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Abstract

With increasing disaster risks, it is increasingly important to understand the im-
pact of government interventions that reallocate environmental damages. In 2000, the
Chinese government designated 96 Flood Detention Basin (FDB) counties, allocating
lower-elevation areas within these counties for temporary floodwater storage. Dur-
ing severe flood events, floodwater may be diverted to these FDB counties to protect
downstream urban centers. We evaluate the aggregate and distributional impacts of
the FDB policy. Difference-in-differences results show that if a county is selected to
the FDB list, county-level firm entry and firm-level fixed asset investments would de-
crease by 15.9% and 19.7%, respectively. Overall, FDB designation results in a 10.7%
reduction in county-level nighttime light intensity. We then develop a spatial general
equilibrium model that captures trade linkages among FDB counties, protected cities,
and other regions. By comparing the actual output to a counterfactual scenario with-
out FDBs, we find that as FDBs absorb more floodwater, the policy’s output gains
increase; however, this comes at the cost of growing inequality between FDB counties
and others. In summary, FDBs may improve economic resilience against floods, but
the economic cost is taken disproportionately by rural counties.
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1 Introduction

A key challenge in natural disaster management is determining how to allocate environ-

mental damages. Should government intentionally expose certain areas to higher risks to

protect broader regions from severe damages? Similar to environmental policies that of-

ten create winners and losers (e.g., He et al. 2020, Taylor and Druckenmiller 2022), flood

management interventions could have uneven distributional impacts. For instance, building

dams and levees would lead to uneven effects across different regions (Duflo and Pande 2007,

Bradt and Aldy 2023). Currently, floods impact more than 1.8 billion people globally (Tell-

man et al. 2021), and by 2050, severe flooding events are projected to double in frequency

across 40% of the world (Arnell and Gosling 2016). As the threat of severe floods intensifies,

it is increasingly important for policymakers in high-risk countries to understand the impact

of flood management policies that lead to reallocation of flood damages.

This paper explores the aggregate and distributional impacts of Flood Detention Basins

(FDBs), the last-resort solution in flood management. In extreme flood events, when reser-

voirs reach capacity, governments divert floodwaters into FDBs, which are regular lands

during non-flooding periods, to protect a broader region from severe flood damages. A well-

known example of an FDB is the Birds Point - New Madrid Floodway, located on the west

bank of the Mississippi River in the United States.1 In our paper, we focus on the world’s

largest FDB program: Flood Detention Basins in China, for two primary reasons. First,

China ranks among the top three countries in terms of flood risk globally, with more than

395 million people exposed to floods. Floods also result in significant and persistent eco-

nomic losses in China (Kocornik-Mina et al. 2020). Second, the FDB policy in China is a

large-scale and explicitly designed national flood control policy, which has been in place for

over two decades. Hence, we are able to clearly analyze its persistent impacts.

In 2000, the Chinese government officially implemented the Flood Detention Basin (FDB)

policy, designating 98 low-lying wetlands in 96 counties as flood detention basins, covering

over 30,000 km2 and directly affecting more than 15 million residents. Over the past two

decades, the government has used FDBs, which are mainly located in rural counties, to absorb

floodwaters in nine different years. According to the Ministry of Water Resources in China,

residents in FDB counties—counties designated for floodwater storage—make significant

sacrifices to protect collective social welfare and improve economic resilience against floods.

In this paper, we ask the research question: What are the aggregate and distributional

1The Birds Point-New Madrid Floodway in Missouri is engineered to divert up to 550,000 cubic feet
per second from the Mississippi River during an extreme flood event. According to the US Army Corps
of Engineers, “the purpose of the floodway is to lower flood stages upstream and adjacent to the floodway
during major flood events.”
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impacts of Flood Detention Basin policy in China? Regarding the distributional impact of

the policy, we quantify the economic costs on counties where FDBs are located. It allows us

to examine the extent to which rural FDB counties, which are initially more economically

vulnerable, have made sacrifices to enhance overall economic resilience against floods. In

terms of the aggregate impact of the policy, we evaluate whether the policy has resulted in

a net gain in total output by extending our analysis to a general equilibrium context.

We present four primary findings. First, we find that the FDB policy has effectively redis-

tributed flood exposures across different regions. Using the Global Flood Database (Tellman

et al. 2021), a satellite-based flood dataset, we construct proxies to measure county-level flood

exposures. Through a fixed-effect regression, we find that the size of flood inundation in FDB

counties is over 50% larger compared to other counties, after controlling for key geographical

attributes. Additionally, we use a hydro-dynamic engineering model to simulate a coun-

terfactual scenario without FDBs absorbing excess floodwaters. In one case study, we find

that an economically important city, Wuhan, would experience 45% more flooding during a

severe flood event.

Second, we find that the FDB designation has had a negative and persistent impact on

the economic development of FDB counties. Using a difference-in-differences approach, we

compare the economic development of FDB counties with that of counties not affected by

the FDB policy. However, FDBs are not randomly distributed. According to the Chinese

government, FDBs should be low-lying areas that are hydrologically feasible for absorbing

floodwater. To address this selection issue, we employ the synthetic difference-in-differences

estimation method proposed by Arkhangelsky et al. (2021) for the main analysis, while

also providing traditional and alternative DID estimations for robustness (Callaway and

Sant’Anna 2021, de Chaisemartin and D’Haultfœuille 2020, Gardner 2022). Overall, we find

a negative and statistically significant impact of FDB designation on economic development:

the FDB designation reduces annual nighttime light intensity by approximately 10%. Hen-

derson et al. (2012) and Martinez (2022) estimate the elasticity of GDP to nighttime light at

around 0.3. Hence, we are able to translate the reduction in light intensity to an approximate

3% annual GDP loss. This cost estimation is also consistent with findings from hydrologists

(e.g., Wang et al. 2021). Event studies using a 20-year window centered around the year of

FDB designation further support the validity of our identification methods.

To investigate the mechanism behind the reduction in nighttime light intensity, we exam-

ine the impact of the 2010 policy change in which the Chinese government added 20 counties

to the FDB list and removed 10 counties from it. This policy change allows us to compare

the treatment effect of being selected into the FDB list and that of being removed from the

list. We first examine whether people make location decisions in response to the FDB policy.
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However, unlike previous studies that provide evidence of migration following floods (e.g.,

Hornbeck and Naidu 2014), our findings do not find evidence of migration in response to this

policy, possibly due to the mobility restriction in China. Instead, our findings suggest that

the firm-response effect is the major mechanism, as firms are reluctant to enter and invest

in FDB counties with higher flood risks. Our empirical analysis supports the firm-response

mechanism as follows:

(i) On average, the number of new firm entries has declined by 15.9% in the newly des-

ignated FDB counties after the 2010 policy change. Focusing on larger manufacturing

firms with a turnover above $3 million, the number of such firms has declined by 21.7%

in newly designated FDB counties following the policy change. This result is also con-

sistent with Jia et al. (2022) and Balboni et al. (2023), which find that firms make

location decisions in response to flood risk change;

(ii) Using detailed firm investment data, we apply a spatial regression discontinuity ap-

proach (Imbens and Wager 2019 and He et al. 2020) to compare firm investments in

FDB counties versus neighboring counties. We find that investment in fixed assets is

19.7% lower in FDB counties compared to neighboring counties, with this gap in fixed

asset investment only emerging after the 2010 policy change;

(iii) In contrast, we find significant evidence that firm entries and firm investments have

increased in counties that were removed from the FDB list in 2010. Specifically, the

number of new firm entries has increased by 16.8%, and investments in fixed assets

have increased by 25.7%. Compared to the treatment of being selected into the list, we

view the balanced and symmetrical effect of being removed from the list as compelling

evidence that the FDB policy significantly influences firms’ decision-making.

Third, we use a spatial general equilibrium model to quantify the net output gain brought

by the FDB policy. We need a general equilibrium model for two reasons. First, it is difficult

to empirically identify the impact of the FDB policy on protected cities, as these econom-

ically important cities are targeted by numerous policies, with the FDB policy being just

one among many. Second, as indicated by Redding and Turner (2015) and Allen and Arko-

lakis (2022), infrastructure investments (e.g., dams) could reshape the spatial distribution

of economic activity and have general equilibrium effects. In our paper, we need a general

equilibrium model to analyze the impact of changing flood water flow on the broader region,

so that we can quantify spillover effects and understand whether other counties benefit from

protecting the manufacturing sector in economically important cities. Following the ap-

proach of Fajgelbaum et al. (2019), manufacturing goods are assumed to be tradable across
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different regions. Firms of rational expectations make entry decisions prior to flood events.

After calibrating the model to fit real-world data, we construct a counterfactual scenario

in which FDB counties did not protect urban cities from floods. In this counterfactual sce-

nario, without FDBs, flood risk in FDB counties (protected cities) would decrease (increase).

Comparing the counterfactual output with the actual output, we find that as FDBs absorb

more flood water, the net output gain would be higher, although the inequality between

FDB counties and urban cities would be exacerbated.

Fourth, based on the general equilibrium framework, we conduct another counterfac-

tual practice, in which FDB counties of different productivity levels would be removed from

the list, successively. We find that (i) higher-productivity counties contribute minimally to

overall output gains; and (ii) lower-productivity and more economically vulnerable counties

contribute significantly to output gains but experience greater flood exposure. These findings

imply two key policy considerations. First, the Chinese government may be overprotecting

urban cities, as similar output gains could be realized by excluding higher-productivity coun-

ties from the FDB list. Second, a more equitable compensation scheme that transfers surplus

from protected urban areas to FDB counties could significantly improve social equity.

This paper makes three key contributions. First, we contribute to the discussion on flood

costs by illustrating that flood management policies, while aimed at reducing damage, can

also lead to significant economic costs. We find that governments have incentives to mitigate

floods by shifting flood damages onto regions of lower economic values. Kocornik-Mina et al.

(2020) finds that while urban areas experience frequent flooding, lower-elevation cities tend

to recover as quickly as higher-elevation cities. Our paper helps explain this phenomenon

by suggesting that governments may strategically channel flood damages to rural areas.

Also, our findings are consistent with prior studies that report negative impacts of floods on

economic development in both developing (e.g., Patel 2023) and developed countries (e.g.,

Strobl 2011). A cross-country study by Hsiang and Jina (2014) also demonstrates the causal

effect of cyclones on long-term economic growth across various regions, while Desmet et al.

(2021) predicts that permanent flooding due to climate change could reduce global real GDP

by 0.19 percent. For studies focusing on China, Elliott et al. (2015) identifies that typhoons

impose a significant but short-lived negative impact on local economic activity in China.

Our study contributes to this relatively limited literature on the economic costs of floods in

China—a country with severe flood risk, where approximately 395 million people are exposed

to floods.

Second, our study contributes to the literature on how individuals and firms adapt to

both natural disasters and government interventions. We find that firms adjust their entry

and investment decisions in response to changes in flood risk. Balboni et al. (2023) observes
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a similar trend, with firms in Pakistan relocating from flood-affected areas to less flood-

prone regions. Similarly, Jia et al. (2022) also finds that flood risk will affect firm location

decisions in the United States. Our study further expands the discussion by examining how

firms adapt to government interventions. We find that environmental damages tend to be

disproportionately concentrated in economically less valuable areas. Meanwhile, economic

activity becomes more concentrated in urban centers. This aligns with recent findings by

Hsiao (2023) that government interventions may create moral hazard, encouraging greater

economic concentration in coastal regions. In terms of individual response, we find no evi-

dence of migration in reaction to the policy, which is different from previous studies (e.g.,

Boustan et al. 2012; Hornbeck and Naidu 2014; Gröger and Zylberberg 2016; Boustan et al.

2020). Understanding the underlying reasons will be an important area for future research.

Third, our research contributes to the discussion on the aggregate and distributional im-

pacts of environmental policies and government interventions. Environmental policies often

have distributional impacts. He et al. (2020) shows that firms located upstream of pollutant

monitoring stations in China experience larger reductions in productivity than downstream

firms. Similarly, Taylor and Druckenmiller (2022) finds spatial heterogeneity in benefits from

the Clean Water Act in the United States. With climate change intensifying, the allocation

of environmental damages becomes an increasingly important topic. For instance, Duflo

and Pande (2007) finds that residents upstream of dams in India face greater constraints in

economic mobility than those downstream. For example, Balboni (2019) examines the spa-

tial distribution of large infrastructure investments in Vietnam, a country highly threatened

by sea-level rise. Hsiao (2023) also assesses the spatial distributional impacts of construct-

ing sea walls. We contribute to this strand of literature by incorporating Flood Detention

Basins (FDBs) into the discussion. Consistent with prior findings, we observe substantial

distributional impacts of these policies. Meanwhile, while much of the literature on flood

management policy has focused on flood insurance programs in the United States (e.g., Gal-

lagher 2014, Mulder 2021, Georgic and Klaiber 2022), our study extends this discussion by

investigating the impact of FDB policy that intentionally reallocates flood damages.

This paper is structured as follows. Section 2 provides an overview of the research

background. Section 3 introduces the data and empirical strategy. Section 4 provides first

stage results that FDB policy induces flood exposure redistribution, based on reduced-form

estimations and hydrological modeling. Section 5 uses difference in differences approach to

investigate economic costs on FDB counties. In Section 6, we discuss the mechanisms driving

these costs. Section 7 estimates the net output gain using a spatial general equilibrium.

Section 8 concludes.
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2 Research Background

2.1 Substantial Flood Risk in China

China ranks among the top countries globally for flood risk, due to its large population

exposed to both coastal and river flooding. According to the Aqueduct Global Flood Risk

Country Rankings, China ranks third in the world for the absolute number of people exposed

to flood risks, with approximately 395 million people at risk annually. This places China

among the most flood-exposed countries, alongside India and Bangladesh. About 27.5% of

China’s population is vulnerable to flooding, driven by river floods in the Yangtze, Huai,

and Yellow River basins, as well as coastal areas prone to typhoons and rising sea levels.

From 2000 to 2017, floods caused economic damage exceeding $150 billion, according to the

EM-DAT International Disaster Database. Furthermore, Arnell and Gosling (2016) predicts

that the likelihood of a 100-year flood occurring in China could increase by 33-67% by 2050.

(a) Flood Risk Distribution in China (b) Nighttime Light in China

Figure 1: Richer regions in China face higher river flood risk.

A key feature of China’s floods is their disproportionate impact on economically impor-

tant regions. Jiangsu Province, for instance, ranks second in GDP among China’s provinces,

yet faces severe flood risks due to its location along the Yangtze River and Huai River. As

shown in Figure 1, regions with higher flood risks, identified by Zhang and Song (2014),

are also more economically significant, as indicated by higher nighttime light intensity. For

instance, the Yangtze River Basin, home to one-third of China’s population, is a crucial eco-

nomic hub. Frequent flooding, exacerbated by seasonal rainfall and extreme weather events,

poses significant risks to infrastructure and livelihoods in these areas. Similarly, the Huai

River Basin, another key region, faces recurring flood threats. Flooding in these economi-
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cally vital regions could hinder China’s overall economic growth, making flood management

a critical concern for the government.

Due to rapid urbanization, urban populations in major cities (e.g., Beijing, Wuhan,

and Nanjing) are increasingly exposed to severe flood risks. The urbanization rate surged to

64.72% in 2021, up from 36.00% in 2000, which has significantly heightened the vulnerability

of urban areas to flooding. For instance, the 2012 Beijing flood, triggered by extreme rainfall,

resulted in over 79 fatalities and caused approximately $2 billion in economic damage. The

2021 Zhengzhou flood led to over 350 deaths and caused around $6 billion in economic losses.

This underscores the severe impact of urban flooding on densely populated areas.

2.2 Flood Detention Basins: the Last Resort of Managing Floods

Flood Detention Basins (FDBs) are areas designated for the temporary storage of flood-

water to protect broader regions from flood damage. FDBs are an essential component of

the flood management strategy, particularly when other measures are insufficient to miti-

gate severe flood impacts. A famous example of such an approach is the Birds Point-New

Madrid Floodway in Missouri, USA, where controlled flooding mitigates the risk of severe

damage to surrounding communities. The Birds Point-New Madrid Floodway, established in

1928 after the Great Mississippi Flood, spans approximately 130,000 acres and is part of the

Mississippi River and Tributaries Project. During times of extreme flooding, levees are inten-

tionally breached to divert water away from populated areas, thereby reducing flood risks to

downstream communities such as Cairo, Illinois. This floodway has been activated multiple

times, most recently in 2011, to protect both urban and rural areas from catastrophic flood

damage.

The Flood Control Law of the People’s Republic of China, implemented in 2000, is the

country’s first piece of legislation specifically governing flood management. This law offi-

cially designates certain areas as Flood Detention Basins (FDBs). According to the law,

FDBs are low-lying lands and lakes used for the temporary storage of floodwaters. To facil-

itate floodwater diversion, the Chinese government constructs dams and dikes in these FDB

counties, enabling effective flood management during extreme events. The law specifies that

the purpose of establishing FDBs is to “safeguard the interests of pivotal regions and the

whole watershed.” Additionally, the government acknowledges that residents in these FDBs

make significant sacrifices for the greater collective welfare. As shown in Table A1, the FDB

policy directly affects about 1.1% of China’s total population. The aggregate area of FDBs

is 30,443 km2 (0.3% of China’s total land), which is comparable with the entire territory of

Switzerland.
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Figure 2: FDB Counties and FDB-Protected Counties

Note: (1) FDB counties are marked using color yellow, and FDB-protected counties are marked using color

red; (2) FDB counties are located near the river, and FDB-protected counties are located to the downstream

of FDB counties.

FDB counties protect downstream urban areas from severe flood impacts and play a

key role in diverting floodwaters to protect downstream areas. As illustrated in Figure 2,

FDB counties are located in the upstream so that urban cities to the downstream could

be protected from being severely damaged during floods. For example, the Mengwa Flood

Detention Basin, located in Funan County, Anhui Province, has been activated more than

16 times since its establishment. During flood detention, more than 200,000 residents in the
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Mengwa Flood Detention Basin are temporarily relocated to neighboring counties. More

details about this case study can be found in Appendix A.5.

