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Abstract

This paper studies bundling and price discrimination by a multiproduct firm selling
internet and phone services in an imperfect information setting. I derive the optimal
selling mechanism, and provide primitive conditions under which different bundling
strategies arise. Exploiting the optimality conditions of both the firm and the con-
sumer, I show that the model structure is nonparametrically identified and propose
a three-step semiparametric estimation procedure. An application to China Telecom
data shows that mixed bundling is beneficial to both the firm and the consumer relative
to component pricing.
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Ah, the Internet! The source of so much goodness. The font of e-mail, news, chat, TV,
blogs, books and Facebook. What would we do without it?

– David Pogue (The New York Times. March 21, 2012)

1 Introduction

Bundling and nonlinear pricing have become increasingly prevalent practices in sectors
such as travel services, retail and telecommunications. Many telecommunication service
providers are now offering bundled service packages with internet, phone and cable TV.
Moreover, they often offer nonlinear tariffs by providing additional discounts when sub-
scribers buy larger quantities.

This paper studies bundling and nonlinear pricing by a major telecommunication com-
pany in China, China Telecom, that sells internet and phone services to customers through
mixed bundling.1 It aims to evaluate the welfare effects of bundling. While bundling has be-
come a popular selling strategy for many products, the net effects on social welfare depend
on a number of factors whose influence can only be determined on the basis of empirical
analysis. Since I have data from a single market, there is no natural instruments to solve the
endogeneity problems of consumers’ purchased quantities. Relying solely on the consumer’s
optimality condition leads to biased estimates. Instead, I exploit both the firm’s and the
consumer’ optimality conditions to achieve identification.2

To this end, I propose a new multiproduct nonlinear pricing model and derive the optimal
selling mechanism. While the existing literature mostly addresses bundling and nonlinear
pricing separately, my model incorporates both simultaneously as recently done by Arm-
strong and Vickers (2010). Armstrong (1996) and Rochet and Chone (1998) show that
nonlinear pricing for a multiproduct firm is a complex problem because of multidimensional
screening. To date there exist only a few scattered papers that allow for multidimensional
types, which are needed to capture the basic economics of the environment in my empirical
application. My theoretical model explores another tractable way in which multidimensional
types can be incorporated in a multiproduct nonlinear pricing problem.

My model endogenizes both the firm’s bundling and pricing decisions. It explains which
bundling strategy should be adopted by the firm: component pricing, pure bundling, semi-
mixed bundling or mixed bundling. My model is general as it allows for various bundling

1As the world’s largest fixed-line operator as well as the largest wireless broadband operator, China
Telecom generated a revenue of about 321.58 billion RMB (51.69 billion US dollar) in 2013.

2This is reminiscent of Ekeland, Heckman, and Nesheim (2004) who show that the hedonic model is
identified nonparametrically within a single market by exploiting the full economic content of the model.
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incentives: utility complementarity, cost saving effects and dependence between the two
dimensions of asymmetric information. They have different roles in determining the welfare
effects of bundling relative to unbundling. In general, the effects of bundling on consumer
surplus and social welfare are ambiguous. On one hand, bundling may benefit the consumers
because consumers with a lower taste will not be excluded. On the other hand, bundling
can reduce consumer surplus because it provides an additional instrument for the firm to
discriminate across consumers.

My model allows for a separable utility into the benefit of consuming phone service only
and the complementary benefit of using both internet and phone services, as well as positively
dependent types for internet and phone services. I exploit the discrete nature of internet ser-
vice to solve the multidimensional screening problem. In particular, the number of effective
incentive compatibility constraints is significantly reduced. This allows me to characterize
the optimal exclusion conditions, the assignment schedules and the tariff functions in an
equivalent one-dimensional formulation. Specifically, the provider offers usage-based non-
linear tariffs for phone service and a fixed-fee for internet-only users. The curvature of the
tariffs for phone service will differ according to the internet service level. In other words,
bundling enables the provider to further discriminate consumers choosing different levels
of internet. In addition, I provide the conditions on the primitives under which the firm
optimally chooses his bundling strategy, i.e., component pricing, pure bundling, semi-mixed
bundling or mixed bundling. Bundling is more likely to dominate component pricing when
the cost to provide phone service is lower or consumers value phone service more highly.

I study the identification of the model structure from observables in a single market: the
price schedule and consumers’ purchased quantities. This part is reminiscent of the nonpara-
metric identification of auction models. See e.g. Guerre, Perrigne, and Vuong (2000) and
Athey and Haile (2007). Under a parameterization of the cost function and a multiplicative
separability of the utility function in the willingness-to-pay for phone service, I show that
the primitives are identified. In particular, the complementary utility function is identified
by exploiting the phone usage and tariff variation across consumers adopting different inter-
net levels. While cost saving effects are identified by exploiting the firm’s optimal exclusion
conditions, the dependence between the two types is identified using the one-to-one mapping
between phone usage and the corresponding consumer type. Following the identification
results, I propose a three-step semiparametric estimation method and apply it to China
Telecom data.

My analysis of China Telecom data shows that (i) internet and phone services tend to
be substitutes. Internet offers alternative communication tools such as email, skype and so
on, which can explain the substitutability with phone service. Thus the utility of a bundle
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user is smaller than the sum of the utilities for a phone service user only and a internet user
only. Moreover, this substitution effect is stronger with a higher level of internet because a
faster internet service allows better alternative communication tools; (ii) the additional fixed
cost to bundle internet with phone service is small. China Telecom mainly uses Asymmetric
Digital Subscriber Line (ADSL) to provide internet service. Thus internet is transmitted
through telephone lines. Moreover, fixed transaction costs such as mailing statement do not
increase much because bills are merged if the consumer uses a bundle; and (iii) a higher
speed internet adopter tends to have a higher willingness-to-pay for phone service. This
is consistent with the Federal Communications Commission 2009 survey which shows that
higher speed internet adopters tend to be better educated with higher incomes.

With the estimated model from China Telecom data, I run counterfactual experiments to
assess the gain for both the firm and consumers from bundling internet and phone services.
My simulation results show that unbundling would lead to a 10.14% decrease in firm’s profit
and a 17.18% decrease in consumer surplus. This arises from a larger proportion of consumers
who would be excluded under component pricing. Relative to mixed bundling, low-end
consumers would face more expensive tariff functions under component pricing, while high-
end consumers would face a less expensive one. As a result, the two low-end groups would
lose consumer surplus by 58.11% and 39.57%, respectively. On the contrary, high-end group
would see an increase in their surplus by 9.48%. Thus unbundling would only benefit high-
end consumers.

Literature
There is an extensive theoretical and empirical literature on bundling and nonlinear

pricing within an incomplete information framework. While the existing literature mostly
addresses bundling and nonlinear pricing separately, my model incorporates both simulta-
neously as recently done by Armstrong and Vickers (2010).

Regarding nonlinear pricing, Armstrong (2006) and Stole (2007) provide recent theoret-
ical surveys. Armstrong (1996) and Rochet and Chone (1998) show that nonlinear pricing
for a multiproduct firm is a complex problem because of multidimensional screening. On
the empirical side, Leslie (2004), McManus (2007) and Crawford and Shum (2007) render
this problem one-dimensional by, e.g., considering unit-demand consumers or homogenizing
the products. Using convenient parameterization of model primitives, Ivaldi and Martimort
(1994) and Miravete and Röller (2004) endogenize the firm’s pricing decision. My paper
introduces another tractable way in which multidimensional types can be incorporated in a
multiproduct nonlinear pricing problem.

Regarding bundling, the early theoretical literature considers a benchmark case with
two single unit products and additive separable utility. See, e.g., Adams and Yellen (1976),
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McAfee, McMillan, and Whinston (1989) and Salinger (1995). The main condition under
which pure or mixed bundling is preferred by the firm over component pricing relates to the
correlation of types for the two products. See also Chen and Riordan (2013). Considering
a large number of products, Armstrong (1999) and Bakos and Brynjolfsson (1999) show
that the firm can approximate the first-best by bundling. Chu, Leslie, and Sorensen (2011)
provide a simulation of bundle-size pricing. On the empirical side, Crawford and Yurukoglu
(2012) and Ho, Ho, and Mortimer (2012) consider the firm’s bundling decision as exogenous
and estimate the welfare effects of bundling between upstream and downstream firms. In
contrast, my model endogenizes both the firm’s bundling and pricing decisions. While the
previous studies focused on one or two bundling incentives, my paper allows for utility
complementarity, cost saving effects and dependence between multidimensional types.

This paper is also related to the telecommunication literature. Most studies focus on the
U.S. market. See, e.g., Miravete (2002) for field experiment data from Kentucky; Liu, Chin-
tagunta, and Zhu (2010) for households’ adoption of cable TV, local phone, and broadband
Internet access; Crawford and Yurukoglu (2012) for households’ choices of cable channels;
Grubb and Osborne (2013) for university students’ choices of mobile plans. Despite growing
public interest in the Chinese telecommunications market, little research has been done on
it. This paper is among the first to study consumer-level data from this market. See also
Luo, Perrigne, and Vuong (2014).

Recently, Luo, Perrigne, and Vuong (2012) rely on the seminal Armstrong (1996) model
to analyze nonlinear pricing of mobile voice and messaging services.3 However, the same
model cannot be applied for my purpose in this paper because Armstrong (1996) requires
continuous quantities. As I introduce discrete levels of internet service, either I obtain a
non-differentiable cost-based indirect utility function or there is effectively only one level
of internet service. This paper proposes a new multiproduct nonlinear pricing model that
incorporates product discreteness.

The paper is organized as follows. Section 2 presents the data. Section 3 introduces the
model, while Section 4 studies the identification of the model primitives and develops a semi-
parametric estimation procedure. Section 5 presents estimation results and counterfactuals.
Section 6 concludes. An appendix collects the proofs.

3Nonlinear pricing for a single product firm leads to a closed-form solution. See, e.g., Maskin and Riley
(1984). Most of the empirical literature, including Leslie (2004) and McManus (2007), uses discrete choice
models while considering prices exogenous. While endogenizing the price, Luo, Perrigne, and Vuong (2014)
show that the model primitives are identified and develop a nonparametric estimation method.

5



2 Data

The Chinese telecommunications industry is dominated by three state-owned firms:
China Telecom, China Unicom and China Mobile. Table 1 gives the nationwide market
structure by the number of subscribers. While China Mobile has dominated mobile services
since its inception, China Telecom and China Unicom roughly divide the territory in half
for internet and land line services: China Telecom in southern China and China Unicom in
northern China.

