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Abstract

This paper deals with a fundamental identification problem in the structural estimation of
dynamic oligopoly models of market entry and exit. Using the standard datasets in existing
empirical applications, there are three components of a firm’s profit function that are not sepa-
rately identified: the fixed cost of an incumbent firm, the entry cost of a new entrant, and the
scrap-value of an exiting firm. We study the implications of this result on the power of this
class of models to identify the effects of different comparative static exercises and counterfactual
public policies. First, we derive a closed-form relationship between the three unknown structural
functions and two functions that are identified from the data. We use this relationship to provide
the correct interpretation of the estimated objects that are obtained under the ‘normalization
assumptions’considered in most applications. Second, we characterize a class of counterfactual
experiments that are identified using the estimated model, despite the non-separate identifi-
cation of the three primitives. Third, we show that there is a general class of counterfactual
experiments of economic relevance that are not identified. We present a numerical example that
illustrates how ignoring the non-identification of these counterfactuals (i.e., making a ‘normal-
ization assumption’on some of the three primitives) generates sizable biases that can modify
even the sign of the estimated effects. Finally, we discuss possible solutions to deal with these
identification problems.
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1 Introduction

Dynamic models of market entry and exit are important tools in the empirical analysis of firm

competition. These models are particularly useful to study empirical questions for which it is key

to take into account the endogeneity of market structure and its evolution over time. During recent

years, the structural estimation of this class of models has experienced substantial developments,

both methodological and empirical, and there is a growing number of empirical applications.1 In all

these applications, the answer to the empirical questions of interest is based on the implementation

of counterfactual experiments using the estimated model. Sometimes the purpose of a counter-

factual experiment is to evaluate the effects of a hypothetical public policy, such as a new tax or

subsidy, but many times the main purpose of the experiment is to measure the effects of a parame-

ter change, e.g., we may want to obtain the values of firms’profits and consumer welfare when we

shut-down a parameter that captures the degree of learning-by-doing. In the estimation of dynamic

structural models of market entry-exit, we distinguish two main components in a firm’s profit func-

tion: variable profit and fixed cost. Parameters in the variable profit function (i.e., demand and

variable cost parameters) can be identified using data on firms’quantities and prices combined with

a demand system and a model of competition in prices or quantities.2 The fixed cost is the part of

the profit that comes from buying, selling, or renting inputs that are fixed during the whole active

life of the firm.3 It is constant with respect to the amount of output that the firm produces and

sells in the market, but it depends on the amount and the prices of fixed inputs, such as land or

fixed capital, and on the firm’s current and past incumbent status. The parameters in the fixed

cost are estimated using data on firms’choices to be active or not in the market, combined with

a dynamic model of market entry-exit. The identification of this fixed cost function is based on

the principle of revealed preference, i.e., if a firm chooses to be active in the market is because its

expected value of being in the market is greater than its expected value of not being in the market.

This paper deals with a fundamental identification problem in the structural estimation of dy-

namic oligopoly models of market entry and exit. Using the standard datasets in existing empirical

1Examples of recent applications are: Ryan (2012) on environmental regulation of an oligopoly industry; Suzuki
(forthcoming) on land use regulation and competition in retail industries; Hashmi and Van Biesebroeck (2012) and
Kryukov (2010) on the relationship between market structure and innovation, Sweeting (2011) on competition in
the radio industry and the effects of copyright fees; Collard-Wexler (2010) on demand uncertainty and industry
dynamics; Snider (2009) on predatory pricing in the airline industry; or Aguirregabiria and Ho (2012) on airlines
network structure and entry deterrence.

2See Berry and Haile (2010 and 2012) for recent identification results in the estimation of demand and supply
models of differentiated products.