Policy Change

According to the 2000 Flood Control Law, 96 counties were designated as FDB counties,

the first time that the specific locations of these basins for flood detention were officially

confirmed. In 2010, the Ministry of Water Resources revised the earlier law in the National

Flood Detention Basin Construction and Management Plan. As indicated in Table A2, under

this new plan 13 FDBs were added and 12 were removed. Consequently, the specific counties

classified as FDB counties changed, with 20 new additions to the list and 10 removed. Table

A1 and Table A2 offer an overview of the FDBs in China’s major river basins in 2000 and

2010.

2.3 Key Features of Flood Detention Basins in China

Selection

According to national law, detention basins are typically placed in topographically low

areas conducive to floodwater containment, as these areas naturally accumulate water, mak-

ing them ideal for mitigating flood impacts. The selection of FDB counties is determined by

the Ministry of Water Resources, indicating a centralized decision-making process. Among

all factors, hydrological feasibility for absorbing floodwater is the most critical determinant

in this decision-making process. Key considerations include soil permeability, water reten-

tion capacity, and the ability to minimize adverse downstream effects. Research in hydrology

has consistently emphasized the importance of these factors in optimizing FDB selection.2

In Table A4, we also present a linear proabability regression model to identify factors in-

fluencing the selection of Flood Detention Basin locations. Our findings indicate that the

choice of FDB sites is predominantly influenced by hydrological and geographical character-

istics. This is consistent with the official stance of the Chinese government, which defines

FDBs as “low-lying lands and lakes that are hydrologically suitable for temporary storage

of floodwaters.”

2Mays and Bedient (1982) developed an optimal model based on dynamic programming, aiming to
determine the ideal size and location of detention basins to maximize flood absorption while minimizing
construction costs. This model was further refined by Bennett and Mays (1985) by incorporating the cost
implications of detention basin structures and downstream channel designs. Using this refined model, Taur
et al. (1987) optimized the detention basin system in Austin, Texas, highlighting the significance of hy-
drological suitability in site selection. Mays and Bedient (1982) advanced this research by optimizing the
placement and sizing of retention basins in a watershed, specifically targeting reductions in aggregated costs
related to construction, maintenance, and sediment removal, while considering hydrological efficiency.
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Migration

During the flood detention period, residents are temporarily relocated to neighboring

counties or ‘zhuangtai’—areas with higher elevation that remain unflooded during floodwa-

ter diversion. More explanations can be found in Appendix A.6. Unlike the case of building

reservoirs, the government does not force residents in FDB counties to leave. Although the

government may encourage local residents to relocate, the financial incentives provided are

insufficient. According to a survey conducted in a Flood Detention Basin, 73% of local resi-

dents are dissatisfied with the current migration incentive scheme, and 94% are dissatisfied

with the migration destinations offered by the government. Overall, 69% of participating

residents are unwilling to leave the FDB county. We present more empirical findings about

migration in Section 6.1.

Compensation

Subsidies to FDB counties during normal periods, when there is no floodwater diversion,

are limited. However, according to the Temporary Measures for the Use of Compensation

in Flood Storage and Detention Areas initiated by the Chinese government in 2000, the

government is supposed to compensate up to 70% of damages caused by direct floodwater

diversion. The specific compensation standards are determined by the provincial-level gov-

ernment and are based on the actual damage caused by the flood within these parameters.

However, the requirements for receiving compensation are not clearly specified. For example,

the government will not compensate for livelihood losses if assets could have been relocated

according to government orders but were not. But there is no clear specification regarding

how to assess whether the asset could or could not have been transferred.

Due to increasing flood risk, the Chinese government has emphasized using financial tools

to help alleviate flood risk. For instance, in 2024, the People’s Bank of China allocated an

additional $15 billion in relending funds for agricultural and small business support in 12

provinces (regions, municipalities). These funds are intended to support flood prevention,

disaster relief, and post-disaster reconstruction efforts in severely affected areas. However,

during the period of this research, this type of subsidy or compensation remains limited.

A more detailed discussion on compensation can be found in Appendix A.8, along with an

example of actual compensation from the 2023 floodwater diversion in Zhuozhou County,

Hebei Province.
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3 Data and Empirical Strategies

3.1 Data

FDB List - The Ministry of Water Resources officially announced the list of Flood

Detention Basins (FDB) in 2000, and revised the list in 2010. We then define counties that

hold flood detention basins as FDB counties. The original policy document can be found in

Appendix A.1.

Data on Light - Given possible threats to GDP estimation in datasets provided by

the National Bureau of Statistics (NBS), as suggested by Martinez (2022), we use nighttime

light data as a proxy of economic activity. Specifically, we use the 1984-2020 ‘Prolonged

Artificial Nighttime-light Dataset of China’ data by Zhang et al. (2024).

Data on Firm-level Outcomes - Firm-level data is collected from National Enter-

prise Credit Information Publicity System (NECIPS) and Annual Survey of Industrial Enter-

prises (ASIE). NECIPS, administered by China’s State Administration for Market Regula-

tion (SAMR), provides annual registration records for all Chinese enterprises spanning from

1960 to 2023. This dataset is rich in detail, encompassing key information such as the date of

establishment, ownership type, and geographical location of each firm. Using the geo-located

data within this resource, we are able to accurately track the entry of firms in counties and

towns designated as Flood Detention Basins (FDB). The firm-level data derived from ASIE

spans from 1998 to 2014. ASIE encompasses private industrial enterprises with annual sales

exceeding 5 million RMB (approximately 0.7 million USD) and all state-owned industrial

enterprises (SOEs). Compiled and maintained by the National Bureau of Statistics (NBS),

this dataset offers an extensive array of information sourced from the accounting records

of these firms. It includes data on inputs, outputs, sales, taxes, and profits. This dataset

contrasts with the National Enterprise Credit Information Publicity System (NECIPS) in

two key aspects. Firstly, ASIE’s temporal scope is confined to the period between 1998 and

2014, whereas NECIPS provides a wider temporal range for analysis (1960 to 2023). Sec-

ondly, ASIE primarily concentrates on collecting comprehensive details about firm activities,

whereas NECIPS is oriented towards the registration of new firms.

Data on Other Socio-economic Outcomes - Other county level data is collected

from the County-level Statistical Annual Yearbooks from 1999 to 2022. The National Bu-

reau of Statistics (NBS) conducts county-level survey each year. It is a longitudinal survey

that collects county-level socio-economic data for all counties in China. County-level vari-

ables include local output (disaggregated by sector), number of firms, fiscal income, fiscal

expenditure, savings and etc.
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Geographical Data - Elevation and gradient information is obtained from the NASA

ASTER Global Digital Elevation Model (GDEM). The GDEM, with its extensive coverage

from 83 degrees north to 83 degrees south latitude, encompasses 99 percent of the Earth’s

landmass. This comprehensive database enabled us to gather detailed elevation and gradient

data for all counties and towns across China. For precipitation data, we turned to the Global

Surface Summary of the Day (GSOD), sourced from the Integrated Surface Hourly (ISH)

dataset. GSOD provides daily summaries typically within 1-2 days of the observation date.

It encompasses data from over 9,000 stations worldwide, offering historical records from 1929

onwards, with the period from 1973 to the present being the most complete. Utilizing this

resource, we calculated the mean monthly precipitation for each village and town in China.

3.2 Descriptive Statistics

In Table A3, we compare several descriptive statistics of FDB counties and non-FDB

counties. FDB counties, compared to non-FDB counties, exhibit differences in geograph-

ical, flood, and socio-economic characteristics. Geographically, FDB counties have lower

elevations and slopes but more permanent water pixels. This is consistent with the gov-

ernment claim that flood detention basins are typically low-lying lands and lakes used for

temporary storage of floods. In descriptive results, we find that FDB counties experience

higher flood exposure and larger areas of flood inundation. Contrary to the claim that FDB

counties should hold less population and be poorer, the data demonstrates that FDB coun-

ties actually have larger populations and higher nighttime light intensity, which is often an

indicator of greater economic activity. Additionally, FDB counties have a slightly greater

number of firms compared to non-FDB counties. These socio-economic indicators suggest

that FDB counties are not poorer; rather, they have significant economic activities. This

evidence contradicts the assumption that FDB counties are less populated and economically

disadvantaged.

3.3 Empirical Strategies

Identification Challenge: FDB Location Choice

From a geographical perspective, detention basins are typically placed in topographically

low areas conducive to floodwater containment. The field of hydrology has provided a wealth

of research on optimizing the selection of flood detention basins. Mays and Bedient (1982)

developed an optimal model based on dynamic programming, aiming to determine the ideal

size and location of detention basins, with the goal of minimizing system construction expen-
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ditures. This model was further refined by Bennett and Mays (1985) by incorporating the

cost implications of detention basin structures and downstream channel designs. Utilizing

this evolved model, Taur et al. (1987) optimized the detention basin system in Austin, Texas.

Travis and Mays and Bedient (1982) advanced this line of research by optimizing the place-

ment and sizing of retention basins in a watershed, targeting the reduction of aggregated

costs encompassing construction, maintenance, and sediment removal. Subsequent studies

have integrated various optimization techniques, such as genetic algorithms and simulated

annealing, and incorporated detailed engineering cost assessments into the design frame-

works for detention basin-river-protected region systems (e.g., Perez-Pedini et al. 2005; Park

et al. 2014).

However, potentially non-random FDB location choice remains the major challenge in

identifying the effects of the Flood Detention Basin (FDB) policy. The selection or removal

of counties from the FDB list is likely influenced by factors other than geographical factors.

For instance, the government may designate less economically developed counties to host

those basins, or conversely, remove a county from the FDB list due to its better economic

performance.

In Table A4, we apply a logit regression model to identify the determinants influencing the

selection of Flood Detention Basins (FDB) locations. Our findings suggest that the choice of

FDB sites is predominantly influenced by geographical characteristics. This aligns with the

official stance of the Chinese government, which defines FDBs as ‘low-lying lands and lakes

situated beyond the back scarps of dikes, inclusive of flood diversion outfalls, utilized for

the temporary storage of floodwaters.’ Our analysis corroborates this definition, revealing

a significant tendency for counties with lower elevation levels to be selected as FDBs. We

do not find empirical evidence to claim that the Chinese government intentionally selected

relatively poorer counties as FDBs.

Two-Way-Fixed-Effects (TWFE) Difference-In-Differences

Our logit regression results, as shown in Table A4, reveal no significant correlation be-

tween a county’s FDB status and its GDP, which suggests that FDB policy implementation

may not be directly related to economic output. However, this does not entirely rule out

the possibility that socioeconomic factors influence FDB selection decisions.To address the

endogeneity concern, we use three identification strategies: traditional TWFE Difference-in-

Differences, the Synthetic Difference-In-Differences (SDID) and spatial regression disconti-

nuity (SRD).

We first use the most traditional Two-Way-Fixed-Effects (TWFE) Difference-In-Differences
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approach to investigate the imapct of FDB policy. The regression specification takes the form

of:

ln(Y )it = α + β1FDBit + γi + λt + ϵi

where Yit measures the outcome of interest of county i in year t, FDBit is a dummy variable

that equals 1 if the county i is an FDB county in year t, and 0 if not. γi, and λt indicate

county and year fixed effects, respectively. Standard errors are clustered at the county level.

In this regression specification, β1 is the difference-in-difference estimate that measures the

impact of FDB policy on outcomes of interests.

Synthetic Difference-In-Differences (SDID)

Considering recent discussions on the properties of the staggered Difference-in-Differences

(DID) approach, particularly regarding potential biases stemming from the weighting prob-

lem as highlighted by Borusyak et al. (2024), we argue that the Synthetic Difference-in-

Differences (SDID) method, proposed by Arkhangelsky et al. (2021). Central to the SDID

framework is its ability to derive a counterfactual for each treated entity by computing a

weighted average from a comprehensive set of potential controls. We argue that SDID is

well-suited for our empirical setting for several reasons.

First, constructing a counterfactual group using synthetic weights, as proposed by Abadie

et al. (2010), effectively addresses concerns about the weighting problem inherent in tra-

ditional TWFE DID. SDID ensures that the synthetic control group closely mirrors the

treatment group’s pre-treatment characteristics, thereby enhancing the validity of causal

inferences.

Second, Roth et al. (2023) suggest that clustering at the unit level is inappropriate when

the number of treated groups is small. In our context, the 2010 policy change by the Chinese

government, which added 20 new counties to the list and removed 10, involves a limited

number of treated clusters. Given this small sample size, employing bootstrap standard

errors, as facilitated by the SDID approach, provides a more reliable measure.

Third, the construction of synthetic weights mitigates potential threats to exogeneity by

ensuring that the counterfactual group exhibits pre-treatment outcomes that are parallel to

those of the treatment group. This parallel trend assumption is crucial for the validity of

DID estimates, and the SDID method’s ability to create a closely matched synthetic control

group strengthens this assumption.

In summary, the SDID approach offers a robust solution to the potential biases associated

with traditional DID methods, particularly in settings with small numbers of treated units

and concerns about weighting and exogeneity. This makes it a particularly suitable choice
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for our analysis of the economic impacts of the 2010 policy change in China. Following

Arkhangelsky et al. (2021), the average treatment effect on the treated, or ATT, is denoted

as τ . Estimation of the ATT proceeds as follows:

(
τ̂ sdid, µ̂, α̂, β̂

)
= argmin

τ,µ,α,β

{
N∑
i=1

T∑
t=1

(Yit − µ− αi − βt −Witτ)
2 ω̂sdid

i λ̂sdid
t

}

weights ω̂sdid
i and λ̂sdid

t are optimally chosen given the design by Arkhangelsky et al.

(2021). Time fixed effects are denoted by βt and unit fixed effects are denoted by αi. Yit is

the outcome of a county i at year t. Wit is the treatment dummy that equals 1 if county i

is treated in year t, and 0 if not. µ is the constant term.

Spatial Regression Discontinuity (SRD)

We also employ a spatial regression discontinuity design based on a firm-level dataset,

the Annual Survey of Industrial Enterprises (ASIE). Both parametric and nonparametric

methods can estimate the discontinuity. Imbens and Wager (2019) demonstrated that the

parametric RD method, employing a polynomial function of the running variable as a regres-

sion control, often produces RD estimates sensitive to the polynomial’s degree and exhibits

several other unfavorable statistical characteristics. Consequently, we adopt the advised

local linear method and proceed to estimate the equation below.:

Yij = α1 FDB ij + α2 Dist ij + α3 FDB ij · Dist ij

+εij s.t. − h ⩽ Dist ij ⩽ h,

where Yij is the assets per worker of firm i in county j. FDB ij is an indicator variable

that equals 1 if firm i is treated by policy shock (in the new FDB region or in the newly

abolished FDB region), and 0 otherwise. Dist ij measures the distance between firm i and

new FDB county border (or abolished FDB county border) j (negative if outside the county

and positive within the county), and h is the estimated MSE-optimal bandwidth following

Calonico, Cattaneo, and Farrell (2018). The standard error is clustered at the county level

to deal with the potential spatial correlation of the error term, as suggested by Cameron and

Miller (2015).

3.4 Counties as the Unit of Analysis

In this study, we concentrate on the county level rather than the town level within China’s

administrative hierarchy. Counties, situated between prefectures and townships, form the

third tier of the administrative structure. Mainland China comprises 2,851 county-level
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divisions. According to 2000 and 2010 FDB policy, in total, 96 and 106 counties could

be identified as a FDB county, respectively. We focus on counties for two reasons. First,

county-level data is more comprehensive. The National Bureau of Statistics (NBS) provides

the most extensive collection of socioeconomic variables at the county level. By focusing our

analysis here, we can more effectively examine the impact of policies on crucial socioeconomic

indicators, such as the output of various sectors. Second, flood detention typically will impact

most towns in a county. Although dams are situated in towns, we observed that in the event

of a flood, the impact typically extends to encompass the entire county.
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4 FDB Policy and Flood Redistribution

Before analyzing the economic impacts of the Flood Detention Basin (FDB) policy, this

section presents the first-stage results on whether the policy has successfully redistributed

floodwaters. Using fixed effects regression and hydrological dynamic model, we aim to quan-

tify the extent to which FDB counties have absorbed excess floodwaters due to the policy.

4.1 Measuring Floods

We gathered data on each flood event from the Global Flood Database (GFD), which

provides comprehensive tracking of floods in China from 2000 to 2018. This database docu-

ments a total of 189 flood events within China. Given GFD offers satellite maps that record

flood events for every county (see Figure B1), we are able to collect data regarding the length

of flooding experienced by each pixel (30m × 30m). Additionally, the database allows us to

identify whether a pixel includes permanent water bodies, which “are consistently identified

with the presence of surface water for the majority of observations in 2000-2018 at 30 meter

resolution which was resampled to 250m resolution in Google Earth Engine using nearest

neighbor resampling.”, according to GFD. Using Global Flood Database (GFD), we are able

to construct three county-level proxies of flood exposures.

Size of Flood Inundation (total size of inundation in a flood event in a county)

Size of Inundationift =
∑
j∈Ai

I(Flood Durationjft) > 0

whereAi represents pixels that have not contained permanent water in county i, Flood Durationjft

indicates the flood duration in a non-permanent water pixel j in flood event f at time t.

Flood Duration (total flood duration experienced by all non-permanent water pixels in a

flood event in a county)

Total Flood Durationift =
∑
j∈Ai

Flood Durationjft

Size-Adjusted Flood Exposure (average flood duration of each non-permanent water pixel

in a flood event in a county)

First, we identify all the pixels within a county that are not occupied by permanent

water bodies. Next, we look at every flood event individually, adding together the duration

of flooding for each non-permanent water pixel to get the county’s total flood duration for

each flood event. Finally, to proxy flood risk of each county, we divide the county’s flood
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duration by the count of non-permanent water pixels. We believe that this index provides a

nuanced quantification of flood risk, adjusted for the spatial extent of the county’s land area

susceptible to flooding.

