits from
C73.5 to C82.7. These increases amount to 134% and 156% of the corresponding increases
under the per-unit-fee structure. Thus, we find a profit-sharing scheme not only improves
the baseline efficiency, but also complements the use of peak-load pricing to substantially
enhance its efficiency gains. The reason behind this benefit is again the elimination of
double-marginalization: For a peak-load pricing to be most effective, the off-peak prices
need to be sufficiently low to attract intertemporal substitution. A profit-sharing contract,
by lowering the restaurants’ effective marginal costs, allows restaurants to offer a deeper
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discount than a per-unit-fee contract.
We next show, however, that the platform’s gain from variable pricing decreases under

the profit-sharing regime, as compared to the case of per-unit fee. The platform’s gain from
variable pricing is limited to 3.1% (from C34.3 to C35.4) under profit-sharing scheme,
which is only 32% of the gains under the per-unit-fee scheme (9.6%). The smaller gains
arises because, unlike the case of per-unit fees, the platform’s profit reflects the prices that
users book, which declines substantially due to peak-load pricing. Figure 11 displays the
distribution of the changes in platform profit from each restaurant due to variable pricing
under the profit-sharing scheme. We find that the platform’s profit decreases among 42
restaurants, or 53% of the sample. This result indicates that the platform potentially lacks
incentive to provide variable pricing to a large fraction of restaurants despite the welfare
benefits.29 The welfare impact can be large: if the platform does not allow these 42 restau-
rants to exercise variable pricing, the total welfare gain from variable pricing is limited at
7.7%, which is comparable to the increase under the per-unit-fee contract. These results
thus indicate the potential loss due to incentive misalignment can largely offset the incre-
mental gains from eliminating double-marginalization in the context of peak-load pricing.

The reason behind the substantial heterogeneity in the platforms’ gains across restau-
rants (ranging from -10% to 300+%) is because restaurants face heterogeneous capacity
constraints. Consider a restaurant that faces a strict peak-time capacity constraint and the
platform enforces a uniform-discount policy. In this case, the restaurant is forced to accom-
modate the price-sensitive platform users during the constrained peak time. In this case,
the restaurant sets a uniform discount close to zero, effectively shutting down the platform
sales altogether. In this case, the platform is better off, often substantially in percentage
terms (because the denominator is close to zero), by offering variable pricing, thereby cre-
ating incremental sales during the off-peak periods without cannibalizing the restaurants’
peak-time sales to regular diners. On the other hand, the platform loses money from offer-
ing variable pricing to restaurants with modest capacity constraints: because these restau-
rants can serve platform users even under the uniform-pricing regime, the aforementioned
sales diversion becomes the first order effect, reducing the platform profit. In the data,
restaurants from which the platform gains have an average peak-time sellout probability
of 39.5%, whereas the corresponding number for those from which the platform loses is

29For comparison, this incentive misalignment is not a major issue under the observed per-unit-fee struc-
ture, because the platform’s profit only depends on the quantity sold, which often increases with peak-load
pricing. In the factual environment, the platform’s profit decreases from only one restaurant.

39



Figure 11: Changes in Platform’s Profit
Note: Each observation corresponds to a restaurant, averaged across dates. The rightmost bar
corresponds to the increase in platform profit of 65% and above. The maximum value is 360%.

15.5%.
Overall, these results uncover the crucial role of platform compensation in materializ-

ing the welfare benefits of peak-load pricing. On the one hand, a profit-sharing contract
eliminates the upward pricing distortion and thus allows restaurants to offer deep off-peak
discounts, substantially improving the efficacy of peak-load pricing. On the other hand,
peak-load pricing under profit-sharing contracts often hurts the platform through lower av-
erage transaction prices, reducing the platform’s incentive to offer such a pricing strategy
despite the welfare benefits. Our findings that the profit-sharing contract, a contract that
would create the largest efficiency gains, does not incentivize the platform to allow vari-
able pricing among 53% of the restaurants, indicate that a substantial portion of the relative
efficiency of profit-sharing contracts over per-unit-fee contracts may be lost in markets with
capacity constraints.

8 Conclusion

We study the role of peak-load pricing in improving the welfare in a platform market with
profit-maximizing firms. We find that price variability improves the welfare by 8.6%, a
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substantial welfare gain over the case in which firms must set uniform prices, even when
the firm’s motivation is profit maximization. The results contribute to policy debates on
regulating firm pricing power, because markets in which the firm exercises price discrimi-
nation are often ones with firm capacity constraints.

