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Abstract

We offer new evidence on the effects and efficiency of school facility investment on student

and neighborhood outcomes, linking data on new facility openings to administrative student

and real estate records in Los Angeles Unified School District (LAUSD). Since 1997, LAUSD

has built and renovated hundreds of schools as a part of the largest public school construction

program in US history. Using an event study design that exploits quasi-random variation in

the timing of new facilities and a residential assignment instrument, we find strong positive

impacts on math, English, and attendance. Effects are not driven by changes in class size, peers,

teachers, or principals, but rather by increased facility quality and, to a lesser extent, reductions

in overcrowding. House prices increase by 6% in neighborhoods that receive new schools. Using

a residential choice model, we then estimate that a dollar spent on school facilities raises the

sum of housing values and adult earnings by 1.62 dollars, with only 22% of this valuation due to

academic benefits of the program. The housing market valuation of academic benefits captures

most but not all of the implied future earnings gains.
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1 Introduction

Investing in public infrastructure, including around 84,000 public school facilities, is a primary

responsibility of federal, state, and local governments in the United States. Each year, around

fifty billion dollars is spent on constructing and renovating these facilities, making up a significant

share of public expenditures on K-12 education (McFarland et al., 2017). Despite the magnitude of

this spending, many facilities have fallen into disrepair, with millions of students attending schools

in poor conditions (Alexander and Lewis, 2014). In light of these conditions, policymakers and

analysts have repeatedly called for immediate action to increase investments into school facilities,

with estimates of required funding ranging in the hundreds of billions nationally (Crampton et al.,

2001; Arsen and Davis, 2006; Filardo, 2016).

There is substantial disagreement in economics over the need for these investments. The debate

revolves around two questions. First, are facility investments an effective tool to improve student

outcomes? And second, are they an efficient use of public funds? A growing literature studies the

achievement effects of facility investments, but so far has failed to arrive at a consensus on whether

students attending higher-quality facilities are better off. This is largely due to the difficulty in

finding convincing research designs and large policy changes (Jackson, 2018), which has bolstered

the view that resource effects may be negligible (Hanushek, 1997).

Similarly, evidence on the efficiency of these investments is scarce, not least because of the

disagreement over whether better facilities improve human capital and later life earnings. Even if

these benefits were known, it is unclear whether they are fully capitalized in housing markets of

affected neighborhoods. As a consequence, aggregating benefits from student achievement and real

estate capitalization of education infrastructure programs remains challenging.

We contribute new evidence on these questions in the context of the largest school construction

program in U.S. history. Like many other districts, Los Angeles Unified (LAUSD) saw declining

capital investment throughout the 1970s and 80s, hovering around the median in terms of per-

pupil real capital expenditures. However, after a series of voter-approved bonds starting in 1997,

LAUSD was at the forefront of districts investing in school infrastructure, constructing nearly 150

new schools by 2012 (Figure 1, panel a). As a result, the average LAUSD facility age fell from 57
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years to 53 years, moving from the 80th percentile closer to the median of the national distribution

(Figure 1, panel b). While LAUSD facility quality improved considerably, about one in five schools

are in inadequate condition nationwide (National Center for Education Statistics, 2014).

We use administrative records on more than two million students to provide precise and com-

prehensive estimates of the causal impact and the underlying mechanisms of these expenditures

on student outcomes. We then combine the implied gains in later life earnings with changes in

house prices in affected neighborhoods to evaluate the efficiency of the program in a way that

avoids double-counting benefits. To this end, we develop a residential sorting model that allows for

program benefits to arise from both academic achievement and valuation of non-academic aspects

of new schools.

We find robust evidence that students attending newly constructed schools in LAUSD experience

large, significant gains in cognitive and non-cognitive outcomes. Relying on within-student variation

in the timing of exposure to new facilities, we estimate that spending four years in a new school

facility leads to a 0.1 standard deviation increase in standardized math scores and a 0.05 standard

deviation increase in English-language arts (ELA) scores. In addition, students who attend newly

constructed schools attend on average four additional days per academic year, and score slightly

higher on teacher-reported measures of student effort. Results are nearly identical when using

exogenous residential assignment due to the creation of school attendance zones of new schools as

an instrument for the timing of attending a new school.

Examining the mechanisms through which these effects are mediated, we conclude that the

majority of the effects were driven by improved facility quality. We also find some evidence that

reduced overcrowding contributed to these positive effects: students at existing facilities, who

experienced reductions in overcrowding but no facility improvements, saw some test score and

attendance gains. We find no evidence that student sorting, changes in teacher quality, principal

quality, peer quality, or changes in teacher-pupil ratios were positive contributing factors.

We establish that the benefits generated by the program in terms of housing market capitaliza-

tion and later life earnings gains substantially outweighed its cost, suggesting it increased welfare

but remained below efficient scale. We arrive at this result by developing a model in the spirit

of Tiebout (1956), Brueckner (1979) and Barrow and Rouse (2004) that clarifies the relationship
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between neighborhood investment in school amenities, household valuation of school amenities in

the real estate market, and future earnings valuation of academic achievement. Using this model,

we derive a hybrid expression for the marginal value of public funds (Hendren, 2016), combining

the housing capitalization approach and the later life earnings approach commonly found in the

literature. The model identifies the share of valuation due to academic achievement as a key pa-

rameter, which we estimate via the covariance of achievement effects and house price effects across

neighborhoods receiving new schools. We show that this parameter is also closely related to the

literature on housing valuation of school performance surveyed by Black and Machin (2011).

We estimate the model using administrative records on property sales, finding that house prices

increase by 6% in neighborhoods that receive new school facilities. Using only the benefits implied

by these house price effects, we arrive at a total gross benefit of more than $14 billion against a

program cost of $9 billion, or a marginal value of public funds of 1.53. Relying on the relationship

between test scores and future earnings (Chetty et al., 2011), we estimate that the achievement

gains induced by the program increase future earnings by roughly $4 billion. We then estimate

that around 22 cents out of each dollar capitalized in the housing market is due to achievement,

which accounts for about 76% of the estimated gains in later life earnings. Using a hybrid approach

that additionally includes future earnings gains that are not capitalized in the real estate market

yields a marginal value of public funds of around 1.62. This is only slightly larger than only using

real estate capitalization, but substantially larger than if we were to only consider gains in future

earnings.

Our study contributes new evidence to several related literatures. First, we provide robust

estimates of student-level effects from facility improvements using variation induced by the largest

school capital construction program in the United States. Most prior studies examine effects of

capital expenditure programs on district-level average outcomes, often finding mixed and imprecise

estimates of effects on student outcomes (Cellini et al., 2010; Martorell et al., 2016; Hong and

Zimmer, 2016; Conlin and Thompson, 2017; Goncalves, 2015). These studies do not measure effects

on directly treated students, and are generally underpowered to detect modest but meaningful

effects. A notable exception is the work by Neilson and Zimmerman (2014), who examine a smaller-

scale construction boom in New Haven, Connecticut, and find evidence of positive effects on reading
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but not math scores several years after school construction.1 We build on this prior work by

leveraging the scale of the entire LAUSD school construction program, allowing us to decompose

effects and examine specific mechanisms.

Second, we contribute to the literature estimating the capitalization of school quality in the real

estate market. We provide some of the first large-sample evidence of localized house price capital-

ization of dynamic changes in school quality. Much of the work in this literature has estimated the

capitalization of static differences in school quality, and thus does not provide direct estimates of

how changes in school quality are valued in the real estate market.2 A handful of recent papers

provide estimates of capitalization of changes in school quality using variation induced by capital

expenditure policies, generally finding positive effects after several years (see Cellini et al., 2010;

Goncalves, 2015; Conlin and Thompson, 2017; Neilson and Zimmerman, 2014). We build upon

these prior studies by more precisely examining the dynamics of these changes, over both time and

space. Moreover, we study a (mostly) locally funded program that was inherently redistributive:

local property taxes were raised districtwide to fund new schools in only one-third of neighborhoods.

Finally, we contribute to the broad literature and debate over the efficacy and efficiency of

resource-based education policies. Economists have long been skeptical of the productivity of such

investments (e.g. Hanushek, 1997), although recent studies of state-level school finance reforms have

provided evidence that broad based expenditure programs can improve educational outcomes (e.g.

Jackson, 2018; Jackson et al., 2016; Lafortune et al., 2018; Candelaria and Shores, 2015; Hyman,

Forthcoming), labor market outcomes (Jackson et al., 2016), and intergenerational mobility (Biasi,

2017). Our study of the LAUSD school construction program provides additional evidence that:

(1) school expenditures – even those dedicated to capital costs – can improve student cognitive

and non-cognitive outcomes; (2) such programs can induce increases in aggregate real estate prices

in excess of program cost; and (3) most of these increases reflect non-academic benefits of the

1Another notable exception is Hashim et al. (2018) who focus on subset of new school openings in LAUSD in
2010/2011. They study the effects of the two initial cohorts of “strategic” new school openings. These openings were
a subset of the schools constructed after 2010 as a part of the district’s Public School Choice Initiative.

2Several papers, most notably Black (1999) and Bayer et al. (2007) exploit boundary discontinuities within nar-
rowly defined neighborhoods to estimate the market valuation of school quality. Other papers have used variation
across district boundaries (e.g. Barrow, 2002; Barrow and Rouse, 2004), within-district boundary changes (e.g. Ries
and Somerville, 2010; Collins and Kaplan, 2017), school “report-card” grades (Figlio and Lucas, 2004), and public
reporting of teacher value-added scores (Imberman and Lovenheim, 2016). For a comprehensive overview, see the
review of the capitalization literature in Black and Machin (2011).
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program, although much of the academic benefits are also capitalized in the housing market.

There are two important caveats to these conclusions. First, as our study focuses on the

outcomes of one large district investing heavily in facilities, our results may not generalize to

all other districts in the country. However, many large, urban districts as well as smaller districts

serving disadvantaged students face consistently underfunded and low-quality facilities (e.g. Filardo

et al. (2006), Alexander and Lewis (2014)). While its program was large, LAUSD was not the

only large district investing heavily in facilities after decades of neglect (Figure A1, panel a). Its

experience may be broadly representative of many other large urban districts that undertook major

investments over this period or consider doing so in the future.

Second, an important feature of the LAUSD program was the reduction of overcrowding and

the expansion of available school facilities. Most of the bond funds invested in LAUSD in the period

we study took the form of new school openings, expanding the seat capacity of schools, as opposed

to major renovations of existing facilities. But many aspects of pupil experience at new schools

resemble large renovation projects: students switch to modern, spacious facilities in mostly the

same neighborhoods as before with similar teachers and staff, as they would in renovation projects.

New school openings also capture many aspects of school capital expenditures more broadly, as

they typically involve not only new classrooms but also administrative buildings, sports facilities,

land acquisitions, and equipment purchases.3

The paper proceeds as follows. In Section 2 we detail the context for our study and discuss

specific details of the LAUSD program. In Section 3 we examine the effects of the new facilities

on student outcomes, first detailing the data and empirical results, and then examining student

effects and mechanisms. In we Section 4 present the data, empirical approach, and results for

neighborhood house price effects. Section 5 presents the residential choice model, linking the

results in the previous section to interpret the valuation and efficiency of the program. Finally, in

Section 6, we conclude with a brief summary of results and their implications.

3Additionally, overcrowded school facilities are not unique to LAUSD; over 25% of California public schools were
recently designated as overcrowded (Rogers et al., 2009), and thus our results are relevant to many school districts
facing similar constraints.
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2 Context: School Facility Investment in LAUSD

LAUSD is the second largest school district in the United States, serving 747,009 students at its

peak in the 2003-2004 school year. Like many large urban school district in the US, it is majority-

minority, and serves students who are much more disadvantaged than the typical US public school

student. Relative to the rest of California, students in LAUSD are underachieving.4 As of the

early 2000s, LAUSD’s capital stock had fallen well below current needs. As shown in Figure 2,

no new schools were opened between 1975 and 1996, and the average student attended a school

that was around 60 years old in 2000. Many were in extremely poor condition. Classrooms were

often non-functional, with broken and missing equipment, and school facilities sometimes lacked

adequate restrooms.5 Inadequate climate control was additionally a major source of distraction;

classroom temperatures upwards of 90 degrees fahrenheit were not uncommon.

The schools were also severely overcrowded, as the district’s enrollment had increased roughly

10% since 1975 (Figure 2). Nearly 25,000 students were bused daily to faraway schools to relieve

capacity constraints, and roughly half of students attended schools that operated on “multi-track”

calendars that staggered the school year to use the facility year-round and thereby accommodate

as many as 50% more students than could be served at any single time. Even with these measures,

many schools relied on lower-quality portable classrooms, and even converted gymnasiums, libraries,

and computer labs into classroom space. This also severely limited access to extra-curricular

opportunities. Rapid depreciation of facilities due to continued overuse compounded these issues.

Between 1997 and 2008, voters in Los Angeles approved a series of bonds dedicating around

$20 billion in local and state funding to the construction, expansion, and renovation of hundreds of

schools. This was the largest public infrastructure program in the U.S. since the interstate highway

4In 2002 the average student scored roughly 28% of a standard deviation below the state mean in English-Language
Arts (ELA) and roughly 21% of a standard deviation below the state average in math. Scores from the CST ELA
exam in grades 2-11, and the CST math exam in grades 2-7.

5In a 1999 review of the facilities practices of LAUSD and other California districts, the California “Little Hoover
Commission”, an independent oversight body, reprimanded the district for gross mismanagement and noted in par-
ticular that LAUSD school facilities were “overcrowded, uninspiring and unhealthy”, and that “Researchers have
attempted to gauge the link between the quality of school buildings and the quality of learning. In Los Angeles,
however, this link is obvious. In some classrooms, there are twice as many children as there are desks” (Terzian,
1999). One high school of nearly 2000 students had only one functioning bathroom. One teacher noted that “... we
had roaches, ants, an air conditioner that barely worked, no sink [...] and barely any storage for classroom materials”
(Fuller et al., 2009).
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system (Fuller et al., 2009). While the program was unprecedented in absolute dollars, it was less

remarkable in per-pupil terms: the program pushed LAUSD from just above the national median

in per-pupil capital spending, to nearly the 90th percentile at its peak in 2007 (Figure 2). The

per-pupil construction cost was also similar to new school construction programs in many other

large districts (Figure A1, panel a) and smaller urban districts across the country (e.g. Neilson and

Zimmerman (2014), see Figure A2).

As a result of these investments, facility quality improved considerably in LAUSD. This is in line

with a broader trend across the country of shifting resources to poorer districts: after decades of

neglect, districts with low capital investment during the 70s and 80s caught up considerably during

the 2000s, nearly equalizing capital expenditures across districts (Figure A1, panel b). Despite this

increased investment, between 1999 and 2012 the average facility age nationally increased from 40

to 43 years; for low-income urban districts the average age increased from 45 to 50 years (Greene,

2003; National Center for Education Statistics, 2014).

The first new school was completed in 2002, and over the next decade 144 new school facilities

were constructed in LAUSD as part of the facilities program. Nearly $11 billion was spent over

this period, about 86% of which went to new school openings, while the rest went to additions,

renovations, and equipment delivery at existing schools.6 By 2012, over 75,000 students attended

a newly constructed school (see Figure A4).7 To identify suitable sites for new schools, designated

search areas were defined near the most overcrowded schools, and construction sites were selected

6In total, the projects we study in our data cost $9.17 billion (roughly $6,000 per household or $15,000 per
pupil), the majority being funded from the various local bonds that were passed in and after 1997. We focus on new
school facilities completed between 2002 and 2012, for which we have detailed project data matched to administrative
student data. A database of capital projects in LAUSD, including measures of project cost, size, completion timeline,
and location, was constructed from records listed publicly by the LAUSD Facilities Services Division (FSD). The
data cover all major projects and new school constructions with a preferred site designated between 1997 and 2011
(Projects not yet constructed by the end of 2011, but that were already in the planning phase, are included) and
include over 500 capital projects totaling nearly $11 billion in planned or realized spending. We restrict attention
only to large new school construction projects, defined as those that created over 100 new seats and/or cost at least
$10 million. We do not examine effects for the small number of projects for school campuses that already existed in
the first year of the student sample (e.g. major additions). These restrictions exclude roughly 14% of the spending
in our database.

7By 2012, less than 1% of students remained on a multi-track calendar (see Figure A5), overcrowding had been
effectively eliminated, and there was very little busing of students to distant schools. This period was marked primarily
by an increase in capital and not instructional expenditures. Districtwide, per-pupil instructional expenditures
increased by roughly 15% in the early 2000s, but fell following the Great Recession. Capital expenditures per-pupil
increased nearly 400% in the same period. Other LA county districts saw similar changes in instructional but not
capital expenditures (Figure A3).
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from within these areas primarily based on site feasibility (e.g. size, location, accessibility), cost of

acquiring land, environmental concerns, and local community engagement.

By 2001, nearly all new school sites had been identified, although the process of acquiring land,

securing adequate funding, negotiating with local stakeholders, meeting environmental regulations,

and designing and constructing schools resulted in a staggered delivery of new facilities over the

next decade. It is this plausibly random variation in the timing of openings, induced primarily

through idiosyncrasies in the construction process, which we exploit to estimate the effect of new

schools on student and neighborhood outcomes. Summary statistics for the new school projects

are presented in Table 1. In total, there were 144 new schools built as a part of 114 new school

campuses.8 The median project cost $57 million and created about 800 new student seats, with

several projects costing in the hundreds of millions of dollars. Projects typically took two years to

construct, and were complete roughly 5 years after the site had been designated by the district.

Figure 3 shows the attendance zones for new and existing school facilities in 2012.9

New schools were filled quickly, typically reaching close to steady state enrollment within 2

years after construction. Students from nearby schools were reassigned based on redrawn school

assignment zones to the newly constructed schools. Switching students experienced drastic changes

in facility quality: they switched from schools that were on average 70 years old and had substantial

physical deficiencies. New facilities enabled the district to reduce overcrowding and eliminate multi-

track calendar schedules at both new and nearby existing schools.

3 Student Impacts

3.1 Student data

To study the effects of improved school facilities on student outcomes, we use administrative records

from LAUSD from the 2002-2003 school year to the 2012-2013 school year. Every student who

attended LAUSD during this time period is included, and the data allow for longitudinal links

8In some cases, a new school campus comprised several new schools, either because the site was combined to house
both elementary and middle (or middle and high school students), or because magnet or alternative schools serving
the same grades were housed on the same campus.

9As can be seen in the figure, new schools were concentrated in East Los Angeles, where students are predominantly
low-income and Hispanic/Latino and schools were previously the most overcrowded and in need of repair.
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across years for students who remain in the district.10 To ensure comparability of scores across

students, we focus only on California Standards Test (CST) math scores for grades 2-7 and CST

ELA scores for grades 2-11.11 Test scores are normalized relative to the California-wide mean and

standard deviation.12 Total annual attendance, measured in days, is recorded for each student. For

elementary school students, report card data contain teacher-reported measures of both achievement

and effort in different classroom subjects. These are reported on an ordinal scale from 1 to 4 for

several subjects.13

Data on teacher education, experience, age, and gender are available in all years, except 2009

and 2011. Teacher identifiers are also available for all years in the student data, and teachers

can be linked longitudinally using unique teacher IDs. In the student data, each elementary record

contains a single teacher identifier. Teacher-student links for secondary school are constructed using

student-level course data.14 Class size is constructed for elementary school students by measuring

the total number of students associated with a particular teacher ID in a given year. For students

in secondary school we do not compute class size as direct classroom identifiers are unavailable.