Following this thought, we define the size-adjusted flood duration as

AdjustedF loodExposureift =

∑
j∈Ai

FloodDurationfjt

|Ai|

where AdjustedF loodExposureift indicates the size-adjusted flood exposure at flood

event f that happened at time t. Ai represents pixels that have not contained perma-

nent water in county i. FloodDurationfjt is the number of flooded days experienced by

non-permanent water pixel j at the flood event f of time t. It will be 0 if the non-permanent

water pixel has not been flooded at the flood event. And it will take a positive value if that

non-permanent water pixel has been flooded at the flood event. Here, we define a pixel as

a flood-pixel at a flood event f if that pixel: (i) has not contained permanent water previ-

ously, which means j ∈ Ai; (ii) but has been marked as flooded by Global Flood Database

in the flood event f of time t. Hence,
∑

j∈Ai
FloodDurationfjt measures the total sum of

flood duration experienced by non-permanent water pixels in county i at flood event f of

time t. By dividing this sum by total number of non-permanent water pixels |Ai|, we adjust
the total sum of flood duration by the size of non-permanent water in county i. Figure 3

demonstrates that size-adjusted flood exposure is higher in FDB counties. From 2000 to

2018, FDB counties consistently experience higher levels of flood exposure. Notably, the

peaks in the graph around 2003, 2006, 2010, and 2014 highlight periods where FDB counties

face substantially increased flood risks, due to flood water detention.
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Figure 3: Size-Adjusted Flood Exposure in FDB and non-FDB Counties

Note: The size-adjusted flood exposure is calculated using Global Flood Database and measures the average

days of inundation experienced by a non-permanent water pixel in a county.

4.2 Quantify the Flood Exposure Redistribution Rate

Figure 3 straightforwardly demonstrates that the size-adjusted flood exposure is much

higher in FDB counties, compared to non-FDB counties. We then use the following specifi-

cation to determine whether the flood exposure in FDB counties is significantly higher than

non-FDB counties.

ln(Exposureijt) = α + β1FDBijt + β2Xijt + γj + θt + ϵi

where ln(Exposureijt) is the proxy of flood risk in county i, city j, at year t. In our

setting, we use two proxies to investigate the impact of FDB policy on flood exposure.

The first proxy is the size of inundation area. And the second one is the size-adjusted flood

exposure (detailed explanation can be found in Section 3.1), which measures the average days

of flood inundation of a county in a flood event. FDBijt is a dummy that equals 1 if the

county i is a FDB county, and 0 if not. γj represents the city fixed effect, and θt represents

time fixed effect. ϵi is the standard error that is clustered at city level. Xijt contains

geographical controls (precipitation, elevation and slope), which are important determinants

of floods. β1 then measures whether FDB counties have a higher flood exposure than other

counties in a given city, holding geographical factors constant.
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Table 1: Impacts of FDB Policy on Flood Exposure

Sample Period: Flood Size Flood Duration Flood Exposure per Pixel

2000-2020 (1) (2) (3) (4) (5) (6)

FDB 0.602*** 0.547*** 0.662*** 0.574*** 0.050*** 0.043***
(0.090) (0.087) (0.096) (0.090) (0.010) (0.010)

N(obs) 52,307 52,307 52,307 52,307 52,307 52,307

Controls
Precipitation N Y N Y N Y
Slope N Y N Y N Y
Elevation N Y N Y N Y

Fixed Effects
Year Y Y Y Y Y Y
City Y Y Y Y Y Y

Note: (1) This table presents results of fixed-effect regression: ln(Floodijt) = α+β1FDBijt+β2Xijt+γj+θt+ϵi, ln(Flood)ijt
indicates flood-related outcomes in county i, city j, at year t, FDBijt is a dummy variable that equals 1 if the county i is
an FDB county in year t, and 0 if not, Xijt are geographical controls, γj is city fixed effect, λt is time fixed effect, stan-
dard errors are clustered at the county level; (2) We have three types of flood-related outcomes. ‘Size of Flood Inundation’
measures the area of flood inundation in each county, ‘Total Flood Duration’ measures the total flooded day experienced
by all non-permanent while ‘Size-Adjusted Flood Exposure’ measures the average days of flood inundation experienced by
a non-permanent water pixel in a county. Detailed calculation is introduced in Section 3.1.
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As indicated in Column (1) and (2) of Table 1, we find that after controlling for important

geographical controls, the size of flood inundation area in FDB counties is more than 50%

higher in FDB counties than other counties in the same city. Column (5) and (6) also

suggest that the size-adjusted flood exposure is 5% higher in FDB counties, compared to

other counties in the same city. This empirical evidence supports the claim that FDB policy

induces flood risk redistribution across different regions. In other words, FDB counties tend

to absorb more flood water according to the policy design.

4.3 Hydrological Analysis based on Hydro-Dynamic Model

According to a hydro-logical research by Mingkai and Kai 2017, “inundated farmland

in the downstream would be increased to 2530 hectares, with an increased area of 1340

hectares more than the use of the Mengwa Detention Basin.” To rigorously quantify the

level of floodwater redistribution, we incorporate an interdisciplinary approach and employ

a hydro-dynamic engineering model developed under the supervision of the Danish Hydraulic

Institute (DHI) to measure the flood exposure redistribution rate during a real flood event.

The hydro-dynamic model is a sophisticated tool used for simulating water flow, particularly

in river basins and floodplain areas. It accounts for variables such as topography, water

velocity, flow rates, and human interventions, making it highly suitable for assessing the

impacts of floodwater management policies like the Flood Detention Basin (FDB) policy.

We specifically choose Wuhan for this analysis because of its economic importance, and its

size is comparable to that of the FDB counties. This makes it easier to translate the flood

protection benefits observed in Wuhan to the flood water absorbed by the FDB regions.

The process of implementing the model consists of several key steps. First, we collect

high-resolution geographical shape data, river runoff data, and detailed policy information

on floodwater diversion. These inputs are essential to build an accurate representation of

the river system and floodplain in question, including the areas designated as FDB zones.

The geographical data defines the physical characteristics of the region, while the runoff data

provides insight into how much water the rivers and floodplains can handle during heavy

rainfall or extreme flood events. The FDB policy details, on the other hand, establish the

parameters of water diversion in our model.

Next, we calibrate the model using historical flood data to ensure its accuracy. This

involves adjusting model parameters until the simulated outcomes closely match the observed

data from past flood events. Calibration is a crucial step because it ensures that the model

is reliable and that its predictions reflect real-world conditions. By checking the consistency

of model predictions with actual flood patterns (see Figure C1), we validate the model’s
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capacity to predict the effects of floodwater redistribution accurately.

After calibration, we simulate a counterfactual scenario where the floodwaters are not

diverted to the FDB areas. This simulation allows us to assess what would happen in the

absence of the flood diversion policy. The model predicts how floodwaters would behave if

allowed to flow freely without the designated intervention, providing us with a comparison

between the actual and hypothetical scenarios.

Finally, we compare the size of the inundation area in Wuhan City between the actual

scenario, where floodwaters are diverted into the FDB regions, and the counterfactual sce-

nario without diversion. As shown in Figure 4, the inundation area in Wuhan, an important

city intended to be protected by the FDB policy, increases by 45% in the absence of flood-

water diversion. This significant increase in the flooded area highlights the crucial role that

the FDB policy plays in mitigating flood risks for urban centers.

(a) Actual Case: with FDB (b) Counterfactual Case: without FDB

Figure 4: Inundation Map in Wuhan City (Actual v.s. Counterfactual)

Note: (1) The map is drawn using MIKE hydrological modelling software launched by Danish Hydraulic

Institute (DHI); (2) Model: hydro-dynamic model; (3) We select Wuhan city because this city is a major

protected city by FDBs in Yangtze Rivers; (4) The flood exposure redistribution rate based on this estimation

is 45%.
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5 Economic Costs on FDB Counties

After confirming that flood exposures in FDB counties are significantly higher than other

counties, we extend our analysis into economics. In this section, we aim to quantify the eco-

nomic impact of FDB policy on selected FDB counties. Here, we mainly focus on nighttime

light intensity, a proxy of GDP. However, in future research, we plan to extend our analysis

to more individual level outcomes, for example, education and health outcomes.

5.1 Main Result: Impacts of FDB Selection on Nighttime Light

To quantify the economic costs on FDB counties, we examine the impact of FDB policy

on nighttime light intensity. We choose nighttime light as a proxy for economic activity over

GDP for two reasons. First, county-level GDP data before 2000 is unavailable, making it

impossible for us to compare pre-treatment and post-treatment outcomes of the 2000 policy

change. Second, nighttime light is a more credible indicator of economic activity in China

in that Chinese GDP figures announced by the government may not be accurate (Martinez

2022), and Zeng and Zhou 2024).

In our Difference-in-Differences approach, the treatment is the designation of a county as

an FDB site. Since the government first announced the FDB list in 2000, and made revisions

in 2010. In other words, if a county is selected into the FDB list in 2000 (2010), then this

county would be considered as treated in and after 2000 (2010). For the control group, we

exclude four types of counties: (1) counties located within protected urban areas, as these

counties receive a different treatment by being protected through FDBs; (2) counties that

were removed from the FDB list in 2010, as the treatment status has changed across time;

(3) counties adjacent to FDB counties, since floodwaters may flow into these neighboring

areas; and (4) counties adjacent to protected cities, as these counties may receive implicit

protection. Thus, our control group includes counties that are not directly targeted by the

FDB policy. An illustrative explanation can be found in Figure 5. We also label different

counties in Figure 6.
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Figure 5: Treatment Group, Spillover Group, and Control Group

(a) FDB (& Spillover), and Protected (b) FDB, and Protected (& Spillover)

Figure 6: FDB Counties, FDB-Protected Counties, and Spillover Counties

Note: (1) In Figure a, FDB counties are marked using color yellow, FDB-protected counties are marked

using color red, and FDB-Spillover counties are marked using color green; (2) In Figure b, FDB counties are

marked using color yellow, FDB-protected counties are marked using color red, and FDB-Spillover counties

are marked using color gray;
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Table 2 presents the main empirical result. Panel A of Table 2 presents results using

traditional two-way fixed-effect difference-in-differences (TWFE DID) estimates without any

controls. In Column (1), we find that county-level nighttime light intensity would decrease

by 17.6% if a county is selected into the FDB list. Considering recent discussions on the

properties of the staggered DID approach (e.g., Borusyak et al. 2024), potential biases may

arise from the weighting problem. Therefore, we separately investigate the impacts of the

2000 and 2010 policy changes in Columns (2) and (3). Column (2) shows that county-level

nighttime light intensity would decrease by 17.6% (7.8%) if a county is selected into the 2000

(2010) FDB list, respectively.

Panel B of Table 2 reports results using the synthetic difference-in-differences (SDID)

approach proposed by Arkhangelsky et al. (2021). We believe SDID is appropriate for our

empirical setting for three reasons. First, constructing a counterfactual group using synthetic

weights (Abadie et al. 2010) addresses concerns about the weighting problem in traditional

TWFE DID. Second, as suggested by Roth et al. (2023), clustering at the unit level is

not suitable when the number of treated groups is small. In the 2010 policy change, the

Chinese government selected 20 new counties and removed 10 from the list. Given the small

size of treated clusters, using bootstrap standard errors offered by the SDID approach is

more appropriate. Third, synthetic weight construction helps mitigate potential threats to

exogeneity by creating a counterfactual whose pre-treatment outcomes are parallel to the

treatment group. Results in Panel B are robust and indicate a negative impact of being

selected into the FDB list on nighttime light intensity, with magnitudes similar to those in

Panel A.

In Column (4) of both Panels A and B, we focus on the impact of removal from the FDB

list in 2000. The results in both panels are not significant, indicating that being removed

from the FDB list does not lead to significant economic recovery. We interpret this as a

‘scarring effect,’ where counties once selected into the FDB list struggle to recover even after

removal. We consider the result in Column (4) of Panel B to be more credible than that

in Panel A, given the small number of counties removed from the list, making SDID more

appropriate than TWFE.
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Table 2: Main Results: Impacts of FDB on Nightime Light Intensity

Selection into FDB Removal from FDB

(ln) All 2000 Cohort 2010 Cohort

Panel A: Method - Traditional TWFE Difference-in-Differences
(1) (2) (3) (4)

βTWFE
Selection −0.176*** −0.137*** −0.078*

(0.056) (0.035) (0.045)

βTWFE
Removal −0.052

(0.074)
R-squared 0.919 0.939 0.928 0.927
Sample Period 1990-2020 1990-2010 2000-2020 2000-2020
N(obs) 70,463 46,680 47,208 50,148
N(Treated Counties) 106 86 20 10

Panel B: Method - Synthetic Difference-in-Differences (Arkhangelsky et al. 2021)
(1) (2) (3) (4)

βSDID
Selection −0.156*** −0.107*** −0.078**

(0.025) (0.015) (0.039)

βSDID
Removal −0.003

(0.064)

Sample Period 1990-2020 1990-2010 2000-2020 2000-2020
N(obs) 70,463 46,680 47,208 50,148
N(Treated Counties) 106 86 20 10

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) ‘Selection into FDB’ indicates the treatment of selecting counties into the FDB list in
both 2000 and 2010, ‘Removal from FDB’ indicates the treatment of removing counties from the
FDB list, solely in 2010; (2) ‘All’ includes two treated groups: counties selected into the FDB
list in 2000, and in 2010, ‘2000 Cohort’ focuses only on one treated group: counties selected into
the FDB list in 2000, ‘2010 Cohort’ focuses only on one treated group: counties selected into the
FDB list in 2010; (3) We deliberately select control groups to remove possibly spillover groups
and groups that receive other treatments, as indicated in Figure 5.
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Figure 7 illustrates the dynamic impacts of the FDB policy on nighttime light intensity

using an event-study approach. Before the treatment, there is no significant difference be-

tween the treated and control groups. This suggests that the treated and control groups

followed similar trends in nighttime light intensity prior to the policy intervention, validat-

ing the parallel trend assumption. Immediately after the implementation of the FDB policy,

we observe a noticeable and persistent decline in nighttime light intensity for the treated

counties. This indicatres both immediate and lasting adverse effects of the FDB policy on

economic activity as proxied by nighttime light intensity. We present the SDID event-study

results in Figure D1.

Figure 7: Dynamic Impacts of FDB on Nighttime Light Intensity

Note: (1) Black dot represents the policy effect (ATT) estimated using TWFE-DID, while red dot represents

the policy effect (ATT) estimated using DiD with synthetic weights; (2) Data: 1990-2020 Nighttime Light

Intensity data; (3) 96 counties were selected into the FDB list in 2000, while 20 counties were selected into

the FDB list in 2010; (3) The event-study regression includes county and year fixed effects, standard errors

are clustered at county level; (4) We report the confidence interval at 95% confidence level.

5.2 Interpreting Effect Size: from Light to GDP

According to column (2) in Panel B of Table 2, being selected into the FDB list in 2000

results in a 10.7% decrease in nighttime light intensity. Various studies have examined the

elasticity between nighttime light intensity and GDP, allowing us to translate this reduction

into a loss in real GDP. Henderson et al. (2012) find that the elasticity of GDP with respect

to nighttime lights is 0.277, which is supported by Martinez (2022), who finds an elasticity
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of 0.296. Additionally, Martinez (2022) notes that elasticity is higher in non-democratic

regimes, estimating an elasticity of 0.312 for China. This translates into an annual GDP

loss of 2.96%, 3.17%, and 3.34%, respectively. Using real GDP data from Chen et al. (2022),

we estimate the GDP loss to be $9.84 billion, $10.54 billion, and $11.13 billion, respectively,

based on the elasticities from Henderson et al. (2012) and Martinez (2022). On average, an

FDB county tends to lose $0.10-0.12 billion per year due to being selected into the FDB list.

To validate these findings, we conducted an interdisciplinary cross-check. Our results align

with a hydrological case study by Wang et al. (2021), published in the leading hydrological

journal Journal of Hydrology, which also reports an annual economic loss of $0.1 billion for

an FDB county in Yangtze River.

5.3 Heterogeneity Analysis

We then examine the heterogeneous impacts of the FDB policy on nighttime light inten-

sity across different FDB classifications established by the Chinese government: Important

FDB counties, General FDB counties, and Reserved FDB counties. These classifications are

based on each FDB’s hydrological capacity to absorb floodwaters. Due to historically high

flood risks in China, Important FDBs may have already served as de facto FDBs prior to

the policy announcement, while Reserved FDBs are likely regarded as designated areas for

floodwater diversion following the policy’s implementation.

Our findings in Figure 8 and Table 6 reveal that nighttime light intensity decreases the

least in Important FDB counties (11.6%). On the other hand, light has decreased by 30.8%

and 16.6% in Reserved and General FDB counties. The findings suggest that counties histor-

ically exposed to frequent flooding, like Important FDBs, have developed better expectations

for flood events. As a result, while nighttime light intensity decreases in Important FDB

counties, the decline is less significant than in other FDB categories. In contrast, General

and Reserved FDB counties, which lack a history of frequent flooding, face a more substan-

tial reduction in light intensity, as the FDB designation introduces an unexpected economic

shock. This sudden risk leaves these regions more vulnerable, leading to greater negative

impacts on economic activity. The key difference lies in the anticipation effect: Important

FDBs, having established flood expectations and adaptive measures, experience a moder-

ated impact, while General and Reserved FDBs suffer more severe economic setbacks due to

the policy-induced risks. This analysis indicates our cost estimates may underestimate total

costs by not accounting for the costs on important FDBS befor the policy announcement.
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Figure 8: Heterogeneous Impact of 2010 Policy Change on Nighttime Light Intensity
Method: SDID (Arkhangelsky et al. 2021)

Note: (1) Each dot represents the policy effect (ATT) estimated using the event-study approach; (2) Data:
1990-2020 Nighttime Light Intensity data; (3) 96 counties were selected into the FDB list in 2000, while
20 counties were selected into the FDB list in 2010; (3) The event-study regression includes county and
year fixed effects, standard errors are clustered at county level; (4) We report the confidence interval at
95% confidence level; (5) We classify FDB counties into three categories: Important, General, and Reserved
according to the government classification. The likelihood of being flooded is the highest for Important
FDBs, and the lowest for Reserved FDBs.