We also present a novel piece of evidence of incentive misalignment in platform mar-
kets that may prevent the implementation of the welfare-improving pricing policy as a mar-
ket outcome. The relevance of our findings extends well beyond restaurants. Many modern
services—such as ridesharing platforms, fitness memberships, and coworking spaces—
operate under similar hybrid models with fixed short-run supply, fluctuating demand, and a
mix of walk-in and reserved access. In these settings, peak-load pricing offers clear bene-
fits: it can reduce congestion during busy periods, smooth demand across time, and improve
access for consumers who are more flexible—without requiring firms to expand costly ca-
pacity. However, realizing these benefits often depends on coordinated price-setting, which
no single actor is incentivized to implement when the gains are distributed unevenly. Our
results suggest that even modest frictions in how prices are set—especially when individual
firms do not capture the full value of market-level improvements—can lead to significant
inefficiencies and leave large welfare gains unrealized. To fully harness the benefits of dy-
namic pricing, platforms must be designed not only to optimize market-level outcomes but
also to align incentives across participating firms. Without mechanisms that reward firms
for contributing to efficiency, platforms risk falling short of their potential to improve how
modern markets operate.
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NOTE: This appendix contains older figures and estimates and may not be 100% con-
sistent with the current main text. The edits are in progress.

A The Traffic Measure (gτjt)

In this section, we discuss details of the measure of restaurant traffic, gτjt, collected from
Google Map. Google map shows a histogram of traffic volume for each restaurant at each
day of week. An example screenshot can be seen in Figure 12. The traffic measure repre-
sents the total volume of foot traffic at each hour of day, constructed from Google devices’
location data.30 We scraped the numbers underlying the histogram in late 2022. Our data
hence include a snapshot of the traffic measure at each restaurant at each day of week - time
of day pair, scaled between 0 and 100. 0 means the restaurant is either closed or no guest
is dining, and 100 means it is the busiest time during the week. Because our data of reser-
vation is available for each 30-minute increment, we predict the traffic at each 30-minute
increment with a piecewise interpolation. We use the imputed measure as our measure of
traffic, gτjt. Note the traffic data is not concurrent with the reservation data. We assume
that the traffic pattern remains the same between the two data periods.

Figure 12: Histogram of Traffic on Google Maps

In various parts of the estimation procedure, we also use the market-level aggregate

30The exact formula Google uses to aggregate the geolocation data is unknown. It is reasonable to assume
that it considers the weighted average of past several days of realizations.
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measure of traffic volume, which we denote by gτt. For instance, we use the empirical
distribution of gτt as that of each consumer’s most preferred dining time, Ft(τit).31 We
also use the ratio gτjt/gτt (i.e., the traffic volume of a given restaurant relative to the ag-
gregate traffic volume) as the measure of restaurant popularity in the vector of restaurant
characteristics.

To aggregate gτjt up to the market level (and recall that gτjt is scaled restaurant by
restaurant, so that we cannot simply take its average across restaurants). We take its
weighted average, in which the weights are given by the maximum number of tables each
restaurant ever made available on the platform during the sample period, which corresponds
to a rough measure of restaurant capacity. By weighting gτjt by a measure of restaurant ca-
pacity, we can account for the fact that the variation in gτjt of a large restaurant is more
informative for the aggregate distribution of dining time than that of a small restaurant.

B Sample Selection Criteria

The original data consists of the universe of 76,486 reservations on the platform between
October 2018, the inception of the platform, and November 2020. We drop the following
observations:

• Reservations between Oct 2018 and Aug 2019 (23,912 obs.) because the platform
was growing rapidly with unstable demand and price patterns

• Reservations after Mar 2020 (26,420 obs.) because of Covid shocks

• Missing variables, data error (760 obs.)

• Canceled reservations (4,940 obs.)

• Reservations outside of the 3 pm-9:30 pm window (5,410 obs.)

• Restaurants with no walk-in traffic measure available (3,035 obs.)