3There is some abuse of language in using the term "cost" to refer to this component of the firm’s profit. This
fixed component of the profit may include positive income/profits associated with sales of owned inputs such as land,
buildings, etc. For this reason, sometimes in this paper we will use "fixed profit" instead of "fixed cost" to denote
this component.
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applications, there are three key components of a firm’s profit function that are not separately iden-

tified: the fixed cost of an incumbent firm, the entry cost of a new entrant, and the exit-value, or

scrap-value, of an exiting firm.4 We study the implications of this result on the power of this class

of models to identify the effects of different comparative static exercises and counterfactual public

policies. This is an important issue because many empirical questions on market competition, as

well as the evaluation of the effects of public policies in oligopoly industries, involve changes in

some of these structural functions (see Ryan 2012, Dunne et al. 2011, Lin 2012, and Varela 2011

among others).

First, we derive a closed-form relationship between the three unknown structural functions and

two functions that are identified from the data. We use this relationship to provide the correct

interpretation of the estimated objects that are obtained under the ‘normalization assumptions’

considered in most applications, e.g., the exit-value function is ‘normalized’to zero. Second, we

characterize a class of counterfactual experiments that are identified using the estimated model,

despite the non-separate identification of the three primitives. This class of identified counterfac-

tuals consists in an additive change in the structural function(s) where the change is known to the

researcher. Third, we show that there is a general class of counterfactual experiments of economic

relevance that are not identified. For instance, within this class of experiments we have a change

in the stochastic process of an input price that is an argument in the entry cost, fixed cost, and

exit value functions, e.g., land price. We present numerical examples that illustrate how ignoring

the non-identification of these counterfactuals (i.e., making a ‘normalization assumption’on some

of the three primitives) generates sizable biases that can modify even the sign of the estimated

effects. Finally, we discuss possible solutions to deal with these identification problems. Collecting

and using data on firms’scrap-values is a possible approach. Also, in industries where the trade of

firms is frequent and the researcher observes transaction prices (Kalouptsidi 2011), this information

can be used to solve this identification problem. In the absence of this type of data, the researcher

can apply a bounds-approach in the spirit of Manski (1995). We discuss the implementation of this

approach in this context.

The rest of the paper proceeds as follows. Section 2 presents the model of market entry and exit.

Section 3 describes the identification problem and the relationship between structural functions and

identified objects. Section 4 deals with the identification of counterfactual experiments and presents

numerical examples. In section 5, we discuss different approaches to deal with this identification

4This identification problem is fundamental in the sense that it does not depend on other econometric issues that
appear in this class of models, such as the stochastic structure of the unobservables, the non-idependence between
observable and unobservable state variables, or the existence of multiple equilibria in the data. Of course, these
issues may generate additional identification problems. However, dealing with, or solving, these other identification
problems does not help to the separate identification of the three components in the fixed cost function.
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problem. We summarize and conclude in section 6.

2 Dynamic model of market entry and exit

2.1 Model

We start with a single-firm version of the model or dynamic model of monopolistic competition.

Later in this section we extend our framework to dynamic games of oligopoly competition.

Time is discrete and indexed by t. Every period t the firm decides to be active in the market

or not. Let at ∈ {0, 1} be the binary indicator of the firm’s decision at period t, such that at = 1 if

the firm decides to be active in the market at period t, and at = 0 otherwise. The firm takes this

action to maximize its expected and discounted flow of profits, Et (
∑∞

r=0 β
r Πt+r), where β ∈ (0, 1)

is the discount factor, and Πt is the firm’s profit at period t. We distinguish two main components

in the firm’s profit at time t: variable profits, V Pt, and fixed profits, FPt, with Πt = V Pt + FPt.

The variable profit is the part that varies continuously with the firm’s output, and it is equal to

the difference between revenue and variable costs. By definition, if the firm is not active in the

market, variable profit is zero. If active in the market, the firm observes its demand curve and

variable cost function and chooses its price to maximize variable profits at period t. This static

price decision determines an indirect variable profit function that relates this component of profit

with state variables:5

V Pt = at vp(zvt ) (1)

where vp(.) is a real-valued function, and zvt is a vector of exogenous state variables affecting

demand and variable costs, e.g., market size, consumers’socioeconomic characteristics, and prices

of variable inputs such as wages, price of materials, energy, etc.