Table 3: Heterogeneous Impacts of FDB on Nightime Light Intensity

Type of FDBs

All Sample Reserved FDB General FDB Important FDB
Sample Period: 1900-2020 (1) (2) (3) (4)

βSDID
Selection −0.156*** −0.308*** −0.166*** −0.116***

(0.025) (0.079) (0.043) (0.043)

N(obs) 70,463 69,316 69,998 69,657
N(Treated Counties) 106 16 46 44

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use the SDID appraoch proposed by Arkhangelsky et al. (2021); (2) Data: 1990-2020
Nighttime Light Intensity data; (3) 96 counties were selected into the FDB list in 2000; (4) Standard
Error: Bootstrap; (5) We also report the confidence interval at 95% confidence level; (6) We classify
FDB counties into three categories: Important, General, and Reserved according to the government
classification. The likelihood of being flooded is the highest for Important FDBs, and the lowest for
Reserved FDBs.

29



5.4 Robustness and Placebo

In Figure D2 and Table D2, we report our results using other difference-in-differences

methods. Although we believe that synthetic difference-in-differences (Arkhangelsky et al.

2021) is the most suitable method in our setting, we report the event-study results using

different methods proposed by De Chaisemartin and d’Haultfoeuille (2020), Gardner (2022),

and Callaway and Sant’Anna (2021). The robustness checks demonstrate that our main

findings are consistent across these alternative methodologies. Specifically, the results in

Table 2 are robust in terms of both statistical significance and magnitude when using other

difference-in-differences approaches. Overall, the consistency of our findings across multiple

methodologies underscores the validity of our results and the robustness of our conclusions.

In Figure D3, we conduct three distinct types of placebo tests: the in-time placebo test,

the in-space placebo test, and the mixed placebo test. In the in-time placebo tests, we

forward the treatment time by several years, using fake treatment times to assess if our

results are driven by temporal trends rather than the actual intervention. This result is

consistent with our event-study analysis (Figure 7) that we do not find significant evidence

that argue against the parallel trend assumption. For the in-space placebo tests, we assign

treatment to randomly selected units that did not receive the intervention. By assigning fake

treated units, we are able to test the robustness of our findings against spatial confounding

factors. Lastly, the mixed placebo tests combine both approaches by randomly assigning

fake treatment units and times. The results shown in Figure D3 indicate that our main

findings hold up under these placebo tests, as the estimated effects do not show significant

deviations from zero, thus confirming the robustness and validity of our original results.

5.5 Individual-Level Outcomes

A comprehensive analysis of the costs associated with the FDB policy requires more than

just evaluating total outputs, as we demonstrate in this section. To fully assess these costs,

it is crucial to account for socio-economic factors affecting individual well-being. Unfortu-

nately, data limitations in China prevent us from conducting a thorough examination of key

outcomes such as health and education. To address this gap, we use data from the 2010,

2012, 2014, 2016, 2018, and 2020 waves of the China Family Panel Study (CFPS). Our corre-

lation analysis reveals that, after controlling for city and time fixed effects, residents of FDB

counties earn approximately 20% less than those in non-FDB counties. This result further

highlights the economic disadvantage faced by individuals in FDB areas. We describe our

detailed results in Appendix D.2.
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6 Exploring Mechanisms of Costs on FDB Counties

In this section, we examine the primary factors contributing to economic underdevelop-

ment in FDB counties, focusing on three key channels: (1) migration, (2) agriculture, and

(3) manufacturing. Ultimately, we identify firm responses as the main mechanism driving

economic underdevelopment in these regions.

6.1 Migration Channel

A natural hypothesis is that rational individuals will leave FDB counties, leading to a

loss of labor which results in economic underdevelopment. However, as shown in Figure 9,

we do not find significant evidence of people leaving FDB counties. Although there is a

downward (upward) trend of registered population after counties being selected (removed)

from the FDB list, we do not find the estimate being neither economically significant nor

statistically significant, indicating that migration decision is not sensitive to FDB policy.

Extensive literature has demonstrated the difficulty of individuals in developing countries

to make rational migration decisions, as summarized in Lagakos (2020). For China specific

studies, we would like to propose several possible reasons that people do not migrate in

response to FDB policy.

First, according to the seminal work of Zhao (1999), the existing arrangement of land

management is a major reason why rural people in China choose not to migrate in spite of the

incentive and ability to migrate. In the early 1980s, the Chinese government introduced the

Household Responsibility System that grants rural households land use rights and income

rights over lands. Although land belongs to the village, land allocation within villages

was highly egalitarian, resulting in minimal per capita differences in landholdings among

households within a village. A recent paper by Adamopoulos et al. (2024) also indicates

that the land system is a major friction of rural-urban migration.

Second, the Chinese government has not designed a suitable incentive scheme to motivate

FDB residents to leave. According to the latest migration subsidy plan in 2017, the gov-

ernment compensates $2.4k per person, which is significantly less than the $8.1k per person

provided under the Relocation for Poverty Alleviation program and is insufficient to cover

migration costs. According to a survey conducted by the Huai River Regulation Commission

of the Ministry of Water Resources, 93% of residents in the Mengwa Flood Detention Basin

are dissatisfied with the migration subsidy provided by the government, and 94% are un-

happy with the proposed migration destinations. This dissatisfaction reflects broader issues

in the policy’s design, including inadequate financial support and poorly planned relocation

sites, which fail to meet the needs and preferences of the affected residents. Consequently,
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the lack of proper incentives and satisfactory relocation plans has resulted in non-optimal

migration from FDB counties.

Figure 9: Dynamic Impacts of 2010 FDB Policy Change on Registered Population

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach by

Arkhangelsky et al. (2021)); (2) Data: 2000-2020 county-level statistical yearbook; (3) 20 counties were

selected into the FDB list in 2010, while 10 counties were removed from the FDB list in 2010; (3) The

event-study regression includes county and year fixed effects; (4) Standard Error: Bootstrap; (5) ‘Registered

population’ refers to the population who registers as the official resident of the county.
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Table 4: Impacts of 2010 FDB Policy Change on Registered Population

Selection into FDB List Removal from FDB List

Sample Period: 2000-2020 (1) (2) (3) (4)

βSDID
Selection −0.020 −0.020

(0.039) (0.030)

βSDID
Removal 0.021 0.021

(0.019) (0.052)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 43,050 43,050 43,050 43,050
N(Treated Counties) 20 20 10 10

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Data: 2000-
2020 county-level statistical yearbook; (3) 20 counties were selected into the FDB
list in 2010, while 10 counties were removed from the FDB list in 2010; (3) We
use two types of standard errors (bootstrap and placebo), county and year fixed
effects are included; (4) ‘Registered population’ refers to the population who reg-
isters as the official resident of the county.

6.2 Loss in Agriculture or Manufacturing?

We also investigate whether the costs associated with flooding are predominantly caused

by its impact on agriculture. Given that FDB counties primarily depend on agriculture, it is

plausible that floods would incur significant costs by damaging agricultural crops. However,

our findings (Figure 10) do not show significant evidence of a decline in agricultural output,

with the observed change being minimal (0.3%). This resilience in agricultural output could

be possibly attributed to the geographical conditions of China’s agricultural land. For in-

stance, in Hunan Province, the quality of arable land tends to improve after floods, which

may mitigate the adverse effects. Additionally, farmers in the southern region can harvest

three times a year, so even if they suffer flood damage during the rainy season, they can

partially compensate for the losses through winter crops.

In contrast, manufacturing output experiences a substantial and significant decrease of

18.2%. Specifically, there was a sustained output reduction of about 20% during the ini-

tial five years (2010-2015), which widened to approximately 40% post-2016. This suggests

that the FDB policy has a lasting negative impact on manufacturing activities within FDB

counties. This stark decline underscores the lag in structural transformation within FDB
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counties. While farmers adapt to new policies, they remain largely confined to agriculture

due to limited opportunities for transitioning into the manufacturing sector.

Figure 10: Dynamic Impacts of 2010 FDB Policy Change on Manufacturing and
Agricultural Output

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach
by Arkhangelsky et al. (2021); (2) Data: 2000-2020 county-level statistical yearbook; (3) 20 counties were
selected into the FDB list in 2010; (3) The event-study regression includes county and year fixed effects; (4)
Standard Error: Bootstrap.

Table 5: Impacts of 2010 FDB Policy Change on Agricultural and Manufacturing Output

ln(Agricultural Output) ln(Manufacturing Output)

Sample Period: 2000-2020 (1) (2) (3) (4)

βSDID
Selection 0.003 0.003 −0.182*** −0.182***

(0.059) (0.054) (0.087) (0.081)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 39,354 39,354 39,354 39,354
N(Treated Counties) 20 20 20 20

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Data: 2000-2020
county-level statistical yearbook; (3) 20 counties were selected into the FDB list in 2010;
(3) We use two types of standard errors (bootstrap and placebo), county and year fixed
effects are included.
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6.3 Firm Response Effect

We propose the ‘firm response effect,’ suggesting that firms have less incentive to enter

and invest in counties with higher flood risk, leading to an underdeveloped manufacturing

sector in FDB counties. This hypothesis has two empirical implications. First, when a

county is added to the FDB list, firms are less likely to enter and invest in that county.

Second, when a county is removed from the FDB list, firms begin to reenter and invest. In

2010, the Chinese government added 20 counties to the FDB list and removed 10 counties

from it, allowing us to empirically test the ‘firm response effect’ hypothesis.

In this section, we present balanced and symmetric results of three different outcomes that

show both the impact of being added to the FDB list and the impact of being removed from

the list. By comparing these two scenarios, we can confirm that the FDB policy significantly

influences firms’ entry and investment decisions. Specifically, we find a decline in firm entry

and investment in counties added to the list, and an increase in firm entry and investment

in counties removed from the list. These balanced and symmetric findings serve as strong

evidence to rule out other possible mechanisms and underscore the exclusive impact of FDB

policy on firms’ decision making.

It would be ideal for us to study the causal impact of both 2000 policy and 2010 policy,

especially the 2000 policy given its importance. However, the unavailability of firm-level

data prior to 2000 makes us impossible to construct pre-treatment counterfactual control

groups. Hence, we have to restrict our examination to the causal impacts of 2010 policy on

various firm level outcome variables.

Firm Entry - The increased flood risk in FDB counties necessitates higher expected

returns on investment for firms considering entry into these areas. Consequently, firms have

less incentive to enter FDB counties. In other words, the increase in flood risk acts as a de-

terrent for new firm entry. To explore this intuition, we examine the impact of the 2010 FDB

policy change on firm entry using the Annual Registration Data of Chinese Enterprises from

2000 to 2020. In Panel A of Figure 11, we find balanced and symmetric impacts of selection

into and removal from the FDB list. Each dot in the figure represents a point estimate,

showing the difference between actual FDB counties and their synthetic counterparts. Prior

to 2010, the proximity of these estimates to zero, coupled with their statistical insignificance,

confirms that our synthetic group effectively mirrors the counterfactual FDB counties.

The negative impact on firm entry in these counties is immediate and persists over a

decade, as evidenced by the consistently negative and significant coefficients observed even

in 2020. One year after the policy implementation, in 2011, firm entry in FDB counties

decreased by approximately 10.9%. In 2012, this decrease grew to around 25.2%. The

35



negative impact then persists from 2013 to 2021, stabilizing at around 15%. This empirical

evidence supports our theory that firms lack incentives to enter counties newly designated as

FDB-county. Conversely, we also find that firms begin to reenter counties removed from the

FDB list. Although the impact is not immediate, by 2013 we observe a significant increase

in firm entry, with a magnitude of 29.2%. This positive impact persists until 2020.

Regarding the average treatment effect, we find that firm entry tends to significantly

decrease by 15.9% after a county is selected into the FDB list. This indicates that selection

into the FDB list diminishes the county’s attractiveness for the entry of manufacturing

firms. On the other hand, firm entry tends to significantly increase by 16.8% after a county

is removed from the FDB list. The balanced and symmetric result indicate the importance

of FDB policy in affecting firms’ entry decisions.

Number of Large Manufacturing Firms - In Panel B of Figure 11, we present

robust evidence that the FDB policy influences firm entry decisions, focusing specifically

on the number of larger manufacturing firms. Using county-level statistical yearbook data

from 2000 to 2010, we find that the average number of larger manufacturing firms in a

county significantly decreases by 21.7% after the county is included in the FDB list in 2010.

Conversely, when a county is removed from the FDB list, the number of larger manufacturing

firms increases by 14.1%, although this change is not statistically significant. Comparing

the results of Panel B with those of Panel A, we observe that the impact of being added

to the FDB list is more pronounced for larger manufacturing firms compared to all firms.

However, when a county is removed from the FDB list, larger manufacturing firms show more

hesitation in re-entering these counties, while all firms tend to respond more sensitively to

the policy change. This suggests that larger manufacturing firms are more cautious in their

entry decisions, possibly due to their higher position in fixed asset investments.

Combining the findings from Panel A and Panel B, we conclude that: (i) being included

in the FDB list tends to decrease a county’s attractiveness for firm entry, whereas removal

from the list tends to increase it; (ii) larger manufacturing firms, compared to other firms,

are more cautious in their entry decisions.
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(a) Outcome: ln(Number of Registered Firms)

(b) Outcome: ln(Number of Large Manufacturing Firms)

Figure 11: Dynamic Impacts of 2010 FDB Policy Change on Firm Entry

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach by

Arkhangelsky et al. (2021)); (2) Panel A Data: 2000-2020 National Enterprise Credit Information Public

System (NECIPS); Panel B data: 2000-2020 county level statistical yearbooks; (3) 20 counties were selected

into the FDB list in 2010, while 10 counties were removed from the FDB list in 2010; (3) The event-study

regression includes county and year fixed effects; (4) Standard Error: Bootstrap; (5) Larger Manufacturing

Firms refer to firms whose annual revenue exceeds US$ 3million.
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Table 6: Impacts of 2010 FDB Policy Change on Firm Entry

Selection into FDB List Removal from FDB List

Sample Period: 2000-2020 (1) (2) (3) (4)

Panel A: Outcome - ln(Number of Registered Firms)
βSDID
Selection −0.159*** −0.159***

(0.059) (0.071)

βSDID
Removal 0.168* 0.168

(0.095) (0.138)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 58,191 58,191 58,191 58,191
N(Treated Counties) 20 20 10 10

Panel B: Outcome - ln(Number of Larger Manufacturing Firms)
βSDID
Selection −0.217*** −0.217***

(0.088) (0.117)

βSDID
Removal 0.141 0.141

(0.107) (0.116)

Standard Error Bootstrap Placebo Bootstrap Placebo
N(obs) 41,160 41,160 41,160 41,160
N(Treated Counties) 20 20 10 10

Fixed Effects
Year Y Y Y Y
County Y Y Y Y

Note: (1) We use SDID approach by Arkhangelsky et al. (2021); (2) Panel A Data: 2000-
2020 National Enterprise Credit Information Public System (NECIPS); Panel B data: 2000-
2020 county level statistical yearbooks; (3) 20 counties were selected into the FDB list in
2010, and 10 counties were removed from the FDB list in 2010; (3) We use two types of
standard errors (bootstrap and placebo), county and year fixed effects are included; (4)
Larger Manufacturing Firms refer to firms whose annual revenue exceeds US$ 3million.
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Fixed Assets Investment - By using spatial Regression Discontinuity (SRD), we

provide evidence to indicate that the FDB policy affects firms’ investment decision. We

specifically focus on fixed assets investment because fixed assets are especially prone to

suffering from flood damage because they are either immovable or it is highly challenging to

relocate them. Given the data availability constraints that prevent tracking post-2013 data,

we concentrate on outcomes likely to be immediately influenced by the FDB policy. We

hypothesize that the considerable financial costs associated with either repairing or replacing

these assets makes entrepreneurs hesitate to invest in fixed assets situated in FDB counties

with higher flood risk.

Figure 12 displays the logarithm of fixed asset investment, adjusting for both county

fixed effects and industry fixed effects, plotted against the distance to the corresponding

FDB county boundary. Each point on the graph represents the average logarithmic fixed

asset investment for firms within specific distance intervals. And the 95% confidence intervals

for these averages are also indicated in the figure. To highlight the policy’s impact at the

FDB county boundary, a curve fitting these data points is presented on the plot, clearly

demonstrating the discontinuity at the boundary of FDB counties.

Panel A of Figure 12 presents a regression discontinuity (RD) plot of the residual loga-

rithm of fixed asset investment. In the left sub-figure of Panel A, we explore how being des-

ignated as an FDB county influences fixed asset investment. This plot reveals a pronounced

decline in fixed asset investment exactly at the boundary of counties newly included in the

FDB list. This observation implies that within firms of these newly designated FDB coun-

ties, fixed asset investment is substantially lower compared to firms in adjacent counties.

Conversely, the right sub-figure of Panel A in Figure 12 examines the effects on fixed asset

investment following a county’s removal from the FDB list. Contrary to Panel A, we ob-

serve a significant jump in fixed asset investment right at the boundary of counties recently

excluded from the FDB list. This suggests that after being removed from the FDB list,

firms in these counties exhibit considerably higher fixed asset investment relative to those in

neighboring counties.