Table 1: Number of Subscribers as of Dec 31, 2009 (in millions)

Fixed Line Broadband Mobile Service
China Telecom 189 53 56
China Unicom 103 39 145
China Mobile 25 6 522

I collected data from China Telecom in a major metropolitan area in the South, where
it enjoys a market share of 85% for both internet and land line subscriptions. The sample is
composed of all new residential subscribers in August 2009, who receive internet and phone
services through the One Home label. For the month of September 2009, the data contain
for each subscriber: his/her choice of internet service, the total number of minutes used
and the amount paid. There are two internet speed levels, 1 Mbps or 2 Mbps, resulting in
three possible bundles with phone service: phone service only (no internet), a bundle with
1 Mbps internet and a bundle with 2 Mbps internet. Table 2 provides summary statistics
on the bill measured in RMB and the number of phone minutes by internet choice with
the corresponding number of subscribers. The bill paid by a consumer combines internet,
different types of phone calls, extra fees for peak hours usage and several add-ons such
as voice mail service, music on hold, ring tones, etc. The data do not provide detailed
information on these extra features and the corresponding prices. All these extra features
explain the important variability of the per minute rate. The consumption of phone calls
tends to increase with the level of internet. I remark that the per minute rate tends also to
increase with the level of internet.

China Telecom implements mixed bundling, i.e., internet and phone services are offered
either separately or in a bundle. The firm charges a fixed fee to internet-only users and a
usage-based tariff to bundle users. Specifically, the monthly fixed fee is 78 and 88 RMB for
1 and 2 Mbps, respectively. The usage-based tariff differs with the level of internet and is
nonlinear. Table 3 provides the regression of the bill on the number of total minutes and
its square for each bundle. The three tariffs are increasing and concave, i.e., consumers pay
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Table 2: Summary Statistics

Internet Variable N Mean S.D. Min Max

0
bill 7683 74.91 76.17 19 972.70
total minutes – 600.21 720.84 10 4990
per minute rate – 0.2129 0.2981 0.0057 9.2333

1
bill 11206 131.06 48.70 99.92 998.84
total minutes – 627.88 717.66 10 4956
per minute rate – 0.2496 0.4637 0.0060 10.4996

2
bill 12406 176.47 60.85 108 985.99
total minutes – 973.13 1045.65 10 4992
per minute rate – 0.2727 0.6037 0.0077 23.5360

a lower price per minute of call time when they consume more. Moreover, subscribers tend
to pay more for the same amount of phone calls when they choose a higher internet speed.
To see this, I calculate the mean of the per minute rate for the three bundles: 21.29 cents
with no internet, 24.96 cents with 1 Mbps internet, and 27.27 cents with 2 Mbps internet.
Table 3 suggests that bundling enables the provider to discriminate further phone service
users depending on their choice of internet.

Table 3: Regression of the Bill a

Internet (Mbps) 0 1 2
TotalMin 0.0859 0.0978 0.1049

(0.0010) (0.0013) (0.0011)
TotalMin2 -3.61e-06 -4.12e-06 -7.01e-06

(1.04e-07) (1.61e-07) (1.40e-07)
Constant 81.1750 112.1811 150.8603

(0.8021) (0.9854) (1.1487)
Adjusted R2 0.2711 0.4186 0.4086
a Note: standard errors are in parentheses.

Given that I need the tariff functions in view of Sections 3 and 4, I follow Luo (2011)
method to estimate the tariff function for each bundle while taking into account unobserved
add-ons and features. Details can be found in Appendix B. Figure 9 displays the resulting
three tariff functions denoted by T0(·), T1(·), T2(·) for the three bundles. I then construct a
quantity of phone usage q ≡ T−1

j (t), where t is his/her payment and j is his/her internet
choice. The quantity q aggregates all observed quantity of minutes as well as the unobserved
phone services chosen by the consumer. In Section 4 (on identification and estimation), I
consider that (t, q, j, Tj(·)) are the observables.
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3 The Model

3.1 Assumptions and Notations

In view of the discussion in Section 2, I consider a monopoly provider selling internet and
phone services as separate products or in a bundle. Internet is offered at several speed levels,
denoted by j ∈ J , where J ≡ {0, 1, 2, . . . , J} is the possible choice set of internet levels
with 0 denoting no internet.4 Phone service is measured by q ∈ R+. Due to implementation
difficulties of random contracts, the provider offers non-random nonlinear pricing schedules
of the general form T (q, j), with q ∈ R+ and j ∈ J .

A consumer is characterized by a vector of types (θ, β) ∈ Θ ≡ [θ, θ] × [β, β], where
0 < θ < θ < ∞ and β ≤ 0 < β < ∞. The type θ represents his taste or willingness-to-pay
for phone service and β defines the minimum internet need above which he will consider
buying internet. The latter can be nonpositive because some consumers may have negative
perspectives on internet. The vector (θ, β) is private information. That is, the provider does
not know the consumer’ types but knows the joint distribution F (·, ·) on [θ, θ]× [β, β].5

The consumer chooses internet speed and phone usage. Following Dubin and McFadden
(1984) and Hanemann (1984), I assume that there is no uncertainty in the decision on the
continuous variable (phone usage) at the time of the choice for internet. In other words,
both choices are made simultaneously. I make the following assumption on the consumer’s
utility function.

Assumption 1: A (θ, β) agent consuming (q, j) gets utility

U(q, j; θ, β) =

U(q, j; θ) for j ≥ β,

0 for j < β.

Assumption 1 prevents the consumer to choose a bundle with an internet speed that falls
below his minimum need β. It is analogous to the absolute spending limit assumption in
Che and Gale (2000). The value β results from the consumer’s internet use such as sending
emails, shopping online, playing games or streaming movies. Internet connection speed
determines whether these applications will run effectively. Thus I assume failing to meet the

4This choice set is exogenous given by technological constraint. See Mazzeo (2002) and Seim (2006) for
endogenizing the product decisions of the firm.

5Because modeling competition is out of the scope of this paper, we can view θ as a sufficient statistic
that summarizes preferences of the consumer for phone service by China Telecom and its competitors. See
Ivaldi and Martimort (1994) for an example. Moreover, I do not consider uncertainty on types, which leads
to a two-stage model. See, e.g., Miravete (2002), Miravete (2005), Narayanan, Chintagunta, and Miravete
(2007), Economides, Seim, and Viard (2008) and Grubb and Osborne (2013).
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minimum internet need leads to a very large disutility. Once the minimum internet speed is
satisfied, the underlying family of indifference curves of (q, j) bundles can be described by
the variation of a single parameter, i.e., the taste for phone service θ.6

Assumption 1 has several advantages. First, it makes the optimal selling mechanism with
multidimensional types tractable. See e.g. Armstrong (1996), Rochet and Chone (1998) and
Rochet and Stole (2003) for mechanism design with multidimensional types. Second, while
maintaining multidimensional types, this general utility function allows complementarity
between the two products as well as dependence between the types θ and β. Consequently,
all the possible scenarios of bundling may arise at the equilibrium such as component pricing,
pure bundling, semi-mixed bundling and mixed bundling.7

A (θ, β) consumer chooses a quantity of phone service and internet level (q, j) to maximize
his payoff

max
q∈R+,j∈J

U(q, j; θ)− T (q, j)

s.t. j ≥ β.

The firm needs to design a price schedule T (·, ·) that maximizes his expected profit. With-
out loss of generality, I apply the Revelation Principle.8 In particular, any implementable
allocation achieved with a price schedule T (·, ·) can also be achieved with a truthful direct
mechanism of the form {t(·, ·), q(·, ·), j(·, ·)}. This mechanism specifies the payment made
t(θ, β), the quantity of phone service q(θ, β) and internet speed j(θ, β) for a (θ, β) consumer.
As information goods, internet and phone services involve very small variable production
costs but substantial transaction costs per customer, such as usage recording, billing and
customer service. Thus I assume that the provider’s total cost is additively separable across
consumers. The cost to serve a consumer with a bundle (q, j) is denoted as c(q, j).

6An alternative assumption would be to consider the utility as U(q, j; θ) − δ(β) for j < β where δ(β)
captures the disutility for not getting the desired amount of internet speed. If δ(β) is large enough, Propo-
sition 1 extends resulting in the same optimal selling mechanism. However, the proofs of Lemmas 1 and 3
wound be significantly longer.

7The model can be extended to entertain both q and θ multidimensional relying on Armstrong (1996).
The basic idea would be to design a cost-based tariff. To do so, I would need to define the cost-based indirect
utility function V (c, j; θ) ≡ maxc(q1,q2,j)≤c U(q1, q2, j; θ1, θ2), and V (c, j; θ) = h(θ1, θ2)u(c, j) + v(c, j). This
model is left for future research. See also Luo, Perrigne, and Vuong (2012).

8My model is not standard as the consumer’s message space is a correspondence which depends on his
true taste. However, the Revelation Principle is still valid as the Nested Range Condition in Green and
Laffont (1986) is satisfied. I thank Albert Ma for pointing this paper out to me.

9



The optimal selling mechanism solves

max
t(·,·),q(·,·),j(·,·)

∫
Θ

[
t(θ, β)− c

(
q(θ, β), j(θ, β)

)]
f(θ, β)dθdβ

s.t. U(q(θ, β), j(θ, β); θ)− t(θ, β) ≥ U(q(θ̃, β̃), j(θ̃, β̃); θ)− t(θ̃, β̃),

U(q(θ, β), j(θ, β); θ)− t(θ, β) ≥ 0,

j(θ, β) ≥ β,

for all (θ, β) ∈ Θ and (θ̃, β̃) ∈ Θ such that j(θ̃, β̃) ≥ β. The first inequality is the incentive
compatibility (IC) constraint, which requires that the consumer truthfully reports his types.
The second inequality is the individual rationality (IR) constraint, which requires that the
consumer has the option of not buying anything from the provider. The outside option is
normalized to 0. The third inequality is the minimum need (MN) constraint, which requires
that the consumer can use an internet level above his minimum need for internet.

Hereafter, the subscript q (θ) denotes the partial derivative with respect to q (θ) respec-
tively. I make the following assumptions on the model structure.

Assumption 2: For all (θ, β) ∈ Θ, q ∈ R+, and j ∈ J , U(·, ·; ·), c(·, ·) and F (·, ·) satisfy

(i) U(0, 0; θ) = 0, Uq(q, j; θ) ≥ 0, Uqq(q, j; θ) ≤ 0, Uθ(q, j; θ) > 0, Uθθ(q, j; θ) ≤ 0,

(ii) Uqθ(q, j; θ) > 0,

(iii) ∂
∂θ
−Uqq(q,j;θ)
Uq(q,j;θ) ≤ 0,

(iv) cqq(q,j)
cq(q,j) >

Uqq(q,j;θ)
Uq(q,j;θ) ,

(v) H(θ|j) ≡ θ − 1−F (θ|D(β)=j)
f(θ|D(β)=j) is increasing in θ, where D(β) ≡ min

{
j ∈ J : j ≥ β

}
,

(vi) U(0, j; θ) = v(0, j) ≥ c(0, j), for some function v(·, ·) : Θ→ R
+.