The fixed profit is the part of the profit that comes from buying, selling, or renting inputs that

are fixed during the whole active life of the firm. These fixed inputs may include land, buildings,

some type of equipment, or even managerial skills. We distinguish three components in the fixed

profit: the fixed cost of an active firm, FCt, the entry cost of a new entrant, ECt, and the scrap

value of the exiting firm, SVt. Each of these three components may depend on a vector of exogenous

state variables zct that includes prices of fixed inputs (e.g., prices of land and fixed capital inputs),

and it may have elements in common with the vector zvt (e.g., market size might also affect fixed

5The variable profit function is V Pt = pt qt − V C(qt, z
v
t ), where pt and qt are the firm’s price and output,

respectively, and V C is the variable cost function that depends on output and on the vector of state variables zvt .
Output equals demand, qt = D(pt, z

v
t ), where D is the demand function. Maximization of variable profit implies

the well-known marginal condition D(pt, zvt )+ pt [∂D(pt, z
v
t )/∂pt]− MC(D(pt, z

v
t ), z

v
t ) [∂D(pt, z

v
t )/∂pt] = 0, where

MC represents the marginal cost function. Solving in this condition for price, we get the optimal pricing function
pt = p∗(zvt ). And plugging-in this optimal price into the variable profit function, we get the indirect variable profit
function vp(zvt ) ≡ p∗(zvt ) D(p

∗(zvt ), z
v
t )− V C(D(p∗(zvt ), z

v
t ), z

v
t ).
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costs):
FPt = −FCt − ECt + SVt

= −at fc (zct)− at (1− it) ec (zct) + (1− at) it sv (zct)
(2)

where fc (.), ec (.), and sv (.) are real-valued functions, and it ≡ at−1 is the indicator of the event

"the firm was active at period t − 1". The fixed cost is paid every period that the firm is active

(i.e., when at = 1). It includes the cost of renting some fixed inputs, and taxes that should be paid

every period and that depend on the amount of some owned fixed inputs, e.g., property taxes. The

entry cost is paid if the firm is active at the current period but it was not active at previous period

(i.e., when at = 1 and it = 0), and it includes the cost of purchasing fixed inputs, and transaction

costs related to the startup of the firm. The firm receives a scrap or exit value when it was active

at the previous period but decides to exit at the current period (i.e., when at = 0 and it = 1). This

scrap value includes earnings from selling owned fixed inputs, minus transaction costs related to

closing the firm such as compensations to workers and to lessors of capital from breaking long term

contracts.

EXAMPLE 1. Consider the decision of a hotel chain to operate or not a hotel in a local market or

small town. To start its operation (entry in the market), the firm should purchase or lease some

fixed inputs such as land, building, furniture, elevators, restaurant, kitchen, and other equipment.

If this equipment is purchased at the time of entry, the cost of purchasing these inputs is part of

the entry cost. Other components of the entry cost are the cost of a building permit, or for the case

of franchises, franchise fees. Some fixed inputs are leased. Therefore, a hotel fixed cost includes the

renting cost of leased fixed inputs. It also includes property taxes (that depend on land prices),

royalties to the franchisor, and maintenance costs of owned fixed inputs. At the time of its closure,

the hotel operator may recover some amount of money by selling the owned fixed inputs such as

land, buildings, furniture, and other equipment. These amounts correspond to the scrap value. �

The one-period profit function can be described as:6

Πt =


it sv (zct) if at = 0

vp(zvt )− fc (zct)− (1− it) ec (zct) if at = 1
(3)

The vector of state variables of this dynamic model is {zt, it}, where zt ≡ {zvt , zct}. The vector
of state variables zt follows a Markov process with transition probability function fz(zt+1|zt). The
indicator of incumbent status follows the trivial endogenous transition rule, it+1 = at.