Following the work by He et al. (2020), we investigate the dynamics in fixed assets

investment in Panel B of Figure 12. This SRD approach hinges on comparing firms located

within FDB-designated areas to those in geographically adjacent but non-FDB counties. A

critical assumption of SRD is the similarity in pre-treatment outcomes between neighboring

FDB and non-FDB counties. For newly-selected FDB counties, we find that the fixed assets

discontinuity was close to zero before 2010, but became significantly larger in 2011.3 This

negligible and insignificant effect prior to 2010 supports our foundational assumption: absent

3Due to data availability, unfortunately, we can only track the impact to the year of 2013.
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the FDB policy, manufacturing firms in FDB and non-FDB counties would have similar

trends for fixed asset investment.

Table 7 quantifies the graphical evidence depicted in Figure 12, examining the impact

of counties entering and exiting the FDB list. Panel A presents the SRD analysis without

control variables. Columns (1) to (3) show that firms in counties newly included in the

FDB list exhibit lower levels of fixed asset investment compared to firms in geographically

adjacent counties. Conversely, columns (4) to (6) indicate that firms in counties recently

removed from the FDB list demonstrate higher fixed asset investments than their counter-

parts in neighboring counties. To further validate our findings, we conduct robustness tests

in Panel B, incorporating both county and industry fixed effects, and in Panel C, incorpo-

rating county-by-industry fixed effects. Panel B assesses differences in fixed asset investment

across counties and industries, while Panel C provides a more detailed comparison by eval-

uating firms within the same industries but located in proximate geographical areas, thus

eliminating potential industry-specific confounding factors. Our analyses yield significant

results across Panels A, B, and C, with consistent effect sizes in Panels B and C. Addition-

ally, the SRD estimates exhibit strong robustness across various kernel function selections.

Findings from Panels B and C underscore the significant influence of the FDB policy on

firms’ investment decisions.
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(a) Spatial Regression Discontinuity (Imbens and Wager 2019)

(b) Dynamic Spatial Regression Discontinuity

Figure 12: FDB v.s. Neighboring non-FDB Counties: Firm-Level Fixed Assets Investment

Note: (1) A positive distance indicates firms located within FDB counties, while a negative distance indicates

firms located outside the border of FDB counties; (2) Industry and county fixed effects are absorbed before

plotting the regression discontinuities; (3) FDB counties refer to those selected into the FDB list in 2010.
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Table 7: Spatial Regression Discontinuity: Fixed Assets Gap

ln(Gap in Fixed Assets Investment)

Selection into FDB List: Removal from FDB List:

(1) (2) (3) (4) (5) (5)

Panel A: No Control
RD −0.403*** −0.315*** −0.368*** 0.553*** 0.593*** 0.631***

(0.100) (0.111) (0.126) (0.146) (0.147) (0.149)
Bandwidth 4.387 3.707 2.863 4.751 4.435 3.894

Panel B: County FE + Industry FE Absorbed
RD −0.217*** −0.166** −0.179* 0.279** 0.285** 0.257*

(0.078) (0.084) (0.097) (0.129) (0.131) (0.148)
Bandwidth 4.883 4.294 3.360 4.629 4.314 3.516

Panel C: County by Industry FE Absorbed
RD −0.190*** −0.203*** −0.197*** 0.258** 0.271** 0.276**

(0.065) (0.071) (0.077) (0.124) (0.124) (0.127)
Bandwidth 5.933 5.155 4.189 4.659 4.405 3.834

N(obs) 46, 044 46, 044 46, 044 16, 759 16, 759 16, 759
Kernel Triangle Epanech Uniform Triangle Epanech Uniform

Note: (1) Each coefficient represents a separate RD regression; (2) The running variable is the distance between a firm and the
border of a corresponding FDB county, where negative (positive) means firms are located outside (within) FDB counties; (3)
Negative coefficients indicate a negative gap between newly selected FDB counties and neighboring counties, positive coefficients
indicate a positive gap between newly delisted FDB counties and neighboring counties; (4) The discontinuities are estimated us-
ing local linear regressions and MSE-optimal bandwidth proposed by Calonico et al. (2014); (5) Standard errors are clustered at
the county level.
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7 Spatial General Equilibrium Model to Quantify the

Net Output Gain

To quantify the net output gain from the FDB policy, we develop a spatial general

equilibrium model where manufacturing firms enter the market and capital owners make

optimal investment decisions, both based on their rational expectations of flood risk, and

flood risk may also change in response to FDB policies. This general equilibrium framework

allows us to systematically analyze how the FDB policy protects urban areas, compare the

magnitude of output loss in FDB-treated counties with the output gain in FDB-protected

counties, and account for spillover effects and trade flows between different counties.

7.1 Model Purpose

To quantify the aggregate impact of the Flood Detention Basin (FDB) policy on a broader

region, we develop a spatial general equilibrium model. This approach is necessary because

reduced-form estimations cannot fully capture the aggregate effects of the FDB policy. These

effects can be decomposed into three components: (i) the sacrifice effect, (ii) the protection

effect, and (iii) the spillover effect.

Figure 13: Three Effects of FDB Policy

The sacrifice effect represents the economic costs on FDB counties due to the policy

design, or the extent of economic sacrifices made by these counties. Using a difference-in-

differences approach, Section 5 and Section 6 estimate that nighttime light intensity decreases

43



by approximately 10% in counties selected into the FDb list.

The protection effect refers to the benefits urban areas receive from being protected

from floods. This effect has two components: the direct protection effect and the indirect

protection effect.

• The direct protection effect occurs during severe flood events when floodwaters are

diverted to FDB counties, thereby reducing damage in protected urban areas. Reduced-

form analysis (see Appendix E1) shows that compared to the control group, flood

damage in protected counties decreases by around 10%, while flood damage in FDB

counties increases by approximately 18%. These findings confirm that FDB-protected

counties experience significant direct protection during floods.

• The indirect protection effect, however, generates from reduced flood risk in protected

counties during normal (non-flood) periods. This reduced risk makes these counties

more attractive to firms, leading to increased economic activity even outside flood

events. Unlike the direct effect, the indirect protection effect cannot be easily esti-

mated through reduced-form approaches because protected counties benefit from var-

ious policies, making it difficult to isolate the FDB policy’s contribution. Thus, our

general equilibrium model is essential to capturing this indirect effect.

Finally, the spillover effect captures the broader regional benefits from trade linkages. Ur-

ban areas that gain from the FDB policy can increase their manufacturing output, indirectly

benefiting other regions through trade. For instance, higher production in urban areas leads

to increased consumption of their goods in neighboring counties. Like the indirect protection

effect, this spillover effect is difficult to estimate using reduced-form methods alone. Hence,

we also need a general equilibrium framework to evaluate the spillover effect.

7.2 Model Environment and Equilibrium Conditions

Model Framework

Consider an economy with N regions, each region n ∈ N has one representative capital

owner who cannot move across regions and makes optimal investment decisions to determine

the amount of capital to be used for production. Before the flood events sj occur, capital

owners in each region anticipate future flood risks and decide their optimal investment an,t+1

for the next period. This enables us to capture the mechanism by which higher flood risk

in a region leads to reduced investment. The consumption goods in this economy include

agricultural goods, manufacturing goods, and service goods. Agricultural and service goods
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are not tradable, while manufactured goods are tradable (Fajgelbaum et al. 2019) and subject

to an iceberg trade cost, dni, which represents the cost of shipping one unit of goods from

region n to destination region i. Firms hire workers to produce goods, and we assume workers

are hand-to-mouth and cannot migrate across regions, consistent with our empirical evidence

showing no significant migration (Section 6.1). Before the realization of the flood event sj,

in each region, manufacturing firms4 anticipate future flood risks and can decide to enter the

market, subject to an entry cost. When firms expect to see a higher future flood risk, they

will choose to not enter the market, leading to a reduced number of manufacturing firms.

After the flood realization, workers and capital owners choose optimal consumption bundles,

and firms maximize their profits accordingly. We will elaborate each agent’s decision in

detail in the following sections.

Floods

We assume that at every time t, a flood event sjt is determined by nature, and some regions

may be flooded while others may not (it could also be the case that no regions are flooded,

leading to an event with no flooding). Therefore, a flood event sjt = {f j
1,t, f

j
2,t, . . . , f

j
N,t} is

a vector of zeros and ones, where zero indicates no flood and one indicates being flooded.

Each element f j
n,t describes whether region n is flooded (=1) or not (=0) at time t in event

j5. We define S = {s1t , s2t , . . . , s
j
t} as the set of all possible flood events, with each flood event

occurring with a probability pr(sjt)
6.

We assume that, in a flood event sjt , if region n is flooded, the flooding will negatively

affect the productivity of local manufacturing firms. We model the flood-contingent produc-

tivity zMn (sjt) as:

zMn (sjt) = z̄Mn exp(−ϵMf j
n,t) (1)

where z̄Mn denotes the region-specific productivity during non-flooding times f j
n,t = 0, and

ϵM denotes the percentage productivity loss when a region is flooded f j
n,t = 1. At any time

t, only one specific type of flood event can occur; hence, we suppress the event subscript j,

and we will use st instead of sjt in the following sections.

4For simplicity, we assume a single aggregate agricultural sector and a single aggregate service sector,
without explicitly modeling potential firm entry and exit in these sectors.

5If no regions are flooded, the vector will consist entirely of zeros.
6In theory, the cardinality of the set is 2N . However, many flood events are naturally impossible.

For example, it is unlikely to have floods in regions located in deserts. Therefore, in the calibration and
counterfactual sections, we only consider flood events observed in historical data.
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Workers

In each region n, there is a unit mass of hand-to-mouth workers Ln, who are immobile

across regions7. Workers supply one unit of labor inelastically in the region where they live.

After observing the flood event st, workers choose their consumption on Cw,A
n (st) (agricultural

goods), Cw,M
n (st) (manufacturing goods), and Cw,S

n (st) (service goods) to maximize their

utility, subject to the budget constraint.

max
{Cw,A

n (st),C
w,M
n (st),C

w,S
n (st)}

U(Cw,A
n (st), C

w,M
n (st), C

w,S
n (st))

s.t. PA
n (st)C

w,A
n (st) + PM

n (st)C
w,M
n (st) + P S

n (st)C
w,S
n (st) = wn(st)

(2)

The utility U(·) takes a Cobb-Douglas form such that U(·) = ξAlog(C
w,A
n (st)) + (1 − ξA −

ξS)log(C
w,M
n (st)) + ξSlog(C

w,S
n (st)) where ξA is the share of income spent on agricultural

goods, ξS is the share of income spent on service goods, and 1 − ξA − ξS is the share of

income spent on manufacturing goods. wn(st) is the wage rate in region n, and PA
n (st),

PM
n (st), and P S

n (st) represent the prices of agricultural goods, manufacturing goods, and

service goods, respectively, in region n. All of wage wn, price Pn, and consumption Cw
n are

contingent on flood event st because, in different flood events, the equilibrium wage, prices,

and people’s optimal consumption may change in response to flood shocks.

Capital Owners

During time period t, capital owners in region n decide how much to invest for the next

period, an,t+1, before the realization of the flood event st. Hence, the asset position decision

is independent of st, capturing the fact that investment only respond to long-term flood risk

changes and is irrelevant to whether a flood occurs in a given period.

V o
n (an,t) = max

{Co,A
n (st),C

o,M
n (st),C

o,S
n (st),an,t+1}

EstU(Co,A
n (st), C

o,M
n (st), C

o,S
n (st)) + βV o

n (an,t+1)

s.t. PA
n (st)C

o,A
n (st) + PM

n (st)C
o,M
n (st) + P S

n (st)C
o,S
n (st) + an,t+1 = (1 + r(st))an,t + In,tπn(st)

(3)

The income of capital owners come from two sources. On the one hand, they get their

return from the last period investment (1 + r(st))an,t, where r(st) is the national interest

rate. One the other hand, capital owners obtains all the profits of manufacturing firms

In,tπn(st), where In,t is the number of manufacturing firms and πn(st) is the the average

profit of manufacturing firms in region n. After the realization of the flood event st, capital

7Without loss of generality, we normalize the population such that
∑N

n=1 Ln = 1
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owners optimize their consumption bundles subject to the budget constraint, and their pref-

erences are identical to those of the workers, such that U(·) = ξAlog(C
o,A
n (st)) + (1 − ξA −

ξS)log(C
o,M
n (st)) + ξSlog(C

o,S
n (st)).

Production

In this economy, there are three sectors producing distinct consumption goods: agricul-

ture, manufacturing, and services. These sectors produce agricultural goods Y A
n (st), man-

ufacturing goods Y M
n (st), and service goods Y S

n (st), respectively. The agricultural sector

uses labor lAn (st) as the only input, supplying non-tradable agricultural goods with linear

production technology to the local market. It operates in a perfectly competitive way, so the

price of agricultural goods equals the local wage. The profit maximization problem for the

agricultural sector during flood event st is given by:

max
{lAn (st)}

PA
n (st)Y

A
n (st)− wn(st)l

A
n (st)

s.t. Y A
n (st) = zAn (st)l

A
n (st)

(4)

We assume the service sectors also supply non-tradable goods in the local market in a

perfectly competitive way. However, unlike the agricultural sector, the service sectors use

both labor lSn(st) and capital kS
n(st) in a Cobb-Douglas production technology, with the factor

share of labor denoted by α. The maximization problem for the service sector is given by:

max
{lSn(st),kSn(st)}

P S
n (st)Y

S
n (st)− wn(st)l

S
n(st)− rn(st)k

S
n(st)

s.t. Y S
n (st) = zSn (st)l

S
n(st)

αkS
n(st)

1−α
(5)

The manufacturing sector is the key focus of this paper, and therefore, we model this

sector in greater detail to better capture the mechanisms identified in the empirical results.

Firstly, we describe the demand for manufacturing goods and model consumers in region n as

consuming a variety of manufacturing goods produced by heterogeneous firms from different

regions, using a CES aggregator:

Y M
n (st) =

[ N∑
i=1

Ii,ty
M
in (st)

σ−1
σ

] σ
σ−1

(6)

where σ measures the elasticity of substitution across manufacturing goods produced

by different regions, yMin (st) is the quantity of manufacturing good produced in region i

and sold to region n, and Ii,t is the number of manufacturing firms in region i. Denote

PM
in (st) as the price of manufacturing goods produced by region i and sold to region n.
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Then, one can easily show that the price index of manufacturing goods sold in region n is

PM
n (st) =

[∑N
i=1 Ii,tP

M
in (st)

1−σ

] 1
1−σ

.

On the supply side, firms in region n hire labor lMni (st) and capital kM
ni (st) to produce

manufacturing goods yni using a Cobb-Douglas technology with productivity zMn (st). Man-

ufacturing goods can be traded from region n to region i, subject to the iceberg cost dni,

meaning that to ship one unit of goods, firms need to produce dni unit. The profit for each

firm in region n is given by:

πn(st) = max
{lMni(st),k

M
ni (st)}Ni=1

N∑
i=1

[
PM
ni (st)y

M
ni (st)− wn(st)l

M
ni (st)− r(st)k

M
ni (st)

]
s.t. dniy

M
ni (st) = zMn (st)l

M
ni (st)

αkM
ni (st)

1−α ∀i

(7)

To operate and earn profit πn(st) at time t, manufacturing firms must first decide whether

to enter the market before the realization of the flood event st. We also assume there is a

probability η that the manufacturing firm will exit the market in the next period. Therefore,

the value of a manufacturing firm in region n is the expected profit in period t plus the

discounted value (with discount rate β) of the firm in the next period, conditional on survival:

V s
n,t = Estπn(st) + β(1− η)V s

n,t+1 (8)

The free entry condition requires that the value of manufacturing firms should equal to

the entry cost csn.

V s
n,t = csn (9)

Market Clearing Conditions

There are three sets of market clearing conditions.

1. National capital market: The flood-event-specific interest rate r(st) require asset posi-

tions equal flood-event-specific capital demands in all regions:

N∑
n=1

In

N∑
i=1

kM
ni (st) +

N∑
n=1

kS
n(st) =

N∑
n=1

an,t (10)

2. Local labor markets: The flood-event-specific wage rates wn(st) require labor supply
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equal flood-event-specific labor demands in all regions:

lAn (st) +
N∑
i=1

lMni (st) + lSn(st) = Ln ∀n (11)

3. Local final good markets: The final good markets are assumed to be perfectly com-

petitive, so prices PA
n (st), P

M
ni (st) and P S

n (st) satisfy that the final good demands and

supplies are equalized in all regions:

LnC
w,A
n (st) + Co,A

n (st) = Y A
n (st) ∀n (12)

LnC
w,S
n (st) + Co,S

n (st) = Y S
n (st) ∀n (13)

PM
ni (st) =

[
LiC

w,M
i (st) + Co,M

i (st)

] 1
σ

PM
i (st)y

M
ni (st)

− 1
σ ∀i, n (14)

PM
n (st) =

[ N∑
i=1

Ii,tP
M
in (st)

1−σ

] 1
1−σ

∀n (15)

Model Timeline

The figure below provides an illustration of the model’s timeline. It shows the sequence

of events and decisions made by capital owners, manufacturing firms, and workers, both

before and after the realization of a specific flood event. It also outlines the market clearing

conditions for national capital market, local labor markets, and local product markets.
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Equilibrium

The spatial general equilibrium consists of capital owners’ asset positions {an,t} and con-

sumption bundles {Co,A
n (st), C

o,M
n (st), C

o,S
n (st)}, workers’ consumption bundles {Cw,A

n (st),

Cw,M
n (st), C

w,S
n (st)}, sector-specific factor demands and outputs {lAn (st), lMn (st), l

S
n(st), k

M
n (st),

kS
n(st), Y

A
n (st), Y

M
n (st), Y

S
n (st)}, manufacturing firms counts {In,t}, and prices {wn(st), r(st),

PA
n (st), P

M
n (st), P

S
n (st)}, such that given the distribution of workers {Ln}

1. Before the realization of flood events st

(i) {an,t} satisfy capital owners’ optimal investment decisions in Equation 3;

(ii) {In,t} satisfy the free entry condition in Equation 9;

2. After the realization of flood event st

(i) {Co,A
n (st), C

o,M
n (st), C

o,S
n (st)} and {Cw,A

n (st), C
w,M
n (st), C

w,S
n (st)} satisfy capital

owners’ and workers’ utility maximization problems in Equation 2 and 3;

(ii) {lAn (st), lMn (st), l
S
n(st), k

M
n (st), k

S
n(st), Y

A
n (st), Y

M
n (st), Y

S
n (st)} satisfy sectors’

profit maximization problems in Equation 4, 5, and 7;

(iii) {wn(st), r(st), P
A
n (st), P

M
n (st), P

S
n (st)} clear the factor and product markets in

Equation 10 - 15.