Summary statistics for students are presented in Table 2. Column 1 shows the average demo-

graphic characteristics for all student-year observations in the sample. Column 2 reports means

for students who never attend a newly constructed school during the sample period (i.e. “never

treated”). Column 3 reports means for “always treated” students, that is, those whose first year in

the data sample is at a newly constructed school. In practice, these are almost always kindergarten

10These data provide one record per student-year with information on grades, test scores, demographics, attendance,
addresses, residential assignments, and teacher assignments. For some years and grade levels, data are included from
both the fall and spring semesters; we collapse these data to the annual level for comparability. Demographics include
gender, race, language spoken at home, parental education, and eligibility for free or reduced price lunch.

11In each of grades 2-7, students take the same grade-level math exam; however, beginning in grade 8 the particular
test depends on the student’s particular math course enrollment. For the CST ELA exam, exams do not depend on
a student’s enrollment. Some students with limited English proficiency and/or individual education programs take
alternative exams. These students are excluded from all test score analyses.

12Means and standard deviations are reported in the California Standardized Testing and Reporting (STAR)
documentation provided by the California Department of Education.

13Scores pertaining to student effort are averaged within each student-year record to construct a “effort” index.
Scores pertaining to student achievement or proficiency are averaged within each student-year record to construct a
teacher-reported “marks” index. These indices are then normalized to have mean zero and a standard deviation of
one within each grade-year cell.

14Principal names are available for 85% of student-year observations, allowing us to construct within-district mea-
sures of principal experience. Principal names are available for all but two years of our data. For years with missing
names, we assign a school its principal from the prior year or following year (giving preference to the prior year where
there are conflicts).
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students, although this also includes students who show up in LAUSD for the first time in other

grades. Columns 4 and 5 show means for switchers and “stayers”, respectively. The former are

students who switch to a newly constructed school at some point during the sample period, while

the latter are defined as students at schools where more than 10% of grade-year cohort switches to

a newly constructed school in the following year.

Over 85% of students in LAUSD are black or Hispanic, and most students speak a language other

than English at home with their parents. Students in LAUSD are also much more socioeconomically

disadvantaged than the typical California school district: over three-quarters of students are eligible

for free and reduced price lunch and do not have a parent who attended any level of postsecondary

education. Importantly, treated students who attend newly constructed schools are even more likely

to be black or hispanic, low-income, and speak a language other than English at home. Comparing

students who switch to new schools against their peers who stay behind at old schools, the same

pattern of selection emerges: student switchers are slightly more likely to be low income and score

more than 10% of a standard deviation lower in both math and ELA than those students who stay

behind at old schools. This pattern was a deliberate feature of the construction program: new

school facilities were targeted toward neighborhoods with the most overcrowded and depreciated

schools, and these school zones were overwhelming located in the most underprivileged areas of the

district. Comparing the stayers and switchers shows that even within disadvantaged neighborhoods,

new schools were located in areas with slightly lower performing and more disadvantaged students.

3.2 Econometric Design

3.2.1 Generalized difference-in-differences

We estimate the effect of attending a newly constructed school on student outcomes using a gen-

eralized difference-in-differences strategy that relies on variation in the year a student begins at a

new facility. To deal with the concern that attending a new facility may be driven by selection,

we rely only on within-student changes in outcomes over time, controlling for student fixed-effects

to eliminate any biases due to time-invariant differences between students who matriculate at dif-

ferent schools. The key identification assumption is that the timing of student switching to newly
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constructed school facilities is as good as random, after accounting for fixed differences between stu-

dents, grades, and years. This leads to a flexible event-study specification that allows for differential

effects of attending a new school for each year a student outcome is observed:

yit = αi + γg(i,t) + δt,d(i) +
K∑

k=K

βk1(t = t∗i + k) + εit (1)

for an outcome yit, for student i in year t and grade g(i, t). We include fixed effects for student (αi),

grade (γg(i,t)), and year-by-local district (δt,d(i)).
15 Here, the coefficient βk captures the effect of

attending a newly constructed facility k years after the first year t∗i a student attends a new school.

k is zero in a student’s first year attending a school, and thus βk estimates the effect of k+ 1 years

of exposure to a new facility. Effects are measured relative to year k = −1, which is excluded in

estimation. Endpoints are binned at K = −3 and K = 3,16 which represent the average of student

outcome yit three or more years prior to attending a new school, or after four or more years of

exposure to a new facility, respectively. Standard errors are two-way clustered by both school and

student, to account for any serial correlation within school and/or within student outcomes over

time. This design builds in placebo tests that identify violations of the identification assumption

that the timing of student switching is as good a random: for k < 0, nonzero coefficients would be

an indication of non-randomness in the timing of student switching.

Equation (1) estimates the effects of attending a new school separately by year. Following

Lafortune et al. (2018), we can approximate the dynamics of these effects by estimating a more

parametric version of (1) where we allow for a new school to have an immediate effect, and for effects

to phase in gradually over time. Imposing linearity in the growth rate of student outcomes and

defining t̃i ≡ t− t∗i , we can estimate the following generalized difference-in-differences specification:

yit = αi + γg(i,t) + δt,d(i) + β11(t̃i ≥ 0) + β21(t̃i ≥ 0) ∗ t̃i + β3t̃i + εit (2)

Here β1 captures the immediate effect of a new school facility in the first year t∗i a student attends

15LAUSD is comprised of six administrative local districts: Northwest, Northeast, West, Central, East, and South.
We include separate year effects for each local district to more flexibly account for regional shocks and trends.

16We choose K = 3 as few students attend a new school facility for more than 4 years in the data.
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a new school. β2 reflects effects of the new school that accrue gradually over the time a student

is exposed to a new school.17 As a student is repeatedly exposed to improved facilities in each

year she attends a new school, we would expect effects to cumulate and increase over time with

continued exposure: β2 > 0. We also include a linear trend in “event time”, t̃i, to test for any

selection on prior trends. β3 captures this selection, and also provides a useful placebo test of the

assumption that the timing of student switching is as good a random.

3.2.2 Instrumental variables

While the majority of students attend their residentially assigned school, nearly 25% do not. This

share is lowest for elementary school students, and greater for middle and high school students, as

there are additional alternative school options (e.g. magnet schools) in later grades. If residential

non-compliance is correlated with time-invariant student characteristics, then the student fixed

effects models in equations (1) and (2) will still recover unbiased estimates of the new school

effects. However, if student sorting into new schools outside of their residential assignment zone is

correlated with changes in outcomes (e.g. Roy selection), treatment effect estimates in equations

(1) and (2) may be biased.

To account for this potential source of bias, we estimate instrumental variables versions of

(2) via two stage least squares (2SLS), where we instrument for the new school effects 1(t̃i ≥ 0)

and 1(t̃i ≥ 0) ∗ t̃i using the residential school assignment based on students’ home addresses.

Specifically, we instrument for a student’s matriculation at a new school, 1(t̃i ≥ 0), with 1(t̂i ≥ 0)

(where t̂i ≡ t − t̂∗i is year relative the first year a student was assigned to a newly constructed

school, t̂∗i ), an indicator for whether a student was assigned to attend a new school given her home

residence. Analogously, we instrument the linear phase-in, 1(t̃i ≥ 0) ∗ t̃i, with 1(t̂i ≥ 0) ∗ t̂i, the

number of years since a student’s residential assignment switched to a newly constructed school.

To the extent that families systematically sort between neighborhoods in anticipation of new

school openings, 2SLS estimates from (2) may still suffer from bias. For the years in our sample,

we can directly observe student moves between residences, which enables us to assess the extent to

17We can directly interpret β2 as an impact on the gain score, often an outcome of interest in many studies of
educational interventions.
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which such “Tiebout” moves may affect our estimates. In Appendix Table A7, we present estimates

where we split the sample of new school switchers based on whether or not they moved into the

new school zone in the years immediately prior to attending the new school, or whether they had

lived there prior to construction. Results are nearly identical for movers and non-movers, with

the exception of attendance, in which the estimated treatment effects are actually larger for non-

movers. Thus, while we cannot definitively account for this source of bias, we view it as empirically

negligible to our estimated effects.

3.3 Effects on switching students

In our baseline estimation we use all student-year observations in the relevant grades for a given

outcome.18 Students who never attend new school facilities are included in the regressions as

controls, as are students who we observe at newly constructed schools in their first year in the

data. In Appendix Table A8 we compare estimates where “stayers”, never treated, and always

treated students are excluded; reassuringly, results are very robust to the inclusion or exclusion of

these students.

3.3.1 Student achievement

We begin our empirical analysis by examining effects on student achievement. Figure 4 reports

estimates of the event study coefficients, βk, from equation (1) for both math and ELA test scores.

Standard errors are two-way clustered by both school and student. Time k = −1 is excluded; all

effects are relative to the year before a student begins attending a new school facility. Panel A

reports estimated coefficients on standardized math scores. There is no indication that students

who switch to new schools have rising (or falling) scores relative to other students prior to the

switch. Then, in the first year at a new school, there is a small but significant decrease of 4.1% of

a standard deviation. This decline is short-lived, however: scores increase nearly linearly with each

successive year a student attends school in a newly constructed facility, relative to other students

who did not switch to a new school. After four or more years of attending a newly constructed

18The sole exception are those students who attend multiple new facilities, who are excluded to avoid any confounds
in the dynamics of estimated treatment effects.
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school, students score 9.7% (SE 2.8%) of a standard deviation higher.

Estimates for standardized ELA tests, reported in panel B, show a similar pattern. Students

who attend a new facility for 4 or more years score 5.0% (SE 1.5%) of a standard deviation higher

in ELA. For both subjects, the event-study figures indicate that the parametric specification in

equation (2) fits the data quite well: after an initial decline in the year a student transitions to a

new facility, test scores gradually increase, roughly linearly in years of exposure.

Table 3 reports estimates of equation (2) for math (columns 1-6) and ELA (columns 6-12)

standardized test scores. Columns 1-3 and 7-9 report OLS estimates, whereas Columns 4-6 and

10-12 report 2SLS estimates. In columns 1 and 7, a simple one-parameter OLS specification is

reported where only the change in the slope of student growth is included. For each additional year

a student attends a newly constructed school facility her test score increases by 2.7% (SE 0.7%)

and 1.7% (SE 0.4%) of a standard deviation in math and ELA, respectively. The implied effect for

a student who attends a new school for four years is 8.1% (SE 2.2%) of a standard deviation for

math and 5.0% (SE 1.2%) of a standard deviation for ELA. Columns 2 and 8 add indicators for

attending a newly constructed school. Student achievement declines in the first year of attending

a new school, although these coefficients are small and insignificant for both math and ELA test

scores. Notably, the coefficient on the slope of student growth (β2) and the implied 4-year test score

effect are very similar to the one-parameter models in columns 1 and 7. Columns 3 and 9 add in a

linear trend in student event time. The trend coefficients are small and insignificant for both math

and ELA: less than one-tenth of one percent of a standard deviation per year. Importantly, the

inclusion of the linear trend in the specification also does little to affect the magnitude or statistical

significance of the coefficient on the change in trend, or the implied cumulative 4-year effect.

Columns 4-6 and 10-12 report estimates where matriculation at a newly constructed school is

instrumented using a student’s residential assignment. The 2SLS results indicate that this sorting

channel has only a minimal effect on estimated treatment effects; in fact, while estimates for math

are nearly identical, estimates for ELA are nearly 50% larger. This provides suggestive evidence

that students who violate residential assignments and select into the new schools experience smaller

gains from the new schools, a pattern of “reverse-Roy” selection that has been documented in other

settings (e.g. Walters 2018). As in the OLS models, the linear trends included in columns 6 and 12
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are small and insignificant, and have no effect on the magnitude of the estimated treatment effects.

Both event study and parametric difference-in-differences specifications provide consistent ev-

idence of test score improvements upon switching to a new school. Effects are larger for girls

than boys, but are similar for students with different levels of parental education (Appendix Table

A7).19 Both specifications also show that student test score gains accumulate gradually, after a

slight decline in student performance in the year of the switch.

This pattern of gradual improvement is different from many other educational interventions

considered in the literature, where effects tend to fade out over time.20 Improvements in school

facility quality are not a one-time intervention, however: students are continuously exposed to

improved facility conditions for every year in which they attend a given school. We would therefore

expect that achievement gains accumulate over time with additional years of exposure, even in the

absence of initial disruption effects due to student-level switching costs21 or school-level inefficiencies

in the first few years post-construction.

3.3.2 Student non-cognitive effects

Figure 5 reports event study estimates for student attendance and teacher-reported student effort.

Panel A shows the change in annual days attended for students who switch to new schools. Upon

switching to a new school, students attend an additional 2.9 (SE 0.6) days per year. In the second

year a student attends a new school facility, this jumps to 7.1 (SE 0.7) days. The effect tapers

off somewhat in subsequent years, although after four or more years of attending a new school

facility, students attend on average more than four additional days per academic year. Again, as

with the student cognitive test score effects, there is little indication of any meaningful prior trend

in attendance in the years before switching to a new school facility.

19We use parental education as a proxy for socioeconomic status in lieu of free/reduced price lunch eligibility, as
over 90% of students who switched to new schools are eligible for free/reduced price lunch.

20Effects persist when examining a wider window in “event-time”, although sample sizes are significantly smaller.
See Figure A10.

21“Placebo” event study estimates for non-facility related student switches are reported in Figure A7. These
estimates suggest that “normal” switches are associated with disruption effects of similar magnitudes, which fade out
over time. Importantly, these switches are not associated with any short or long run test score improvements. These
findings are consistent with results in Hanushek et al. (2004), who find evidence of short-run disruption effects with
no-long run gains for students who switch schools within-district. Similarly, in a study of school closures in Michigan,
Brummet (2014) finds short-run disruptions but not persistent effects.
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Panel B shows the effect of switching to a new school facility on teacher-reported student effort

for elementary students. Upon matriculation into a new school facility, student effort increases by

roughly 3% (SE 1.7%) of standard deviation. As with attendance effects, the estimated increase

in effort occurs immediately upon switch with no indication of an increasing trend in effort in the

years prior to switching. This effect remains similar and marginally significant in the second year

of a student’s tenure at a new school, but fades out after 3 or more years of exposure to the new

school. As was the case for the other outcomes, there is no indication of any meaningful pre-trend

in student effort prior to a student’s switch to a new school, providing additional justification for

the identification assumption that the timing of student switching is as good as random.

Table 4 reports analogous estimates for attendance (columns 1-6) and effort (columns 7-12).22

For student attendance, estimates in columns 1-6 imply that most of the effect occurs immediately

upon switching to a new school. In column 1, the estimate of β1 is 4.74 (S.E. 0.55), meaning that

student attendance increases by nearly 5 days per year at newly constructed schools. 2SLS effects

are slightly larger, at 5.2 (SE 0.57) days, again suggestive of (small) negative selection on gains

among students students who attend new schools outside of their residential assignment. Adding

the phase-in coefficient in columns 2 and 5 picks up some of this effect, reducing the coefficient

on β1 slightly. Columns 3 and 6 add in a linear trend in event-time, which slightly attenuates the

estimates of β1 and β2. The estimated trend is small but statistically significant in the OLS model

(column 3), but is 40% smaller and insignificant in the 2SLS model, indicating that the instrumental

variables strategy is able to account for the (small) estimated pre-trend in attendance.

Estimates in columns 7-12 show a similar pattern for teacher-reported student effort, with small

increases immediately upon a student’s switch to a new school. OLS and 2SLS effects are similar

and both insignificant in the one-parameter models in columns 7 and 10. The new school effect

increases slightly with the addition of the post-trend coefficient, which picks up the fade-out of the

effort effect that was apparent in panel B of Figure 5. The linear trends included in columns 9 and

12 are small and insignificant, and as was the case for the other student outcomes, has a negligible

22Unlike in Table 3, we begin columns 1, 4, 7, and 10 with one-parameter specifications where only the coefficient
for mean difference in the outcome post matriculation at a new facility included. Columns 2, 5, 8 and 11 add a
phase-in coefficient, and columns 3, 6, 9, and 12 include a linear trend in student event-time. In contrast to test
score outcomes, which measure a stock of accumulated knowledge, student effort and attendance are flows, and thus
a priori we might expect effects to occur immediately rather than accrue over time with continued exposure.
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effect on the new school treatment effect estimates. Overall, these estimates provide some evidence

of small initial increases in student effort upon switching to a new school.

3.4 Mechanisms

The pattern of student effects provides consistent evidence that student outcomes improved at new

school facilities. What mechanisms underly these improvements? In this section, we summarize

five set of results that speak to this question. First, to focus on the role of reduced overcrowding

associated with the construction program, we examine outcomes of students at schools experiencing

a significant outflow of peers to new schools. These students attend the same low-quality facilities

as before but with a student body size closer to the intended capacity. They experience modest

improvements in ELA and attendance but not in math or attendance. We interpret these findings

as pointing to a moderate role of overcrowding, explaining up to a third of treatment effects. These

findings are described in greater detail in Appendix B.1.

Second, we find little evidence that changes in calendars, class size, or peer quality at newly

constructed schools confound student improvements. In fact, we find that moving to a new school is

associated with slightly larger class sizes and slightly lower peer quality. We do find that switching

to a new school is associated with large reductions in multi-track calendars, and that this mediates

some of the attendance effects, but not test score effects. We describe these results in more detail

in Appendix C.1.23

Third, we examine the role of teacher quality and principal quality. Along both observable and

unobservable (using value added estimates) characteristics of teachers, we conclude that differences

in teacher quality cannot account for observed student test score gains. If anything, somewhat

lower-quality teachers attend new schools, although point estimates are small. Similarly, principals

at new schools are somewhat less experienced. We provide more details in Appendix C.2.

Fourth, we study how much of the treatment effects are explained through these mechanisms

by controlling for these changes both individually and jointly. To this end, we conduct an exer-

cise similar to Card and Giuliano (2016) by controlling for predicted peer characteristics, teacher

23Changes typically associated with new school facilities (Appendix Tables A2, A3, and A5). We examine het-
erogeneity in the results by prior school conditions to test whether these changes are systematically related to the
observed student gains (Table 5).

17



and principal fixed effects, multi-track calendar use, and facility congestion. We find that only at-

tendance is moderately attenuated, entirely due to the elimination of multi-track calendars, while

treatment effects on other outcomes remain largely robust. We describe this exercise in more detail

in Appendix C.3.

Finally, we attempt to use available data to test whether school facility characteristics are

important for these effects, as would be expected if they are indeed driven by improvements in

the quality of school facilities. Unfortunately, we only have data on the characteristics of school

facilities from a single point in time (2008),24 meaning that we lack continuous variation in these

measures.25 Thus, in Table 5 we examine heterogeneity in effect estimates by the characteristics

of the prior school attended by a student. The table reports estimates from models where only

student switchers are included, excluding always and never treated students.