6 In this version of the model, there is no "time-to-build" or "time-to-exit" such that the decision of being active
or not in the market is taken at period t and it is effective at the same period, without any lag. At the end of this
section we discuss variations of the model that involve "time-to-build" or/and "time-to-exit". These variations do not
have any incidence in our (non) identification results, though they imply some minor changes in the interpretation
of the identified objects.
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In the econometric or empirical version of the model we distinguish two different types of state

variables: those observable to the researcher and those unobservable. Here we consider a general

additive specification of the unobservables where every primitive function has an unobservable

component:
V Pt = at [vp(zvt ) + εvpt ]

FCt = at

[
fc(zct) + εfct

]
ECt = at (1− it) [ec(zct) + εect ]

SVt = (1− at) it [sv(zct) + εsvt ]

(4)

where εt ≡ {εvpt , ε
fc
t , ε

ec
t , ε

sv
t } is the vector of state variables that are observable to the firm at

period t but unobservable to the researcher. These unobserved state variables have zero mean

conditional on zt. For simplicity, we also assume that εt is i.i.d. over time and independent of

(zt, it) (Rust (1994)). Allowing for serially correlated unobservables does not have any substantive

influence on the positive or negative identification results in this paper. Serial correlation in the

unobservables creates the so called "initial conditions problem", that is an identification problem

of different nature to the one we study in this paper. Whatever the way the researcher deals

with the "initial conditions problem", he still faces the problem of separate identification of the

three components in the fixed profit. Therefore, the specification of the one-period profit function

including unobservable state variables is:

Πt = π (at, it, zt) + εt (at) =


it sv (zt) + εt(0) if at = 0

vp(zt)− fc (zt)− (1− it) ec (zt) + εt(1) if at = 1
(5)

where π(.) is the component of the one-period profit that does not depend on unobservables, εt(0) ≡
it ε

sv
t , and εt(1) ≡ εvpt − ε

fc
t − (1− it) εect .

The value function of the firm, V (it, zt, εt), is the unique solution to the Bellman equation:

V (it, zt, εt) = max
at∈{0,1}

π (at, it, zt) + εt(at) + β
∑

zt+1∈Z
fz(zt+1|zt)

∫
V (at, zt+1, εt+1) dG (εt+1)


(6)

where β ∈ (0, 1) is the discount factor, and G(.) is the CDF of εt. Similarly, the optimal decision

rule of this dynamic programming problem is a function α (it, zt, εt) from the space of state variables

into the action space {0, 1} such that:

α (it, zt, εt) = arg max
at∈{0,1}

{v (at, it, zt) + εt (at)} (7)
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where

v (at, it, zt) = π (at, it, zt) + β
∑

zt+1∈Z
fz(zt+1|zt)

∫
V (at, zt+1, εt+1) dG (εt+1) . (8)

By the additivity and the conditional independence of the unobservable ε’s, the optimal decision

rule has the following threshold structure:

α (it, zt, εt) = 1{ε̃t ≤ ṽ (it, zt)} (9)

where ṽ (it, zt) = v (1, it, zt)− v (0, it, zt) and ε̃t ≡ εt(0)− εt(1) ≡ (εfct + εect − ε
vp
t ) + it (εsvt − εect ).

For our analysis, it is helpful to define also the Conditional Choice Probability (CCP) function

P (it, zt) that is the optimal decision rule integrated over the unobservables:

P (i, z) ≡ Pr (α (it, zt, εt) = 1 | it = i, zt = z)

= Pr (ε̃t ≤ ṽ (i, z))

= Fε̃|i (ṽ (i, z))

(10)

where Fε̃|i is the CDF of ε̃t conditional on it = i.7 Note that P (0, zt) is the probability of market

entry, and [1 − P (1, zt)] is the probability of market exit. In our model, the only decision made

is the market entry-exit. However, our non-identification results extend to more general models

where incumbent firms make investments in product quality, capacity, etc.

2.2 Extensions: Dynamic Game and Time-to-Build

We also study the identification of three extensions, or variations, of the basic model described

above: (a) model with no re-entry after market exit; (b) model with time-to-build and time-to-exit;

and (c) dynamic oligopoly game of market entry and exit.

(a) No re-entry after market exit. Some models and empirical applications of industry dynamics

assume there is no re-entry after exit from the market. This model is practically the same as the

one presented above, with the only difference that the value of market exit v (0, 1, zt) + εt(0) is

simply the scrap value sv(zt) + εsvt .