7.3 Calibration and Simulation

In this section, we calibrate our model to match Chinese counties in Huai River Basin,

the basin with the highest river flood risk, between 2000 and 2010.

Exogenously Calibrated Parameters

Panel A of Table 8 shows parameter values obtained directly from literature and data.

We treat each region as a county, and there are N = 176 counties in Huai River Area. We

standardize labor force L̄ to be 1. Following previous literature (Head et al. 2014 & Jia et al.

2022), we set the elasticity of substitution across varieties, σ, as 5. We choose a discount

factor, β, to be 0.95 to generate an aggregate steady-state interest of 5%. We further match

the shares of sector-specific consumption with the real data provided by 2000-2010 Chinese

National Bureau of Statistics. To be specific, the share of agricultural consumption, ξA, is

11.7%, and the share of service consumption, ξS, is 42.2%. We choose a factor share of

capital, 1− α, to be 0.5 for both the manufacturing and service industry. This is consistent
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of the national-level sector specific factor share in China, calculated by Chinese input and

output tables and national accounts, sourced from Chinese National Bureau of Statistics.

Transportation Cost - The calculation of transportation costs, dni, is based on geodesic

distances across different counties. For the transportation cost within a county, we adopt a

similar approach as existing literature (e.g., Redding and Venables 2004, Au and Henderson

2006, and Balboni 2019). Specifically, we calibrated trade costs by approximating intra-unit

trade costs based on the average distance traveled to the center of a circular unit of the same

area from evenly distributed points, given by 2
3
(area/π)1/2. We standardize the smallest

transportation costs to be 1.

Probability of Each Flood Type - In 2000 and 2010, there were 5 major floods in

Huai River Basin, which happened in 2002, 2003, 2005, 2007, and 2010, respectively. The

list of counties being affected is different across different events. For example, the 2003 flood

caused damages to 61 counties out of 176 counties in Huai river, while the 2010 flood caused

damages to 25 counties. Based on the level of precipitation, we divide the monthly-averaged

precipitation during flood seasons (June to September) into two categories: (i) < 120 mm;

(ii) > 120 mm. We then calculated the region-specific flooding probability based on both

historical data on monthly precipitation and actual flood event.

Productivity Loss - We estimate productivity loss in agriculture sector, manufacturing

sector and service sector based on the estimation below.

Yict = α + βF loodExposureict + γt + λc + ηt + ϵict

In this estimation, Yict represents the average productivity in county i, city c and year

t, which is measured as the ratio of output per worker in an industry. FloodExposureicjt

indicates the size-adjusted flood exposure, which is the average days of flood8 in county i in

year t. λc and ηt represent city and time fixed effects. Standard errors are clustered at city

level. Reduced form results suggest that when the average days of flood in county increases

by one day9, then the productivity in manufacturing sector would decrease by 5.9% (Table

E2).

Internally Calibrated Parameters

In Panel B of Table 8, we calibrate the flood-free productivity of agriculture, manufac-

turing and service industry in different counties, to match county-level data on real outputs

and labor force share in different sectors. Although we estimate all parameters jointly, we

8the flood data is further processed by excluding permanent water pixels
9Note: insert the expression for the flood days to explain what does one flood day mean
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can pinpoint which parameter influences a specific outcome. For instance, sector-specific

real outputs at the county level are influenced by sector-specific productivity, while regional

amenities are determined by the labor force in each area. To maintain consistency, we stan-

dardize the total national GDP and population to 1 in our baseline calibration, as these

factors do not impact our baseline calibration.
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Table 8: Calibration Targets

Parameter Numbers Value Source/Targeted Moments

Panel A: Exogenously Calibrated Parameters Source:
N - Number of regions 1 176 Number of counties in Huai River Basin
L̄ - Labour force 1 1 Standardized to 1
σ - Elasticity of substitution across varieties 1 5 Head et al. (2014)
β - Discount factor 1 0.95 Steady-state interest of 5%
ξA - Share of agricultural consumption 1 0.117 Chinese National Bureau of Statistics
ξS - Share of service consumption 1 0.422 Chinese National Bureau of Statistics
pr(st) - Flooding event probability 7 0.12(0.21) Precipitation and flood event (2000-2009)
dni - Transportation costs N2 1.23(0.04) Geodesic distances
1− α - Factor share of capital 1 0.5 Factor shares of manufacturing and service industries
ϵM - Productivity loss when flooded 1 -0.059 Estimation (Table ??)

Panel B: Internally Calibrated Parameters Targeted Moments:

z̄An - County-level agriculture productivity N 0.83(0.34) County-level agriculture outputs
¯zMn - County-level manufacturing productivity N 0.29(0.12) County-level manufacturing outputs

z̄Sn - County-level service productivity N 0.21(0.22) County-level service outputs
Bn - Local amenity N 5.05(0.23) County-level labor force share

Note: for flooding event probability, transportation costs, internally calibrated productivity and local amenity, the value in the ta-
ble indicates the average value across all regions, and the standard error is in the parenthesis
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7.4 Model Prediction

In this section, we conduct a comparative analysis to illustrate the consistency between

the empirical findings and the predictions of our general equilibrium model. Our objective is

to validate the model’s capability to accurately reflect the reality of FDB counties, demon-

strating its robustness and reliability as a tool for simulating real-world economic scenarios.

Column 1 in Table 9 reports the regression result we gained in Table 7, while Column 2

reports the result we gain based on model simulation. The magnitudes do not differ signifi-

cantly, and each of them falls within the other’s 95% confidence interval, indicating that our

model closely matches even the non-targeted moments and achieves a good fit.

Table 9: Comparison of Actual and Model-generated Regression Results

Actual Data: Model Simulation:

(in logarithm) Fixed Assets/Worker Capital/Worker
(1) (2)

FDB -0.197*** -0.175***
(0.077) (0.036)

N(obs) 46,044 1,936

Note: (1) Column 1 is extracted from Column (3) in Panel C
of our regression discontinuity regression in Table 7; (2) Col-
umn 2 is based on our model prediction; (3) The consistency
between those two estimates indicate that our model can well
predict the fixed assets per worker.

7.5 Counterfactual Practice 1: FDB-Induced Net Output Gain

In this section, we quantify three different effects: (1) the sacrifice effect, represent-

ing the cost incurred by FDB counties due to the FDB policy, which we can compare to

our reduced-form results; (2) the protection effect, capturing the benefits gained by FDB-

protected counties from the FDB policy; and (3) the total output effect, reflecting the net

output gain for the economy as a result of the FDB policy. In the counterfactual scenario,

where the FDB policy is absent and FDB counties no longer protect urban cities, flood

exposure in FDB counties would decrease, while flood exposure in protected areas would

increase. Therefore, an important parameter for constructing the counterfactual scenario is

the flood redistribution rate between FDB counties and FDB-protected counties.
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Constructing the Counterfactual Practice

We construct the counterfactual scenario, in which FDB counties do not protect urban

cities, based on the following steps. First, we identify the flood intensity in each county

by aggregating flooded areas (pixels) over flooded days (duration) between 2000 and 2010,

indicating the total amount of floodwater in each county. Second, in the counterfactual

scenario without the FDB policy, 45% (as estimated from the hydrological analysis in Section

4) of the floodwater in the current FDB counties is equally redistributed to the currently

protected counties. This process allows us to construct a set of counterfactual flood events,

S ′ = {s′1, s′2, . . . , s′J}, reflecting the counterfactual distribution of flood risk. In the third

step, we translate the changes in flood exposure into changes in manufacturing output.

Specifically, under the counterfactual scenario, flood damage would increase in protected

urban cities while decreasing in FDB counties compared to the baseline case. Figure 14

provides a mind map illustrating how we construct the counterfactual scenario.
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(a) Actual Case: With Flood Detention Basin

(b) Counterfactual Case: Without Flood Detention Basins

Figure 14: Mind Map: Constructing the Counterfactual Scenario

56



Sacrifice Effect

In Table 10, we quantify the sacrifice effect on FDB counties by collecting βFDB in the

calibrated case and the counterfactual case from running the regression

lnYicpt = α + βFDBFDBicpt + γpt + ηt + λc + ϵc

where FDBicpt is a dummy variable that equals 1 if the county i in city c, province p, at time

t, is an FDB-county, and 0 if not. γpt is province-year fixed effect, ηt is time fixed effect, and

λc is city fixed effect. ϵc is the standard error, which is clustered at the city level.

Column 3 reports the magnitude of change in βFDB in the calibrated case and counterfac-

tual case (flood exposure redistribution rate: 45%). We compare the results on total output

with the result presented in Table 2. As shown in column (3) in Table 2, the average treat-

ment effect of FDB policy on nighttime light in FDB counties is around -10%. According to

the work of Henderson et al. (2012) on estimating the elasticity between light and GDP, we

can then translate this impact to around -3%, which is consistent with the result presented

in Column 3 of Table 10. This consistency further validates our methods of constructing the

counterfactual scenario.

Table 10 then helps us to overcome the limitation of data availability and provides us with

more results on the sacrifice effect. We find that the manufacturing output, total capital,

manufacturing capital, share of manufacturing labor, and wage decreases by 9.62%, 5.11%,

8.49%, 10.86%, and 3.76%, respectively, because of the policy given a flood exposure redistri-

bution rate of 45%. More results on sacrifice effect of different flood exposure redistribution

rates are presented in Figure 15.

Protection Effect

When examining the impact of the FDB policy on FDB-protected counties, we divide

the protection effect to two main sources: (1) a direct protection effect, where protected

counties experience less damage during flood events; and (2) an indirect protection effect,

where protected counties benefit from a decreased flood risk. We measure the direct pro-

tection effect using reduced-form analysis, with results presented in Appendix E1. We find

that a protected county tends to suffer approximately 10% less damage when hit by floods,

while an FDB county tends to suffer around 18% more. This finding indicates that FDB-

protected counties are indeed directly protected during flood events. However, in our general

equilibrium framework, we focus more on the indirect protection effect, whereby reduced

flood risk encourages firms to enter and invest in these protected counties. Consequently,
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compared to the counterfactual scenario in which FDB counties do not protect urban cities,

manufacturing output in these protected urban areas is higher in reality.

To understand the magnitude of protection effect, in Table 11, we quantify the total

protection effect on FDB-protected counties by collecting βProtected in the calibrated case

and the counterfactual case from running the regression

lnYicpt = α + βProtected ∗ Protectedicpt + γpt + ηt + λc + ϵc

where FDBicpt is a dummy variable that equals 1 if the county i in city c, province p, at time

t, is an FDB-protected county, and 0 if not. γpt is province-year fixed effect, ηt is time fixed

effect, and λc is city fixed effect. ϵc is the standard error, which is clustered at the city level.

Table 11 presents the results on the protection effect. We find that, if we assume that the

flood exposure redistribution rate at 45%, then the FDB policy would lead to an increase

in total output, manufacturing output, total capital, manufacturing capital, share of manu-

facturing labor, and wages by 1.74%, 3.92%, 2.51%, 3.30%, 4.40%, and 4.17%, respectively.

Additional results on the protection effect across different flood exposure redistribution rates

are shown in Figure 15

Figure 15: Sacrifice Effect and Protection Effect
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Table 10: Quantification of Sacrifice Effect (Actual v.s. Counterfactual)

βFDB :

A.Calibration B.Counterfactual |Diff/A|(%)
(1) (2) (3)

Output: Total −0.030*** −0.029*** 3.46%
Output: Manufacturing −0.468*** −0.427*** 9.62%

Capital: Total −0.251*** −0.239*** 5.11%
Capital: Manufacturing −0.373*** −0.344*** 8.49%

Share of Manufacturing Labor −0.052*** −0.048*** 10.86%
Wage −0.373*** −0.359*** 3.76%

Note: (1) In the counterfactual case, we redistribute 45% of the flood risk to FDB-
protected counties; (2) We collect βFDB from running the regression ln(Output)icpt =
α + βFDB ∗ FDBicpt + γpt + ηt + λc + ϵicpt, where FDBicpt is a dummy that equals
1 if the county is an FDB-county, and 0 if not, γpt is province-year fixed effect, ηt is
time fixed effect, and λc is city fixed effect; (3) The ‘|Diff/A|(%)’ can be interpreted
as the ‘sacrifice effect’, which is the impact of FDB policy on different outcomes in
FDB counties.

Table 11: Quantification of Protection Effect (Actual v.s. Counterfactual)

βProtected :

A.Calibration B.Counterfactual |Diff/A|(%)
(1) (2) (3)

Output: Total 0.983*** 0.967*** 1.74%
Output: Manufacturing 1.304*** 1.255*** 3.92%

Capital: Total 0.750*** 0.732*** 2.51%
Capital: Manufacturing 1.044*** 1.011*** 3.30%

Share of Manufacturing Labor 0.138*** 0.132*** 4.40%
Wage 0.544*** 0.522*** 4.17%

Note: (1) In the counterfactual case, we redistribute 50% of the flood risk to
FDB-protected counties; (2) We collect βProtected from running the regression
ln(Output)icpt = α+βProtected ∗Protectedicpt+γpt+ηt+λc+ϵicpt, where Protectedicpt
is a dummy that equals 1 if the county is an FDB-protected county, and 0 if not; (3)
The ‘|Diff/A|(%)’ can be interpreted as the ‘protection effect’, which is the impact of
FDB policy on different outcomes in FDB-protected counties.
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Net Output Gains of the FDB Policy

Finally, in Table 12, we quantify the net output gain brought by the FDB policy by

comparing the total output in the calibrated case and the counterfactual scenario. Overall,

we find a 0.06% increase in total output due to the FDB policy, which equates to an annual

net increase in output of around US$3billion in Huai River Basin. According to EM-DAT

International Disaster Database, the average flood damage in China is around US$8billion
every year in China. Hence, we believe that the FDB policy has substantially mitigated the

economic threat posed by floods.

Figure 16 illustrates the benefit-to-cost ratio across various flood exposure redistribution

rates. Our findings indicate that the benefit-to-cost ratio exceeds 1 at all redistribution rates,

suggesting that intentionally flooding certain counties to protect urban areas results in a net

gain in output. Moreover, as the redistribution rate increases, the benefit-to-cost ratio also

rises, indicating that the net output gain from the policy increases as FDBs absorb more

floodwater. However, as shown in Figure 15, the cost borne by FDB counties also intensifies

with increased floodwater absorption. This highlights a tradeoff in policy design between

mitigating flood risks and exacerbating inequality, as we indicate in our partial equilibrium

framework (Section E.1).

Figure 16: Net Output Gains of the FDB Policy

We also examine the potential policy implications under two future scenarios with in-

creased flood damages, due to climate change. In these scenarios, we simulate a 50% and

100% increase in flood risk, in which the elasticity between flood and manufacturing pro-
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ductivity would increase by 50% and 100%, respectively. According to Table 12, under these

projected conditions, the overall total output is expected to rise by 0.08% and 0.11%, re-

spectively. The results also show that the sacrifice effect on FDB counties intensifies, with

the gap reaching 4.79% and 5.84% under the 50% and 100% risk increase scenarios, respec-

tively. Conversely, the protection effect for FDB-protected counties grows, with output gains

of 2.51% and 3.15% in these scenarios. This counterfactual analysis indicates that as the

severity of floods increases, FDBs would play an increasingly important role in managing

flood damages. However, FDB counties would bear more costs because of the policy design.

Table 12: Total Output in Actual and Counterfactual Case

Current Case: Future Flood Risk Increases by:

Actual - Counterfactual: 50% 100%
(1) (2) (3)

Sacrifice Effect on FDB Counties (βFDB < 0)
∆(βFDB) 3.46% 4.79% 5.84%

Protection Effect on FDB-protected Counties (βProtected > 0)
∆(βProtected) 1.74% 2.51% 3.15%

Overall Economy:
∆(Total Output) 0.06% 0.08% 0.11%

Note: (1) We collect βFDB from running the regression ln(Output)icpt =
α+βFDB ∗FDBicpt+γpt+ηt+λc+ϵicpt, where FDBicpt is a dummy that equals
1 if the county is an FDB-county, and 0 if not, γpt is province-year fixed effect,
ηt is time fixed effect, and λc is city fixed effect; (2) We collect βProtected from
running the regression ln(Output)icpt = α + βProtected ∗ FDB-Protectedicpt +
γpt + ηt + λc + ϵicpt, where FDB-Protectedicpt is a dummy that equals 1 if the
county is an FDB-protected county, and 0 if not; (3) The coefficient in Column
(1) is the same as the coefficient in Column (3) in Table 10 and Table 11.

7.6 Counterfactual Practice 2: Relative Contribution of Different

FDB Counties

In the second counterfactual practice, we extend our discussion to think about whether

the policy is optimal. It would be ideal for us to provide a list of counties that are most

suitable for flood water detention. But we are not able to complete this task, in the current

stage, because of hydrological challenges. The optimal design given economic criteria may

not be feasible if we take geographical factors into account. Consider an extreme example.
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Under economic criteria, we may assign a county far away from river as an FDB county.