The first panel reports baseline one-parameter effect estimates. The second panel splits this

effect by whether the student previously attended a school that was above or below the district

median share of permanent classrooms (as opposed to portable classrooms). Portable facilities

are also often of much worse quality, and have less functionality than traditional classroom space.

Estimates for test score and effort effects are considerably larger for those coming from schools

with less permanent classroom space (equivalently, a higher share of portable classrooms), and are

small and statistically insignificant for students switching from schools with above-median shares.

However, we can only reject equality of the coefficients for student effort (p < 0.01), differences in

test score and attendance effects are not significant.

The third panel reports effects by whether the prior school was above or below the median

building age, and shows a similar pattern. Students switching from older schools see consistently

larger effects, although only the difference in student effort is statistically significant. The final panel

reports effects split by prior building physical condition, or “FCI”.26 Again test score and effort

24Data on facility condition of LAUSD structures are available as a snapshot from maintenance records collected by
the Facilities Service Division, and contain information on the age, condition, size, replacement value, and classification
(e.g. permanent or portable) for each structure on every LAUSD school campus in 2008.

25We also lack comparable data on the relative quality of new school facilities. While there is variation across new
facilities in terms of cost, this was often driven by land acquisition and remediation costs, and not necessarily the
physical quality of the new construction.

26The “Facility Condition Index” (FCI) is the ratio of deficiencies to current replacement value. We calculate
school FCI by taking a weighted average of the FCIs across all classroom structures at a school, weighted by the total
square feet of each structure. An FCI close to zero indicates a facility is in excellent physical condition, whereas an
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effects follow a mostly similar pattern, with slightly larger effects overall for students coming from

schools in worse condition, although these differences are smaller than for age and share permanent,

and none are significant. Notably, the attendance effect is nearly 50% larger for students coming

from schools in better prior condition, and this difference is significant (p = 0.02). We hypothesize

that this is related to the mechanical changes in the total number of instructional days at some

schools, as was discussed earlier.

The results in Table 5 provide suggestive evidence that effects were larger among students

who experienced larger improvements in facility quality upon switching to a new school. Without

time varying-data on facility quality of both existing and new schools, it is difficult to provide more

definitive evidence. Nevertheless, these results – in combination with the relative lack of importance

of any other contemporaneous changes such as peers, class size, teachers, and principals – provide

evidence that facility quality is the primary mechanism explaining student gains at new facilities.

4 Neighborhood Impacts

The evidence on student impacts of the school construction program suggests it was effective. But

since we seek to provide a comprehensive assessment of the efficiency of the program, we now

turn towards the housing market impacts of the program. As we show in Section 5, these impacts

capture a much greater share of program benefits than do student impacts alone.

4.1 Real estate data

To analyze the effects of increased capital expenditures on the real estate market, we use admin-

istrative records from the Los Angeles County Assessor’s Office. Records contain information for

each property in Los Angeles county, and includes data on the three most recent sales, as well as

information on property characteristics from the most recent assessment. Properties are matched

to the assigned school district, school attendance assignment (for elementary, middle, and high

school) in each year, city, and tax rate area (TRA).27

FCI of greater than one indicates that a facility has deteriorated to the point where the total sum of deficiencies is
greater than the total replacement cost of the facility.

27The TRA is defined as the specific geographical area within a county wherein each parcel is subject to the same
combination of taxing entities; the tax rate is therefore uniform for all properties in a given TRA. Our database
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We focus only on sales of residential properties with non-missing sales prices. We limit attention

to single-family residences and exclude large parcels with greater than 1 acre of usable area. We

then drop properties with missing information on property characteristics (<1%). Data on property

characteristics is available only for the most recent assessment; we therefore drop to-be rebuilt

properties (i.e. those sales with a “negative” building age) to avoid biases arising from incorrect

valuation of property characteristics. This final restriction is non-trivial; roughly 2.8% of sales are

excluded. Finally, we exclude the top 1% and bottom 1% of property sales in each year to avoid

results being affected by outliers or non-market-rate transactions.28

Table 6 summarizes these data. Column 1 reports means for all property sales in the sample

within LAUSD district boundaries. Column 2 restrict to only those properties that ever reside in a

new school attendance zone, while column 3 reports means for those properties that never receive

a newly constructed school facility during the sample period. The average single-family residence

in the district was $565,801 (in 2015$) during the sample period. Comparisons of columns 2 and

3 show that new school neighborhoods are generally negatively selected in terms of house prices:

houses in new school zones sold for over $200,000 less than those in areas that did not receive new

schools. Overall, after sample restrictions, the assessor dataset covers 505,835 property sales for

350,299 unique properties, roughly one-third of which are located in neighborhoods that received

new schools during the construction program.

4.2 Econometric design

Given the haphazard rollout of the program across sites, the timing of construction is plausibly

exogenous relative to any underlying neighborhood characteristics or trends. Thus, parallel to our

estimation of student effects, we estimate house price effects in a dynamic setting by examining

changes in school quality induced by new constructions, relying on variation in the exact timing

of completion. Specifically, we compare changes in house prices over time in neighborhoods that

received new schools, relying on across-neighborhood variation in the exact year of school con-

of LAUSD school assignment zones is only comprehensive up to 2012; moreover, our project database of post-2012
school constructions is also incomplete. For this reason, we limit attention only to the 1995-2012 period, although
results are robust to including later years. See Appendix Table A11, where we compare results using all years to
pre-2013 years.

28Results are robust to relaxing these sample restrictions. See Appendix Table A12.
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struction, and controlling for neighborhood effects to account for any time invariant neighborhood

characteristics. Changes in prices reflect the present discounted value of current and future benefits

of new schools to households. Thus, we estimate the mean difference in house prices before and

after construction with following difference-in-differences specification:

ln(Pit) = αj(i) + δt,h(j(i)) + θNj(i),t +X ′itΓ + εit (3)

where Nj(i),t = 1[NewSchoolZonej(i),t = 1] is an indicator for a property sale occurring in a

new school attendance zone, after the date of the new school opening, for a given property i in

neighborhood j(i) that is sold at time t. X ′it is a vector of property characteristics that includes the

number of bathrooms, the number of bedrooms, building square footage, square footage squared,

building age, age squared, effective age, effective age squared, usable lot area, usable lot area

squared, an indicator for the specific tax rate area, and an indicator for number of sales observed

in the data for specific parcel. αj(i) and δt,h(j(i)) are fixed effects for neighborhood and year-by-high

school zone, respectively.29

In all house price specifications, standard errors are clustered by neighborhood. Baseline speci-

fications include all parcels in the district, including those that are never assigned to the attendance

zone of a newly constructed school. As long as the exact timing of school construction within the

set of receiving neighborhoods is uncorrelated with time-varying neighborhood trends, estimation

of equation (3) will yield an unbiased estimation of θ. In addition, we estimate specifications that

also exclude “never-treated” properties as controls, as well as specifications that only included

“never-treated” properties within 1km of a new school attendance zone.

If capitalization occurs prior to construction due to anticipatory effects, neighborhood house

prices may diverge prior to construction between those soon to receive new schools and those

29Here we use the high school zones from the 2004 school year, the year before the first new high school construction,
to flexibly account for differential trends in house prices between local areas. We also report specifications that instead
use uniform year effects, δt (Table 7, columns 4 and 6). We define neighborhoods as the elementary-middle-high
school assignment triplet in the 2000-2001 academic year, prior to the construction of any new facilities. See Figure
A11 for a map of these neighborhoods. We define school zones using pre construction boundaries from 2000, to
eliminate concerns over endogenous new school attendance boundary formation. Reassuringly, this distinction makes
no quantitative difference, as results are nearly identical when post construction boundaries are used instead (Table
A11 panel B).
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receiving new schools in later years. Conversely, initial uncertainty by parents as to the quality of

a new school could lead to house price effects that gradually cumulate post-completion. Thus, we

also estimate more flexible event-study models, akin to equation (1), that estimate the difference

in house prices relative to the year prior to building occupancy:

ln(Pit) = αj(i) + δt,h(j(i)) +

K∑
k=K

θk1(t = t∗i + k) +X ′itΓ + εit (4)

In these non-parametric event study models, θk measures the effect of receiving a new school in

year t∗i k years after construction (or prior, where k < 0). Effects are measured relative to year

k = −1, which is excluded in estimation. We focus on a ten-year window, binning endpoints at

K = −6 and K = 3, which represent average house prices six or more years prior to construction

or four or more years post- construction, respectively.

In equations (3) and (4), identification of θ assumes that trends in house prices are uncorrelated

with the exact timing of school construction, conditional on property-specific controls and controls

for time-invariant differences between neighborhoods. This assumption could be potentially vio-

lated if unobserved differences in the characteristics of those properties sold in a given year are

correlated with the timing of switching.30 To account for this potential source of bias, we also esti-

mate equation (3) with property fixed effects, controlling for time-invariant unobserved differences

between individual properties:

ln(Pit) = αi + δt,h(j(i)) + θNj(i),t + εit (5)

In equation (5), estimation of θ relies only on properties with repeat sales in the sample window.

Repeat sales indices are commonly used when estimating dynamic capitalization in real estate prices

(e.g. Figlio and Lucas 2004) to account for unobserved differences in property and neighborhood

characteristics. In practice, estimates of θ are very similar in both equations (3) and (5), implying

that differences in unobserved property characteristics are uncorrelated with timing of construction

30This would be the case, for example, if houses with positive unobserved characteristics are more likely to be sold
within a given neighborhood post-construction than pre-construction. Regressions using predicted prices based on
observable property characteristics suggest there are no major differences in the observable composition of properties
sold post-construction. See Table A15.
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and do not drive the estimated results. Moreover, we find little evidence of differential trends prior

to school construction, and effects accrue quickly within 2-3 years post-construction. Therefore, we

emphasize the simple linear differences-in-differences estimate of β from equation (3).

4.3 Neighborhood Results

Table 7 reports estimates of the effect of new school constructions on house prices. Columns 1-4

report estimates using fixed effects for school zone and property-specific control variables as in

equation (3). Columns 5 and 6 report estimates using property fixed effects as in equation (5).

Column 1 reports estimates from the baseline specification using all properties in LAUSD. House

prices rise 6.0% (SE 1.8%) post construction in neighborhoods that receive new schools, relative

to nearby property sales in the same year within the same initial high school attendance area. To

account for any potential biases from including far away “never treated” properties, in column 2 we

drop “never-treated” properties further than one kilometer from a new school zone, and in column

3 we further restrict the sample to only those properties that ever receive a new school. Results

in columns 1 and 2 are nearly identical, and the estimated coefficient drops slightly to 4.4% (SE

1.1%) in column 3. Column 4 substitutes year effects for the year-by-high school zone effects –

now unnecessary as we have limited the control group to properties near the new schools – and the

point estimate increases slightly to 5.5% (SE 1.5%).

Columns 5 and 6 report estimates analogous to columns 3 and 4 using property fixed effects

in lieu of property controls and neighborhood fixed effects. In column 5, estimation includes year-

by-high school zone effects, while column 6 shows estimates where only year-specific effects are

included. Estimated effects are very similar to analogous neighborhood fixed effects estimates in

columns 3 and 4. Overall, estimates are consistent in magnitude and show that house prices increase

by roughly 4-6% post-construction in new school attendance areas.31

In Figure 6 we report event study estimates of the effects of new school constructions, corre-

sponding to the specification in equation (4). Estimation includes only those properties ever within

any new school zone and year-by-high school fixed effects, as in the specification in column 3 of

31We find little evidence that effects vary by distance from the attendance area boundary or by mean neighborhood
price level. See Appendix E.
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Table 7. Effects are estimated relative to the year before school occupancy, which is omitted from

the regression. Results in both panels of Figure 6 show little sign of pre-existing trends or dynamic

anticipatory effects pre-construction. Capitalization occurs somewhat gradually upon completion,

with nearly all of the effect coming in the first two years after school completion, before stabilizing

after three or more years. Three or more years after the new school construction, house prices in

the new school attendance areas were 7% higher, slightly larger than the point estimates presented

in Table 7.

5 Program Efficiency

In previous sections, we established that the school construction program increased both academic

achievement and housing valuation in the neighborhoods receiving new schools. We now turn to

the question of how these benefits compare to the costs of the program. There are two distinct

approaches in the literature to valuing the impacts of educational programs: first, in terms of

capitalization in the real estate market (Barrow and Rouse, 2004; Cellini et al., 2010); and second,

in terms of later life earnings (Heckman et al., 2010; Chetty et al., 2011; Heckman et al., 2013;

Chetty et al., 2014; Kline and Walters, 2016).

Both of these approaches have important advantages and disadvantages. The capitalization

approach captures program benefits beyond academic achievement, such as safety, health, or recre-

ational opportunities; however, it relies on revealed preferences that may only imperfectly capture

achievement and later life earnings, as shown by a literature documenting that parental valuation of

school effectiveness conditional on peer characteristics is limited (Rothstein, 2006; Abdulkadiroğlu

et al., 2017). In contrast, the later life earnings approach sidesteps the limited effectiveness valua-

tion issue by directly estimating the earnings gains induced by the program, but it cannot speak

to other benefits outside of the academic realm.

To the extent that parental valuation in the housing market already captures academic benefits,

simply adding up benefits from both of these approaches would amount to double-counting. Thus,

we now develop a model that integrates both of these approaches in a way that isolates preferences

for academic valuation revealed in the housing market. To do so, we extend a class of residential
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choice models in the tradition of Tiebout (1956) and Brueckner (1979) by allowing households

to value new schools both through their academic benefits on student achievement as well as

their non-academic benefits on affected neighborhoods. In this way, we can study what share of

benefits derives from later life earnings gains due to achievement effects of the program, and how

the magnitude of these achievement benefits depends on the choice of valuation approach. We

focus on the fiscal externalities that arise due to the concentration of funds in a subset of treated

neighborhoods but abstract from fiscal externalities that could arise from ad valorem taxation on

properties or taxes on later life earnings gains.32

5.1 Household valuation model

5.1.1 Setup and program costs

Consider a single school district with N one-child households and neighborhoods indexed by j =

0, 1, ..., J . Each neighborhood has fixed housing supply Nj with
∑

j Nj = N , school amenities

Aj , and endogenously determined house prices Pj . The district launches a redistributive school

construction program that imposes a head tax τ on every household in the district and spends all

proceeds on the subset of treated neighborhoods with index j ≥ 1. For convenience, we normalize

school amenities to increase by one unit due to the program in these treated neighborhoods, such

that neighborhood investment per household Rj increases by
∂Rj

∂Aj
due to a program of size τ . The

school district is required to balance its budget: τN =
∑

j≥1Nj
∂Rj

∂Aj
. It then spends the same per-

household amount on each neighborhood that receives funds such that per-household investment

in schools is given by

∂Rj

∂Aj
=

τN∑
k≥1Nk

≡ τn (6)

for j ≥ 1, while no program funds are spent in control neighborhood j = 0.33 The inverse share

of treated households n = N/
∑

j≥kNk also represents how many dollars are spent on treated

32We are evaluating the welfare impact of the program from the perspective of the district, which does not directly
benefit from taxes on later life earnings gains. If one were to take the perspective of the state or federal government,
these taxes would lower the cost of the program through this positive fiscal externality, further increasing the benefit-
cost ratio.

33Because we allow the effect of this one-unit increase due to the program to be heterogeneous across neighborhoods,
assuming that per-household spending is constant is equivalent to assuming that spending differs by neighborhood
and that each per-household dollar of spending translates into the same achievement effect.
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neighborhoods for each dollar raised in taxes, and so τn is the cost of the program per household

in treated neighborhoods (which we can observe in the data). Because we normalize units of

school amenities to the program size and marginal utility of income is assumed to be one across all

households, the marginal cost of the program equals the marginal rate of transformation between

school amenities and income, MRT. This will be useful to show that, under efficiency, the marginal

rate of substitution equals the marginal rate of transformation.

Households derive utility from non-academic aspects of neighborhood amenities, school achieve-

ment, and private consumption U (Aj , Yj , c) and choose a neighborhood subject to the budget con-

straint w ≥ c + τ + Pj , where w is household income. Thus, households value school amenities

both directly as well as indirectly through their effect on student achievement. Indirect utility is

then given by Vj ≡ V (Aj , Yj , w − τ − Pj), which households maximize by trading off the benefits

of school amenities against the housing cost in the neighborhood. With homogeneous households,

the equilibrium market price of housing equalizes utility in all neighborhoods.

5.1.2 Program willingness to pay

We now characterize our two key empirical parameters – the achievement effect and the house price

effect – in the context of this model, which will allow us to interpret both of them in terms of (a)

the implied household preferences for both the direct (i.e. neighborhood) and the indirect (i.e.

achievement) effects of the program as well as (b) the marginal value of a dollar of public expen-

ditures. It turns out that the covariance between the house price effect and the achievement effect

is key to distinguish between preferences for neighborhood improvement and student achievement.

Thus, we now express our empirical parameters as neighborhood-specific random coefficients.

Define the estimated achievement effect in neighborhood j as βj =
∂Yj

∂Aj
+ νj . The component

∂Yj

∂Aj
is the average test score gains due to program investment into school amenities for households

in j as estimated in Section 3, and νj is an error term with E [νj ] = 0. Similarly, let θj =
∂Pj

∂Aj
+ξj be

the estimated house price effect in neighborhood j relative to the control neighborhood. Here,
∂Pj

∂Aj

is the increase in household willingness to pay for housing in j due to additional school amenities

net of any tax changes, as estimated in Section 4, and ξj is an error term with E [ξj ] = 0. We can

now show that willingness to pay for housing and student achievement in a given neighborhood are
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tightly linked through direct and indirect preferences for school amenities:

θj =

[
∂Vj
∂c

]−1( ∂Vj
∂Aj

+
∂Vj
∂Yi

∂Yj
∂Aj

)
+ ξj = MRSA + MRSY βj + εj (7)

where the first equality follows from the Implicit Function Theorem; MRSA ≡ ∂Vj

∂Aj
/
∂Vj

∂c and

MRSY ≡ ∂Vj

∂Yi
/
∂Vj

∂c are the marginal rates of substitution between neighborhood amenities or school

achievement and income, respectively; and εj = ξj − MRSY νj . We can see that the program is

capitalized in the housing market through both valuation of academic benefits MRSY scaled by

the magnitude of achievement gains in the neighborhood βj as well as valuation of a non-academic

benefits MRSA of the program. We refer to these components as the value of school effectiveness

and neighborhood attractiveness, respectively.

The capitalization approach aims to capture both of these sources of program benefits, but

recent evidence points towards little parental valuation of school effectiveness (Abdulkadiroğlu et

al., 2017). The later life earnings approach avoids this issue by replacing household valuation of

achievement revealed in the housing market MRSY with (usually external) estimates of the labor

market value of human capital W , which may be superior to household forecasts of earnings gains

due to academic achievement. Program benefits in neighborhood j are then simply Wβj . However,

the later life earnings approach omits neighborhood attractiveness MRSA, which may make up an

important part of program benefits. The hybrid approach we develop below combines the strength

of both of these approaches by estimating benefits in j as MRSA +Wβj : the housing market value

of neighborhood attractiveness plus the labor market value of school effectiveness.