These criteria leave approximately 12,760 reservations by 6,140 consumers across 101
restaurants. However, majority of these consumers (60%) only make one reservation through-
out the sample period, and some restaurants receive very few reservations. Because we

31In practice, the realized dining time likely underestimates the consumer preference for peak times due
to firm capacity constraints. We argue that the measure is nevertheless the most useful proxy for the ideal
dining time due to its wide availability across all restaurants, and its granularity at hour - day level variation.
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Figure 13: Histograms of Prices and Reservations
Note: In panel (a), the distribution of discounted prices is over date - time - restaurant tuple,
whereas that of regular price is over the restaurants. Panel (b) is the histogram of average daily
reservations of restaurants.

need to exclude each consumer’s first reservation from the likelihood (because their plat-
form participation is unobservable prior to it), we only keep consumers with at least three
reservations. We also keep restaurants that receive at least 10 reservations. At the end of
these steps, our final dataset is comprised of 6,035 reservations made by 1,326 customers
across 80 restaurants during 189 days between September 1st, 2019 and March 8th, 2020.

C Further Details on Data

C.1 Histograms of Prices and Quantities

In panel (a) of Figure 13, we present the histogram of discounted prices (colored bars)
and the regular price of participating restaurants (uncolored bars). The regular price corre-
sponds to the prices that an walk-in guest will pay without the online discount. In panel (b)
of Figure 1, we present the histogram of average daily reservations across restaurants.

C.2 Variables Used as Controls for Demand Shifters

Besides the main variables we discussed in Section 2, the data include a set of restaurant
characteristics we use as controls for demand shifters. In Table 6, we present the summary

45



statistics for non-categorical variables. Regular price corresponds to the average price a
walk-in customer pays, a measure collected by the platform. The average price is 12.4
Euro per person, with the standard deviation of 5.7. Review ratings correspond to ratings
on Google. Most restaurants are rated around 4.3 with relatively small variation around it,
partly because the platform exclusively recruits restaurants with high ratings. Maximum
Table Offered corresponds to the maximum number of tables the restaurant ever offered
on the platform during the sample period, a measure of restaurant size we use for demand
estimation. On average, restaurants offer 18 tables with the standard deviation of 8.6.

Categorical variables we use for estimation are the restaurant location at the district
level and restaurant cuisine type. We observe 7 districts in Berlin (Charlottenburg, Friedrichshain,
Kreuzberg, Mitte, Neukölln, Prenzlauer Berg and Schöneberg) and 5 cuisine types (Amer-
ican, Asian, European, Middle Eastern and others).

Table 6: Summary statistics

Mean Std. Dev. Min Max

Regular Price 12.438 5.681 5 40
Review Rating 4.343 0.243 3.6 4.8
Maximum tables offered 17.975 8.620 4 50

Note: Each unit of observation is a restaurant.
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Figure 14: Price Schedule across Days
Note: The lines correspond to the average across restaurants and dates (within day of week).
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D Price Schedule across Days

In Figure 14, we present the discount schedule at each day of week. The long-dashed
line corresponds to Monday with the largest intra-day variability, and the short-dashed
line corresponds to Sunday with the smallest variability. We find virtually identical price
schedules across days. The largest price gap (and hence the ones that most likely trigger
consumers substitution across days) is the one between Monday and Sunday at 4pm, with
the average gap of 7.5 percentage points in discount rate. Because the gap is less than
half of the average intra-day shift in discount rates, we argue that the primary objective of
variable pricing is to move consumers within a day, rather than across dates.

E Average Observed Consumer Characteristics by Peak
and Off-peak Reservations

Figure 15 replicates Figure 2 without excluding the focal reservation in computing the
customer-level average. The distribution look largely the same and our findings in Figure
2 are robust to this modification.

F Robustness of the Identification Strategy of the Price
Coefficient

Our main identification strategy for the price coefficient is that within a given day of week
- time of day pair, price variations are independent of the demand shock of the particu-
lar day on which the price adjustment took place, because the price adjustment is often
made in response to a more gradual, longer-term shift in dining patterns, providing a fuzzy
regression-discontinuity design. We check robustness of this strategy regarding two possi-
ble threats to identification, using our reduced-form regressions (Expression (1)) in Section
3.2.