Even we incorporate some geographical factors (e.g., elevation) into an economic model, the

result may not be hydrologically feasible.

Despite of the challenge, the discussion on policy optimality is intrinsically important.

We take a second-best approach by considering whether the government is over-protecting

urban cities by designating too many FDB counties. In the first step, we rank FDB counties

in terms of their exposure-standardized productivity, which is consistent with the proposi-

tion we have in Section E.1. In the second step, we successively remove FDB counties of

higher productivity from the FDB list and calculate the total output in each counterfactual

scenario. In the third step, we calculate the relative contribution of each productivity group

by comparing the counterfactual with the actual case.

In Figure 17, we present the net output gain of successively adding counties of higher

productivity. Overall, we find that the net output gain increases as we add more counties

to the list. However, according to Figure 18, we find that the relative contribution is much

higher in lower productivity groups than in higher productivity groups. County groups

ranking 0-10%, 10-20%, 25-40%, and 40-50% in terms of productivity contribute more than

10%. Specifically, county group with a rank of 10-25% and 25-40% contribute the most to

the net output gain, all above 25%. However, we find that the relative contribution of higher

productivity group is low. County group ranking 75-80% and 85-100% contribute 0% and

3%, respectively.

On the one hand, we do not find counter-evidence to indicate that the inclusion of higher

productivity counties is imposing negative effects on total outputs as the net output gain

is increasing with the number of included FDB counties. On the other hand, however,

the relative contribution of adding higher productivity counties is small. In terms of total

outputs, it may be cost beneift efficient. However, if considering other non-monetary costs,

then it may not be efficient because those counties may experience other costs that we are

not able to measure in this study.

Overall, we suggest that the Chinese government is over protecting urban areas from

floods by designating too many counties as FDB counties. Removing counties of higher

productivity will not cause significant losses in output, but may save those counties from

suffering both monetary and non-monetary costs.
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Figure 17: Counterfactual Outputs with Different Numbers of FDBs

Figure 18: Relative Contribution of Different Productivity Groups
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8 Conclusion

Flood disasters, especially common in developing countries like China and India, have

profound impacts on the overall economy. In China, one approach to mitigating severe river

floods is the construction of Flood Detention Basins (FDBs). Strategically located in low-

lying areas, FDBs are designed to temporarily hold excess floodwaters, thereby protecting

downstream regions but increasing flood risk for those within the designated basins. While

this policy may increase economic resilience against floods, it requires a closer examination

of the economic costs and its uneven distributional impacts.

Chinese government states that residents living in FDB counties have made substantial

sacrifice for the greater good. Our study quantitatively examines the economic costs and

output gains of the FDB policy. We find that although the policy has improved the eco-

nomic resilience against floods, it has also induced economic inequality between between FDB

counties and their non-FDB counterparts. Firstly, our empirical results show that counties

designated as FDB counties by the Chinese government in 2000 experience persistent neg-

ative effects on their economic development. On average, nighttime light intensity in FDB

counties declined by roughly 10% annually over the long term. Based on our calculations,

this translates to an annual GDP loss of around US$10 billion in FDB counties. Secondly, in

studying the mechanism, we find that firms have less incentives to enter and invest in FDB

counties due to their increased flood risks. Thirdly, our general equilibrium model assesses

whether the FDB policy has yielded an overall increase in net output. Our counterfactual

practice indicates that as FDBs absorb more floodwater, the total output gain brought by

the policy would increase, though at the cost of widening inequality between FDB and other

counties.

Our research has two major policy implications. First, our research highlights a critical

insufficiency in the Chinese government’s compensation on FDB counties. Since 2000, many

counties has started to absorb floodwaters, thereby protecting other regions from flood dam-

age. The compensation, however, focuses solely on compensating for direct losses caused by

flood inundation, such as damage to agricultural crops. Our findings suggest that this com-

pensation falls markedly short of addressing the total economic costs induced by the FDB

policy. The substantial long-term economic costs have not been adequately compensated

by the Chinese government. Based on our analysis, we recommend Chinese government to

transfer the surplus taken by urban cities to rural counties.

Second, the findings of our study on China’s Flood Detention Basin (FDB) policy offer

insights for other nations contemplating similar flood risk management strategies. The evi-

dence suggests that while such policies can provide broader regional protection from floods,
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they may come with significant long-term economic costs for the areas designated to absorb

flood risks. For countries considering the adoption of similar policies, it is crucial to recognize

the potential for creating economic disparities and to weigh these against the intended bene-

fits of reduced flood risk. Policymakers should ensure that compensatory mechanisms are in

place to support affected regions, mitigating the economic sacrifices made by FDB-designated

areas. In sum, while such policies can be an effective component of a comprehensive flood

risk management strategy, they should be implemented with careful consideration of the

tradeoff between envrionmental justice and economic efficiency.
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Gröger, A. and Zylberberg, Y. (2016). Internal labor migration as a shock coping strategy:
Evidence from a typhoon. American Economic Journal: Applied Economics, 8(2):123–53.

He, G., Wang, S., and Zhang, B. (2020). Watering down environmental regulation in china.
The Quarterly Journal of Economics, 135(4):2135–2185.

Head, K., Mayer, T., and Thoenig, M. (2014). Welfare and trade without pareto. American
Economic Review, 104(5):310–316.

Henderson, J. V., Storeygard, A., and Weil, D. N. (2012). Measuring economic growth from
outer space. American economic review, 102(2):994–1028.

Hornbeck, R. and Naidu, S. (2014). When the levee breaks: Black migration and economic
development in the american south. American Economic Review, 104(3):963–90.

Hsiang, S. M. and Jina, A. S. (2014). The causal effect of environmental catastrophe on long-
run economic growth: Evidence from 6,700 cyclones. Technical report, National Bureau
of Economic Research.

67



Hsiao, A. (2023). Sea level rise and urban adaptation in jakarta. Technical Report.

Imbens, G. and Wager, S. (2019). Optimized regression discontinuity designs. Review of
Economics and Statistics, 101(2):264–278.

Jia, R., Ma, X., and Xie, V. W. (2022). Expecting floods: Firm entry, employment, and
aggregate implications. working paper.

Kocornik-Mina, A., McDermott, T. K., Michaels, G., and Rauch, F. (2020). Flooded cities.
American Economic Journal: Applied Economics, 12(2):35–66.

Lagakos, D. (2020). Urban-rural gaps in the developing world: Does internal migration offer
opportunities? Journal of Economic Perspectives, 34(3):174–92.

Martinez, L. R. (2022). How much should we trust the dictator’s gdp growth estimates?
Journal of Political Economy, 130(10):2731–2769.

Mays, L. W. and Bedient, P. B. (1982). Model for optimal size and location of detention.
Journal of the Water Resources Planning and Management Division, 108(3):270–285.

Mingkai, Q. and Kai, W. (2017). Flood management in china: The huaihe river basin as a
case study. Flood Risk Management, pages 129–152.

Mulder, P. (2021). Mismeasuring risk: The welfare effects of flood
risk information. URL https://faculty. wharton. upenn. edu/wp-
content/uploads/2017/07/MismeasuringRisk Mulder2021. pdf.

Park, M. J., Ha, R., Kim, N. W., Lim, K. J., and Kim, S. J. (2014). Assessment of future
climate and vegetation canopy change impacts on hydrological behavior of chungju dam
watershed using swat model. KSCE Journal of Civil Engineering, 18:1185–1196.

Patel, D. (2023). Floods. Available at SSRN 4636828.

Perez-Pedini, C., Limbrunner, J. F., and Vogel, R. M. (2005). Optimal location of infiltration-
based best management practices for storm water management. Journal of water resources
planning and management, 131(6):441–448.

Redding, S. and Venables, A. J. (2004). Economic geography and international inequality.
Journal of international Economics, 62(1):53–82.

Redding, S. J. and Turner, M. A. (2015). Transportation costs and the spatial organization
of economic activity. Handbook of regional and urban economics, 5:1339–1398.

Roth, J., Sant’Anna, P. H., Bilinski, A., and Poe, J. (2023). What’s trending in difference-
in-differences? a synthesis of the recent econometrics literature. Journal of Econometrics,
235(2):2218–2244.

Strobl, E. (2011). The economic growth impact of hurricanes: Evidence from us coastal
counties. Review of Economics and Statistics, 93(2):575–589.

68



Taur, C.-K., Toth, G., Oswald, G. E., and Mays, L. W. (1987). Austin detention basin
optimization model. Journal of Hydraulic Engineering, 113(7):860–878.

Taylor, C. A. and Druckenmiller, H. (2022). Wetlands, flooding, and the clean water act.
American Economic Review, 112(4):1334–1363.

Tellman, B., Sullivan, J. A., Kuhn, C., Kettner, A. J., Doyle, C. S., Brakenridge, G. R.,
Erickson, T. A., and Slayback, D. A. (2021). Satellite imaging reveals increased proportion
of population exposed to floods. Nature, 596(7870):80–86.

Wang, K., Wang, Z., Liu, K., Cheng, L., Bai, Y., and Jin, G. (2021). Optimizing flood
diversion siting and its control strategy of detention basins: A case study of the yangtze
river, china. Journal of Hydrology, 597:126201.

Zeng, J. and Zhou, Q. (2024). Mayors’ promotion incentives and subnational-level gdp
manipulation. Journal of Urban Economics, 143:103679.

Zhang, L., Ren, Z., Chen, B., Gong, P., Xu, B., and Fu, H. (2024). A prolonged artificial
nighttime-light dataset of china (1984-2020). Scientific Data, 11(1):414.

Zhang, X. and Song, Y. (2014). Optimization of wetland restoration siting and zoning in
flood retention areas of river basins in china: A case study in mengwa, huaihe river basin.
Journal of Hydrology., 519:80–93.

Zhao, Y. (1999). Leaving the countryside: Rural-to-urban migration decisions in china.
American Economic Review, 89(2):281–286.

69



A Supplementary Materials of Research Background

A.1 List of Flood Detention Basins

Figure A1: Flood Detention Basins in 2000 (Original Policy Document)
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Figure A2: Flood Detention Basins in 2010 (Original Policy Document)
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Figure A3: Flood Detention Basins in 2010 (Original Policy Document), continued
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A.2 Number of FDBs in Different River Basins

Table A1: Flood Detention Basins in the Main River Basins of China (2000)

River Basin Number of FDBs Affected Population Total Area Storage Capacity
(million) (km2) (billion m3)

Yangtze 40 6.12 11,959 63.6
Yellow 5 3.18 5,212 12.9
Hai 26 4.40 9,597 17.2
Huai 26 1.61 3,674 14.1

Total 97 15.3 30,443 107.7
% of China 1.1% 0.3%

Note: (1) This table reports the number of FDBs, affected population, total FDB areas,
and the storage capacity of FDBs in 2003; (2) ‘% of China’ refers to the percentage of
affected population to the whole population in China and the percentage of total area to
the total area of China.
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A.3 Policy Change: 2000 v.s. 2010

Table A2: Number of FDBs under 2000 and 2010 Policy

FDBs Located in:

Rivers N(FDBs) N(Provinces) N(Municipalities*) N(Cities) N(Counties)

2000 Policy
Yangtze 40 4 0 10 28
Hai 26 3 2 11 37
Huai 26 2 0 9 19
Yellow 5 2 0 6 12
Total 97 8 2 36 96

2010 Policy
Yangtze 44 5 0 11 31
Hai 28 3 2 11 39
Huai 21 3 0 14 24
Yellow 2 2 0 5 8
Songhua 2 1 0 2 3
Zhu 1 1 0 1 1
Total 98 11 2 44 106
∆(2010-2000 ) 1 3 0 8 10

Note: (1) The term ‘2000 Policy’ refers to the National Flood Control Law implemented by
China’s Ministry of Water Resources in 2000, and ‘2010 Policy’ to its subsequent update
in 2010; (2) The ‘Total’ number might differ from the sum because some basins span mul-
tiple provinces, cities, and counties; (3) The term ‘Municipalities*’ denotes municipalities
directly governed by China’s Central Government, specifically Beijing and Tianjin in this
study; (4) Under the 2000 Policy, provinces designated as Flood Detention Basin (FDB) re-
gions included Hunan, Hubei, Anhui, Henan, Hebei, Shandong, Jiangxi, and Jiangsu. The
2010 Policy expanded this list to include Heilongjiang, Jilin, and Guangdong.
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A.4 Descriptive Statistics of FDB counties and non-FDB counties

Table A3: Descriptive Statistics: FDB Counties and non-FDB Counties

Mean Unit FDB Counties non-FDB Counties
N(Counties) 116 2,363
N(obs) 2,709 55,729
Geographical Factors:
Slope 6.14 12.46
Elevation 45.24 561.28
N(Permanent Water Pixels) 1136.33 388.77
Floods:
Size-Adjusted Flood Exposure days 0.126 0.020
Size of Flood Inundation pixels 5,024.44 679.98
Socio-Economic Variables:
Population thousands 853.41 632.80
Nighttime Light Intensity 1,676,066 1,259,737
Number of Firms 5,669.49 5,496.63

Note: (1) We use a county panel of 20 years (2000 - 2020); (2) Detailed introduction of
data used in this research can be found in Section 3.1; (3) From 2000 to 2020, a total of
116 counties have been designated as FDB counties. In 2000, the government selected
96 FDB counties. In 2010, the government selected another 20 counties into the FDB
list, but removed 10 from the list.
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A.5 Example of FDB Implementation (Mengwa FDB)

Figure A4: FDB Counties and FDB-Protected Districts in Huai River Basin

Figure A5: Wangjiaba Location (Source: Zhang and Song 2014)
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Figure A6: Before and After Flood Water Diversion of Mengwa Flood Detention Basin

To illustrate the function of FDBs, we look at flood management in the Huai River Basin

(HRB). Located in the transition zone between the southern and northern climates of China,

the Huai River Basin experiences dramatic climate changes, resulting in precipitation that

varies both spatially and temporally. 70% of the precipitation is concentrated in the flood
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season from June to September. Due to the unique geographical condition of the HRB,

flooding is frequent. For example, the HRB has seen floods in six years in the 1990s.

In 2007, a high-intensity rainfall hit the HRB and the average rainfall reached 465 mm.

The precipitation led to multi-peak flooding in the Huaihe River and threatened the down-

stream areas of the Flood Detention Basin. When the water level reached 29.3m on July 10,

the government raised the flood severity level to the highest and operated the Wangjiaba

Dentention Basin. The basin diverted water for 46 hours and stored flood with a volume of

250 million cubic meters. Even though the downstream land is protected, the use of Mengwa

resulted in a forced migration of more than 3,000 people, an inundation of more than 12,000

hectares of farmland, and destruction of all Wangjiaba infrastructure. According to Chinese

government, the 2007 flood affected around 2.5 million hectares of crops and caused a direct

economic loss of around 2.5 billion USD, which is around 50 % less than the flood loss in

1991. The decrease in economic loss is largely contributed to the operation of FDBs.
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A.6 Migration

Figure A7: The government announced the floodwater diversion in the Xiaotanpo Flood
Detention Basin, Henan Province, six hours before the actual event.
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Figure A8: A Picture of Zhuangtai (Temporary Residential Sites during Flood Diversion)

Note: Zhuangtai is a unique village form found in the flood detention areas of the Huai River Basin. It

emerged in response to frequent flooding, where local villagers, in order to protect themselves from floods,

built platforms on higher grounds and constructed their homes on these platforms. By artificially raising

the ground or utilizing natural highlands, houses are built to serve as a refuge during flood storage periods.

A.7 Empirical Analysis of FDB Selection

To understand determinants of FDB selections, we run a linear probability regression

model:

FDBict = α + β1Geoict + β2ln(Light)ict + γc + λt + ϵict

where FDBicut is a dummy variable that equals 1 if the county i in city c is designated as

an FDB county in 2000, and 0 otherwise. Geoict represents geographical controls (elevation,

gradient, and precipitation), which are key factors that affect floods. ln(Light)ict represents

the logarithm nighttime light intensity. γc, λt are city and time fixed effects, respectively.

ϵict is the standard error, that clustered at city level.

According to the Chinese government, FDBs are located in low-lying lands that are

hydrologically feasible to collect flood water. Table A4 provides supportive evidence that

the FDB selection is mainly based on geographical factors, especially, elevation. However,

we do not find evidence that FDB selection is significantly correlated with economic factors,

for example, nighttime light intensity.
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Table A4: FDB Selection Criteria: Linear Probability Model

(in logarithm) (1) (2) (3) (4) (5)

Elevation −0.059*** −0.052***
(0.017) (0.015)

Gradient −0.043*** 0.011
(0.010) (0.025)

Precipitation −0.003 0.000
(0.005) (0.005)

Nighttime Light 0.006* 0.007
(0.004) (0.004)

N(obs) 48,280 48,280 48,280 48,280 48,280
R2 0.350 0.358 0.343 0.344 0.365

Fixed Effects
Year Y Y Y Y Y
City Y Y Y Y Y

Note: (1) We use a county panel of 10 years (1990-2000); (2) The dependent variable is a dummy
FDBi that equals 1 if the county i has a Flood Detention Basin, and equals 0 if not; (3) All re-
gressions control for city fixed effects and year fixed effect; (4) Standard errors are clustered at
the city level.

A.8 Compensation

According to Temporary Measures for the Use of Compensation in Flood Storage and

Detention Areas, for crops, specialized farming, and economic forests, compensation will be

provided at 50-70%, 40-50%, and 40-50% of the average annual output value over the three

years prior to the flood detention, respectively. For housing, compensation will be provided

at 70% of the flood damage loss. For household agricultural machinery, draft animals, and

major durable household goods, compensation will be provided at 50% of the flood damage

loss. However, if the total registered value of household agricultural machinery, draft animals,

and major durable household goods is less than 2,000 yuan, compensation will be provided

at 100% of the flood damage loss. If the flood damage loss exceeds 2,000 yuan but is less

than 4,000 yuan, compensation will be provided at 2,000 yuan.