To isolate the value of neighborhood attractiveness, consider that achievement is largely un-

correlated with other factors driving heterogeneous program responses, that is Cov(βj , εj) = 0.34

Then, notice that the population regression coefficient of the house price effect on the achievement

effect in equation (7) corresponds to household valuation of achievement:

Cov(θj , βj)

V ar(βj)
= MRSY (8)

34See Table A7 that achievement effects do not vary significantly with parental education or residential mobility.
Thus, in our case, OLS estimation of (7) may yield a reasonable approximation of household preferences. We also
show that our estimate is similar those in the literature using a variety of identification strategies.
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This is the object of interest in the vast literature on housing valuation of school performance

surveyed in (Black and Machin, 2011), which studies house price responses to variation in student

achievement.35 Using this relationship, we can quantify the share of housing valuation due to the

student achievement benefits of the program as

γ ≡ MRSYE [βj ]

MRSA + MRSYE [βj ]
=
E [βj ]Cov (θj , βj)

E [θj ]V ar (βj)
, (9)

which says that the share of household valuation due to achievement equals the regression coefficient

in (8) rescaled by the ratio of mean effects. This is a general result that can, in principle, be applied

to all studies of educational programs for which mean effects on housing and test scores as well as

their covariance are available.

5.1.3 Marginal value of public funds and efficiency

Now that we have characterized the willingness to pay for the program, we are ready to define

the marginal value of public funds (Hendren, 2016). It is defined as the ratio of the willingness to

pay and the net cost of the program. In each case, we express the MVPF first as a function of

preferences and technology and then as a function of program effects and observables. From the

perspective of the capitalization approach, this is

MVPFC ≡ E

[
∂Pj/∂Aj

∂Rj/∂Aj

]
=

MRSA + MRSYE [βj ]

MRT
=
E [θj ]

nτ
,

which shows we can estimate it as the ratio of the average house price effect (in dollars) and the

per-treated-household cost of the program. Similarly, from the perspective of the later life earnings

approach, it is

MVPFE ≡ E

[
(∂Yj/∂Aj)W

∂Rj/∂Aj

]
=
W · E [βj ]

MRT
=
W · E [βj ]

nτ
,

so that it can be estimated as the achievement effect scaled by the labor market price of human

capital divided by the per-treated-household cost. Finally, we define the MVPF for the hybrid

35To see this, integrate both sides of (7) over Aj to arrive at Pj = c+YjMRSY +uj , which corresponds to equation
(10.1) in (Black and Machin, 2011).
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approach as

MVPF ≡ (1 − γ) MVPFC + MVPFE

=
MRSA +W · E [βj ]

MRT
=

(1 − γ)E [θj ] +W · E [βj ]

τn
. (10)

We summarize these definitions by making two observations about this hybrid MVPF. First, if

household valuation of academic achievement revealed in the housing market MRSY equals the

labor market valuation of human capital W , then the hybrid approach equals the capitalization

approach (and vice versa). And second, if, in addition, households value a program entirely due

to its academic impacts such that MRSA = 0, then the hybrid approach also equals the later life

earnings approach (and vice versa).

The MVPF serves as the key statistic to assess program efficiency: if it is greater than one, a

dollar raised in taxes is worth more than one dollar in terms of household valuation of neighborhood

improvements and later life earnings. This would suggest that school amenities were underprovided

relative to the efficient level. Conversely, if the MVPF is smaller than one, the costs outweigh the

benefits, and we would infer that the program was inefficiently large. The program is at efficient

scale when the MVPF is exactly one, in which case the marginal rate of substitution equals the

marginal rate of transformation as in the Samuelson’s condition (1954) for fully congested public

goods.

5.2 Cost-benefit analysis

With these relationships in hand, we can now quantify the costs and benefits and decompose the

latter into valuation for school effectiveness and school attractiveness. The results of this exercise

can be seen in Table 8. We begin with program costs. According to the 2005-2009 American

Community Survey (ACS), there were 1.52 million non-vacant housing units in LAUSD. The total

cost of the program was $9.17 billion, meaning that the average cost to a treated household of

the program (τ) is approximately $6,045 in present value. Given that just under one in three

households lives in treated neighborhoods, the cost per treated household is around $18,430.

Moving to program benefits, we begin with the benefits reflected in the real estate market. The
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average sale price (within-sample) of properties in zones that received new schools was $494,650.

Using the estimates in Table 7, the median house price change in treated neighborhoods is 5.7%.

This implies houses in treated neighborhoods gained $28,195 in value, with a resulting gross capital-

ization benefit of $14.06 billion. The ratio of these benefits to costs, which corresponds to MVPFC ,

yields a value of 1.53. Thus, housing capitalization suggests the program was inefficiently small.

We now turn to the benefits in the form of later life earnings. Using the estimates presented

in Chetty et al. (2011), we can project forward the gain in future earnings from the observed test

score gains. Chetty et al. (2011) use experimental variation in classroom quality to estimate that a

0.1 standard deviation increase in test scores36 leads to a 1.3% increase in earnings at age 27.37To

extrapolate our estimates forward, we first compute the present discounted value of future earnings

for future cohorts:

PDVcohort =
∑
j≥1

Nj

56∑
t=16

Et

(1 + δ)t

where Et = earnings gain at each age, which we compute under the assumption of a constant

percentage gain of 1.3% per 0.1 SD increase in test scores, using age-earnings profiles from the

March CPS.38 The average elementary school student is 11 years old, therefore we discount forward

16 years to age 27, and count benefits until retirement at age 67. From our data, roughly 16% of

students entering elementary school, 13% of students entering middle school, and 25% of students

entering high school in LAUSD were in a newly constructed school facility. Plugging this in and

using the estimated effects on math test scores, assuming a 3% discount rate, yields a present

discounted value of future earnings per cohort of $177 million. From our facilities data, we estimate

that a brand new facility would take roughly 35 years to depreciate to the mean condition of existing

facilities in LAUSD. Assuming the effects are constant for this 35 year horizon and discounting the

36Notably, this is for kindergarten scores. However, non-experimental estimates in the same paper show that the
correlation between test scores and earnings grows with age, suggesting that these effects may underestimate the
effects of improvements in later grades.

37The effects estimated in Chetty et al. (2011) are in the middle of the range of estimates in the literature estimating
the relationship between test scores and future earnings. See Table A.IV in Kline and Walters (2016) for a comparison
of effect size estimates.

38We compute the age-earnings profiles using data from 2012-2016, and use the average earnings, including those
with zero earnings. This follows the procedure in Chetty et al. (2011), but may overstate impacts if earnings of
LAUSD students are below average over the life cycle.
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earnings of future cohorts implies a gain in later life earnings of $3.9 billion in present discounted

value.39 The total program cost was $9.17 billion, implying that the gain in later life earnings

from test score improvements covers roughly 42% of the total program cost, which corresponds to

a MVPFE of around 0.42. If we were to consider only later life earnings, we would conclude that

the program was inefficiently large.40

Having separately demonstrated the implied benefits and marginal values of public funds using

the two approaches, we now combine them by isolating the non-academic share of housing valua-

tion. Regressing house price effects by neighborhood on achievement effects by neighborhood and

rescaling by the ratio of mean effects, we estimate that around 22% of real estate valuation is due to

the academic benefits of the program, while around 78% is associated with non-academic benefits.

Specifically, we proceed as follows to arrive at this estimate. First, we compute neighborhood

specific treatment effects by interacting our baseline treatment effect coefficients with neighborhood

fixed effects.41 Second, we regress the resulting 65 neighborhood-specific house price effects on their

corresponding average achievement effects, weighted by the number of households per neighborhood.

This gives us the coefficient in equation (8), which we estimate to be 0.168, or $83,101 after rescaling

using average house prices in the district – that is, a one standard-deviation better new school sees

house prices rise by 16.8% more (see Figure A14). This is similar to the median estimate in the

literature surveyed by Black and Machin (2011), whose median effect across 15 papers is about

0.14 per student-level standard deviation in achievement.42 Third, we rescale this coefficient by the

ratio of mean effects, as given by equation (9), which results in γ = 0.22.43

This implies a housing valuation of academic benefits of around $2.96 billion, which is about

76% of estimated later life earnings. Unlike recent work finding that parental preferences for schools

39If we instead assume that effects decay geometrically at a 3% rate over a 70-year horizon (the average age of
buildings students switched from), the cumulative earnings gains are 24% smaller, or $3 billion.

40Here we are not counting any indirect improvements for students who stayed behind at existing schools. Including
these would slightly increase aggregate future earnings gains, but would not change the qualitative conclusion that
future earnings gains from test score improvements do not cover total program costs.

41We shrink test score estimates using Empirical Bayes. Results are very similar using raw estimates.
42We refer to 15 papers using U.S. data mentioned in Black and Machin (2011) and scale them to student-level

standard deviations using the ratio in Kane et al. (2003), which is the only paper in the review that reports both
school and student-level standard deviations.

43The numerator of this ratio, E[βj ], is 0.075, which is the average achievement effect of new schools across math
and ELA. The denominator, E[θj ] is 0.057 · E[Pj ], the median estimate of the log house price effect of new schools
scaled by average house prices. Thus, γ = 0.075/(0.057 · E[Pj ]) × 0.168 · E[Pj ] = 0.22.

31



are almost entirely determined by peers instead of school effectiveness (Abdulkadiroğlu et al., 2017),

this result suggests that households value academic benefits reasonably well. Perhaps, some of the

non-academic benefits of educational programs considered in residential choice steer households

towards schools in a way that more closely matches the academic value of the program, unlike

school choice conditional on residential location.

Finally, we combine these findings to estimate program benefits and the marginal value of public

funds using expression (10). We find that total program benefits using the hybrid approach are

around $14.85 billion, with a marginal value of public funds of around 1.62. Unsurprisingly, given

that the majority of benefits derive from non-academic program benefits and housing capitalization

of academic benefits is fairly close to later life earnings, these quantities are quite similar to real

estate capitalization alone, as captured in MVPFC . We conclude from this finding that, while

both capitalization and later life earnings are important, using only benefits arising from later life

earnings may severely underestimate program benefits.

6 Conclusion

In this paper we provide robust and comprehensive estimates of the effects of educational capital

investments on student outcomes and neighborhood house prices. To date, the literature on the

effects of school capital investments has been mixed and inconclusive; many prior studies are

underpowered to detect modest effects, often relying on district-level average outcomes to study the

impacts of programs that impact only a subset of students (Figure A2). Studying the largest school

construction program in US history, we provide robust new evidence that school facility investments

lead to modest, gradual improvements in student test scores, large immediate improvements in

student attendance, and marginal improvements in student effort. We provide evidence that these

improvements stem from exposure to higher-quality facilities.

New school constructions induced large increases in neighborhood house prices upon completion,

implying significant parental valuation of improvements in school quality. House prices increased

substantially in areas that received new schools, implying that the total real estate capitalization

exceeded program cost. We derive a marginal value of public funds of around 1.5 for one dollar
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of per-household school capital investment. This implies that prior capital spending had been

inefficiently low in the distinct, and that the targeted program to improve facilities generated

aggregate welfare increases in the district.

Parents, however, may not fully or correctly internalize the future benefits of academic im-

provements (Rothstein, 2006; Abdulkadiroğlu et al., 2017). To date, the literature evaluating the

efficiency of educational investments has only separately considered capitalization and future earn-

ings. To integrate these two approaches, we extend a standard residential choice model to isolate

preferences for the academic valuation revealed through real estate capitalization. We show that

76% of future earnings benefits are capitalized into the housing market, but that only 22% of the

total valuation is due to the direct test score benefits of the new facilities. Taking into account

the partial capitalization of school effects using our newly developed hybrid method of benefit

accounting, we arrive at a marginal value of public funds of around 1.6.

These substantial positive impacts of new school facilities on achievement and house prices raise

the question what aspects of school facilities generate these benefits. There are two theories that

may be able to account for them. According to the Broken Windows theory (Zimbardo, 1969,

named and popularized by Wilson and Kelling, 1982), neglect in public spaces signals the absence

of binding social norms and opens the door to disorderly and destructive behavior. Branham (2004)

argues that this theory holds especially true in a school infrastructure context: students perceive

school as a place where effort goes unrewarded when the learning environment is dilapidated. In

contrast, school facility effects may have nothing to do with social norms but may run primarily

through physiological effects such as the temperature of the learning environment (Goodman et al.,

2018). With more precise data on changes in facility conditions in the course of a facility program,

future research may be able to distinguish between these two theories and provide guidance on which

facility components have the highest return in terms of learning and real estate capitalization.
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Figures

Figure 1: LAUSD School Capital Spending in Context
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Notes: Panel (a) reports per-pupil capital spending, in five year-intervals using data from the
Census of Governments. Only districts with enrollment above 1,000 students are included. Panel
(b) reports the distribution of school age in the United States, using data from 1999 and 2012
surveys conducted by the National Center for Education Statistics.
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Figure 2: School construction and enrollment, LAUSD 1940-2012
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Notes: Figure shows annual student enrollment and the number of new facilities opened by year for
LAUSD. The solid blue line shows enrollment (left axis) and dashed green line shows the number of
new schools opened in a given year (right axis). Shaded area from 2002-2012 shows the treatment
period covered in the paper. The number of new schools only includes facilities still operational in
2008, and is computed as the minimum age over all buildings that comprise a given school facility.
Historical enrollment data were obtained from the California Department of Education.
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Figure 3: LAUSD school attendance zones, 2004 vs 2012

2004:

(a) Elementary (b) Middle (c) High

2012:

(d) Elementary (e) Middle (f) High

Notes: Figure displays school attendance boundaries for elementary schools (panels a,d), middle
schools (panels b,e), and high schools (panels c,f) in LAUSD in 2004 and 2012. Panels (a)-(c) show
2004 attendance boundaries; panels (d)-(f) show 2012. Shaded areas in red denote attendance
zones that correspond to schools newly constructed during the sample period from 2002-2012.
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Figure 4: Test score effects
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(b) ELA

Notes: Figures shows estimated coefficients from event study regressions following equation (1).
Note that total years of exposure is equal to time relative to enrollment, plus one (where non-
negative). Dependent variables are standardized math test scores for students in grades 2-7 (panel
a) and standardized english-language arts test scores for students in grades 2-11 (panel b). Test
scores are standardized relative to the statewide mean and standard deviation for each year-grade-
subject exam. The shaded areas denote 95% confidence intervals for the estimated coefficients.
All specifications include fixed effects for student, grade, and year-by-physical location district.
Standard errors are two-way clustered by school and student.43



Figure 5: Non-cognitive effects
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(b) Teacher-reported student effort

Notes: Figures show estimated coefficients from event study regressions following equation (1). Note
that total years of exposure is equal to time relative to enrollment, plus one (where non-negative).
Dependent variables are annual days attended (panel a) and standardized teacher-reported effort
scores for students in grades K-5 (panel b). The shaded areas denote 95% confidence intervals for
the estimated coefficients. All specifications include fixed effects for student, grade, and year-by-
physical location district. Standard errors are two-way clustered by school and student.
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Figure 6: House price effects
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(b) House prices: All LAUSD

Notes: Figures show estimated coefficients from event-study regressions following equation (4).
Dependent variable in both panels is the ln(sale price). In panel (a), only properties that are
ever in a new school attendance zone are included in the estimation, corresponding to baseline
estimates presented in column (4) of Table 7. In panel (b), all properties in LAUSD in the data
sample are included in estimation, corresponding to baseline estimates presented in column (2)
of Table 7. Specifications include property-specific controls, year-by-high school zone fixed effects,
neighborhood fixed effects, and month fixed effects. Standard errors are clustered by neighborhood.
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Tables

Table 1: Summary statistics, new school projects

Mean Median Min Max

Total cost (million USD) 81.9 56.5 11.1 578.7

New student seats 1,050 800 162 3,440

New classrooms 40.3 32 6 130

Building SQFT 100,585 70,115 12,507 391,840

Completion year 2,008 2,008 2,002 2,012

Site designation to completion (yrs) 5.18 5 2 9

Construction to completion (yrs) 2.12 2 1 5

New School Codes 1.26 1 1 5

Total New School Campuses 114
Total New School Codes 144

Notes: Table reports summary statistics for new school project data, at the project level.
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Table 2: Summary statistics, LAUSD student data

All LAUSD Never Treated Always Treated Switchers Stayers

Free/reduced-price lunch 0.80 0.78 0.79 0.94 0.89

Hispanic 0.73 0.71 0.85 0.89 0.82

Black 0.11 0.12 0.05 0.06 0.08

White 0.09 0.10 0.03 0.03 0.05

Asian 0.04 0.04 0.04 0.01 0.03

Parent: any college 0.27 0.28 0.24 0.16 0.20

English spoken at home 0.33 0.35 0.27 0.18 0.22

Predicted test score -0.25 -0.23 -0.27 -0.38 -0.33

Math score (t = −1) -0.34 -0.16

ELA score (t = −1) -0.52 -0.37

Days attended (t = −1) 153.15 150.56

N student-years 7,317,019 6,495,040 122,045 699,934 1,353,762

Notes: Table reports summary statistics for LAUSD student data, at the student-year level.
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Table 3: Student effects, cognitive

Math English Language Arts

OLS 2SLS OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

New School * Trend 0.027∗∗∗ 0.033∗∗∗ 0.033∗∗∗ 0.026∗∗ 0.031∗∗ 0.031∗∗ 0.017∗∗∗ 0.018∗∗∗ 0.018∗∗∗ 0.024∗∗∗ 0.026∗∗∗ 0.027∗∗∗

(0.007) (0.009) (0.009) (0.012) (0.012) (0.014) (0.004) (0.004) (0.004) (0.008) (0.009) (0.010)

New School -0.028 -0.028∗ -0.017 -0.016 -0.003 -0.004 -0.006 -0.004
(0.017) (0.017) (0.020) (0.021) (0.009) (0.009) (0.010) (0.012)

Trend 0.000 -0.001 0.000 -0.001
(0.002) (0.003) (0.001) (0.002)

Cumul. Effect 0.081 0.072 0.071 0.079 0.074 0.076 0.050 0.050 0.048 0.072 0.071 0.075
se 4yr (0.022) (0.023) (.024) (0.035) (0.036) (0.043) (0.013) (0.013) (.014) (0.025) (0.025) (0.031)
Grade FEs X X X X X X X X X X X X
PLD-Year FEs X X X X X X X X X X X X
Stu FEs X X X X X X X X X X X X
N student-years 2,851,853 2,851,853 2,851,853 2,851,853 2,851,853 2,851,853 4,397,777 4,397,777 4,397,777 4,397,777 4,397,777 4,397,777
N students 724,087 724,087 724,087 724,087 724,087 724,087 945,740 945,740 945,740 945,740 945,740 945,740
N treated students 86,501 86,501 86,501 86,501 86,501 86,501 95,928 95,928 95,928 95,928 95,928 95,928
N treated schools 77 77 77 77 77 77 124 124 124 124 124 124

Notes: Table reports estimates of parametric event study models corresponding to equation (2). Columns 1 and 4 include only the coefficient

for the change in growth β2; β1 and β3 are constrained to be zero. Columns 2 and 5 include coefficients for both the immediate effect β1 and

the change in growth β2; β3 is constrained to be zero. Columns 3 and 6 include all coefficients, corresponding exactly to the specification in

equation (2). Dependent variable is the standardized math test score (grades 2-7) in columns 1-3. In columns 4-6 the dependent variable is

the standardized ELA test score (grades 2-11). All specifications include fixed effects for student, grade, and year-by-physical location district.