We first focus more exclusively on local variations around the date of price change.
Although Expression (1) partly exploits the aforementioned variations by exclusively fo-
cusing on variations across calendar days within restaurant - day of week - time of day
tuple, it is not equivalent to the ideal regression-discontinuity design: for instance, it does
not exclude the variation in prices between two calendar days that are far apart, as long as
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Figure 15: Distribution of Average Characteristics Between Consumers Choosing Peak and
Off-peak Times

Note: The construction of these figures are identical to Figure 2, except that we do not exclude the
focal reservation.

they belong to the same tuple. Hence, any ”gradual, longer-term shift in demand”, if it is
indeed the source of the price change, still confounds the estimate of price coefficient. To
address this concern, we now exclusively use observations within two weeks of the date of
price change for estimation. For instance, if restaurant r implemented a price adjustment
on Wed, Nov 13, 2019, for future spots on Saturday at 4pm, then we keep observations
from Saturdays, Nov 2, 9, 16 and 23 at 4pm in the sample. Although these sample selec-
tion criteria are extremely limiting and do not allow us to estimate cross-elasticity terms
due to lack of sample size, they most closely follow our ideal variation for identifying the
own elasticity. We present the results in Table 7. The first column is our main result and
is identical to column 3 of Table 2. The second column presents the estimate from the
more restrictive specification. We find the own elasticity of -11.7, which is approximately
12% larger than that of the main specification. The difference is likely due to the sample
selection that the focal data include a larger fraction of observations around 6:30 pm and 7
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pm (9.51% and 10.09% of the sample, respectively) than the data used in column 1 (7.43%
and 7.41%, respectively), which are the time slot in which we predict a higher price elas-
ticity (see Figure ?? in Section 3.3). Besides the sample selection, we argue that these two
specifications produce similar elasticity estimates.

The other threat to identification is the possibility that restaurants do set prices at
calendar-day level, so that price difference between two calendar days (within a restau-
rant - day of week - time of day tuple) still reflects calendar-day specific demand shifts. To
address this issue, we consider a specification in which we add two sets of fixed effects to
Expression 1. The first set of fixed effects is unique to each date - time of day pair. This
fixed effect accounts for any date - time of day specific shift in demand that affects prices
of all restaurants (e.g., national holidays, city-wide events). The second set of fixed effects
is at restaurant - calendar day - hour of day level. The observations are restaurant - calendar
day - 30 minute level, so this extra layer of fixed effects allows us to exclusively focus on
comparing between observations from the top of the hour against ones from the bottom of
the hour within the same restaurant - date - hour tuple. The intuition behind exclusively
focusing on price variations within each 30-minute interval is that, any demand shift that is
large enough to create price variability at the calendar-day level should likely persist across
multiple time slots (e.g., local events likely create larger foot traffic throughout the entire
evening), and the timing of price change within a given day (e.g., when the restaurant wants
to increase its discount rate after the peak time, whether it does so at 8:00pm or 8:30pm)
should be mostly exogenous to the day-to-day fluctuation in demand. This motivation is
akin to another dimension of fuzzy regression discontinuity, in which we utilize discontin-
uous jump in discount rate within a given day, whereas the intra-day demand variability
does not necessarily spike.

We present the results in column 3 of Table 2. We find the own elasticity of 11.56,
or approximately 11% higher than our main results. The difference is not statistically
significant, partly due to the spike in the standard error that arises from the substantial drop
in degree of freedom. The intra-day cross-elasticity term also remains within the same
ballpark of the main specification. Given that all three specifications produce similar price
coefficients despite the substantial differences in the source of identification and in their
respective degree of freedom, we argue that the true price coefficient in this market is also
located within the same ballpark of these estimates, which we also recover in the structural
analysis (between 10 to 10.7: see panel (a) of Figure 4).
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Table 7: Various Sources of Identification

log(Rj,t,τ )

log(Pj,t,τ ) -10.453 -11.694 -11.559
(1.039) (0.949) (2.292)

log(P̄j,t±1,τ ) 2.092 - 2.756
(0.869) (2.035)

log(P̄j,t,τ±1) 0.021 - 0.570
(0.998) (2.508)

j-dow(t)-τ FE Yes Yes Yes

t-τ FE No No Yes

j-t-hour(τ ) FE No No Yes

± 2 wks of price change No Yes No

Observations 111,977 2,755 92,480

Degree of Freedom 106,977 2,088 43,241
Note: Standard errors are reported in parentheses. j, t and τ

correspond to restaurant, date and time, respectively.