All these assumptions with the exception of (vi) are standard in the nonlinear pricing
literature. See e.g. Maskin and Riley (1984). Assumption 2-(i) says that the outside option
(not buying) provides a zero utility and the marginal utility from phone service is nonnegative
and decreasing. Moreover, a consumer with a higher taste θ gets a larger utility and this
increase is diminishing as θ increases. Assumption 2-(ii) is the standard Spence-Mirrlees
single-crossing condition, which says that a consumer with a higher taste θ enjoys a larger
marginal payoff for phone usage across every (q, j). Assumption 2-(iii) implies nonincreasing
absolute risk aversion, while 2-(iv) requires that the cost function is not too concave in q.
The latter is satisfied by any linear or convex cost function. Assumption 2-(v) says that the
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conditional hazard rate does not decline too rapidly as θ increases, where the term D(β)
represents a (θ, β) consumer’s minimum acceptable internet speed. Most commonly used
unimodal distributions satisfy the hazard rate assumption. Assumption 2-(vi) says that the
willingness-to-pay for phone service θ does not matter to the consumer unless his phone
usage is positive. Thus internet-only users have no parameter θ in their utility function. I
call this assumption "weak complementarity". Consequently, the firm can charge a fixed fee
v(0, j) and leave no rent to internet-only users. Finally, Assumption 2-(vi) also implies that
serving internet as a separate product is profitable for the firm.

3.2 Characterization of the Optimal Selling Mechanism

The approach I adopt is close to the separability case discussed in Rochet and Stole
(2003). Specifically, I partition the set of types into one-dimensional subsets and reduce
the multidimensional problem to a unidimensional problem. To clarify ideas, I first study
the case when the provider observes β. Thus the problem becomes unidimensional and I
explicitly characterize the optimal selling mechanism. I then show that this mechanism is
still optimal under a standard affiliation assumption when β is not observed, thereby solving
the multidimensional screening problem.

I make the following assumption on the utility and the cost functions.

Assumption 3: For all θ ∈ [θ, θ], q ∈ R+ and j ∈ J , U(·, ·; ·) and c(·, ·) satisfy
(i) The utility function is additively separable as follows

U(q, j; θ) = u(q; θ) + v(q, j),

where u(·; ·) satisfies u(0; θ) = 0.9

(ii) For all j̃ > j, where j̃ ∈ J

Uq(q, j̃; θ)− Uq(q, j; θ) ≤ cq(q, j̃)− cq(q, j),

v(0, j̃)− v(0, j) ≤ c(0, j̃)− c(0, j).

Assumption 3-(i) borrows from Sundararajan (2003) and Chen and Luo (2012) in the
context of nonlinear pricing with network effects where j is replaced by the total quantity
of product used by all consumers in the market Q =

∫ θ
θ q(θ)f(θ)dθ. I remark that the cross

derivative Uqj(·, ·; ·) becomes independent of θ. Although the interaction between internet
and phone services is the same for consumers with different tastes, I allow this interaction to

9The utility U(q, j; θ) = u(q; θ) + v(q, j) + ω(θ, j) is more general but does not satisfy the weak comple-
mentarity assumption. See Assumption 2-(vi).
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vary with the bundle. Hereafter, I call u(·; ·) the intrinsic utility function for phone service,
and v(·, ·) the complementary utility function for the bundle. However, I do not impose any
sign restriction on the cross derivative of v(·, ·).10

Assumption 3-(ii) says that the increment of marginal cost for phone service is larger
than the marginal utility when one increases the internet level. Similarly, the cost increment
for serving internet only is larger than the corresponding incremental utility. It implies
U(q, j̃; θ)− c(q, j̃) ≤ U(q, j; θ)− c(q, j). Hence, when the provider observes (θ, β), he always
prefers to assign the minimum internet speed the consumer can accept.

Solving the Model when β is Observed
When β is observed, the provider solves the following problem for each value of β

max
t(·,β),q(·,β),j(·,β)

∫ θ

θ

[
t(θ, β)− c(q(θ, β), j(θ, β))

]
f(θ|β)dθ

s.t. U(q(θ, β), j(θ, β); θ)− t(θ, β) ≥ U(q(θ̃, β), j(θ̃, β); θ)− t(θ̃, β),

U(q(θ, β), j(θ, β); θ)− t(θ, β) ≥ 0,

j(θ, β) ≥ β,

for all (θ, β) and (θ̃, β) such that j(θ̃, β) ≥ β. Since the consumer cannot misreport β, the
two-dimensional IC and IR constraints reduce to one-dimensional constraints. Moreover, the
information structure reduces to the conditional density f(θ|β). The problem then becomes
a multiproduct nonlinear pricing problem in which a consumer’s private information is one-
dimensional. I denote the optimal selling mechanism as {t∗(·, ·), q∗(·, ·), j∗(·, ·)}.

I can now show that the problem reduces to several standard single product nonlinear
pricing problems. I need first to show that the provider will always assign the minimum
internet speed D(β) that the consumer can accept when only β is observed. This gives the
following lemma.

Lemma 1: Under Assumptions 1 and 3, j∗(θ, β) = D(β), q∗(θ, β) = q∗
(
θ,D(β)

)
, and

t∗(θ, β) = t∗
(
θ,D(β)

)
for all (θ, β) ∈ Θ.

Lemma 1 says that β only affects the optimal selling mechanism through the step function
D(β).11 Thus consumers having the same minimum acceptable internet speed D(β) face
the same phone service assignment q∗(·, ·), the same internet assignment j∗(·, ·) and price
schedule t∗(·, ·). The following lemma characterizes the optimal mechanism.

10Liu, Chintagunta, and Zhu (2010) find evidence of strong complementarity between local phone con-
sumption and DSL internet. In view of their results, I call v(·, ·) the complementary utility function.

11By considering non-random nonlinear pricing schedules of the form T (x, j), consumers’ report of β is
constrained to belong to J .
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Lemma 2: Under Assumptions 1, 2 and 3, for any given value of β, the optimal phone
service assignment q∗(·, β) and price schedule t∗(·, β) satisfy:

(i) There exists a cutoff taste θcβ ∈ [θ, θ], above which consumers are assigned a bundle
with internet D(β) and phone service, and below which they are assigned internet D(β) only.

(ii) If θ ∈ [θcβ, θ], q∗(·, β) and t∗(·, β) are solution of

Uq
[
q∗(θ, β), D(β); θ

]
= cq

[
q∗(θ, β), D(β)

]
+ Uqθ

[
q∗(θ, β), D(β); θ

]1− F [θ|D(β)]
f [θ|D(β)] , (1)

t∗(θ, β) = U
[
q∗(θ, β), D(β); θ

]
−
∫ θ

θc
β

Uθ
[
q∗(x, β), D(β);x

]
dx. (2)

Moreover, the cutoff taste θcβ is defined as

θcβ ≡ min
{
θ ∈ [θ, θ] : M

(
θ,D(β)

)
≥ 0

}
, (3)

where M(θ, j)≡ [U(q∗(θ, j), j; θ)−v(0, j)]−[c(q∗(θ, j), j)− c(0, j)]−Uθ(q∗(θ, j), j; θ)1−F (θ|j)
f(θ|j) .

(iii) If θ ∈ [θ, θcβ), q∗(θ, β) = 0 and t∗(θ, β) = v
(
0, D(β)

)
.

The proof is in two steps. In a first step, I derive the optimal selling mechanism
conditionally on serving consumers with a willingness-to-pay equal or above an arbitrary
cutoff value θc. Thus the optimal selling mechanism is defined by (1) and (2) by re-
placing θcβ with θc. An important feature is that the phone service assignment q(·, ·)
does not depend on θc while the price schedule t(·, ·) is decreasing in θc. In a sec-
ond step, I find the optimal cutoff value θc that maximizes the profit. It is defined by
(3). Intuitively, when the firm slightly lowers θc, the term [U(q∗(θc, j), j; θc) − v(0, j)]
is the incremental utility for a (θc, j) consumer switching from internet only to a bun-
dle, [c(q∗(θc, j), j) − c(0, j)] is the incremental cost for the firm, and Uθ(q∗(θc, j), j; θc) is
the additional informational rent everyone in the customer base gets. Therefore, the term
{[U

(
q∗(θc, j), j; θc)−v(0, j)]−[c(q∗(θc, j), j)−c(0, j)]}f(θc|j) is the marginal gain for expand-

ing the customer base by lowering θc, while Uθ(q∗(θc, j), j; θc)[1−F (θc|j)] is the corresponding
marginal loss for reducing the tariff to every consumer above θc. Equation (3) balances these
two effects. In addition, it is easy to see that θcβ = θcj , where j = D(β). The term β only
affects the cutoff taste through the step function D(β). My results are in the spirits of Arm-
strong and Rochet (1999) recommendation where they advise to discretize the type space to
simplify the multidimensional screening problem.

Equations (1) and (2) define the phone service assignment q∗(·, ·) and price schedule t∗(·, ·)
for the bundle users. In particular, (1) says that the marginal payoff for each type equals the
marginal cost plus a nonnegative distortion term due to incomplete information. Intuitively,
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{Uq[q∗(θ, β), D(β); θ]−cq[q∗(θ, β), D(β)]}f(θ|D(β)) represents the firm’s desire to implement
an efficient allocation weighted by the density while Uqθ(q∗(θ, β), D(β); θ)[1 − F (θ|D(β))]
represents the informational rent the firm has to give up to the consumer for revealing their
private information. Equation (2) says that the payment equals the consumer’s utility minus
some informational rent. Following Assumption 2, the resulting usage-based tariffs T ∗(·, j)
are increasing and concave for all j.

If a consumer is excluded from consuming phone service, then his utility function becomes
U(q, j; θ) = v(0, j) by Assumption 2-(vi). Since there is no asymmetric information, the
firm can take all the consumer surplus by charging T ∗(0, j) = v(0, j), leading to t∗(θ, β) =
v(0, D(β)), for any (θ, β) ∈ Θ such that θ ∈ [θ, θcβ).

Solving the Model when both θ and β are Unobserved
I now show that the previous mechanism is still optimal when both θ and β are un-

observed. This constitutes an interesting result given the complexity of multidimensional
screening problems.

Before showing that the second-best mechanism is the one given in Lemma 2, I make an
affiliation assumption on the joint distribution of θ and β.

Assumption 4: ∀θ ∈ [θ, θ] and ∀j ∈ J , 1−F (θ|D(β)=j)
f(θ|D(β)=j) is increasing in j.