Standard errors are two-way clustered by school and student.
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Table 4: Student effects, non-cognitive

Days Attended Effort

OLS 2SLS OLS 2SLS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

New School 4.736∗∗∗ 3.954∗∗∗ 3.344∗∗∗ 5.150∗∗∗ 4.414∗∗∗ 4.076∗∗∗ 0.025 0.030∗ 0.032∗ 0.031 0.036∗ 0.038∗

(0.547) (0.651) (0.673) (0.568) (0.685) (0.768) (0.015) (0.016) (0.017) (0.019) (0.019) (0.021)

New School * Trend 1.197∗∗∗ 0.959∗∗ 1.240∗∗ 1.099∗ -0.009 -0.007 -0.011 -0.009
(0.445) (0.449) (0.579) (0.620) (0.013) (0.013) (0.018) (0.021)

Trend 0.280∗∗∗ 0.162 -0.002 -0.002
(0.096) (0.142) (0.004) (0.006)

Grade FEs X X X X X X X X X X X X
PLD-Year FEs X X X X X X X X X X X X
Stu FEs X X X X X X X X X X X X
N student-years 5,572,957 5,572,957 5,572,957 5,572,957 5,572,957 5,572,957 2,761,809 2,761,809 2,761,809 2,761,809 2,761,809 2,761,809
N students 1,170,739 1,170,739 1,170,739 1,170,739 1,170,739 1,170,739 692,490 692,490 692,490 692,490 692,490 692,490
N treated students 119,104 119,104 119,104 119,104 119,104 119,104 90,992 90,992 90,992 90,992 90,992 90,992
N treated schools 143 143 143 143 143 143 80 80 80 80 80 80

Notes: Table reports estimates of parametric event study models corresponding to equation (2). Columns 1 and 4 include only the coefficient

for the immediate new school effect β1; β2 and β3 are constrained to be zero. Columns 2 and 5 include coefficients for both the immediate

effect β1 and the change in growth β2; β3 is constrained to be zero. Columns 3 and 6 include all coefficients, corresponding exactly to the

specification in equation (2). Dependent variable is the annual days attended in columns 1-3. In columns 4-6 the dependent variable is the

standardized average teacher-reported effort score (grades K-5). All specifications include fixed effects for student, grade, and year-by-physical

location district. Standard errors are two-way clustered by school and student.
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Table 5: Student effects, by prior facility conditions

Math ELA Attendance Effort

Pooled (switchers only) 0.035∗∗∗ 0.014∗∗∗ 3.692∗∗∗ 0.031∗

(0.012) (0.005) (0.765) (0.019)

By share permanent classrooms:

Low share permanent 0.037∗∗∗ 0.015∗∗∗ 4.505∗∗∗ 0.059∗∗∗

(0.013) (0.005) (0.799) (0.018)
High share permanent 0.020 0.006 4.434∗∗∗ -0.045

(0.017) (0.007) (0.835) (0.029)

p-value 0.34 0.22 0.93 0.00

By prior building age:

Below median age 0.025∗∗ 0.012∗∗ 4.754∗∗∗ -0.000
(0.012) (0.005) (0.804) (0.020)

Above median age 0.047∗∗∗ 0.015∗∗ 5.296∗∗∗ 0.056∗∗

(0.017) (0.006) (0.811) (0.025)

p-value 0.19 0.62 0.50 0.03

By prior building FCI :

Low FCI 0.033∗ 0.010∗ 6.085∗∗∗ -0.002
(0.018) (0.005) (0.930) (0.031)

High FCI 0.034∗∗∗ 0.015∗∗ 4.103∗∗∗ 0.038∗

(0.013) (0.006) (0.696) (0.020)

p-value 0.96 0.52 0.02 0.22

Notes: Table reports estimates of one-parameter event study models corresponding to equation (2),

where only the sample of students observed at an old and a new school (i.e. “switchers”) are included.

Columns 1 and 2 include only the coefficient for the change in growth β2; β1 and β3 are constrained to

be zero. Columns 3 and 4 include coefficients only the coefficient for the immediate effect β1; β2 and β3

are constrained to be zero.Dependent variables are standardized math test scores (column 1), standardized

english-language arts test scores (column 2), annual days attended (column 3), and standardized average

teacher-reported effort scores (column 4). Panel (a) reports baseline estimates for those students who are

observed switching from an existing to a new school facility. The remaining panels show coefficients on the

interactions for being below or above the median in terms of prior school share permanent classrooms (panel

b), prior school age (panel c), and prior school FCI (panel d). All specifications include fixed effects for

student, grade, and year-by-physical location district. Standard errors are two-way clustered by school and

student.
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Table 6: Summary statistics, LA County assessor data

All LAUSD New School Zones Existing School Zones

Sale price (2015$) 565,801 416,509 636,010

Building SQFT 1,664 1,539 1,722

Number of bedrooms 2.9 2.9 2.8

Number of bathrooms 2.2 2.1 2.3

Building age 44 45 44

Effective age 39 40 39

Useable lot SQFT 5,238 5,704 5,018

N property sales 505,835 161,795 344,040
N properties 350,299 115,247 235,052

Notes: Table reports summary statistics for LA County Assessor data, at the property sale level.
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Table 7: House price effects

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5) (6)

New School 0.060∗∗∗ 0.059∗∗∗ 0.044∗∗∗ 0.054∗∗∗ 0.045∗∗∗ 0.059∗∗∗

(0.018) (0.016) (0.011) (0.015) (0.013) (0.016)

Month FEs X X X X X X
Yr-HSZ FEs X X X X
Yr FEs X X
Sch Zone FEs X X X X
Prop Controls X X X X
Prop FEs X X
New Sch Zones X X X X X X
All LAUSD X
w/in 1km X
Number of sales 505,715 255,457 161,766 161,792 87,516 87,557
R2 .82 .79 .78 .75 .91 .9

Notes: Table reports estimated coefficients from difference-in-difference regressions following equations

(3) and (5). Dependent variable is the ln(sale price). Columns 1-4 report estimates from equation (3),

including neighborhood fixed effects and property specific controls. Columns 5 and 6 report estimates from

equation (5), including property fixed effects. Columns 4 and 6 report estimates using year fixed effects; the

remaining columns include year-by-high school zone fixed effects in estimation. In column 1, all properties

in LAUSD in the sample are included. Column 2 restricts the sample to include only properties within a

new school zone or within a 1km of a new school zone (by 2012). Columns 3-6 include only properties within

a new school zone by 2012: “never-treated” properties are excluded from estimation. Standard errors are

clustered by neighborhood.
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Table 8: Cost-benefit analysis

Program component Parameter Value

Program cost

Households in LAUSD N 1.52 million
Share treated households 1/n 0.328
Per treated household cost τn $18,430
Total program cost τN $9.17 billion

Program benefit

1. Housing capitalization approach
Estimated house price in treated areas E[θj ] $28,201
Total real estate valuation N · E[θj ]. $14.06 billion

Marginal value of public funds (capitalization) MVPFC 1.53

2. Later life earnings approach
Implied later life earnings per treated household E[βj ]W $7,782
Total earnings valuation N · E[βj ]W $3.88 billion

Marginal value of public funds (earnings) MVPFE 0.42

3. Hybrid approach
Share housing valuation due to academic achievement γ 0.22

Share future earnings captured in academic valuation MRSY /W 0.76
Program benefit per treated household (1 − γ)E[θj ] + E[βj ]W $29,786
Total benefits N [(1 − γ)E[θj ] + E[βj ]W ] $14.85 billion
Marginal value of public funds MVPF 1.62

Notes: Table reports values and estimates of model parameters introduced in section 5.
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A Appendix Figures and Tables

A.1 Appendix Figures:

Figure A1: LAUSD Capital Spending in Context
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(b) Binned means of capital spending for 1977-1992 against 1997-2012

Notes: Top panel shows average per-pupil capital spending for the thirty largest school districts
in the U.S. (other than the New York district, which is a dependent agency of the City of New
York) over the period 1977-1992 and 1997-2012. Bottom panel shows means in 5% percentile bins
(vingtiles) of 1977-1992 log capital expenditures per pupil across all districts against their 1997-2012
log capital expenditures per pupil.
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Figure A2: Student effects comparison from capital expenditure literature
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Notes: Figure plots estimated coefficients from related papers in economics evaluating the effects
of school capital expenditures (y axis) against per-pupil expenditures in each study (x axis). Blue
diamond shaped markers denote math test score estimates whereas red circular markers denote
English / Language Arts test score estimates (both in standard deviation units). Solid markers
denote estimates on directly treated students from Neilson and Zimmerman (2015) and Lafortune
and Schönholzer (2019), 4 years after school construction or student occupancy, respectively. For
these studies, construction cost is calculated per treated pupil. Hollow markers denote estimates
from studies examining district average test scores after passage of a capital construction bond,
where construction cost per pupil is the average over all students in the district. For these studies,
estimates 6 years after bond passage are reported.
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Figure A3: Spending per pupil, LAUSD vs LA County
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Notes: Panel (a) shows per-pupil capital expenditures and panel (b) shows per-pupil instructional
expenditures. Expenditures are expressed in real 2013 dollars. In both panels, the expenditures
for LAUSD (solid blue line) and the student-weighted average of all other LA County public school
districts (dashed green line) are shown. The shaded area from 2002-2012 shows the treatment
period covered in the main analysis. Expenditure data were from the National Center for Education
Statistics (NCES) annual census of school districts and from the Census of Governments.
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Figure A4: Students at newly constructed schools
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Notes: Figure shows time series of total new seats (from new construction project database) and
the number of students attending newly constructed school facilities (from the student microdata).

Figure A5: School age and multi-track calendars in LAUSD, by year and student race
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Notes: Figure reports proportion of students attending a school on a multi-track calendar, by year.

57



Figure A6: Grade of switch to new school facilities
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Notes: Grade of student switch to new school facility. Y-axis reports number of student observa-
tions.
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Figure A7: Student switching, non-new facility related
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(a) Math
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(b) ELA

Notes: Figures show estimated coefficients from event study regressions following equation (1), for
students who switch schools for reasons unrelated to new school facilities. Dependent variables
are standardized math test scores for students in grades 2-7 (panel a) and standardized english-
language arts test scores for students in grades 2-11 (panel b). Test scores are standardized relative
to the statewide mean and standard deviation for each year-grade-subject exam. The shaded areas
denote 95% confidence intervals for the estimated coefficients. All specifications include fixed effects
for student, grade, and year-by-physical location district. Standard errors are two-way clustered
by school and student.

59



Figure A8: Student effects: Stayers
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(a) Test scores: Math
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0

2

4

6

8

A
dd

iti
on

al
 D

ay
s 

A
tte

nd
ed

-3 -2 -1 0 1 2 3
Time Relative to First Enrollment

Attendance

(c) Attended days

-5%

0%

5%

10%

15%

E
ffo

rt
 S

co
re

s 
(S

ta
nd

ar
d 

D
ev

ia
tio

n 
C

ha
ng

e)

-3 -2 -1 0 1 2 3
Time Relative to First Enrollment

Effort

(d) Teacher-reported student effort

Notes: Figures show estimated coefficients from event study regressions following equation (1) for
students that had 10% or more of their school-grade cohort exit to a newly constructed school.
Event time is centered relative to the year of the peer outflow. Dependent variables are standard-
ized math test scores for students in grades 2-7 (panel a), standardized english-language arts test
scores for students in grades 2-11 (panel b), annual days attended (panel c), and standardized
teacher-reported effort scores for students in grades K-5 (panel d). The shaded areas denote
95% confidence intervals for the estimated coefficients. All specifications include fixed effects for
student, grade, and year-by-physical location district. Standard errors are two-way clustered by
school and student.
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Figure A9: Student effects: Stayers, 20% cohort exit threshold
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(a) Test scores: Math
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(d) Teacher-reported student effort

Notes: Figures show estimated coefficients from event study regressions following equation (1), for
students that had 20% or more of their school-grade cohort exit to a newly constructed school.
Figures are analogous to Figure A8, with the threshold for “stayers” raised from 10% to 20% of
a student’s cohort. Event time is centered relative to the year of the peer outflow. Dependent
variables are standardized math test scores for students in grades 2-7 (panel a), standardized
english-language arts test scores for students in grades 2-11 (panel b), annual days attended (panel
c), and standardized teacher-reported effort scores for students in grades K-5 (panel d). The shaded
areas denote 95% confidence intervals for the estimated coefficients. All specifications include fixed
effects for student, grade, and year-by-physical location district. Standard errors are two-way
clustered by school and student.
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Figure A10: Student effects: Extended event-time window
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(a) Test scores: Math
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(b) Test scores: ELA
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(d) Teacher-reported student effort

Notes: Figures show estimated coefficients from event study regressions following equation (1).
Figures are analogous to Figures 4 and 5, except that event-time endpoints are extended to include
additional years of data. Note that total years of exposure is equal to time relative to enrollment,
plus one (where non-negative). Dependent variables are standardized math test scores for students
in grades 2-7 (panel a), standardized english-language arts test scores for students in grades 2-11
(panel b), annual days attended (panel c), and standardized teacher-reported effort scores for stu-
dents in grades K-5 (panel d). The shaded areas denote 95% confidence intervals for the estimated
coefficients. All specifications include fixed effects for student, grade, and year-by-physical location
district. Standard errors are two-way clustered by school and student.
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Figure A11: Neighborhood boundaries in LAUSD, based on 2000 school zones

Notes: Figure shows school assignment zone triplets in LAUSD using 2000 assignment boundaries,
which are used to define neighborhoods in the estimation of real estate effects. Solid lines denote
neighborhood boundaries. Each gray dot represents one property from the LA County Assessor
data.
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Figure A12: Spillovers: Effects by distance to new school
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Notes: Figure shows estimated coefficients from a difference-in-difference regression based on equa-
tion (3), where the treatment indicator is interacted with indicators for 400 meter bins of distance
to the new school in 2012. Each point reports the estimated coefficient for the treatment indicator
interacted with the corresponding distance bin. Points are located at the midpoint of each distance
bin (i.e. the estimate at 200m corresponds to the 0-400m distance bin). All properties in LAUSD
in the data sample are included in estimation, corresponding to baseline estimates presented in
column 2 of Table 7. Specifications include property-specific controls, year-by-high school zone
fixed effects, neighborhood fixed effects, and month fixed effects. Standard errors are clustered by
neighborhood.
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Figure A13: Heterogeneity: By neighborhood mean prior house prices
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Notes: Figure shows estimated coefficients from a difference-in-difference regression based on equa-
tion (3), where the treatment indicator is interacted with indicators for $100,000 bins of prior
neighborhood average prices. Bin 1 also includes average neighborhood house prices less than
$100K, while bin 6 includes all neighborhoods with average house prices above $600K; all other
bins only include a $100K range. Prior neighborhood average house prices are calculated using
data from pre-construction property sales from 1995-2001. All properties in LAUSD in the data
sample are included in estimation, corresponding to baseline estimates presented in column 2 of
Table 7. All specifications include property-specific controls, year-by-high school zone fixed effects,
neighborhood fixed effects, and month fixed effects. Standard errors are clustered by neighborhood.
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Figure A14: Correlation between house price and test score effects
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Notes: Figure shows binned scatterplot of average estimated school-level test score gains against
estimated house price effects in the corresponding school attendance zone. Points and regression
lines are weighted by the number of properties in each attendance zone. School-specific test score
effect estimates are shrunken towards the mean overall effect via Empirical Bayes. The point
estimate on the regression line is 0.17 (SE 0.30).
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Figure A15: Spillovers: Effects by distance to school attendance boundary
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Notes: Figure shows estimated coefficients from a difference-in-difference regression based on equa-
tion (4), where the treatment indicator is interacted with indicators for 400 meter bins of distance
to the new school attendance zone in 2012. Properties with positive (negative) distance are inside
(outside) the new school attendance zones. Properties outside the attendance zone and within 2
km of a new school attendance zone are assigned the construction date corresponding to the nearest
new school attendance zone boundary. Each point reports the estimated coefficient for the treat-
ment indicator interacted with the corresponding distance bin. Points are located at the midpoint
of each distance bin (i.e. the estimate at 200m corresponds to the 0-400m distance bin). All prop-
erties in LAUSD in the data sample are included in estimation, corresponding to baseline estimates
presented in column (2) of Table 7. Specifications include property-specific controls, year-by-high
school zone fixed effects, neighborhood fixed effects, and month fixed effects. Standard errors are
clustered by neighborhood.
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Appendix Tables

Table A1: Student effects, “staying” students

Math Score ELA Score Days Attended Effort Score

(1) (2) (3) (4) (5) (6) (7) (8)

Post * Trend: Stayers -0.002 -0.009∗ 0.005∗ 0.000 0.078 -0.030∗∗∗

(0.005) (0.005) (0.003) (0.003) (0.192) (0.010)

Post: Stayers 0.008 0.019∗∗∗ 3.089∗∗∗ 2.340∗∗∗ 0.013 0.014
(0.011) (0.007) (0.433) (0.543) (0.017) (0.016)

Trend: Stayers 0.006∗∗∗ 0.001 0.220∗ 0.008∗∗

(0.002) (0.001) (0.116) (0.004)

Grade FEs X X X X X X X X
PLD-Yr FEs X X X X X X X X
Stu FEs X X X X X X X X
N student-years 2,475,534 2,475,534 3,864,574 3,864,574 4,898,159 4,898,159 2,379,587 2,379,587
N students 640,752 640,752 855,498 855,498 1,060,585 1,060,585 604,310 604,310
N treated students 146,255 146,255 166,614 166,614 180,403 180,403 121,221 121,221
N treated cohort 24,064 24,064 30,765 30,765 38,713 38,713 29,062 29,062

Notes: Table reports estimates of parametric event study models corresponding to equation (2), for

students that had 10% or more of their school-grade cohort exit to a newly constructed school. Event time

is centered relative to the year of the peer outflow. Columns 1 and 2 include only the coefficient for the

change in growth β2; β1 and β3 are constrained to be zero. Columns 5 and 7 include coefficients only

the coefficient for the immediate effect β1; β2 and β3 are constrained to be zero. Columns 2, 4, 6, and 8

include all coefficients, corresponding exactly to the specification in equation (2). Dependent variable is the

standardized math test score (grades 2-7) in columns 1-2, the standardized ELA test score (grades 2-11)

in columns 3-4, annual days attended in columns 5-6, and the standardized average teacher-reported effort

score in columns 7-8. All specifications include fixed effects for student, grade, and year-by-physical location

district. Standard errors are two-way clustered by school and student.
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Table A2: School-level changes

(a) Switching students

Calendar School Peers

(1) (2) (3) (4) (5) (6)
Multi-track Max days Age Stu/tch Peers: Bl/Hisp Peers: predicted

New School -0.275∗∗∗ 0.996∗∗∗ -71.389∗∗∗ 0.243∗∗∗ 0.021∗∗∗ -0.013∗∗

(0.027) (0.209) (1.294) (0.089) (0.003) (0.005)

Grade FEs X X X X X X
PLD-Yr FEs
Stu FEs X X X X X X
N student-years 6,414,594 5,847,450 6,313,348 2,891,902 6,416,430 4,252,570
N students 1,244,591 1,201,715 1,233,194 724,529 1,244,899 903,868
N treated students 127,389 126,196 127,327 93,929 127,477 96,144
N treated schools 143 141 143 80 143 124
R2 0.72 0.44 0.80 0.74 0.89 0.87

(b) Staying students

Calendar School Peers

(1) (2) (3) (4) (5) (6)
Multiple Max days Age Stu/tch Peers: Bl/Hisp Peers: predicted

Post: Stayers -0.212∗∗∗ 0.944∗∗∗ 1.602∗∗ -0.151 -0.013∗∗∗ 0.019∗∗∗

(0.024) (0.263) (0.803) (0.125) (0.003) (0.004)

Grade FEs X X X X X X
PLD-Yr FEs X X X X X X
Stu FEs X X X X X X
N student-years 5,656,017 5,143,417 5,558,391 2,497,392 5,657,185 3,732,943
N students 1,133,137 1,090,312 1,121,035 633,945 1,133,391 817,334
N treated students 184,744 183,023 184,286 126,343 184,755 161,503
N treated schools 804 794 755 503 804 786
R2 0.73 0.46 0.70 0.75 0.89 0.88

Notes: Table reports estimates of models corresponding to one-parameter versions of equation (2),

where only the coefficient for the immediate new school effect β1 is included; β2 and β3 are constrained to

be zero. Dependent variables are multi-track status (column 1), total instructional days (column 2), school

age (column 3), class size (i.e. pupils per teacher) for students in grades K-5 (column 4), school leave-out

mean proportion black and/or hispanic (column 5), and school leave-out mean predicted test scores (column

6). Panel (a) reports estimates for students attending new school facilities. Panel (b) reports analogous

estimates for staying students: here β1 is an indicator for having experienced a 10% or greater school-grade

cohort exit to a newly constructed school. All specifications include fixed effects for student, grade, and

year-by-physical location district. Standard errors are two-way clustered by school and student.