However, compensation will not be provided if satisfying either conditions: (i)losses from

flood damage caused by refusal to abandon farmland that should be abandoned, refusal to

relocate when required by national regulations, or losses resulting from unauthorized farming

or returning after abandoning farmland or relocation; (ii) losses from flood damage to housing

built in violation of safety construction plans or schemes for the flood detention area; (iii)

kosses from flood damage to household agricultural machinery, draft animals, and major
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durable household goods that could have been transferred according to relocation orders but

were not.

Figure A9: FDB Compensation According to Temporary Measures for the Use of Compen-
sation in Flood Storage and Detention Areas (original policy document)

Zhuozhou was used for flood water diversion in 2023. According to the compensation

regulation, each person will receive no less than 30 RMB (5 USD) per day for basic living

assistance during the emergency period, which will last no more than 15 days. For those

unable to meet their basic living needs due to a disaster, each person will receive no less

than 30 RMB (5 USD) per day, for a period not exceeding 3 months. For those who need

temporary relocation, each person will receive no less than 2,000 RMB (300 USD) as standard

assistance during the period of resettlement. For agricultural households, 70% of the cost will
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be compensated, and for non-agricultural households, 40% of the cost will be compensated.

In the case of death due to a disaster in designated flood storage areas (including regular

residents), each affected household will receive a compensation of 20,000 RMB (3,000 USD).

Figure A10: Actual FDB Compensation for Flood Detention in Baoding, Hebei Province in
2023 (original policy document)

B Supplementary Materials of Data and Empirical Meth-

ods

B.1 Global Flood Database

The Global Flood Database by Tellman et al. (2021) is a comprehensive dataset offering

high-resolution data on flood events worldwide from 2000 to 2018. Using satellite imagery

and machine learning, it captures over 900 flood events with a spatial resolution of 30 meters,

allowing for detailed analysis of flood exposure and impacts at localized levels. For China,

it offers data about 198 flood events from 2000 to 2018. With global coverage and signifi-
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cant temporal depth, the database supports researchers in tracking flood trends. However,

researchers also claim that Global Flood Database may not capture all flood events in the

world (Patel 2023).

Figure B1: An Illustrative Example of Global Flood Database

C Supplementary Materials of FDB and Flood Risk

Redistribution

C.1 Dynamic Hydrological Model

Figure C1: Consistency between Model Prediction and Actual Model
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D Supplementary Materials of Economic Costs on FDB

Counties

D.1 Supplementary Materials of Synthetic-DiD Results

Figure D1: Dynamic Impacts of 2000 and 2010 FDB Policy Change on Light Intensity

Note: (1) Each dot represents the policy effect (ATT) estimated using the SDID event-study approach

by Arkhangelsky et al. (2021)); (2) Data: 1990-2020 Nighttime Light Intensity data; (3) 96 counties were

selected into the FDB list in 2000, while 20 counties were selected into the FDB list in 2010; (3) The event-

study regression includes county and year fixed effects; (4) Standard Error: Bootstrap.

D.2 Individual Outcomes

D.2.1 Data Source: China Family Panel Studies (CFPS)

The China Family Panel Studies (CFPS) is a nationally representative, biennial longi-

tudinal survey initiated in 2010 by the Institute of Social Science Survey (ISSS) at Peking

University. This survey is designed to capture individual-, family-, and community-level data

across a broad range of topics in contemporary China. It provides rich insights into both

economic and non-economic aspects of well-being, covering areas such as economic activi-

ties, education outcomes, family dynamics, migration, and health. Funded by the Chinese
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government through Peking University, the CFPS aims to offer the academic community one

of the most comprehensive and high-quality datasets available on modern China.

D.2.2 Empirical Strategy

To compare the individual income in FDB and non-FDB counties, we conduct the re-

gression below:

ln(income)icjt = α + β1FDBicjt + γj + λt + ϵj

where ln(income)icjt indicates the logarithm income of individual i residing in county c and

city j, in year t, FDBicjt is a dummy variable that equals 1 if the county c is an FDB county

in year t, and 0 if not, gammaj is city fixed effect, λt is time fixed effect, standard errors are

clustered at the city level.

Here, β1 measures the difference in individual income in FDB counties and other counties.

If it is negative, then individual income in FDB counties is lower than other counties, holding

city and year constant. Note that we are not presenting a casual result because we do not

have data before 2010 (the treatment year).

D.2.3 Result

Table D1 shows that individual income is lower in FDB counties, further supporting

the argument that these counties bear long-term economic costs, as we present in Section

5. Specifically, Columns (2) and (4) indicate that, after controlling for key socio-economic

factors, individuals in FDB counties earn approximately 18% less than those in other counties

within the same city and year. However, due to data limitations, our analysis is based on

residents from only six FDB counties. A comprehensive understanding of the living condition

of residents in FDB counties require better individual-level data.
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Table D1: Impacts of FDB Policy on Individual Income

Sample Selection

All Counties Excluded Spillover Counties

Outcome: ln(Income) (1) (2) (3) (4)

FDB −0.249*** −0.176*** −0.249*** −0.175***
(0.007) (0.006) (0.008) (0.006)

N(Obs) 70,652 70,652 68,853 68,853
N(FDB Residents) 3,012 3,012 3,012 3,012
N(Provinces) 25 25 25 25
N(Cities) 127 127 123 123
N(Counties) 162 162 158 158
N(FDB Counties) 6 6 6 6

Controls N Y N Y
Fixed Effects
Year Y Y Y Y
City Y Y Y Y

Note: (1) Data source: 2010, 2012, 2014, 2016, 2018 and 2020 China Family Panel Stud-
ies (CFPS); (2) This table presents results of fixed-effect regression: ln(income)icjt = α +
β1FDBicjt + γj + λt + ϵj , ln(income)icjt indicates the logarithm income of individual i resid-
ing in county c and city j, in year t, FDBicjt is a dummy variable that equals 1 if the county
c is an FDB county in year t, and 0 if not, gammaj is city fixed effect, λt is time fixed effect,
standard errors are clustered at the city level; (3) ‘Spillover Counties’ refers to those counties
geographically adjacent to FDB counties; (4) Controls: age, married, gender, year of educa-
tion, and urban status.

D.3 Robustness and Placebos
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Figure D2: Event Study Robustness Check

Note: (1) Each dot represents the policy effect (ATT) estimated using different event-study approach; (2)
‘TWFE’ represents the traditional two-way-fixed-effects approach, ‘C&D’ refers to the two-way fixed effects
estimators with heterogeneous treatment effects proposed by de Chaisemartin and D’Haultfœuille (2020),
‘Gardner’ refers to the two-stage DID approach by Gardner (2022), ‘C&S’ refers to the DID with multiple
time periods by Callaway and Sant’Anna (2021); (3) Data: 1990-2020 Nighttime Light Intensity data; (4)
96 counties were selected into the FDB list in 2000, while 20 counties were selected into the FDB list in
2010; (5) The event-study regression includes county and year fixed effects, standard errors are clustered at
county level; (6) We report the confidence interval at 95% confidence level.
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Table D2: Robustness Check using Different DID Methods

TWFE SDID C&D Gardner C&S
(1) (2) (3) (4) (5)

FDB −0.176*** −0.156*** −0.115*** −0.182*** −0.147***
(0.056) (0.025) (0.030) (0.064) (0.040)

N(obs) 70,463 70,463 70,463 70,463 70,463

Fixed Effects
Year Y Y Y Y Y
County Y Y Y Y Y

Note: (1) Each point estimate represents the policy effect (ATT) estimated using different
difference-in-differences (DID) approach, ‘TWFE’ represents the traditional two-way-fixed-effects
approach, ‘SDID’ refers to the synthetic DID proposed by Arkhangelsky et al. (2021), ‘C&D’
refers to the two-way fixed effects estimators with heterogeneous treatment effects proposed by
de Chaisemartin and D’Haultfœuille (2020), ‘Gardner’ refers to the two-stage DID approach by
Gardner (2022), ‘C&S’ refers to the DID with multiple time periods by Callaway and Sant’Anna
(2021); (2) Data: 1990-2020 Nighttime Light Intensity data; (3) 96 counties were selected into the
FDB list in 2000, while 20 counties were selected into the FDB list in 2010; (3) All regressions in-
cludes county and year fixed effects, standard errors are clustered at county level in Column (1),
and (3) - (5), standard errors in Column (2) is set to be bootstrap; (4) The selection of control
group is consistent with Column (1) in Table 2.
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Figure D3: Placebo Test

Note: (1) This figure presents results of three distinct types of placebo tests of the traditional TWFE DID:

the in-time placebo test, the in-space placebo test, and the mixed placebo test; (2) In the in-time placebo

tests, we forward the treatment time by several years, using fake treatment times to assess if our results

are driven by temporal trends rather than the actual intervention; (3) For the in-space placebo tests, we

assign treatment to randomly selected units that did not receive the intervention, testing the robustness of

our findings against spatial confounding factors; (4) The mixed placebo tests combine both approaches by

randomly assigning fake treatment units and times.
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E Supplementary Materials of General Equilibrium Frame-

work

E.1 An Illustrative Partial Equilibrium Model

We begin by concretizing the ‘firm response effect’ using an illustrative partial equilib-

rium model. While our comprehensive general equilibrium model accounts for interactions

between different counties by including the flow of capital and manufacturing goods, this sim-

pler model offers more straightforward economic intuitions regarding the trade-off between

equality and efficiency in designing this flood risk redistribution policy. We then extend our

analysis to the full general equilibrium model, which we use for counterfactual scenarios and

to assess the benefit to cost ratio of FDB policies.

Flood Risk and Firm Investment Decision

In a two-period model, we assume that there are two types of counties, i = s, p. County s

represents FDB counties that are sacrificed for protecting other counties, county p represents

counties that are protected by FDB counties.

In period 1, the risk-neutral investor is endowed with an initial wealth, W , that can be

used for consumption, investments in different counties, and investment in bonds. In period

2, investors consume the investment returns from the first period. The optimization problem

is characterized below.

max
c0,c1,as,ap,b

c0 + βEµc1

s.t. c0 +
∑
i=s,p

ai + b = W

c1 =
∑
i=s,p

(1 + ri)ai + (1 + rf )b

Here, c0 and c1 represent the consumption at period 1 and period 2, respectively. as and

ap represent investors’ period-one investment in sacrificed county and in protected county. b

represents the bond investment. ri is the return of assets, or the marginal benefit of investing

in assets. rf is the risk-free interest rate.

The production problem is characterized as:

max
ki

zik
α
i − r̄iki
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Here, ki is the capital input in county i. zi represents the productivity in county i. r̄i

represents the effective cost of investment in county i.

At each flood event, µ = {τs, τp}, where τi is a dummy that equals 1 if the county is

flooded at the flood event, and 0 if not. We consider flood as independent event in two types

of counties. The flood probability of each county is Pr(τi = 1) = pi. Flood event will create

a wedge between return of asset, ri, and effective cost of investment, r̄i such that

ri = r̄i − τid

where d is the damage per asset caused by flood. Here, we assume that flood will cause

proportional damages per asset that are identical across sacrificed and protected county.

The market clearing condition requires ri,t to clear the local capital market such that:

ki = ai

Following the above conditions, the optimal investment can be characterized as below:

αzia
α−1
i − rf = pid

We can also consider the optimally condition as the characterization of flood risk pre-

mium. Here, the marginal product of capital is MPKi = αzia
α−1
i . Hence, the difference

between MPKi and rf can be interpreted as the flood risk premium, which equals the ex-

pected damage caused to the county i. Hence, the optimal investment ai is determined by the

flood probability pi. Specifically, when flood probability increases, the amount of investment

will decrease.

Impact of FDB Policy

We believe that the key function of FDB policy is to redistribute flood risk. To be

more specific, the FDB policy aims to increase the flood risk in sacrificed county by ∆p

and decrease the flood risk in protected county by ∆p. Hence, in sacrificed county, the

FDB-adjusted flood probability will be p′s = ps +∆p. And in protected county, In protected

county, the FDB-adjusted flood probability will be: p′p = pp −∆p. In Section 4, we find em-

pirical evidence to confirm the validity of this assumption. Holding geographical conditions

constant, we find that flood inundation area in sacrificed FDB counties is more than 50%

higher, and the size adjusted flood exposure is around 5% higher in FDB counties (see Table

1).

Proposition 1 (Trade-off in Equality and Efficiency ) Assume zp
(ppd+rf )2−α > zs

(psd+rf )2−α ,
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then we have: d(ap+as)

dp
> 0 and d(ap−as)

dp
< 0.

zp
(ppd+rf )2−α > zs

(psd+rf )2−α indicates that the damage standardized productivity in protected

county is higher than that in sacrificed county. In other words, it specifies that a government

that prioritizes efficiency has correctly identified counties worth to be protected.

The implication of this proposition are twofolds. First, FDB policy will bring an increase

in total investment and will improve the economic resilience towards floods. The flood risk

redistribution from protected to sacrificed counties will increase the total investment ap+as.

Second, FDB policy will also bring the inequality between sacrificed counties and protected

counties because the investment gap ap − as will increase as well. We provide proof of this

proposition in the Appendix E.2.

E.2 Proof of Proposition 1

Given flood event µ = {τs, τp}, we can rewrite the investor’s optimization problem in

state-contingent form:

max
c0,as,ap,b,c1(µ)

c0 + βEµc1(µ)

s.t. c0 +
∑
i=s,p

ai + b = W

c1(µ) =
∑
i=s,p

(1 + ri(µ))ai + (1 + rf )b

The first-order conditions of the optimization problem yields the optimal asset positions

{ai}i=s,p:

∑
µ

Pr(µ)[1 + ri(µ)] = 1 + rf

where the actual investment returns ri(µ) are determined by intrinsic capital productivity

in the local area r̄i and flood damage under event µ:

ri(µ) = r̄i − FloodDamage(µ)

Plugging the actual investment return expressions into the Euler equation yields:

r̄i − rf =
∑
µ

Pr(µ)FloodDamage(µ)
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Assume that the county-specific events τi are independently distributed, then we get the

pricing functions for county-specific assets {ai}i=s,p are given by:

r̄i − rf = pid (16)

The intrinsic capital productivity of county i is given by the following optimization prob-

lem:

max
ki

zik
α
i − r̄iki

Combined with market clearing conditions ki = ai, the intrinsic capital return r̄i is given

by:

r̄i = αzia
α−1
i

Plugging it into equation (21), it yields:

ai =
αzi

rf + pid

1
1−α

Consider a FDB policy that reallocates dp > 0 flood risk from protected county dpp = −dp

to sacrificed county dps = dp. Assume that zp
(ppd+rf )2−α > zs

(psd+rf )2−α . The impacts on

aggregate capital investments and investment gap can be described by:

d(ap + as)

dp
=

d

1− α

[
αzp

(rf + ppd)2−α

1
1−α − αzs

(rf + psd)2−α

1
1−α

]
> 0

d|ap − as|
dp

=
d

1− α

[
αzp

(rf + ppd)2−α

1
1−α

+
αzs

(rf + psd)2−α

1
1−α

]
> 0

E.3 Direct Protection Effect

In Table E1, we first estimate the direct protection effect by running the regression

lnLighticpt = α+β1Floodedicpt+β2Flooded×FDBicpt+β3Flooded×Protectedicpt+Xicpt+γpt+λc+ϵc

where lnLighticpt is the ln(nighttime light intensity) of county i in city c, province p, at time

t. Floodedicpt is a dummy variable that equals 1 if the county is flooded in year t, and 0 if

not. FDBicpt is a dummy variable that equals 1 if the county is an FDB county, and 0 if not.

Protectedicpt is a dummy variable that equals 1 if the county is an FDB-protected county,

and 0 if not. Xicpt are controls. γpt is province-year fixed effect, ηt is time fixed effect, and
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λc is city fixed effect. ϵc is the standard error, which is clustered at the city level.

Following this specification, β2 measures the impact of a county being designated as

FDB county, while β3 measures the impact of a county being protected by FDB counties.

As shown in Table E1, we find that a protected county tends to suffer around 10% less when

being hit by floods. However, an FDB county tends to suffer around 18% more when being

hit by floods. This results indicates that FDB-protected counties are direct ly protected in

flood events.

Table E1: Reduced Form: Direct Protection Effect

ln(Nighttime Light Intensity)

Flooded −0.053** −0.048* −0.055* −0.059*
(0.027) (0.027) (0.031) (0.032)

Flooded × FDB −0.177* −0.180*
(0.092) (0.067)

Flooded × Protected 0.105* 0.104*
(0.061) (0.067)

N(obs) 5,242 5,242 5,242 5,242
R2 0.888 0.887 0.887 0.888

Fixed Effects
Province-Year Y Y Y Y
City Y Y Y Y
Controls
Demographic Y Y Y Y
Geographical Y N Y N

Note: (1) FDB is a dummy that equals 1 if the county i has once labeled as a
Flood Detention Basin county, and equals 0 if not; (2) All regressions control
for city fixed effects, province-by-year fixed effects, and a set of county-level
controls (land area, population, and precipitation); (3) Standard errors are
clustered at the county level.
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E.4 Elasticity between Flood and Productivity

Table E2: Flood Impact on Productivity

(ln) Total Productivity Manufacturing Productivity

Size-adjusted Flooded Days −0.043** −0.059*
(0.021) (0.032)

N(obs) 1,283 1,283

Fixed Effects
Year Y Y
City Y Y

Note: (1) FDB is a dummy that equals 1 if the county i has once labeled as a
Flood Detention Basin county, and equals 0 if not; (2) All regressions control for
city fixed effects, province-by-year fixed effects, and a set of county-level controls
(land area, population, and precipitation); (3) Standard errors are clustered at the
county level.
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