Assumption 4 follows Che and Gale (2000). It is equivalent to assume H(θ|j) be decreas-
ing in j. Intuitively, a consumer is relatively more likely to have a higher willingness-to-pay
for phone service if he needs a higher speed internet. According to Horrigan (2010), the Fed-
eral Communications Commission 2009 survey shows that higher speed internet adopters
tend to be better educated with higher incomes. Since phone service is a normal good, I
consider it as a reasonable assumption.

First, I establish the desirability of the minimum acceptable internet speed. Let
{tsb(·, ·), qsb(·, ·), jsb(·, ·)} be the optimal selling mechanism when both θ and β are private
information. The following lemma parallels Lemma 1.

Lemma 3: Under Assumptions 1 and 3, jsb(θ, β) = D(β), qsb(θ, β) = qsb
(
θ,D(β)

)
, and

tsb(θ, β) = tsb
(
θ,D(β)

)
for all (θ, β) ∈ Θ.

Second, I simplify the firm’s problem under Assumption 1. The basic idea is to reduce the
number of binding IC constraints. Since the consumer can either overreport, underreport
or report truthfully each parameter of his private information. The number of potential
deviations increases to eight in a two-dimensional problem from two in a unidimensional
problem. However, I show that only three deviations matter as stated in the next lemma.
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Lemma 4: Following Assumption 1, when both θ and β are private information, the IC
constraints are satisfied if and only if the following two one-dimensional IC constraints are
satisfied. Namely,

U(q(θ, β), D(β); θ)−t(θ, β)≥U(q(θ̃, β), D(β); θ)−t(θ̃, β) ∀θ, β, θ̃,

U(q(θ, β), D(β); θ)− t(θ, β)≥U(q(θ, β̃), D(β̃); θ)− t(θ, β̃) ∀θ, β, β̃ such that D(β̃) ≥ β.

Following Assumption 1, the (θ, β) and (θ, β̃) consumers have the same preferences over
outcomes as long as their minimum needs for internet are satisfied. If the two one-dimensional
IC constraints above are true, then the (θ, β) consumer does not want to pretend to be (θ, β̃),
and the (θ, β̃) consumer does not want to pretend to be (θ̃, β̃). Therefore, by transitivity, the
(θ, β) consumer has no incentive to pretend to be (θ̃, β̃). Thus consumers report truthfully.
Intuitively, if one considers θ on the x-axis and β on the y-axis, the potential deviations can
be horizontal for θ and vertical for β. Lemma 4 tells us that the only binding constraints are
only upward for β and upward and downward for θ, while the other deviations are redundant,
thereby reducing the number of binding constraints to three.

Third, I show that if the firm implements {t∗(·, ·), q∗(·, ·), j∗(·, ·)}, the consumer has no
incentive to misreport his/her internet need β given a willingness-to-pay θ.

Lemma 5: Under Assumptions 1, 2, 3 and 4, q∗(θ, β) is decreasing in β and θcβ is increasing
in β. Moreover, T ∗(q, j)− v(q, j) is increasing in j.

The intuition is as follows. Following Assumption 4, the firm knows that a consumer
is more likely to have a higher taste for phone service when he needs a higher speed inter-
net. By exploiting this positive dependence, it can charge the consumer more, adjusted for
complementary utility, when the consumer chooses a higher j. This in turn implies that
the subscriber would consume less phone service giving a decreasing assignment q∗(·, ·) in β.
While the optimal exclusion is the result of a trade-off between the marginal gain and the
loss of expanding the customer base, Assumption 4 favors the latter as one moves from a
low speed internet to a high speed one. Therefore, it becomes more profitable to exclude a
larger range of low taste consumers if they adopt a higher speed internet. This explains why
the cutoff value θcβ is increasing in β. Under Assumption 3, a (θ, β) consumer solves

max
(q,j):j≥β

u(q; θ) + v(q, j)− T ∗(q, j).

Following Lemma 5, because T ∗(q, j)− v(q, j) is increasing in j, the additional payment for
a higher internet level is larger than the additional utility it brings. Therefore, the consumer
will choose the minimum internet speed meeting his needs.
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Finally, we are now in a position to show that {t∗(·, ·), q∗(·, ·), j∗(·, ·)} is the optimal
mechanism when both θ and β are private information. When β is observed, the firm’s
profit is weakly higher than when β is unobserved. Thus, I only need to show that the
two-dimensional IC and IR constraints still hold if the provider uses {t∗(·, ·), q∗(·, ·), j∗(·, ·)}.
Regarding the IR constraints, they are satisfied automatically because they are the same. Fol-
lowing Lemma 4, the IC constraints are satisfied as long as the two one-dimensional IC con-
straints are. On one hand, misreporting θ is not profitable because of {t∗(·, ·), q∗(·, ·), j∗(·, ·)}.
On the other hand, misreporting β is not profitable either following Lemma 5. The following
proposition summarizes these results.

Proposition 1: Under Assumptions 1, 2, 3 and 4, we have t∗(·, ·) = tsb(·, ·), q∗(·, ·) = qsb(·, ·)
and t∗(·, ·) = jsb(·, ·).

Armstrong and Rochet (1999) remark that phenomena such as bunching and exclusion
that arise in multiproduct nonlinear pricing models create technical difficulties, making it
hard to generate closed-form solutions. Following Proposition 1, the optimal selling mecha-
nism reduces to a combination of optimal selling mechanisms for a series of one-dimensional
problems. Therefore, I characterize explicitly the optimal exclusion, the assignment sched-
ules and the tariff functions. In my model, bunching arises at equilibrium through D(β) and
because people with low taste for phone service will consume internet only.

Bundling Decisions
In view of Lemma 2 and Proposition 1, consumers are segmented into several groups

based on their internet needs and tastes for phone service. All consumers with β such that
D(β) = j uses the same internet level, j. I refer to them as group j. Consumers in group j
are further divided into two parts according to their values of θ, namely, [θ, θcj) and [θcj , θ].
The former or low taste subscribers will consume internet service j only, while the latter or
high taste subscribers consume the bundle with q > 0 and internet service j. I call these two
groups internet j users and bundle j users, respectively. In addition, the firm proposes J
usage-based tariffs to bundle users (q > 0 and j > 0) and phone-only users (q > 0 and j = 0).
It proposes J − 1 fixed fees to internet-only users (q = 0 and j > 0). These correspond to
the data I will analyze in Section 5.

The results on optimal exclusion have important implications on bundling choices. For
instance, the firm will sell internet j separately if θcj = θ. Similarly, he will sell internet
only in a bundle if θcj = θ. For any other value of θcj ∈ (θ, θ), the firm will propose both.
Thus, my model is general as it allows the three possible incentives to bundle, namely utility
complementarity, cost efficiency and correlation between θ and β. To some extent, my
model confirms Schmalensee (1984) and Fang and Norman (2006) results, i.e. the higher the
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cost or the lower the valuation, the less likely that bundling dominates component pricing.
Moreover, my model admits a variety of bundling outcomes, including component pricing,
pure bundling, semi-mixed bundling and mixed bundling.

When it is too costly to provide phone service to internet users, i.e. β ≤ 0 and θcj = θ for
all j > 0, the firm can exclude all internet users from consuming phone service. In this case,
the firm would sell internet and phone services separately, which is known as component
pricing (CP). When it is optimal for the firm to exclude some but not all internet users
from consuming phone service, the provider wound sell internet and phone services not only
as separate products but also in a bundle. If all the possible combinations of internet and
phone services are offered, i.e. β ≤ 0 and θcj ∈ (θ, θ) for all j ∈ J , the firm implements
mixed bundling (MB). If some combination is not offered, the firm implements semi-mixed
bundling (SMB). Moreover, if we let β > 0, pure bundling (PB) arises when it is optimal for
the firm to serve phone service to everyone, i.e. β > 0 and θcj = θ for all j > 0.

4 Identification and Estimation

In view of Section 3, the optimal mechanism is defined by (1), (2) and (3). Because
the data display mixed bundling, I focus on this case. However, the results below can be
readily adapted to the other cases of bundling. It is useful to recall the model structure
and the observables. The model primitives are {u(·; ·), v(·, ·), F (·, ·), c(·, ·)}, which are the
intrinsic utility function from consuming phone service, the complementary utility function
from consuming internet and phone services, the joint distribution of consumers’ types and
the firm’s cost function. Because j can take values in {0, 1, 2}, the model primitives become
{u(·; ·), vj(·), Fj(·), cj(·)}, where vj(·) ≡ v(·, j), Fj(·) ≡ F (·|D(β) = j) and cj(·) ≡ c(·, j)
for j = 0, 1, 2. Regarding the observables, following Section 2, I observe the tariff Tj(·) for
j = 0, 1, 2. Moreover, data on internet-only users provide information on Tj(0) for j = 1, 2.
Since I observe q, we have the distribution of consumption G∗j(·) for j = 0, 1, 2 and q > 0 as
well as Gj(0) from internet-only users. To summarize, the observables are {Tj(·), G∗j(·)} for
q > 0 and j = 0, 1, 2 and {Tj(0), Gj(0)} for j = 1, 2.

4.1 Identification

To identify the model primitives, I exploit the variation offered by the data across the
different groups of users, including those using either internet or phone only, in addition to
the first-order conditions (1), (2) and (3). I proceed in several steps. First, I study which
primitives the data on internet-only users and phone-only users will allow me to identify.
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While assuming multiplicative separability of the intrinsic utility function and linearity of
the cost function, I will show that the intrinsic utility function, the marginal cost parameter
as well as the conditional density of θ for j = 0 are identified. Second, I investigate the
identification of the complementary utility function and the conditional densities of θ for
j = 1, 2 from the bundle users data. Third, I show how to exploit the firm’s optimal
exclusion conditions to identify the fixed cost parameters. Therefore, the optimality of tariffs
and bundling as well as one-to-one mapping at the equilibrium between the consumption of
phone service and the unknown type θ will play crucial roles. 12

Identifying Assumptions
I make the following identifying assumptions on the model primitives. Hereafter, the

prime denotes a derivative with respect to q.

Assumption 5: For all θ ∈ [θ, θ] and q ∈ R+,
(i) The intrinsic utility u(q; θ) satisfies

u(q; θ) = θu0(q),

with u0(0) = 0, u′0(q) ≥ 0 and u′′0(q) ≤ 0.
(ii) The cost function is of the form

cj(q) = κ01(q > 0) + κj1(j > 0)−∆j1(qj > 0) + γq,

where γ > 0, κ0 > 0, κj > 0, and ∆j ≥ 0 for j = 1, 2.
(iii) v0(q) = 0.

Following the literature, I assume multiplicative separability of the intrinsic utility func-
tion in the type θ as stated in Assumption 5-(i). Thus, I interpret u0(·) as the base intrinsic
utility function. However, Assumption 5-(i) will not be sufficient to achieve identification. I
provide an intuitive argument. Equations (1) and (2) provide 2J one-to-one mappings be-
tween θ and q and between t and q, respectively. On the other hand, I have to identify J cost
functions cj(·), J complementary utility functions vj(·), and J conditional type distributions
Fj(·) as well as the base intrinsic utility function u0(·). It is clear that additional restrictions
need to be imposed.