69



Table A3: Teacher changes at new schools

Demographics VA Average (pre-switch) VA Gap (new-veteran)

(1) (2) (3) (4) (5) (6) (7)
Experience MA+ Pr(New) Math ELA Math ELA

New School -3.018∗∗∗ 0.052∗∗∗ 0.054∗∗∗ -0.002 -0.025∗ -0.014 -0.024∗∗∗

(0.270) (0.016) (0.006) (0.006) (0.015) (0.012) (0.008)

Grade FEs X X X X X X X
PLD-Year FEs X X X X X X X
Stu FEs X X X X X X X
N student-years 5,565,255 5,565,883 5,710,079 3,032,969 4,629,725 1,987,918 2,403,367
N students 1,179,506 1,179,539 1,156,796 767,092 1,005,599 582,502 659,759
N treated students 125,229 125,242 126,949 92,269 103,796 78,464 85,590
N treated schools 137 137 143 75 116 63 62
R2 0.47 0.33 0.29 0.58 0.41 0.34 0.32

Notes: Table reports estimates corresponding to one-parameter versions of equation (2), where only the coefficient for the immediate new

school effect (β1) is included; β2 and β3 are constrained to be zero. Dependent variables are teacher age (column 1), teacher years experience

(column 2), an indicator for having a masters degree or higher (column 3), and an indicator for having a new teacher in either math or ELA

(column 4). Columns 4-7 reports estimates where dependent variables are school-year averages of teacher value added: in columns 4 and 5

dependent variables are average value-added scores based on prior-year observations at existing school facilities in math and ELA, respectively.

In columns 6 and 7 dependent variables are the school year gap in mean value-added between novice and experienced teachers in math and

ELA, respectively. See Appendix C.2.1 for further detail on computation of teacher and school-level value-added variables. All specifications

include fixed effects for student, grade, and year-by-physical location district. Standard errors are two-way clustered by school and student.
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Table A4: Teacher changes at existing schools

Demographics VA Average (pre-switch) VA Gap (new-veteran)

(1) (2) (3) (4) (5) (6) (7)
Experience MA+ Pr(New) Math ELA Math ELA

Post: Stayers 0.915∗∗∗ 0.000 -0.009∗∗ -0.012∗ -0.003 -0.005 -0.012
(0.203) (0.013) (0.004) (0.007) (0.008) (0.021) (0.011)

Grade FEs X X X X X X X
PLD-Year FEs X X X X X X X
Stu FEs X X X X X X X
N student-years 5,565,255 5,565,883 5,710,079 2,363,804 2,968,727 1,987,918 2,403,367
N students 1,179,506 1,179,539 1,156,796 653,847 739,855 582,502 659,759
N treated students 182,911 182,917 182,705 137,737 151,288 130,449 144,667
N treated schools 772 772 804 616 727 602 614
R2 0.47 0.33 0.29 0.30 0.33 0.34 0.32

Notes: Table reports estimates corresponding to one-parameter versions of equation (2), for students that had 10% or more of their school-

grade cohort exit to a newly constructed school. Only the coefficient for having experienced a 10% or greater school-grade cohort exit is included

(β1); β2 and β3 are constrained to be zero. Dependent variables are teacher age (column 1), teacher years experience (column 2), an indicator

for having a masters degree or higher (column 3), and an indicator for having a new teacher in either math or ELA (column 4). Columns

4-7 report estimates where dependent variables are school-year averages of teacher value added: in columns 4 and 5 dependent variables are

average value-added scores based on prior-year observations at existing school facilities in math and ELA, respectively. In columns 6 and 7

dependent variables are the school year gap in mean value-added between novice and experienced teachers in math and ELA, respectively. See

Appendix C.2.1 for further detail on computation of teacher and school-level value-added variables. All specifications include fixed effects for

student, grade, and year-by-physical location district. Standard errors are two-way clustered by school and student.
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Table A5: Principal experience

(1) (2) (3) (4)
Exper (Dist) Exper (Sch) New (Dist) New (Sch)

New School -0.867∗∗∗ -1.104∗∗∗ 0.148∗∗∗ 0.208∗∗∗

(0.150) (0.103) (0.024) (0.021)

Grade FEs X X X X
PLD-Yr FEs X X X X
Stu FEs X X X X
N student-years 5,319,931 5,319,931 5,319,931 5,319,931
N students 1,119,114 1,119,114 1,119,114 1,119,114
N treated students 131,098 131,098 131,098 131,098
N treated schools 134 134 134 134
R2 0.64 0.54 0.52 0.45

Notes: Table reports estimates corresponding to one-parameter versions of equation (2), where only

the coefficient for the immediate new school effect β1 is included; β2 and β3 are constrained to be zero.

Dependent variables are within-district principal experience (column 1), within-school principal experience

(column 2), an indicator for having a new principal (new to the district) in a given year (column 3), and an

indicator for having a new principal (new to the school) in a given year (column 4). Specifications include

fixed effects for student, year, and grade. Standard errors are two-way clustered by school and student.
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Table A6: Student effects, adjusted for changes in school characteristics

Controls (1) (2) (3) (4)
Math ELA Attendance Effort

None 0.029∗∗∗ 0.015∗∗∗ 5.464∗∗∗ 0.018
(0.008) (0.004) (0.602) (0.018)

Predicted peer characteristics 0.028∗∗∗ 0.015∗∗∗ 5.438∗∗∗ 0.017
(0.008) (0.004) (0.509) (0.018)

Teacher fixed effects 0.021∗∗∗ 0.014∗∗∗ 6.547∗∗∗ 0.004
(0.004) (0.003) (0.493) (0.014)

Principal fixed effects 0.031∗∗∗ 0.014∗∗∗ 3.355∗∗∗ 0.099∗∗∗

(0.009) (0.004) (0.936) (0.028)

School calendar 0.028∗∗∗ 0.014∗∗∗ 2.354∗∗∗ 0.016
(0.007) (0.004) (0.475) (0.019)

Congestion 0.029∗∗∗ 0.015∗∗∗ 5.465∗∗∗ -0.004
(0.008) (0.004) (0.604) (0.020)

All mediators 0.026∗∗∗ 0.013∗∗∗ 3.712∗∗∗ 0.011
(0.005) (0.003) (0.894) (0.022)

Observations 2,227,008 3,401,126 3,412,142 1,523,709

Notes: Table reports estimates of one-parameter event study models corresponding to equation (2).

Columns 1 and 2 include only the coefficient for the change in growth β2; β1 and β3 are constrained to be

zero. Columns 3 and 4 include coefficients only the coefficient for the immediate effect β1; β2 and β3 are

constrained to be zero. Dependent variables are standardized math test scores (column 1), standardized

english-language arts test scores (column 2), annual days attended (column 3), and standardized average

teacher-reported effort scores (column 4). All specifications include fixed effects for student, grade, and

year-by-physical location district. Standard errors are two-way clustered by school and student.
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Table A7: Student effects, heterogeneity

Math ELA Attendance Effort

Pooled 0.027∗∗∗ 0.017∗∗∗ 4.736∗∗∗ 0.025∗

(0.007) (0.004) (0.547) (0.015)

By Sex :

Female 0.035∗∗∗ 0.024∗∗∗ 4.775∗∗∗ 0.038∗∗

(0.008) (0.004) (0.539) (0.016)
Male 0.019∗∗∗ 0.009∗ 4.698∗∗∗ 0.013

(0.007) (0.005) (0.574) (0.017)

p-value 0.00 0.00 0.71 0.05

By parental education:

No college 0.028∗∗∗ 0.018∗∗∗ 4.945∗∗∗ 0.019
(0.007) (0.004) (0.575) (0.016)

Any college 0.022∗∗ 0.013∗∗∗ 3.780∗∗∗ 0.056∗∗∗

(0.009) (0.004) (0.541) (0.018)

p-value 0.42 0.13 0.00 0.01

By residential mobility

Mover 0.025∗∗∗ 0.018∗∗∗ 3.566∗∗∗ 0.025
(0.008) (0.004) (0.524) (0.016)

Non-mover 0.028∗∗∗ 0.015∗∗∗ 5.781∗∗∗ 0.027
(0.007) (0.005) (0.630) (0.019)

p-value 0.45 0.23 0.00 0.86

By school level :

Elementary 0.027∗∗∗ 0.016∗∗∗ 2.704∗∗∗ 0.025
(0.008) (0.005) (0.489) (0.015)

Middle 0.026 -0.005 3.503∗∗∗

(0.023) (0.007) (0.824)
High 0.028∗∗∗ 7.123∗∗∗

(0.008) (1.065)

p-value 0.98 0.00 0.00

By grade of switch:

Reg (KG,G6,G9) 0.018∗∗ 0.015∗∗∗ 5.894∗∗∗ 0.051∗

(0.009) (0.005) (0.651) (0.030)
Irregular 0.036∗∗∗ 0.019∗∗∗ 3.207∗∗∗ 0.009

(0.009) (0.005) (0.560) (0.015)

p-value 0.08 0.42 0.00 0.20
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Notes: Table reports estimates of parametric event study models corresponding one-parameter versions

of equation (2). Columns 1 and 2 include only the coefficient for the change in growth β2; β1 and β3 are

constrained to be zero. Columns 3 and 4 include only the coefficient for the immediate new school effect β1;

β2 and β3 are constrained to be zero. Dependent variables are standardized english-language arts test scores

(column 1), standardized math test scores (column 2), annual days attended (column 3), and standardized

average teacher-reported effort scores (column 4). Panel a repeats baseline one-parameter estimates from

columns 1 and 4 of Tables 3 and 4. The remaining panels report estimates of coefficients interacted with

student gender (panel a), parental education (panel b), residential mobility (panel c), school level (panel

d), and whether a student switched in a typical (KG, G6, G9) or atypical grade (panel e). P-values for the

test of equality of the coefficient(s) are reported in the third row of each panel. Specifications include fixed

effects for student, year, and grade. Standard errors are two-way clustered by school and student.
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Table A8: Student effects, robustness

Baseline No Stayers Only Treated Only Switchers Balanced

ELA Score

New School * Trend 0.017∗∗∗ 0.018∗∗∗ 0.016∗∗∗ 0.014∗∗∗ 0.039∗∗

(0.004) (0.004) (0.005) (0.005) (0.015)

Math Score

New School * Trend 0.027∗∗∗ 0.027∗∗∗ 0.034∗∗∗ 0.035∗∗∗ 0.045
(0.007) (0.007) (0.012) (0.012) (0.034)

Days Attended

New School 4.74∗∗∗ 5.06∗∗∗ 3.65∗∗∗ 3.69∗∗∗ 5.58∗∗∗

(0.55) (0.55) (0.74) (0.76) (1.93)

Effort Score

New School 0.025∗ 0.025∗ 0.024 0.031∗ 0.069
(0.015) (0.015) (0.017) (0.019) (0.048)

Notes: Table reports estimates of parametric event study models corresponding one-parameter versions

of equation (2). Panels (a) and (b) include only the coefficient for the change in growth β2; β1 and β3 are

constrained to be zero. Panels (c) and (d) include only the coefficient for the immediate new school effect (β1);

β2 and β3 are constrained to be zero. Dependent variables are standardized english-language arts test scores

(panel a), standardized math test scores (panel b), annual days attended (panel c), and standardized average

teacher-reported effort scores (panel d). Estimates in column 1 repeat baseline one-parameter estimates from

columns 1 and 4 of Tables 3 and 4. Column 2 excludes “staying” students that had 10% or more of their

school-grade cohort exit to a newly constructed school. Column 3 excludes never-treated students. Column

4 restricts estimation only to those students observed at an existing school prior to attending a school at a

new facility. Column 5 restricts to a balanced sample with 5 years of data in panels (a) and (c), or 3 years

of data in panels (b) and (d). All specifications include fixed effects for student, grade, and year-by-physical

location district. Standard errors are two-way clustered by school and student.
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Table A9: Stayer effects, adjusted for changes in school characteristics

Controls (1) (2) (3) (4)
Math ELA Attendance Effort

None 0.022∗ 0.020∗∗ 3.376∗∗∗ 0.015
(0.013) (0.008) (0.544) (0.023)

Predicted peer characteristics 0.024∗ 0.021∗∗∗ 2.953∗∗∗ 0.016
(0.014) (0.008) (0.512) (0.023)

Teacher fixed effects 0.027∗∗∗ 0.016∗∗∗ 2.165∗∗∗ 0.004
(0.008) (0.005) (0.502) (0.011)

Principal fixed effects 0.030∗∗∗ 0.021∗∗∗ 1.691∗∗∗ 0.005
(0.011) (0.006) (0.536) (0.024)

School calendar 0.015 0.015∗ 1.343∗∗∗ 0.015
(0.013) (0.008) (0.405) (0.023)

Congestion 0.011 0.020∗∗ 3.375∗∗∗ 0.004
(0.013) (0.008) (0.547) (0.024)

All mediators 0.019∗∗∗ 0.013∗∗∗ 0.180 -0.012
(0.007) (0.004) (0.407) (0.012)

Observations 1,913,604 2,952,227 2,961,414 1,309,752

Notes: Table reports estimates of one-parameter event study models corresponding to equation (2), for

students that had 10% or more of their school-grade cohort exit to a newly constructed school. Columns 1

and 2 include only the coefficient for the change in growth β2; β1 and β3 are constrained to be zero. Columns

3 and 4 include coefficients only the coefficient for the immediate effect β1; β2 and β3 are constrained to be

zero. Dependent variables are standardized math test scores (column 1), standardized english-language arts

test scores (column 2), annual days attended (column 3), and standardized average teacher-reported effort

scores (column 4). All specifications include fixed effects for student, grade, and year-by-physical location

district. Standard errors are two-way clustered by school and student. Notes: All specifications include fixed

effects for student, grade, and year-by-physical location district. Standard errors are two-way clustered by

school and student.
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Table A10: House price effects, by school level

(1) (2) (3) (4) (5)

New Elementary 0.051∗∗∗ 0.026∗

(0.015) (0.014)

New Middle 0.031 0.003
(0.023) (0.016)

New High 0.071∗∗ 0.065∗∗

(0.030) (0.029)

Only New Elementary 0.065∗∗∗

(0.021)

Only New Middle 0.008
(0.018)

Only New High 0.072∗∗

(0.034)

p, Elem effects =0 .00063 .064 .0027
p, Mid effects =0 .18 .87 .66
p, HS effects =0 .019 .027 .034
p, All effects =0 .04 .0036
p, All effects equal .17 .024
Yr-HSZ FEs X X X X X
Month FEs X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
All LAUSD X X X X X
Number of sales 381,407 374,915 480,967 505,781 471,528
R2 .83 .83 .82 .82 .83

Notes: Table reports estimated coefficients from difference-in-difference regressions by school level, based

off of equation (3). Columns 1, 2, and 3 report estimates of the effects of new elementary, new middle, and

new high schools, respectively. Properties in new school zones for schools at the other two levels are excluded

from the control group in estimation in columns 1- 3 (i.e. column 1 excludes properties that received new

middle and/or new high school zones but not elementary schools from the control group). Column 4 includes

coefficients for all three school levels. Column 5 restricts estimation to include only those properties in the

attendance area of a single new school level. P-values for the tests that the effect at each level equals zero are

included, as are p-values for the hypothesis tests that effects for all levels are equal to zero and that effects

for all levels are equal. All specifications include property-specific controls, year-by-high school zone fixed

effects, neighborhood fixed effects, and month fixed effects. Standard errors are clustered by neighborhood.
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Table A11: House price effects, including post-2012 data or 2012 neighborhood definitions

(a) Including post-2012 data

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5) (6)

New School 0.053∗∗∗ 0.049∗∗∗ 0.034∗∗∗ 0.049∗∗∗ 0.042∗∗∗ 0.046∗∗∗

(0.015) (0.013) (0.011) (0.013) (0.012) (0.014)

Month FEs X X X X X X
Yr-HSZ FEs X X X X
Yr FEs X X
Sch Zone FEs X X X X
Prop Controls X X X X
Prop FEs X X
New Sch Zones X X X X X X
All LAUSD X
w/in 1km X
Number of sales 593,296 298,463 188,197 188,240 114,503 114,549
R2 .82 .79 .77 .74 .91 .9

(b) Neighborhoods based on 2012 post-construction boundaries

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5) (6)

New School 0.068∗∗∗ 0.067∗∗∗ 0.046∗∗∗ 0.055∗∗∗ 0.045∗∗∗ 0.059∗∗∗

(0.019) (0.017) (0.013) (0.016) (0.014) (0.017)

Month FEs X X X X X X
Yr-HSZ FEs X X X X
Yr FEs X X
Sch Zone FEs X X X X
Prop Controls X X X X
Prop FEs X X
New Sch Zones X X X X X X
All LAUSD X
w/in 1km X
Number of sales 505,713 255,458 161,762 161,769 87,516 87,544
R2 .82 .8 .78 .75 .91 .9

Notes: Table reports estimated coefficients from difference-in-difference regressions following equations

(3) and (5). Panel (a) including additional data from 2013-2015, while panel (b) uses neighborhood fixed

effects based on 2012 school assignment zones in lieu of 2000 school zones. Dependent variable is the ln(sale

price). Columns 1-5 report estimates from equation (3), including neighborhood fixed effects and property

79



specific controls. Columns 6 and 7 report estimates from equation (5), including property fixed effects.