We next account for substitution to non-adjacent time periods. Specifically, we consider
a specification in which we include the average price of time slots that are one hour (two
time slots) away from the focal slot within the same day, as well as average price of two
adjacent time slots of the two adjacent days.32 The result is presented in Table 8. Note
that the price terms from nearby slots are extremely highly correlated, causing substantial
noise in the estimates. Nevertheless, we find the own elasticity virtually remains unchanged
from the main specification, and ”within the same day, adjacent time slot” cross elasticity
is still positive and statistically significant. The other substitution terms, namely, within-
day substitution beyond 30 minutes and across-date substitution, do not seem to play a
meaningful role in the focal market.

32For instance, if the focal time slot is Saturday at 6pm, the former corresponds to the average price
of Saturday at 5pm and 7pm, and latter corresponds to the average of the prices on Friday and Sunday at
5:30pm and 6:30pm.
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Table 8: Substitution to Non-adjacent Slots

log(Rj,t,τ )

log(Pj,t,τ ) -10.209
(1.507)

log(P̄j,t±1,τ ) 3.857
(1.919)

log(P̄j,t±2,τ ) 0.096
(1.036)

log(P̄j,t,τ±1) -1.230
(1.674)

log(P̄j,t±1,τ±1) -1.045
(2.005)

j-dow(t)-τ FE Yes

Observations 91,385
Note: Standard errors are reported in parentheses. j, t and τ

correspond to restaurant, date and time, respectively.

G Accounting for Multiple Guests per Reservation

For estimation, we use per-guest price as our measure of pjt and pregularr , essentially assum-
ing each reservation and walk-in demand consists of one guest. In this section, we show this
assumption is without loss of generality. Suppose first N guests arrive per party (common
across platform and walk-in guests), then the objective function is given as follows:

πrt =
∑
j∈Jrt

(
Nmτjt(Xt, pt, τt)(pjt − c) + E(min{Nnτjt, L−Nmτjt(Xt, pt, τt)})(pfull − c)

)
= N

∑
j∈Jrt

(
mτjt(Xt, pt, τt)(pjt − c) + E

(
min

{
nτjt,

L

N
−mτjt(Xt, pt, τt)

})
(pfull − c)

)
.

Hence, allowing multiple guests per reservation simply changes the scale of L, leaving
everything else unchanged. Because we estimate L based off of the first-order conditions,
the value of the estimated L should be interpreted as the restaurant capacity in terms of the
number of parties it can accommodate (i.e., if the restaurant has 50 seats with the average
party size of 2, then our estimate of L equals 25).
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We next consider the possibility that the average number of guests per party differs
between platform customers and walk-in guests. Denoting the average number of guests
per party for platform and walk-in by N1 and N2, respectively, the objective function in this
case is given as follows.

πrt =
∑
j∈Jrt

(
N1mτjt(Xt, pt, τt)(pjt − c) + E(min{N2nτjt, L−N1mτjt(Xt, pt, τt)})(pfull − c)

)
= N1

∑
j∈Jrt

(
mτjt(Xt, pt, τt)(pjt − c) + E

(
min

{
N2

N1

nτjt,
L

N2

−mτjt(Xt, pt, τt)

})
(pfull − c)

)
.

This time, the nτjt we estimate represents N2

N1
nτjt - it is the volume of walk-in demand

measured in terms of the demand from the platform. For example, if the walk-in demand
on average consists of 4 people whereas that from the platform consists of 2 people, nτjt

is estimated doubled compared to the case of same N , in order to reflect the fact that
two reservations from the platform will displace one walk-in party. Again, besides the
difference in the interpretation of the estimated L and nτjt, everything else in the model
remains unchanged.

H The Use of Popularity Measure to Account for Price
Endogeneity

We show in Appendix F that our identification strategy does produce a robust estimate for
the reduced-form price coefficient. However, for estimation of the structural model, the
same set of fixed effects is not usable due to model complexity and we instead opt to use
a variety of continuous variables to mimic the same identification strategy. In particular, to
account for the restaurant - time specific demand shifters, we use the restaurant popularity
measure, which is defined as the ratio between the restaurant-specific traffic volume and
the aggregate traffic volume, in place of restaurant - date - time fixed effect. Whether or not
a single-dimensional continuous variable can adequately replace the slew of fixed effects
is an obvious concern. In this section, we show robustness in our structural estimates with
respect to alternative specifications in the restaurant popularity measure.