12From the auction literature, the one-to-one mapping at the equilibrium plays a crucial role to identify the
model primitives. See Guerre, Perrigne, and Vuong (2000) and Athey and Haile (2007). In a single product
nonlinear pricing model, Luo, Perrigne, and Vuong (2014) show that the optimality of tariff in addition
to the one-to-one mapping between the observed quantity and the unobserved taste are both needed to
identify the model primitives. The multidimensional screening problem adds additional difficulties. See e.g.
Luo, Perrigne, and Vuong (2012). In the context of insurance, Aryal, Perrigne, and Vuong (2009) exploit a
repeated outcome, i.e. the number of accidents, to identify the model structure.
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Several identifying assumptions can be entertained. Following Section 2, the production
of telecommunication services tends to involve high fixed costs and small marginal costs.
Therefore, I assume a linear cost function as stated in Assumption 5-(ii). The term κ0 is a
fixed cost associated to any positive production of phone service, while κj is a fixed cost to
provide internet level j. The term ∆j is the difference between the sum of these two fixed
costs and the fixed cost to sell a bundle. It measures the cost saving effect of selling internet
and phone services as a bundle.

Lastly, Assumption 5-(iii) says that there is no complementary utility when there is no
consumption of internet. It implies that v′0(q) = 0 for all q ∈ R+.13 I can then rewrite the
first-order conditions (1) and (2) defining the optimal selling mechanism. Namely,

θu′0(q) + v′j(q) = γ + u′0(q)1− Fj(θ)
fj(θ)

, ∀q ∈ [q
j
, qj] (4)

T ′j(q) = θu′0(q) + v′j(q), ∀q ∈ [q
j
, qj] (5)

where q
j

= q∗(θcj , j) and qj = q∗(θ, j) for j = 0, 1, 2. Together with the boundary condi-
tions Tj(qj) = θcju0(q

j
) + vj(qj) and the cutoff tastes in (3), (4) and (5) define the optimal

mechanism.

Identification of γ, vj(0), Fj(θcj), F0(·) and u0(·)
Under Assumption 5-(ii), the marginal variable cost enters in (4). Thus, γ is identified

from (4) and (5) evaluated at the maximum phone usage. This gives γ = T ′j(qj), ∀j ∈
{0, 1, 2}. The identification of the fixed cost parameters κ0, κj and ∆j will be shown later.

From the model of Section 3, internet-only users pay Tj(0) = vj(0) for any j = 1, 2,
which renders the identification of vj(0) immediate. Moreover, the proportion of individuals
using internet only among their group of users gives Fj(θcj) for j = 1, 2. These results are
summarized in the following lemma while the identification of θcj will be addressed later.

Lemma 6: γ is identified. vj(0) and Fj(θcj) are identified for j = 1, 2.

I now turn to data from phone-only users. Identification in this group reduces to the
single product nonlinear pricing model studied by Luo, Perrigne, and Vuong (2014). In
particular, the first-order conditions (4) and (5) for j = 0 are equivalent to

u′0(q) = T ′0(q)ξ(q)/θ, (6)

θ0(q) = θ/ξ(q), (7)

13An alternative normalization would be to assume a similar value for another internet level instead.
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where
ξ(q) =

[
1−G∗0(q)

]1− γ

T ′0(q) exp
{
γ
∫ q0

q

T ′′0 (x)
T ′0(x)2 log

[
1−G∗0(x)

]
dx
}
, (8)

with γ = T ′0(q0) and q ∈ [q0, q0].
Equations (6) and (7) show that the marginal intrinsic utility u′0(·) and the unobserved

taste for phone service θ for phone-only users are identified up to a constant. In view of this,
a natural normalization is θ=1.

Assumption 6: θ = 1.

Under such a normalization, u0(·) can be interpreted as the intrinsic utility function for
the highest taste. Since θc0 = θ0(q0), θc0 is identified. Moreover, I can further identify u0(·)
using the boundary condition T0(q0) = θc0u0(q0). Namely,

u0(q) =
T0(q0)
θc0

+
∫ q

q0
u′0(x)dx, (9)

for all q ∈ [q0, q0]. The next proposition summarizes these results.

Proposition 2: Under Assumptions 1-6, the base intrinsic utility function u0(·) and the type
θ0(·) are identified on [q0, q0]. Moreover, the truncated conditional taste distribution F ∗0 (·) is
identified on [θc0, θ], while the conditional taste distribution F0(·) is identified up to a constant
on [θc0, θ].

The distribution F0(·) is identified up to a constant because I do not observe the pro-
portion of consumers who do not buy internet and phone services. Moreover, usage and
payment data do not provide any variation to identify u(·) and F0(·) on [0, q0) and [θ, θc0),
respectively.

Identification of vj(·) and Fj(·)
I now turn to data from bundle j users to address the identification of vj(·) and Fj(·) for

j = 1, 2. My proof of identification is contructive. I exploit the one-to-one mapping between
phone usage q and taste θ for bundle users, which implies for each q ∈ [q

j
, qj], G∗j(q) =

[Fj(θ) − Fj(θcj)]/[1 − Fj(θcj)]. Taking the derivative gives g∗j (q) = θ′j(q)fj(θ)/[1 − Fj(θcj)].
Thus the inverse hazard rate becomes [1− Fj(θ)]/fj(θ) = θ′j(q)[1−G∗j(q)]/g∗j (q).

From (4), replacing the left-hand side by T ′j(q) and [1 − Fj(θ)]/fj(θ) by θ′j(q)[1 −
G∗j(q)]/g∗j (q) in the right-hand side gives

θ′j(q) =
T ′j(q)− γ
u′0(q)

g∗j (q)
1−G∗j(q)

.
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Integrating both sides from q to qj leads to

θj(q) = 1−
∫ qj

q

T ′j(x)− γ
u′0(x)

g∗j (x)
1−G∗j(x)dx, (10)

where the normalization of Assumption 6 is used. Equation (10) shows that θj(·) is identified
wherever both u′0(·) is identified and g∗j (·) is observed. While qj ≤ q0 by Lemma 5, it is not
necessary that q

j
≥ q0. For convenience, I assume that q

j
≥ q0 hereafter.14

Once θj(·) is identified, v′j(·) is identified by plugging (10) into (5). That is,

v′j(q) = T ′j(q)− θj(q)u′0(q). (11)

By Equation (10), θcj is identified as θcj = θj(qj). Using the boundary condition Tj(qj) =
θcju0(q

j
) + vj(qj), the complementary utility function vj(·) is identified as

vj(q) = Tj(qj)− θ
c
ju0(q

j
) +

∫ q

q
j

v′j(x)dx. (12)

The following proposition summarizes these results.

Proposition 3: Under Assumptions 1-6, the complementary utility function vj(·) and the
type θj(·) are identified on [q

j
, qj], where j = 1, 2. Moreover, the truncated conditional

taste distribution F ∗j (·) is identified on [θcj , θ], while the conditional taste distribution Fj(·)
is identified on [θcj , θ].

The type distribution Fj(·) can be recovered from F ∗j (·) on [θcj , θ] because (i) I observe
the proportion of consumers whose phone usage is less than q

j
, Fj(θcj), and (ii) Fj(·) =

Fj(θcj) + [1− Fj(θcj)]F ∗j (·). On the other hand, usage and payment data do not provide any
variation to identify vj(·) and Fj(·) on [0, q

j
) and [θ, θcj), respectively.

To understand better the intuition behind these results, I consider alternative expressions
for (10) and (11). Using (5), (10) can be rewritten equivalently as

θj(q) = 1−
∫ qj

q

T ′j(x)− γ
T ′0(x)

g∗j (x)
1−G∗j(x)θ0(x)dx. (13)

Intuitively, the difference between a consumer’s taste and the highest taste is the weighted
average of θ0(·) over [q, qj], where the weight is determined by the slope of the tariff functions
and the conditional distribution of phone usage.

14My data confirm this. Otherwise, bounds can be derived.
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Similarly, (11) can be rewritten equivalently as

v′j(q) = T ′j(q)−
θj(q)
θ0(q)T

′
0(q).

Here again, the weighted shape difference between the two tariff functions Tj(·) and T0(·) is
used to recover the complementary utility function vj(·). The weight is determined by the
ratio of corresponding tastes θj(q)/θ0(q).

Identification of κ0, κj and ∆j

It remains to address the identification of the fixed cost parameters κ0, κj and ∆j.
Among the equilibrium conditions, only the cutoff tastes involve the fixed costs. First, I use
information from phone-only user data to identify κ0. Second, I exploit information from
bundle users data to identify ∆1 and ∆2. However, κ1 and κ2 remain not identified. By
Assumption 2-(vi), κ1 and κ2 are bounded by the monthly fees for internet-only users. The
following proposition formalizes these results.

Proposition 4: Under Assumptions 1-6, we have
(i) The parameter κ0 is identified as κ0 = γ

T ′0(q0)T0(q0)− γq0 .
(ii) The parameters ∆1 and ∆2 are identified as

∆j =
[ γ

T ′0(q0)T0(q0)−γq0

]
−
[
Tj(qj)−Tj(0)−γq

j

]
+θ0(q

j
)u0(q

j
)
T ′j(qj)−γ
T ′0(q

j
) , for j=1, 2

(iii) The parameters κ1 and κ2 are bounded, i.e. κj ≤ Tj(0) for j = 1, 2.

Regarding the identification of the fixed cost parameters, following (3), some consumers
switch from bundle-j to internet-j as the firm lowers the cutoff taste. As a result, the
difference in the fixed cost (κ0 + κj − ∆j) − κj affects the optimality of the cutoff tastes.
Thus κ0 and ∆j relate to the utility, cost and inverse hazard rate at the cutoff values.
The latter are identified from following Propositions 2 and 3 as discussed above, thereby
identifying κ0 and ∆j.

4.2 Estimation

My proof of identification is constructive and can be used to derive a semiparameteric
estimator. Since the estimation of vj(0) and F (θcj) can be calculated directly from internet-
only users data, I focus on the estimation of all the other primitives. I then use data
from phone-only and bundle users. For convenience, I order them lexicographically by their
consumption bundles. For all the consumers having a positive quantity of phone service,
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I group those using the same internet level j = 0, 1, 2 and then order them according to
their phone usage q. I denote N∗j as the number of users for group j. This would give
{(qij, tij)}i=1,...,N∗j , where 0 < q1

j ≤ q2
j ≤ . . . ≤ q

N∗j
j and 0 < t1j ≤ t2j ≤ . . . ≤ t

N∗j
j .