Columns 1, 5, and 7 report estimates using year fixed effects; the remaining columns include year-by-high

school zone fixed effects in estimation. In columns 1 and 2, all properties in LAUSD in the data sample

are included. Column 3 restricts the sample to include only properties within a new school zone or within

a 1km of a new school zone (by 2012). Columns 4-7 include only properties within a new school zone by

2012: “never-treated” properties are excluded from estimation. All specifications also include month effects.

Standard errors are clustered by neighborhood.
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Table A12: House price effects, robustness to sample restrictions

Relaxing sample restrictions for:

(1) (2) (3) (4) (5)
Baseline Price outliers Renovated/torn-down Large/multi-unit Non-residential

New School 0.060∗∗∗ 0.088∗∗∗ 0.056∗∗∗ 0.058∗∗∗ 0.048∗∗∗

(0.018) (0.028) (0.020) (0.018) (0.014)

Yr FEs
Yr-HSZ FEs X X X X X
Month FEs X X X X X
Sch Zone FEs X X X X X
Prop Controls X X X X X
Baseline sample X X X X X
Price outliers X
Renovated X
Large/multi-unit X X
Non-residential X
Number of sales 505,780 512,577 525,469 513,039 625,632
R2 .82 .75 .75 .8 .72

Notes: Table reports estimated coefficients from difference-in-difference regressions corresponding to estimates of equation (3). Dependent

variable is the ln(sale price). Column 1 repeats baseline estimates presented in Table 7 panel (a) column 2. Column 2 makes no restriction on

sale price, including the top and bottom 1% of sales based on price. Column 3 relaxes the restriction on renovated and/or torn-down properties,

including these properties with an additional indicator variable for having been renovated and/or torn-down in the controls. Column 4 includes

large properties, with greater than one acre of space. Column 5 includes non-residential properties. All specifications include neighborhood

fixed effects, property specific controls, and month fixed effects. Standard errors are clustered by neighborhood.
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Table A13: House price effects, by distance to school assignment zone boundary

(1) (2) (3) (4)

New School: inside zone 0.060∗∗∗ 0.061∗∗∗ 0.054∗∗∗ 0.051∗∗∗

(0.018) (0.018) (0.017) (0.018)

Distance to boundary 0.019 0.017
(0.014) (0.013)

Inside zone * dist to boundary -0.005 -0.004
(0.010) (0.010)

New School: outside w/in 2km -0.013 -0.046∗∗∗

(0.010) (0.017)

Outside w/in 2km * dist to boundary 0.035∗∗

(0.014)

Yr-HSZ FEs X X X X
Month FEs X X X X
Sch Zone FEs X X X X
Prop Controls X X X X
New Sch Zones X X X X
All LAUSD X X X X
Number of sales 505,781 505,781 505,781 505,781
R2 .82 .82 .82 .82

Notes: Table reports estimated coefficients from difference-in-difference regressions based off of equation

(3). Dependent variable is the ln(sale price). Column 1 repeats baseline estimates reported in column 2

of Table 7. Column 2 adds coefficients for property-level distance to the school assignment boundary and

the interaction between distance to the boundary and the new school zone treatment variable. Column 3

includes an additional treatment variable for properties outside but within 2km of the new school attendance

zone, where the completion date assigned to these properties corresponds to that of the nearest new school

attendance zone. Column 4 combines columns 2 and 3, and adds an interaction with distance to the boundary

for properties outside but within 2km of the new school zone. All properties in LAUSD in the data sample are

included in estimation. All specifications include property-specific controls, year-by-high school zone fixed

effects, neighborhood fixed effects, and month fixed effects. Standard errors are clustered by neighborhood.
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Table A14: “Stayers” school zones

Neighborhood Fixed Effects Repeat Sales

(1) (2) (3) (4) (5)

Post: Stayer School -0.009 0.023 -0.009 -0.010 -0.014
(0.017) (0.018) (0.019) (0.031) (0.025)

Month FEs X X X X X
Yr-HSZ FEs X X X
Yr FEs X X
Sch Zone FEs X X X
Prop Controls X X X
Prop FEs X X
All LAUSD X
Number of sales 343,939 180,469 180,469 107,450 107,450
R2 .83 .82 .81 .93 .93

Notes: Table reports estimated coefficients from difference-in-difference regressions following equations

(3) and (5). Dependent variable is the ln(sale price). Properties in new school zones are excluded from

estimation; columns 1-3 report estimates corresponding to equation (3), with neighborhood fixed effects

and property specific controls included. Columns 4 and 5 show estimates where property fixed effects are

included, corresponding to equation (5). Columns 4 and 6 of panel (b) include year fixed effects, while the

remaining columns include year-by-high school zone fixed effects in estimation. In column 1, all properties in

LAUSD in the sample are included, while columns 2-5 further restrict the estimation sample to only include

those properties in school zones affected by student outflows. Standard errors are clustered by neighborhood.
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Table A15: Predicted house prices

(1) (2) (3) (4)

New School 0.001 0.010 -0.004 -0.009
(0.010) (0.012) (0.006) (0.009)

Month FEs X X X X
Yr-HSZ FEs X X X
Yr FEs X
Sch Zone FEs X X X X
New Sch Zones X X X X
All LAUSD X
w/in 1km X
Number of sales 505,715 255,457 161,766 161,792
R2 .39 .4 .39 .38

Notes: Table reports estimated coefficients from difference-in-difference regressions following equations

(3), excluding property-specific controls. Dependent variable is a predicted sales price, constructed via a

hedonic regression of prices on property characteristics. Column 4 report estimates using year fixed effects;

the remaining columns include year-by-high school zone fixed effects in estimation. In column 1, all properties

in LAUSD in the sample are included. Column 2 restricts the sample to include only properties within a

new school zone or within a 1km of a new school zone (by 2012). Columns 3-4 include only properties within

a new school zone by 2012: “never-treated” properties are excluded from estimation. Standard errors are

clustered by neighborhood.
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B Effects on Staying Students and Sending Neighborhoods

B.1 Effects on Staying Students

Students who switched to new school facilities were not the only students to experience significant

school-level changes: nearby new school constructions induced cohort-level outflows from existing

facilities. Those students who stayed behind experienced reductions in overcrowding, conversion

from year-round multi-track calendars back to traditional two-semester calendars, and changes in

peer composition, but not improvements in facility quality. Examining the effects of new facility

openings on the outcomes of students who stayed behind at nearby existing facilities therefore allows

us to determine the relative importance of reduced crowding vs direct facility quality improvements

in the new school treatment effects.

New schools were typically populated with students from several nearby school catchment areas.

To identify existing schools which are most affected, we focus on those which saw large student

outflows to new schools. We define “stayers” to be students for whom 10% or more of their

school-grade cohort switched to a newly constructed school facility.44 We then define event-time

analogously for these students: year “0” is the year in which a school cohort experienced a large

outflow induced by a nearby new school construction. We estimate effects for these students using

the same event study methodology for the main student effects presented in equations (1) and (2);

because these cohort outflows were induced by new facilities, estimates rely on the same variation

in the timing of construction between different students.45

Figure A8 shows event-study estimates of cognitive and non-cognitive outcomes for stayers.

Stayers see small but significant increases in ELA scores (panel B) following the cohort outflow to

the new facility. For math (panel A), effects are smaller and insignificant. The increase in days

attended (panel C) is immediate and significant - students attend 3.1 (SE 0.5) more days relative to

the year prior to the cohort outflow. Panel D shows estimates for standardized effort scores. Point

44Appendix Figure A9 reports analogous event study estimates using a 20% threshold. This reduces the sample
considerably, but results are robust to alternative thresholds.

45Here, students who switched to new schools are excluded from estimation; estimates are relative to a control
group of students in the same grade and year who have yet to experience a cohort outflow shock, and never-treated
students who experienced no significant peer outflow.
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estimates are all very close to zero and insignificant, with the exception of the binned endpoint for

4 or more years of exposure, which is negative and significant.

Parametric versions of the estimates corresponding to equation (2) are reported in Table A1.

For each outcome, both one- and three-parameter estimates are shown. Columns 1 and 2 report

estimates for math test scores. Estimates in column 1 show no change in test score growth in the

years following the cohort outflow, while estimates in column 2 show that once pre-existing trends

are included, there is a small insignificant immediate effect that fades out within the following year.

For ELA (columns 3 and 4), the pattern is different, and the parametric estimates more closely

align with the event study estimates in Figure A8 . Column 3 shows a 0.5% (SE 0.3%) of a standard

deviation increase in ELA test score growth in the years following the cohort outflow. However,

once the post indicator and trend variable are included in column 4, all of the effect loads onto

the post coefficient, with no ensuing growth or fade-out of effects. This pattern of cognitive effects

differs from that of students attending new schools: effects accrue immediately, and either fade out

(math), or remain roughly constant (ELA).

Columns 5 and 6 report estimates for days attended. Stayers see a 3.1 (SE 0.4) day increase

in days attended; this effect attenuates to 2.3 (SE 0.5) days with the inclusion of trend variables.

Columns 7 and 8 show no immediate effects on teacher-reported effort, with evidence of small

negative effects after several years. As shown in Panel D of Figure Figure A8, this is driven by

negative but imprecise effects several years post-outflow. Taken together, these results indicate

positive indirect effects induced by peer outflows to new school facilities, but only for ELA test

scores46 and attendance.

Besides reductions in overcrowding due to peer outflows to newly constructed schools, what

sort of changes in the school environment were experienced at these existing schools? Panel B

of Appendix Table A2 presents estimates of the changes staying students experienced after they

experienced a cohort outflow. Results indicate that stayers experienced a significant decline in

multi-track calendar usage (21pp) and a significant increase in the total number of instructional

46McMullen and Rouse (2012) also find that reading, but not math test scores are adversely affected by school
facility overcrowding and congestion.
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days (0.94) per year. Both staying and switching students experienced a similar decline in multi-

track calendars, and increase in the total number of instructional days per year. This is driven

by the fact that in LAUSD, students at multi-track schools often had fewer instructional days

per academic year.47 Class sizes saw a negligible and insignificant decline for students who stay

behind. Comparing these estimates to the estimated 3 day increase in total attended days in Table

A1 implies that roughly one-third of the attendance effect is mechanically driven by increased

number of days. Columns 5 and 6 report changes in the average peer group. Consistent with

the fact that switching students were slightly more disadvantaged and lower-scoring than staying

students, stayers see reductions in peer minority shares and increases in predicted scores of peers

due to cohort outflows to new facilities.

Overall, indirect effects appear to be driven by reductions in overcrowding and the switch from

multi-track calendars to traditional schedules.48 Attendance effects are roughly half the size as for

switching students, once the increase in the number of instructional days is factored in. Test score

effects are only significant in ELA and not math, and are much smaller than those estimated for

students who switch into new schools. Taken together, these results indicate that overcrowding

reductions are not a primary mechanism driving effects at newly constructed schools. In the next

section we examine the mechanisms underlying the new school effects in greater detail.

B.2 Effects on Sending Neighborhoods

As discussed in Section B.1, schools that experienced large student outflows to new schools saw

significant reductions in overcrowding and multi-track calendar utilization, and small but signifi-

cant increases in the share of more advantaged students. Students at these schools also experienced

gains in ELA scores and attendance. To what extent were these gains at existing “sending” schools

capitalized into local house prices? In Appendix Table A14 we report difference-in-differences esti-

47Many of the year-round district schools operated on a multi-track calendar known as “Concept 6”, which increased
school capacity by up to 50% but at the cost of 17 instructional days (out of 180). The loss in instructional days was
made up by increased instructional time per day.

48“Horse-race” style regressions that include these mechanisms as controls are reported in Appendix Table A9, and
indicate that school calendar changes are important, but changes in peers, teachers, and principals do not mediate
the effects. Additional evidence on teacher effects is included in Appendix Table A4, and shows that there were no
meaningful changes in teacher demographics or value-added at stayer schools.
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mates where treatment is similarly defined for existing “sending” schools that experienced student

outflows to newly constructed facilities.49 Specifications in columns 1 and 2 correspond to those

in columns 1 and 2 of panel A; specifications in columns 2-5 correspond to those in columns 3-6

in panel A. Estimates provide little indication that house prices increased in the sending school

neighborhoods. These results suggest that (a) parental valuation of new schools is driven by non-

test score/amenity improvements at new schools, independent of the school calendar or level of

overcrowding, and/or (b) improvements in school quality due to reductions in overcrowding and

multi-track calendar utilization are less salient to prospective homebuyers, who may instead rely

on school facility condition as a signal for underlying school quality. Later, in Section 5 we will

use a residential choice model to interpret the valuation and efficiency of the program; our findings

imply that most of the valuation of the new schools is driven by non-test score and/or amenity

improvements.

C Further Evidence on Mechanisms

C.1 Contemporaneous changes: peers, class sizes, and school environment

Contemporaneous changes in peers, class sizes, and the school environment are documented in

Appendix Table A2. One of the stated goals of the LAUSD school construction program was to

eliminate the use of multi-track academic calendars that required schools to continuously operate

year-round. Before the construction program, half of LAUSD students attended multi-track schools.

By reducing overcrowding in neighborhood schools, district officials were able to begin new schools

on traditional two-semester calendars, as well as convert existing schools from multi-track back to

traditional calendars.

Column 1, panel A of Appendix Table A2 report difference-in-differences and event study esti-

mates of the likelihood of being exposed to a multi-track calendar. Switching to a new school was

accompanied by a 28 percentage point reduction in the likelihood that a student was exposed to a

49“Sending” schools are defined as schools that have a non-trivial share (greater than 10%) of student enrollment
that experienced a substantial cohort outflow to a newly constructed school. The treatment year for sending schools
is analogously defined as the treatment year for stayers; i.e. the year in which the peer outflow occurred.
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multi-track calendar. This conversion also meant that many students in new schools experienced

additional instructional days: as reported, students switching to a new school had on average nearly

one additional instructional day per year, relative to the prior year at an existing school (column

2, Appendix Table A2). Taking the 2SLS estimate of 5 additional days attended per year from

Table 4, this implies that roughly one-fifth of the observed attendance effect is mechanically due

to a change in school calendar.

At new schools, class sizes were actually somewhat larger: on average, teachers at new schools

taught classes with 0.24 more students per teacher (Column 4 of Appendix Table A2). The mag-

nitude of this difference, however, is quite small; roughly speaking, the district was approximately

able to maintain similar pupil-teacher ratios at new school facilities by transferring teachers to new

facilities in roughly equal proportion to students. Thus, changes in class size do not contribute to

the estimated new school effects.

If students who switch to newly constructed school facilities are exposed to higher quality peers,

changes in peer quality could explain some of the observed effects. As discussed earlier and shown in

Table 2, students who attend newly constructed schools are more disadvantaged relative to students

in the rest of LAUSD. However, new schools could offer better peer groups than do other schools

in nearby neighborhoods. This could occur if new school boundaries were drawn in a such a way as

to increase the concentration of more advantaged students, or if nearby higher-SES parents were

less likely to comply with school residential assignments. Empirically, this does not appear to be

the case: average peer predicted scores fall significantly upon switching to a new school, and new

school peers are more likely to be black and/or Hispanic (Columns 5-6, Appendix Table A2).50

C.2 Teachers and principal quality

Student gains at new schools could be attributable to systematic differences in teacher and/or

principal quality between new and existing schools. New facilities provide improved working en-

vironments for staff, and these amenities could attract better quality staff from either within or

50Predicted scores are generated from a regression of contemporaneous ELA test scores on a vector of demographic
characteristics. Leave-out mean school-year predicted scores are then computed for each student-year observation.
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outside the district.51 In this section we examine the changes in teacher and principal demographics,

and teacher value-added associated with a student’s switch to a new school facility.

Systematic teacher resorting would imply that student gains at new schools came at the expense

of students at existing schools; any within-district resorting of existing teachers would be zero-sum

in aggregate. To empirically assess whether there was differential sorting of higher quality teachers

into new school facilities, we compare differences in teacher observables and test score value-added

(Appendix Table A3). Results indicate that students who switch to new schools are exposed to

teachers that are less experienced, slightly more likely to have a master’s degree, and are more

likely to be new to the district.

Observable teacher characteristics, however, generally explain little of the variation in test-

score based measures of teacher quality. However, estimates of changes in value-added (columns

4-5) indicate that students who switched to new schools experienced teachers with lower test-score

value-added scores than prior to switching. The point estimates are for both math and ELA are

small, although the estimate is more negative and marginally significant for ELA.52

While we find little evidence of positive resorting of existing teachers into new schools, it could

still be the case that the new teachers hired into new schools were of differential quality. We cannot

directly compare contemporaneous value-added scores of new teachers at new and existing schools,

as this would confound student gains due to school-level facility improvements with improvements

in new teacher quality. However, under the assumption that new facilities affect novice and ex-

perienced teachers identically, we can assess the quality of new teachers by testing whether the

school-level gap in value-added scores between new and existing teachers is larger or smaller at new

facilities.53 These estimates are reported in columns 6 and 7 of Appendix Table A3, and provide

little evidence that newly hired teachers were of higher quality at new schools. 54 Overall, sys-

51Complementarities between facility quality and teacher effort and/or performance could also result in improved
teacher productivity at new schools. Unfortunately, we cannot directly assess this using our data, as any such
improvements could not be separately distinguished from general school- or student-level improvements.

52We focus on switching teachers, for whom we have value-added estimates from their prior (existing) school. See
Appendix B for an explanation of how teacher value-added scores are calculated.

53In Appendix B we explain how these gaps are calculated, and the assumptions under which they identify the
relative quality of novice teachers.

54Given that we find evidence of negative sorting of existing teachers on value-added the difference in point estimates
between columns 4 and 6 and columns 5 and 7 would need to be positive to support an interpretation that newly

90



tematic differences in teacher quality cannot account for observed student test score gains. In the

longer-run, it is still possible that higher-quality facilities could attract and retain better teachers,

although further research is necessary to determine if this channel to improve teacher quality is

empirically relevant.55

Principals and school administration are also important inputs in education production, and

recent work has shown that improved managerial skills among principals can have positive effects on

student achievement (Fryer, 2017). While we lack direct measures of principal quality, we examine

principal experience as a proxy. Using data on principal names, we constructed measures of within-

district principal experience to test whether new schools were more likely to have more experienced

principals. On average, however, the opposite is true: new schools employ principals with less

experience, and which are more likely to be new to the school and district (Appendix Table A5).