Table 9 shows the estimates of price coefficients and costs for switching time slots
under the specification in which we include the popularity term as a polynomial in the
utility, rather than as a linear function in our main specification. We find stable parameter
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estimates across specifications. The vast majority of the estimates are within ± 10% range
of the ones from the linear specification presented in Table 3, and the difference is not
statistically significant. Although several coefficients, such as the price coefficients for
those that prefer early time slots, shift more than 10% from our main results, we find that
these shifts cause little to no impact on our estimate of price elasticity. In Figure 16, we
show the within-day evolution in own- (left figure) and cross-elasticity (right figure) when
we include the third-degree polynomial of the popularity term. Compared to the results in
Figure 4, we find that the own elasticity is within 5% of our main specification, and the cross
elasticity remains virtually identical. These results show that the linear specification we
employ in the main text is sufficient to capture the within-restaurant, across-time variation
in demand.

Popularity in Quadratic Popularity in Cube
Segment 1 Segment 2 Segment 1 Segment 2

Price (Early) -0.573 (0.025) -0.582 (0.074) -0.613 (0.026) -0.513 (0.051)
Price (Peak) -0.539 (0.023) -0.557 (0.076) -0.563 (0.024) -0.546 (0.055)
Price (Late) -0.522 (0.021) -0.538 (0.076) -0.545 (0.022) -0.519 (0.049)

Switching cost (Early) -0.502 (0.063) -0.538 (0.165) -0.492 (0.069) -0.743 (0.201)
Switching cost (Peak) -0.535 (0.073) -0.175 (0.070) -0.577 (0.074) -0.173 (0.060)
Switching cost (Late) -0.393 (0.057) -0.379 (0.099) -0.420 (0.060) -0.359 (0.102)

Note: Standard errors are reported in parentheses. ”Early”, ”Peak” and ”Late” stand for the most preferred
dining time between 3pm and 4:30pm, 5pm and 6:30pm and 7pm and 9:30pm, respectively. The specifica-
tion also includes fixed effects for year-month pairs, for weekend days, for restaurant locations (at district
level), cuisines and for quartile bins of restaurant density in the neighborhood. The coefficients of these
fixed effects are segment-specific. In addition, we include interactions between restaurant locations and
cuisines whose coefficients are common across segments.

Table 9: Demand Parameter Estimates

I Parameterization of λτjt

Recall that in our supply-side model, restaurants face a random arrival of available capacity
at each time slot, xτjt, which follows a Poisson distribution with parameter λτjt which is
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Figure 16: Across-time Elasticity Variations within a Day
Note: The number of reservations corresponds to the average number of reservations for each time
slot, aggregated across all the restaurants.

parameterized as follows.

λτjt =Lr − (γ1rgτjt + γ2rg
2
τjt︸ ︷︷ ︸)

n̄τjt

−
2∑

τ ′=1

(γ3rτ ′gτj+τ ′,t + γ4rτ ′g
2
τj+τ ′,t)︸ ︷︷ ︸

n̄τj+τ ′,t

,

where Lr, n̄τjt and n̄τj+τ ′,t correspond to total available capacity, the expected walk-in
demand for the current and future periods, respectively. Because we estimate these param-
eters restaurant by restaurant through the inversion of the respective first-order conditions,
we can allow different parameterizations across restaurants to balance the model fit and
statistical power at the restaurant level. As a baseline, we use the following specification:

λτjt =Lr −max{0, (γ1rgτjt + γ2rg
2
τjt
)} − ρrτ

2∑
τ ′=1

max{0, (γ3rτ ′gτj+τ ′,t + γ4rτ ′g
2
τj+τ ′,t)}.