I propose a three-step estimation procedure. First, I estimate γ and ξ(·) using γ = T ′0(q0)
and (8), respectively. An estimate for ξ(·) will allow me (i) to obtain an estimate of the
marginal intrinsic utility function u′0(·) using (6) and (ii) to construct a sample of pseudo
tastes for phone-only users from (7). To complete the estimation of u0(·), I will estimate
θc0 and u0(q0) using θc0 = θ0(q0) and T0(q0) = θc0u0(q0), respectively. Second, the estimated
marginal intrinsic utility function is used to (i) estimate the marginal complementary utility
functions v′j(·) using (11) and (ii) to construct a sample of pseudo tastes for bundle-j users
from (13). To complete the estimation of vj(·), I will estimate θcj , u0(q

j
) and vj(qj) using

θcj = θj(qj) and Tj(qj) = θcju0(q
j
) + vj(qj), respectively. Third, I use the estimated pseudo

tastes to estimate the conditional taste densities. Details can be found in Appendix B.

5 Empirical Analysis of China Telecom Data

5.1 Estimation Results

As discussed in Section 2, I estimate the tariff functions T0(·), T1(·) and T2(·) and the
resulting phone usage q. See Appendix B and Figure 3 displaying T0(·), T1(·) and T2(·).

Regarding the cost, I obtain an estimate for the marginal variable cost γ which is equal
to 5.95 cents. This is approximately a fourth of the average price charged per minute. The
fixed cost for phone service is 6.58 RMB, while the estimate of the bound for the fixed cost
of 1 Mbps (2 Mbps) internet κ1 (κ2) is 78 RMB (88 RMB). The estimate of the cost saving
parameter for 1 Mbps internet ∆1 is 2.60 RMB while this value increases to 3.27 RMB for
∆2. The fixed cost for phone service seems to be small. It is approximately a tenth of the
average bill of phone-only subscribers. These cost parameters suggest that the firm has a
comfortable profit margin as discussed later. Relative to providing internet only, providing
a bundle does not impose much additional cost to the firm as suggested by the estimates
of ∆1 and ∆2. China Telecom mainly uses Asymmetric Digital Subscriber Line (ADSL) to
provide internet service. Thus internet is transmitted through telephone lines. Moreover,
fixed transaction costs such as mailing statement do not increase much because bills are
merged if the consumer uses a bundle.

I then obtain estimates of the marginal intrinsic utility u′0(·) and the marginal comple-
mentary utility functions v′1(·) and v′2(·). The first is displayed in Figure 1 while the latter
two are displayed in Figure 2. The estimated marginal intrinsic utility u′0(·) is positive
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and decreasing, thereby satisfying Assumption 5-(i). The estimated marginal complemen-
tary utility functions v̂′1(·) and v̂′2(·) are both negative and increasing with v̂′1(·) above v̂′2(·),
thereby satisfying Assumption 3-(ii). Since both are negative, internet and phone services
seem to be substitutes. Internet offers alternative communication tools such as email, skype
and so on, which can explain the substitutability with phone service. Thus the utility of a
bundle user is smaller than the sum of the utilities for a phone service user only and a in-
ternet user only. Moreover, this substitution effect is stronger with a higher level of internet
because a faster internet service allows better alternative communication tools.

Figure 1: Marginal Intrinsic Utility û′0(·)
Figure 2: Marginal Complementary Util-
ities v̂′1(·), v̂′2(·)

Figure 3 displays the inverse of the estimated θ0(·), θ1(·) and θ2(·). They are increasing
in the type and decreasing in the internet choice j, thereby satisfying Lemma 5. As internet
speed increases, a larger range of low taste (for phone service) consumers are excluded from
using phone service. These observations satisfy the predictions of my model in Section
3. Figure 4 displays the estimated type densities f ∗0 (·), f ∗1 (·) and f ∗2 (·). As the internet
speed increases, the density function becomes less skewed to the left, thereby implying that
consumers are more likely to have a higher taste for phone service. Here again, one sees the
increase in the cutoff taste as the level of internet increases. Figure 5 displays the hazard
rate functions H0(·), H1(·) and H2(·). They are increasing in the type and decreasing in the
internet choice j, thereby satisfying Assumptions 2-(v) and 4.

Using these estimated values, I can access empirically the firm’s profit as well as the
consumers’ informational rents. The informational rent is estimated by θ̂ijû0(qij) + v̂j(qij) −
Tj(qij). The ratio of the total informational rent across all consumers by the total amount
paid is 29.76%. This measures the cost of asymmetric information. When considering by
group of users, I find 53.27% for phone-only users, 27.02% for bundle users with 1 Mbps of
internet level and 27.66% for bundle users with 2 Mbps. These overall rents tend to decrease
with the level of internet. I recall that internet-only users do not enjoy any rent since the

24



Figure 3: Phone Service Assignments q̂0(·), q̂1(·), q̂2(·)

Figure 4: Conditional Type Densities
f̂ ∗0 (·), f̂ ∗1 (·), f̂ ∗2 (·) Figure 5: Ĥ0(·), Ĥ1(·), Ĥ2(·)

firm can extract all their rents by charging them a fixed fee. Regarding the firm’s profit,
because I obtain only bounds for the cost parameters κ1 and κ2, namely 78 RMB for the
former and 88 RMB for the latter, the firm’s profit margin ranges from 39.46% (if κ1=78
and κ2=88) to 74.06% (if κ1=0 and κ2=0). The profit margins for different groups are of the
following: group 0 at 54.36%, group 1 between 33.24% (if κ1=78) and 76.43% (if κ1=0) and
group 2 between 40.96% (if κ2=88) and 75.78% (if κ2=0). Overall, China Telecom seems to
be making a comfortable profit margin.

5.2 The Welfare Effects of Bundling

With structural estimates at hand, I can perform a counterfactual to evaluate the effects of
bundling on firm’s profit, consumer surplus and social welfare relative to component pricing.
In particular, I simulate the case where the firm offers instead two fixed-fee contracts for
internet and one usage-based contract for phone service. I assume that the firm does not
change the internet speeds it offers.

25



A Theoretical Discussion
In general, the effects of bundling on consumer surplus and social welfare are ambigu-

ous. However, the literature offers a consensus that lower prices or higher output levels are
necessary for welfare improvement. For instance, in a discrete choice framework, Salinger
(1995) shows that bundling can increase consumer surplus when it results in lower prices.
Schmalensee (1981) and Schwartz (1990) formally show that welfare must fall if output does
not rise with third degree price discrimination. While the previous literature has mainly
focused on the use of bundling as a price discrimination device (See, e.g., Crawford and
Yurukoglu (2012)), my model allows utility complementarity, cost saving effects and depen-
dence between the two dimensions of asymmetric information. They may have different roles
in determining the welfare effects of mixed bundling relative to unbundling. I will construct
two examples below showing the ambiguity of the results in my model.

Under component pricing, the firm’s problem is to maximize its profit by designing a
tariff function while the consumers’ taste are distributed according to a mixture of three
conditional distributions. Since these three distributions differ in location and shape, their
mixture is obtained by shifting and reshaping them. To isolate the role of these two proce-
dures, I consider two examples. Let U(q, j, θ) = θq − 1

2q
2 if q ≤ θ and θ2/2 otherwise, while

the cost function is c(q, j) = γq.
First, I consider two groups whose tastes for phone service are uniformly distributed

on [0, 1] and [1, 2], respectively. Group 1 accounts for a proportion of 50%. If the firm
can discriminate among the two groups, the optimal phone service assignments would be
q∗1(θ) = 2θ − γ − 1 and q∗2(θ) = 2θ − γ − 2, while the cutoff tastes would be θc1 = (1 + γ)/2
and θc2 = (2 + γ)/2. If the firm cannot discriminate, it proposes a single assignment q∗(θ) =
2θ − γ − 2 with a cutoff taste θc = (2 + γ)/2. I remark that in this case, the firm does
as it was facing only consumers with a higher need of internet. Thus bundling benefits the
consumers because consumers with a lower taste will not be excluded. This would results an
increase in the consumer surplus. Similarly, since the firm would get the same profit from
the consumers with a higher taste of internet, it will get a larger profit as bundling will allow
it to get profit from the other group of consumers as well.

Second, I consider two groups whose tastes for phone service are distributed on the same
interval [0, 1] with densities f1(θ) = 2(1 − θ) and f2(θ) = 1. Assume γ = 0 and group 1
accounts for a proportion of 50%. Under mixed bundling and component pricing, firm’s profit
is 0.0602 and 0.0584, respectively. Consumer surplus is 0.0332 and 0.0341, respectively. In
this case, the firm benefits from bundling while the consumer are penalized. Thus bundling
can reduce consumer surplus because it provides an additional instrument for the firm to
discriminate across consumers.
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Counterfactual Simulation
Solving the firm’s problem under unbundling is a hard task because the model does

not lead to a closed-form solution, I will propose instead a numerical approximation of the
solution. In particular, I will search numerically an optimal usage-based tariff function that
is approximated by quadratic splines T (·; δ) = ∑K

k=1 δkψk(·), where ψk(·) is a quadratic basis
function. The tariff T (·; δ) is non-negative and increasing if and only if the coefficients δk are
non-negative. Moreover, as I do not identify the type densities f0(·), f1(·) and f2(·) below
the cutoff tastes, I assume

f̂j(θ) =


f̂ ∗j (θ̂cj)[1− Fj(θcj)]( θθ̂cj )

k if θ < θ̂cj ,

f̂ ∗j (θ̂cj)[1− Fj(θcj)] if θ ≥ θ̂cj ,

where k = [θ̂cj f̂ ∗j (θ̂cj)(1−Fj(θcj))/Fj(θcj)]−1. This approximation satisfies all the assumptions
of Section 3. It allows continuity at the cutoff point (θ̂cj , f̂ ∗j (θ̂cj)[1−Fj(θcj)]) and its integration
from 0 to θ̂cj equals Fj(θcj).

The estimated optimal tariff function solves the following problem

max
δ≥0

N0

∫ θ

θ

(
T (q0(θ; δ); δ)− (κ̂0 + γ̂q0(θ; δ))

)
f̂0(θ)dθ

+N1

∫ θ

θ

(
T (q1(θ; δ); δ)− (κ̂0 + κ1 − ∆̂1 + γ̂q1(θ; δ))

)
f̂1(θ)dθ

+N2

∫ θ

θ

(
T (q2(θ; δ); δ)− (κ̂0 + κ2 − ∆̂2 + γ̂q2(θ; δ))

)
f̂2(θ)dθ,

where qj(θ; δ) ≡ arg maxq{θû0(q) + v̂j(q) − T (q; δ)} and Nj is the number of group-j con-
sumers. Since κ1 and κ2 are not identified, I set them to zero. I use equally-spaced knots
and increase number of parameters K until the marginal benefit of adding one more knot is
less than 0.1%. The resulting estimated tariff function captures the optimal nonlinear price
schedule under unbundling.