We view this as compelling evidence that principal quality does not mediate the positive effects we

find, and that if anything, principal quality may have been lower at the newly constructed schools.

C.2.1 Estimating value-added

To estimate teacher value-added scores, we use a subsample of students for which the following

criteria are met: (1) Student-year observations have non-missing test scores and are currently in

grades 3-7 in math, and 3-11 in ELA; value-added scores are not computed for grade 2 teachers so

as to have at least one prior score for a student; (2) Student-year observations have non-missing

teacher assignment;56 (3) Student-year observations are in classrooms with at least 7 students.

Consider the following data-generating process for test scores, closely following Kane and Staiger

hired teachers were of higher quality at new facilities.
55Priority for intra-district teacher transfers within LAUSD was allocated using a tenure-based point system, which

may not be systematically correlated with teacher quality. It is possible that school facility improvements have a
larger impact on teacher quality in settings where within-district mobility is less restricted.

56Nearly every student in K-5 has a non-missing assignment; teacher IDs in later grades were assigned to a student-
subject pair based on the teacher associated with a student’s math and/or ELA class

91



(2008) and Chetty et al. (2014):

yi,t = αt,g(i,t) +X ′itβ + νit (11)

νit = µj(i,t),t + εit (12)

where yi,t is student i’s test score in a given subject in year t, g(i, t) denotes a student’s grade in a

given year, j(i, t) denotes a student’s teacher in a given year, and X ′it is a vector of controls. Here,

µj(i,t),t is a teacher’s effect on student test scores in year t and εj(i,t),t captures unobserved error in

test scores unrelated to teacher quality.

To compute value-added for a given teacher-year, we estimate equation (11), and then compute

the average residual within each teacher-year cell: VAjt ≡ νjt. Unlike many prior studies, we do not

use an Empirical Bayes or similar procedure to shrink these noisy estimates of value-added: here

we only use value-added estimates as dependent variables, and using posterior means as left-hand

side variables can introduce bias.57

In estimation, X ′it includes third-degree polynomials in lagged student test scores (for both

subjects), demographics (race, gender, parental education, free/reduced-price lunch status, limited

English status), class size (only available for elementary students), and school-level variables (school

leave-out means of the share black/hispanic, share with any parental postsecondary education,

share who speak English at home, and the share eligible for free or reduced-price lunch). We do

not include school fixed effects in estimation, meaning estimated teacher effects are relative to all

other teachers within LAUSD.

C.2.2 Estimating changes in value-added at new schools

Standard value-added models can confound school and teacher effects. For example, new school

facilities could generate improvements in student attentiveness and/or teacher productivity, both

of which would result in gains in estimated teacher valued-added. However, student gains resulting

from school improvements would reflect improvements resulting from the new facility itself, and

57See Jacob and Rothstein (2016) for a more detailed discussion of potential problems using estimated posterior
means of student test scores as dependent variables in regression models.
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not from variation in underlying (prior) teacher quality. Thus, to directly assess whether teacher

resorting explains any of the student gains, we focus specifically on switching teachers, for whom we

have an estimate of value-added based on student test score observations from their prior, existing

school facilities.

For these switching teachers, we compute the student-weighted average of prior value-added

scores, using only data from years a teacher taught at an existing school facility. Specifically, we

define VAprior
j ≡

∑ njt

nj
VAjt, where VAjt is the estimated value-added for teacher j in year t, njt is

the number of student observations for contributing to teacherj’s value-added score in year t, and

nj is the total number of students taught by teacher j (prior to switching to a newly constructed

facility). For each student-year observation, we assign the mean prior value-added score, averaged

over all teachers in a given school-year.58

While we find little evidence of positive restoring of existing teachers into new schools, it could

still be the case that the new teachers hired into new schools were of differential quality. We cannot

directly compare contemporaneous value-added scores of new teachers at new and existing schools,

as this would confound student gains due to school-level facility improvements with improvements

in new teacher quality. However, under the assumption that new facilities affect novice and ex-

perienced teachers identically, we can assess the quality of new teachers by testing whether the

school-level gap in value-added scores between new and existing teachers is larger or smaller at

new facilities. We can decompose the estimated teacher effect to include the true teacher effect, a

new-school specific shock, and an unobserved error term:59

VAjst = µjt + θst + ηjst

Insofar as the effect of a new school in a given year, θst, is constant for all teachers, we can use the

gap between experienced and novice teachers at new schools to difference out the any differential

58Results are nearly identical if we instead assign a student the prior value-added score of her specific teacher in a
given year.

59Recall teacher-year value-added is defined as the average residual from a regression of student test scores on
polynomials in lagged test scores, demographic variables, and school variables: VAjt ≡ νj(i,t)t where νit = yi,t −
αt,g(i,t) −X ′itβ.
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new school effects at the school by year level:

VA
GAP
st ≡ VA

New
st − VA

Old
st

= µNew
jt − µOld

jt + η̃st

We therefore assign each student the difference between the school-year average value-added of new

teachers and existing teachers. A positive school-level gap between new and existing teachers would

indicate that the new teachers at a school have higher value-added than the existing teachers, and

vice-versa. Thus, holding existing teacher quality constant, if new teachers hired into new facilities

are of higher quality, we would expect a positive coefficient on the gap.

C.3 Adjusting for changes in the school environment

How do these changes in the school environment mediate the positive effects found for students

attending new schools? For a classroom or school characteristic to explain any part of the new

school effect, it must be the case that (1) there is a change in the characteristic between the new and

existing schools attended by switching students, and (2), the characteristic must have a (causal)

effect on the student outcomes we study.60 Contemporaneous changes in teacher, principal, peer,

and other school characteristics have been previously documented (Appendix Tables A2, A3, and

A5). Prior research has shown that many of these mechanisms may be important determinants of

student outcomes.

In Table A6 we examine how the main effect estimates vary with the inclusion of time varying

controls for changes in the school and classroom environment at new schools. The first row of Table

A6 reports baseline one-parameter effect estimates from (2), for the subsample of students with

non-missing values for school characteristics.61 The second row includes an index of peer quality,

based on a prediction of test scores using demographic characteristics. The third and fourth rows

60This discussion and approach borrows from the method used by Card and Giuliano (2016) to examine how effect
estimates are explained by changes in classroom characteristics.

61This restriction primarily excludes students for whom teacher and principal assignments are missing, as row 3,
4, and 7 of the table include teacher and/or principal fixed effects in the model.

94



include teacher and principal fixed effects, respectively. The fifth row includes a control for whether

a multi-track school calendar was used in that school-year, while the sixth row includes a control

for school congestion, based on the ratio of current enrollment in a facility to 2013 enrollment, after

nearly all of the overcrowding in the district had been eliminated. Finally, the seventh row jointly

includes all aforementioned variables in the estimation.

Including controls for peer quality has no impact on any of the effect estimates. Teacher fixed

effects slightly attenuate the coefficient on math test scores, but not ELA. On the other hand,

attendance estimates actually increase with the inclusion of teacher effects. Taken together with

previous evidence that teacher at new schools had, if anything, lower value-added scores, we take

this as evidence that teacher quality is not a first-order mechanism mediating the new school

effects we document. Similarly, the inclusion of principal fixed effects has little impact on test score

estimates, although they attenuate the attendance effect and strongly increase the effort effect.

Principals often have discretion over school-wide attendance policies, and may also affect school

culture more broadly. However, given that there are relatively few principal switchers between

existing and new facilities in the data, we are wary of over-interpreting these results.

Controlling for whether a school is currently operating on a year-round multi-track calendar

has no impact on test score outcomes, but does mediate over half of the effect on student atten-

dance. Multi-track calendar schools sometimes had fewer total instructional days, and required

that students attend school during the summer (when absences may be more likely). These results

imply that multi-track calendars may be detrimental to student attendance, and that roughly half

of the attendance increase at new schools is due to the elimination of these non-standard school

schedules. On the other hand, while we found some evidence of positive effects for students who

stayed behind at existing schools and experienced reductions in overcrowding as a result of peer

outflows to new schools, we find little evidence that facility congestion is an important mechanism

for switching students; coefficient estimates are changed little with the inclusion of this control.

Including all mediators at once shows that, collectively, these variables explain very little of the

positive test score effects at new schools. Attendance effects are somewhat attenuated, which is

entirely driven by the multi-track calendar elimination. Effort effects are small and insignificant,
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although this was true for the baseline estimation on this subsample of students. Along with

previously presented evidence, we conclude that the results presented in Table A6 provide further

evidence that changes in peer quality, teacher quality, and principal quality at new schools are

quantitatively unimportant mechanisms for the new school effects.

D Robustness to Treatment Sample

Baseline estimates from one-parameter models for cognitive and non-cognitive outcomes in Tables

3 and 4 (columns 1 and 4) are reported in Table A8 for different sample definitions, varying the

set of students used as the control group for students switching to new schools. As test score

effects reflect the cumulative impact of multiple years of exposure to new schools, we compare one-

parameter estimates of the phase-in coefficients (β2) from models where we constrain β1 = β3 = 0.

Reassuringly, implied cumulative 4-year effects from parametric estimates in columns 1 and 4 of

Table 3 are indeed very similar to point estimates reported in Figure 4 for students who attended

new schools for four or more years. On the other hand, as we expect the flow of student effort and

attendance to increase immediately upon matriculation to a new school, we report one-parameter

estimates of the mean difference post-new school matriculation (β1) from models where we constrain

β2 = β3 = 0.

Column 1 repeats baseline estimates reported in Tables 3 and 4. Column 2 excludes students

who stay behind at existing schools when 10% or more of their cohort switches to a new school.

Estimated coefficients for ELA and days attended are only slightly larger, while estimates for math

and effort standardized scores are essentially identical.62 In column 3, we drop all students who

never attend new schools, using only “ever-treated” students. If students who switch to new schools

are systematically different from those who do not, inclusion of never-treated students as controls

may induce bias (though our inclusion of student fixed effects would absorb differences in outcome

levels). However, this does not appear to be the case, as estimates are nearly identical for all

62In Section B.1 we specifically examine indirect effects on these students, finding evidence of small positive effects
on ELA scores and attendance. Since these students make up only a small fraction of the overall “never treated”
group in baseline regressions, we would therefore expect the magnitude of differences between columns 1 and 2 to be
very small in the presence of small indirect effects.
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outcomes. Column 4 further excludes students who appear in the data sample in their first year

at a new school. Inclusion of these “always treated” students could be problematic if new school

constructions systematically induce students of different ability to enter LAUSD, perhaps from

private schools or from outside the district. As shown in column 4, estimated treatment effects

are, if anything, slightly larger when only switching students are included in the estimation sample,

implying effects are not generated by a resorting of students entering LAUSD to attend newly

constructed school facilities.

In column 5, we restrict the sample to include a balanced panel of students in event time. As

discussed in Section 3.1, ELA test scores are recorded for students in grades 2-11, and attendance

is measured for all grades. Math test scores are only included for grades 2-7, and effort marks

are only measured in elementary school (grades KG-5). Thus, for math and effort we include

students who have outcome data both one year before and one year after switching to a new school

facility. For ELA and attendance we need not be as restrictive, and use a balanced panel of students

with non-missing outcomes both 2 years before and after switching to a new facility. Estimated

treatment effects in column 5 are less precise, as expected given the reduction in sample size, but

point estimates are if anything slightly larger than those in columns 1-4. Results are robust to these

sample permutations, and we therefore conclude that baseline estimates including all students are

not biased by differential sample selection in event time.

E Treatment Effect Heterogeneity

Student effects: Heterogeneity

Heterogeneity in estimated student effects is presented in Table A7. Row 1 reports pooled estimates

using the entire sample, which correspond to baseline estimates presented in column 1 of Table 3.

In the remaining rows, the one-parameter treatment effect coefficients are interacted with student

demographic and other characteristics.63 Estimated cognitive effects are nearly twice as large for

girls than boys, and the differences are statistically significant (p < 0.01) for both math and ELA.

63Note that this constrains grade and year effects to be equivalent for each group, as opposed to running separate
regressions or also interacting fixed effects with demographic indicators.
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Effects on student effort are also larger for girls, although the magnitude of the difference is smaller

and not significant. The pattern is the opposite for attendance, as effects on the number of days

attended are larger for boys than girls, although the magnitude of the difference is small. These

differences suggest that substandard classroom facilities may inhibit girls’ learning more than boys,

although the mechanisms underlying this difference are unclear.

When results are split by level of parental education, a mixed picture emerges. Estimated

effects on math scores, ELA scores, and attendance are larger for students with parents who did

not attend any level of postsecondary education, although the difference in math scores is small

and insignificant. For student effort, estimated effects are over twice as large for students with

parents who have any level of postsecondary education than for those whose parents have a high

school education or less. Overall, the results provide little evidence that improvements in school

facilities systematically benefit students from lower socio-economic backgrounds.64 Recall however,

as shown in Table 2, that there is little variation in socio-economic status in LAUSD: nearly 90%

of treated students are eligible for free or reduced-price lunch and less than one-fifth have parents

with any level of post-secondary education.

Table A7 also shows estimates split by school level. Cognitive effects are insignificant for

students who attend new middle schools, although for math, the difference between elementary and

middle school effects is insignificant. For ELA, effects are large and significant in both elementary

and high school, and are essentially zero for students who switch to a new middle school. For

attendance, a clear pattern emerges: effects increase monotonically with school level, and are the

largest for students in new high schools. Insofar as student motivation is impacted by new facilities

and drives changes in student attendance, we would expect effects to grow with grade level as older

students have greater autonomy over attendance decisions than younger students, whose daily

attendance is more directly dictated by parental influence.

Finally, estimated effects are also split by whether a student switches schools during a “regular”

grade transition (KG, G6, G9) or switches to a new school in another grade. “Irregular” grade

transitions in off-grades occurred immediately following school construction, when students were

64Analogous breakdowns by race and free lunch status (not reported) show only small and insignificant differences.
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transferred between schools to fill enrollment at the new school. Overall, effects are similar for both

types of switching students, with only a large and significant difference in estimated attendance

gains. Estimated effects on cognitive outcomes and student effort are somewhat larger for initial

switchers who switch during an irregular grade transition, although only the difference in math

scores is statistically significant at the 10% level. For student attendance, effects are significantly

larger (5.2 days vs 1.9 days) for regular grade switchers. Students switching at a typical grade

transition are mostly switching in grades 6 and 9, which explains most of the difference in days

attended, as attendance gains are larger for middle and high school students than elementary school

switchers.65

E.1 Real estate effects: By school level

Estimates reported in Table 7 and Figure 6 include properties that received multiple new schools.

The average treated property in the sample was in the school attendance area of 1.1 new school

constructions, implying the the effect of receiving a single school (elementary, middle or high)

would be 9% lower than the baseline estimates, roughly a 5.5% increase in house prices per new

school construction using baseline estimates from column 2. In Table A10 we report house price

effects separately by school level. Results indicate that effects are largest for new elementary

and high schools, although we cannot statistically reject differences in estimated coefficients in

all specifications. Qualitatively, results are consistent with student effect heterogeneity reported

in Table A7, which provided evidence that test score effects were larger and more significant for

newly constructed elementary and high school than for new middle schools. As middle schools

represent the shortest duration of student attendance (3 years, vs 4 for high school and up to 6 for

elementary), it is unsurprising that the effects may be smaller.

65See Figure A6 for the distribution of student switching grades to new schools.
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E.2 Real estate effects: By neighborhood price level

While new school quality was similar across treated neighborhoods,66 the tax price of the new

facilities faced by district residents was greater in areas with higher property values.67 In Section 5,

we use the estimated house price effect for a welfare calculation, applying the coefficient to the mean

home value in LAUSD. But insofar as home prices capitalize local investment, one might expect

larger percentage effects on prices in low-price neighborhoods than in high-price neighborhoods.

If so, applying the average percentage treatment effect to the average house price could overstate

the aggregate impact. Empirically this does not appear to be the case. In Figure A13 we report

heterogeneity in estimated treatment effects by neighborhood prior mean house prices. We define

neighborhood prior mean house prices as the average house price in a neighborhood over all pre-

treatment years in the sample, 1995-2001. Estimates of β from equation (3) are shown interacted

with $100,000 bins of neighborhood prior mean house prices.68 With the exception of the $500,000

-$600,000 bin, all effects are similar and statistically significant, providing little evidence of smaller

estimated treatment effects in areas with higher property values.

E.3 Real estate effects: Local boundary and spillover effects

School assignment boundaries do not stay constant in perpetuity, and due to uncertainty over future

boundary locations, capitalization effects may be smaller near the boundaries within new school

zones. In addition, if home buyers substitute housing in existing school zones for housing purchases

in new school zones, prices could decline in other LAUSD neighborhoods. On the other hand, new

school constructions and changing neighborhood composition could lead to spillovers that increase

house prices both within and near new school zones. Prices in nearby neighborhoods that did

not receive new schools could increase due to positive externalities from neighborhood upgrading

(e.g. Hornbeck and Keniston (2017)). Moreover, new schools could act as a direct amenity that

66In conversations with district officials, it was stated that much of the variation in project cost was due to site-
specific acquisition expenses, and not systematic differences in new facility quality.

67Unlike in the model presented in Section 5.1, which assumed a constant lump sum tax for all households, property
owners in higher-priced areas contributed a greater dollar amount towards district bond revenues.

68Note: the $100K bin includes a small number of properties in neighborhoods with mean house prices below $100K;
the $600K bin includes properties in all neighborhoods with mean house prices greater than $600K in 1995-2001.
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generates positive benefits (e.g. increased park/playground space) both within and outside the

actual attendance areas. Estimates in Figure A15 and Appendix Table A13 assess the extent to

which the effect of new school constructions varies by distance to the attendance boundary, and

whether new schools generate spillover effects beyond the attendance zone.

Figure A15 reports how price effects vary by the distance to the school attendance zone bound-

ary. Each point represents a difference-in-differences estimate interacted with distance to the new

school attendance zone boundary, in 400 meter bins. Properties with positive distance are located

within new school boundaries, while those with negative distance are in school zones where the

residential assignment is to an existing school. Results indicate that within the new school zones,

capitalization is roughly constant at approximately 5% for all distance bins. We find no evidence

of smaller effects closer to the boundary. Properties within 400 meters but outside of the boundary

see statistically significant declines in house prices of 4.9% (SE 1.7%) post-construction, providing

evidence of negative spillovers for properties that are just outside the new school zone. These

negative spillover effects quickly diminish, however; point estimates for distances greater than 1.2

km are positive, though insignificant. Table A13 reports analogous estimates of treatment effects

by distance to the school attendance boundary, using linear interaction terms in lieu of separately

estimating effects in distance bins. Results are consistent between the two approaches. Overall, this

pattern of results is consistent with cross-neighborhood substitution within very narrowly defined

markets, wherein demand for properties located marginally outside the new school zones decreases

for prospective homebuyers searching within the vicinity a new school.
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