(5)

Besides the total capacity term Lr, we allow for the linear and quadratic term for the current
traffic value that are constant across time (γ1r and γ2r), the linear and quadratic terms for
the traffic one-period and two-period ahead (γ3r1, γ3r2, γ4r1, γ4r2), and a ”discount factor”,
ρrτ ∈ [0, 1] that can vary across each 90-minute interval (i.e., one ρrτ term for 3pm-4pm,
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4:30pm-5:30pm, etc. with 6:00pm-7:00 pm term fixed at 1 for normalization, totaling 4
parameters to estimate per restaurant). Including Lr and cr, we have 12 parameters for each
restaurant, which is estimated by 98 price variations (14 time slots x 7 days of week).33 The
reason we include the flexible discount factor terms is because restaurant responses against
future (expected) traffic are often asymmetric (e.g., restaurants increase pre-peak prices
substantially when they expect future peak traffic, but do not decrease prices even when
the post-peak drop in traffic is imminent), indicating the way they account for future traffic
in pricing is different across time of day. We also assume that n̄τjt and n̄τj+τ ′,t are both
nonnegative, based on our microfoundation that these numbers correspond to current and
future consumer arrivals.34

J Estimate of Lr

Figure 17: Restaurant Total Capacity
Note: The rightmost bin corresponds to restaurants with 100 tables and above.

Figure ?? shows the histogram of Lr, the intercept of restaurant capacity constraints.

33Recall that our traffic measure gτjt only varies across days of week and time of day, and not across
calendar day within each pair.

34For one restaurant in the data, the specification above does not produce sufficient statistical power be-
cause the restaurant does not offer all 98 price variations. We assume ρrτ = 1 across all times for this
restaurant.
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K Definition of Welfare Metrics

In this section, we formally define the welfare metrics we used in Table 4. All the metrics
are defined at date (t) level, and Table 4 shows their average across dates.

• Total Welfare Generated by the Platform:

Total welfare generated by the platform is given as follows:

W = M ∗ CS︸ ︷︷ ︸
Users’ Surplus

+ ρ
∑
r,j

qτjtpjt︸ ︷︷ ︸
Platform Profit

+
∑
r

πrt −
∑
r

∑
j∈Jrt

E[min{nτjt, Lr}](pregularr − cr)︸ ︷︷ ︸
Restaurants’ Profit from Participation

,

where M is the number of platform users, CS is per-user (ex-ante) consumer surplus
derived from the discrete choice framework, and πrt is the restaurant profit (Expres-
sion (2) in Section 4). The first three terms correspond to the social welfare when
the platform exists. The last term corresponds to the firm profit without the platform,
which equals the total walk-in profit in the absence of customers with a reserva-
tion. The difference between the two equals the welfare generated by the platform.
Each element with an underbrace corresponds to the metrics presented in the second
through fourth rows of Table 4.

• The Number of Reservations:

The number of reservations for each restaurant in each day is
∑

j∈Jrt qτjt. We sum
across restaurants to calculate the daily total reservation on the platform.

• The Average Price Booked:

The average price per reservation is
∑

j∈Jrt qτjtpjt/
∑

j∈Jrt qτjt. We take its average
to compute the average price on the platform.

• Restaurant Profit per Reservation (on the platform):

Profit per reservation on the platform for each restaurant is
∑

j∈Jrt(qτjt((1− ρ)pjt −
cr)/

∑
j∈Jrt qτjt. The numerator corresponds to the restaurant profit from platform

users, excluding walk-ins. We present its average across restaurants in the table.

• Platform Surplus per Reservation:

Platform surplus per reservation is given by the sum of consumer surplus per reser-
vation, restaurant profits from platform users per reservation and the platform profit
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per reservation. The formula for the restaurant profits and the platform profit is given
above.

Consumer surplus per reservation corresponds to the expected utility generated from
the reservation, conditional on the reservation made (the utility from reservation ex-
ceeds all the other alternatives). More formally, for each customer with realized type
βi and τit it is given by E[uijt|uijt > uij′t]. The exact formula is available in Ar-
cidiacono and Miller (2011), Lemma 3. To compute its market average, we take its
expectation over all customer types to compute the average consumer surplus from
each option j, and take their weighted average (across j) in which the weights are
given by the frequency of reservation, qτjt.

• Displaced Walk-in Customers per Reservation:

The number of displaced walk-in customers for each restaurant in each day is given
by

∑
j∈Jrt(E[min{nτjt, Lr}]−E[min{nτjt, Lr − qτj ,t}]). We divide it by the number

of reservations to make it per reservation.

• Lost Profit due to Displacement per Reservation:

Lost profit due to demand displacement for each restaurant in each day is given by∑
j∈Jrt(E[min{nτjt, Lr}]−E[min{nτjt, Lr − qτj ,t})])(pregularr − cr). We divide it by

the number of reservations to make it per reservation.
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