My simulation results show that unbundling would lead to a 10.14% decrease in firm’s
profit and a 17.18% decrease in consumer surplus, resulting in a 12.16% decrease in social
welfare. These can be explained by the fact that unbundling would exclude too many
consumers as discussed previously in my first numerical example. Figure 6 compares the
tariff functions under mixed bundling (dashed lines) and component pricing (solid lines).
Relative to mixed bundling, groups 0 and 1 would face more expensive tariff functions under
component pricing, while group 2 would face a less expensive one. As a result, group 0 would
lose by 58.11% of consumer surplus, while group 1 would lose 39.57%. On the contrary, group
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2 would see an increase in their surplus by 9.48%. Thus unbundling would only benefit those
who value highly internet.

Figure 6: Tariff Functions under Mixed Bundling and Component Pricing

Figure 7 displays the breakdown of expected social welfare into consumer surplus and
firm profit, while Figure 8 displays the breakdown of expected bill into cost and firm profit.
I treat mixed bundling as the benchmark and normalize its corresponding welfare and bill
to 100. Since the cost function is linear, changes in expected cost reflect changes in expected
phone usage. Figure 7 confirms that groups 0 and 1 are losing the most in terms of consumer
surplus under component pricing. The firm is losing profit as well. The loss is decreasing
with internet speed. Figure 8 provides a justification, namely the production cost much
decreases under component pricing because of a dramatic decrease in consumption of phone
service. For instance, group 0 users’ expected phone usage would drop from 497.62 to 253.09
minutes, while their expected indirect utility would decrease from 34.54 to 14.47 RMB. On
the contrary, group 2 users would use 7.09% more of phone calls and thus would see their
consumer surplus increasing by 9.48%. Finally, the ratio of the total informational rent by
the total of bill would be 27.71% in component pricing, which represents a decrease in the
cost of asymmetric information relative to bundling. This arises from a larger proportion of
consumers who would be excluded under component pricing.

6 Conclusion

This paper studies bundling and price discrimination by a multiproduct firm selling inter-
net and phone services in an imperfect information setting. Consumers are characterized by
a taste for phone service and a minimum need for internet, thereby leading to a multidimen-
sional screening problem. I derive the optimal selling mechanism, as well as the conditions on
the model primitives under which different bundling strategies arise. I show that the model
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Figure 7: Breakdown of Welfare Figure 8: Breakdown of Bill

primitives are identified under parameterization of the cost function and multiplicative sepa-
rability of the utility function. I develop a semiparametric estimator involving kernel density
estimation and sieve estimators. The empirical analysis of China Telecom data suggests that
both the firm and consumers benefit from bundling internet and phone services.

With the methodology I develop in this paper, a class of nonlinear pricing models with
both discrete and continuous products/attributes can be solved theoretically and estimated
empirically. Other goods featuring both minimum need and nonlinear pricing include water,
energy, food and insurance. See e.g. Attanasio and Pastorino (2011) for nonlinear pricing of
food in Mexican villages. While firms usually offer nonlinear pricing of insurance coverage,
some states require a vehicle owner to carry some minimum level of insurance. Potential
applications also include insurance contracts in which insurees bundle automobile and home
insurance, and also a large number of products from manufacturing industries such as auto-
mobiles or computers where each product can be viewed as a bundle of various customized
attributes. See e.g. Luo, Perrigne, and Vuong (2013). The results I developed in this paper
can also be used to analyze products under nonlinear pricing with important network effects.
See e.g. Chen and Luo (2012).
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Appendix A: Proofs

Proof of Lemma 1: Due to minimum internet need, j(θ, β) ≥ D(β) at equilibrium. I now
prove by contradiction that the optimal internet assignment j∗(θ, β) = D(β). Consider the
optimal mechanism {t(·, ·), q(·, ·), j(·, ·)} satisfying the IC, IR and MN constraints. Suppose
that there exists some (θ, β) such that j(θ, β) > D(β). Now consider a new mechanism{
t̃(·, ·), q̃(·, ·), j̃(·, ·)

}
where t̃(θ, β) = t(θ, β) + U(q̃(θ, β), j̃(θ, β); θ) − U(q(θ, β), j(θ, β); θ),

q̃(θ, β) = q(θ, β), and j̃(θ, β) = D(β).
First, I show that the new mechanism satisfies the IC, IR and MN constraints. By

definition, the consumer surplus keeps the same under both mechanisms. Thus, the IR and
MN constraints hold under the new mechanism. I now show that the IC constraints hold
under the new mechanism. Consider the original IC constraints:

U(q(θ, β), j(θ, β); θ)− t(θ, β) ≥ U(q(θ̃, β̃), j(θ̃, β̃); θ)− t(θ̃, β̃).

By definition, the left-hand side equals U(q̃(θ, β), j̃(θ, β); θ) − t̃(θ, β). The right-hand side
equals U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ)− t̃(θ̃, β̃) because

[
U(q(θ̃, β̃), j(θ̃, β̃); θ)− t(θ̃, β̃)

]
−
[
U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ)− t̃(θ̃, β̃)

]
=U(q(θ̃, β̃), j(θ̃, β̃); θ)−U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ)+U(q̃(θ̃, β̃), j̃(θ̃, β̃); θ̃)−U(q(θ̃, β̃), j(θ̃, β̃); θ̃)=0,

where the last equation is true if Assumption 3-(i) is satisfied. Thus, the IC constraints hold
under the new mechanism. Second, the new mechanism is more profitable than the original
one because of Assumption 3-(ii), a contradiction.

I now turn to q∗(·, ·) and t∗(·, ·). Given j∗(θ, β) = D(β), the consumer’s problem becomes
maxq∈R+ U(q,D(β); θ)− T ∗(q,D(β)). This implies that β only affects phone usage through
D(β). Hence, q∗(θ, β) = q∗(θ,D(β)). Given that I consider non-random nonlinear pricing
schedules, it further implies that t∗(θ, β) = T ∗(q∗(θ,D(β)), D(β)) = t∗(θ,D(β)).

Proof of Lemma 2: For a given cutoff taste θc, the optimal mechanism
{q∗(·, ·; θc), j∗(·, ·; θc), t∗(·, ·; θc)} can be derived following Sundararajan (2004) and is defined
by (1), j∗(θ, β; θc) = D(β), and (2) by replacing θcj with θc. An important feature is that the
allocation {q∗(·, ·; θc), j∗(·, ·; θc)} does not depend on θc, while the optimal price schedule
t∗(·, ·; θc) does. In particular, t∗(θ, β; θc) = U(q∗(θ, β), D(β); θ)−

∫ θ
θc Uθ(q∗(x, β), D(β);x)dx.

The provider’s problem is then to find an optimal θc to maximize its expected profit

∫ θ

θc

[
t∗(θ, β; θc)−c(q∗(θ, β), D(β))

]
f(θ|D(β))dθ +

∫ θc

θ

[
v(0, D(β))−c(0, D(β))

]
f(θ|D(β))dθ,

34



which is the summation of the profits collected from consumers buying internet and phone
services and from consumers buying only internet. Differentiating the expected profit with
respect to θc gives −f(θc|D(β))M(θc, D(β)), which leads to the boundary condition (3).

Proof of Lemma 4: If the two-dimensional IC constraints hold, the two one-dimensional
constraints hold automatically. I now establish that, if the two one-dimensional IC con-
straints hold, the two-dimensional IC constraints hold as well. Consider any two pairs (θ, β)
and (θ̃, β̃), such that D(β̃) ≥ β. The first one-dimensional IC constraint at (θ, β̃) implies

U(q(θ, β̃), D(β̃); θ)− t(θ, β̃) ≥ U(q(θ̃, β̃), D(β̃); θ)− t(θ̃, β̃).

The second one-dimensional IC constraint at (θ, β) implies

U(q(θ, β), D(β); θ)− t(θ, β) ≥ U(q(θ, β̃), D(β̃); θ)− t(θ, β̃).

These two inequalities imply U(q(θ, β), D(β); θ) − t(θ, β) ≥ U(q(θ̃, β̃), D(β̃); θ) − t(θ̃, β̃).
Therefore, the two-dimensional IC constraints are satisfied.

Proof of Lemma 5: First, I show that q∗(θ, β) is decreasing in β. Since q∗(θ, β) =
q∗(θ,D(β)), without loss of generality I show that ∂q∗(θ, j)/∂j ≤ 0. Taking the total deriva-
tive of (1) with respect to j gives15

∂q(θ, j)
∂j

=
−Uqj + cqj + Uqθj

1−F
f

+ Uqθ
∂(1−F )/f

∂j

Uqq − cqq − Uqqθ 1−F
f

≤ 0,

where the inequality holds since cqj ≥ Uqj (Assumption 3-(ii)), Uqθj = 0 (Assumption 3-(i)),
Uqθ > 0 (Assumption 2-(ii)), ∂ 1−F

f
/∂j ≥ 0 (Assumption 4). The denominator is negative

under Assumption 2. See Sundararajan (2004) for details.
Second, I show that θcj is increasing in j. Differentiating M(θ, j) with respect to j gives

∂M(θ, j)
∂j

=[Uq−Uqθ
1−F
f
−cq]

∂q

∂j
+ [Uj−vj(0, j)]−[cj−cj(0, j)]−Uθ

∂(1−F )/f
∂j

=
[
Uj−vj(0, j)

]
−
[
cj−cj(0, j)

]
−Uθ

∂(1−F )/f
∂j

≤ 0,

where the first equation follows from Uθj = 0 (Assumption 3-(i)); the second equality uses
Equation (1); the inequality holds since Uθ ≥ 0 (Assumption 2-(i)), [Uj − vj(0, j)] − [cj −

15For notation convenience, I use differentiation as if the variable j is continuous, suppress the arguments
of functions and omit the asterisk superscript in this proof.
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cj(0, j)] ≤ 0 (Assumption 3-(ii)), and ∂ 1−F
f
/∂j ≥ 0 (Assumption 4). This implies that

M(θcj′ , j) ≥M(θcj′ , j′) ≥ 0 if j′ > j. Thus, θcj ≤ θcj′ by the definition of θcj .
Third, I show that T ∗(q, j)− v(q, j) is increasing in j. Lemma 2 implies that T ∗(q, j)−

v(q, j) = u(q, θ(q, j))−
∫ θ(q,j)
θcj

uθ(q(x, j), x)dx, where θ(·, j) is the inverse function of q∗(·, j).
Differentiating with respect to j gives

∂
[
T ∗(q, j)− v(q, j)

]
∂j

=uθ
(
q
(
θcj , j

)
, θcj

)∂θcj
∂j
−
∫ θ(q,j)

θcj

uqθ
(
q(x, j), x

)∂q(x, j)
∂j

dx ≥ 0,

where the inequality holds since uθ > 0, ∂θcj/∂j ≥ 0, uqθ > 0 and ∂q(θ, j)/∂j ≤ 0.

Proof of Proposition 4: I show that fixed cost parameters κ0 −∆j can be identified for
j = 1, 2. The cutoff consumer receives no informational rent. Namely,

Tj(qj) = θcju0(q
j
) + vj(qj). (A.1)

By definition of the cutoff taste, I have

[
θcju0(q

j
) + vj(qj)− vj(0)

]
− u0(q

j
)
1− Fj(θcj)
fj(θcj)

=
(
κ0 + κj −∆j + γq

j

)
− κj. (A.2)

Note that 1−Fj(θcj )
fj(θcj )

=
T ′j(qj)−γ
u′0(q

j
) = θ0(q

j
)
T ′j(qj)−γ
T ′0(q

j
) . Equations (A.1) and (A.2) imply

κ0 −∆j = Tj(qj)− Tj(0)− γq
j
− θ0(q

j
)u0(q

j
)
T ′j(qj)− γ
T ′0(q

j
) , (A.3)

Similarly, if j = 0, κ0 = T0(q0) − 0 − γq0 − T0(q0)T
′
0(q0)−γ
T ′0(q0) = γ

T ′0(q0)T0(q0) − γq0, where
the first equality follows from θ0(q0)u0(q0) = T0(q0). Thus κ0 is identified, leading to the
identification of ∆1 and ∆2 by (A.3).
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Appendix B: Estimation

This appendix describes how I estimate my model semiparametrically.

Estimation of Tariff Functions and Construction of Phone Usage
The data provide the quantity of phone calls Q measured in minutes, the internet speed j

measured in Mbps and the payment t measured in RMB. Following Luo (2011), I aggregate
phone call minutes, add-ons and additional features into a single index q = Q× ε to capture
phone usage. The term ε captures the add-ons and additional features, which are unobserved
by the analyst. Thus the tariff for group-j becomes t = Tj(Qε), where j ∈ J , and Tj(·) is
strictly increasing and concave. Considering the inverse and taking the natural logarithm
gives

logQ = log T−1
j (t)− log ε. (B.1)

Following Luo (2011), I assume that ε ⊥ θ. The tariff function Tj(·) is identified.
To estimate Tj(·), I approximate its inverse function with splines and find the optimal

approximate spline that minimizes the sum of squared errors in (B.1). Since T−1
j (·) is

increasing and convex, I use constrained smoothing regression splines proposed by Dole
(1999) to approximate it

ψ(·; δj) ≡
nj∑
l=1

δljs
l
j(·),

where δj is a vector of parameters δlj, slj is a cubic basis function, and nj is the number of
interior knots. The function ψ(·; δj) is increasing and positive if and only if δj ≥ 0.

I then solve the following problem:

min
δ0,δ1,δ2≥0

∑
j∈J

N∗j∑
i=1

[
logQi

j − logψ(tij; δj)
]2
.

I estimate T (·) as T̂ (·) = ψ−1(·; δ̂j). Figure 9 displays the estimated tariff functions
T0(·), T1(·), T2(·). I construct a bundle-j user’s phone usage as q = T̂−1

j (t) = ψ(t; δ̂j) for all
t ∈ [t, t]. The data on bundle-j users are

{
(qij, tij)

}N∗j
i=1

and T̂j(·).

Estimation of γ, u0(·) and θ0(·)
In this subsection, I use phone-only users data, i.e. {(qi0, ti0)}i=1,...,N∗0

. To obtain an
estimate of γ, I need to estimate q0. A convenient estimator that converges very fast is to
take the maximum value, i.e. q̂0 = q

N∗0
0 , leading to an estimator of γ, i.e. γ̂ = T ′0(qN

∗
0

0 ).
Following (8), I need to estimate G∗0(·). I use the following empirical distribution estima-
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Figure 9: Tariffs T̂0(·), T̂1(·), T̂2(·)

tor leading to

Ĝ∗0(q) = 1
N∗0

N∗0∑
i=1

1(qi0 ≤ q), (B.2)

for an arbitrary value of q ∈ [q0, q0]. An estimator of ξ(·) is obtained by replacing G∗0(·) by
its empirical distribution Ĝ∗0(·) and γ by γ̂. Since Ĝ∗0(·) is a step function, the integral in (8)
can be rewritten as a finite sum of integrals. Since in each of these integrals, log(1−G∗0(·))
is a constant and the primitive of T ′′0 (·)/T ′0(·) is −1/T ′0(·), ξ̂(q) is equivalent to

ξ̂(q)=
[
1−Ĝ∗0(q)

]1− γ̂

T ′0(q)

×exp
{
γ̂
[ 1
T ′0(q)−

1
T ′0(ql+1

0 )
]

log(1−Ĝ∗0(ql0))+γ̂
N∗0−1∑
k=l+1

[ 1
T ′0(qk0)−

1
T ′0(qk+1

0 )
]

log(1−Ĝ∗0(qk0))
}
,

for q ∈ [ql0, ql+1
0 ), where l = 0, 1, . . . , N∗0 − 1. For q ∈ [qN

∗
0

0 , q0], I have ξ̂(q) = 1.
Using (6) and (7), I then estimate u′0(·) and θ0(·) by

û′0(q) = T ′0(q)ξ̂(q),

θ̂0(q) = 1/ξ̂(q),

for an arbitrary value of q ∈ [q0, q0]. Lastly, I estimate θc0 by θ̂c0 = θ̂0(q1
0) and u0(q0) by

û0(q0) = T0(q0)/θ̂c0. These estimates allow me to obtain an estimate of u0(·) following (9).

Estimation of vj(·), θj(·), κ0, κ1, κ2, ∆1 and ∆2

In this subsection, I am now using the bundle users data {(qi1, ti1)}i=1,...,N∗1
and

{(qi2, ti2)}i=1,...,N∗2
. Following (10), since estimates for γ and u′0(·) have been obtained previ-

ously, I need an estimate of g∗j (·) and G∗j(·). I use the empirical distribution for G∗1(·) and
G∗2(·) from (B.2) by replacing 0 by 1 and 2, respectively. For the density, I use a kernel
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density estimator to estimate g∗1(·) and g∗2(·). Following (10) and (11), the pseudo type θj(·)
and the marginal complementary utility v′j(·) can be estimated as

θ̂j(q) = 1−
∫ qj

q

T ′j(x)− γ̂
û′0(x)

ĝ∗j (x)
1− Ĝ∗j(x)

dx,

v̂′j(q) = T ′j(q)− θ̂j(q)û′0(q),

where q ∈ [q
j
, qj] and j = 1, 2. Lastly, I estimate θcj by θ̂cj = θ̂j(q1

j ) and u0(q
j
) by û0(q1

j ).
These estimates will allow me to obtain an estimate of vj(·) following (12).

Following Proposition 4, the fixed cost parameters κ0, ∆1 and ∆2 are estimated by

κ̂0 = γ̂

T ′0(q0)T0(q0)−γ̂q0,

∆̂j =
[ γ̂

T ′0(q0)T0(q0)−γ̂q0

]
−
[
Tj(qj)−Tj(0)−γq

j

]
+θ̂0(q

j
)û0(q

j
)
T ′j(qj)−γ̂
T ′0(q

j
) , for j=1, 2,

where q0 and q
j
can be replaced by their estimated counterparts, which are q1

0 and q1
j .

The bounds for κ1 and κ2 are directly obtained from the data as the monthly fees for the
internet-only users.

Estimation of f0(·), f1(·) and f2(·)
The previous two steps provide estimates of the pseudo types

{θ̂1
0, θ̂

2
0, . . . , θ̂

N∗0
0 , θ̂1

1, θ̂
2
1, . . . , θ̂

N∗1
1 , θ̂1

2, θ̂
2
2, . . . , θ̂

N∗2
2 }, where θ̂ij = θ̂j(qij) for i = 1, 2, . . . , N∗j

and j = 0, 1, 2. I could use standard kernel estimators to estimate f ∗0 (·), f ∗1 (·) and f ∗2 (·)
using these pseudo values. From the model of Section 3, the conditional density of types
should satisfy the hazard rate property given by Assumption 2-(v). I then propose a
regression spline estimator that allows me to impose the monotonicity restriction on H(·|j)
for j = 0, 1, 2. In addition, I remark that H(θ|j) is bounded by θ since [1−Fj(θ)]/fj(θ) ≥ 0.
This represents a bound restriction that will also be imposed in the estimator. Specifically,
I estimate f ∗j (·) under the restrictions that Hj(·) ≡ · − 1−Fj(·)

fj(·) is increasing on [θcj , 1], and
Hj(θ) ≤ θ for all θ ∈ [θcj , 1].

Let the hazard function be hj(θ) = f ∗j (θ)/[1−F ∗j (θ)] = fj(θ)/[1−Fj(θ)] = 1/[θ−Hj(θ)]
for j = 0, 1, 2. Using splines to approximate Hj(·), I can use the well-known expression

f ∗j (θ) = hj(θ) exp
[
−
∫ θ

θcj

hj(x)dx
]
,

to obtain a maximum likelihood estimate for f ∗j (·). However, the direct implementation of
the usual quadratic splines can ensure the monotonicity restriction but may violate the bound
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restriction. Instead, I define quadratic splines imposing the former, and then transform the
coordinates to ensure the latter. In particular, I define the knots θcj = ϑ0

j < ϑ1
j < · · · < ϑ

kj
j <

ϑ
kj+1
j = 1. For any θ ∈ [θcj , 1], let ψ(θ; δj) ≡

∑kj+3
l=1 δljs

l
j(θ), where the slj(·)s are quadratic

basis functions satisfying ψ(·; δj) positive and increasing if and only if the coefficients δj are
positive. I then define

Hj(θ; δj) = θ
ψ(θ; δj)

1 + ψ(θ; δj)
.

One can show that Hj(·; δj) is positive, increasing and bounded by the 45 degree line if
the coefficients δlj are non-negative. Therefore, the hazard function can be expressed as
hj(θ; δj) = [1 + ψ(θ; δj)]/θ, from which I can construct the log-likelihood of the pseudo
sample as

lj(δj) =
N∗j∑
i=1

{
log

[1 + ψ(θ̂ij; δj)
θ̂ij

]
−
∫ θ̂ij

θ̂cj

1 + ψ(x; δj)
x

dx
}
.

Finally, I estimate f ∗j (·) by

f̂ ∗j (θ) = ĥj(θ) exp[−
∫ θ

θcj

ĥj(x)dx],

for θ ∈ [θcj , 1], where ĥj(θ) = [1 + ψ(θ; δ̂j)]/θ and δ̂j maximizes lj(δj).
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