(b) Time-to-build and time-to-exit. In this version of the model, it takes one period to make entry

and exit decisions effective, though the entry cost is paid at the period when the entry decision is

made, and similarly the scrap value is received at the period when the exit decision is taken. Now,

at is the binary indicator of the event "the firm will be active in the market at period t+ 1", and

7The distribution of ε̃t depends on it if the entry cost and the scrap value contain unobservable components and
these unobservables are different, i.e., εsvt − εect 6= 0.
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it = at−1 is the binary indicator of the event "the firm is active in the market at period t". For

this model, the one-period profit function is:

Πt =


it[vp(zt)− fc (zt) + sv (zt)] + εt(0) if at = 0

it[vp(zt)− fc (zt)]− (1− it) ec (zt) + εt(1) if at = 1
(11)

Given this structure of the profit function, we have that the Bellman equation, optimal decision

rule, and CCP function are defined exactly the same as above in equations (6), (9), and (10),

respectively.

(c) Dynamic oligopoly game of entry and exit. We follow the standard structure of dynamic

oligopoly models in Ericson and Pakes (1995) but including firms’private information as in Do-

raszelski and Satterthwaite (2010).8 There are N firms that may operate in the market. Firms are

indexed by j ∈ {1, 2, ..., N}. Every period t, the N firms decide simultaneously but independently

whether to be active or not in the market. Let ajt be the binary indicator for the event "firm j is

active in the market at period t". Variable profits at period t are determined in a static Cournot

or Bertrand model played between those firms who choose to be active. This static competition

determines the indirect variable profit functions of the N firms:

V Pjt = ajt

[
vpj(a−jt, z

v
t ) + εvpjt

]
(12)

where V Pjt is the variable profit of firm j; a−jt is the N − 1 dimensional vector with the binary

indicators for the activity of all the firms except firm j; and εvpjt is a private information shock

in the variable profit of firm j that is unobservable to other firms and to the researcher. Note

that the variable profit functions, vpj , can vary across firms due to permanent, common knowledge

differences between the firms in variable costs or in the quality of their products.

The three components of the fixed profit function have specifications similar to the case of

monopolistic competition, with the only differences that the functions can vary across firms, and the

unobservable ε′s are private information shocks of each firm: FCjt = ajt [fcj(z
c
t)+εfcjt ]; ECjt = ajt

(1− ijt) [ecj(z
c
t) + εecjt ]; and SVjt = (1− ajt) ijt [svj(z

c
t) + εsvjt ], where εjt ≡ {ε

vp
jt , ε

fc
jt , ε

ec
jt , ε

sv
jt } is

a vector of state variables that are private information for firm j, they are unobservable to the

researcher, and i.i.d. across firms and over time with CDF G.

Following the literature on dynamic games of oligopoly competition, we assume that the outcome

of the dynamic game of entry and exit played by the N firms is a Markov Perfect Equilibrium

(MPE). In a MPE, firms’strategy functions depend only on payoff relevant state variables. Let

8 In Ericson and Pakes (1995), there is time-to-build in the timing of firms’decisions. Here we consider a version of
the dynamic game without time-to-build. As described below, all our results on (non-)identification apply similarly
to models with or without time-to-build.
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αj (it, zt, εjt) be a strategy function for firm j, where it is the vector {ijt : j = 1, 2, ..., N} with firms’
indicators of previous incumbent status, ijt ≡ ajt−1. A MPE is a N-tuple of strategy functions,

{αj : j = 1, 2, ...N} such that every firm maximizes its value given the strategies of the other firms:

αj (it, zt, εjt) = arg max
ajt∈{0,1}

{
vαj (ajt, it, zt) + εjt (ajt)

}
(13)

where

vαj (ajt, it, zt) ≡ παj (ajt, it, zt) + β
∑

zt+1∈Z
fz(zt+1|zt)

∫
V α
j (ajt, zt+1, εjt+1) dG (εjt+1) , (14)

and παj (ajt, it, zt) is the expected profit of firm j at period t given that the other firms follow strate-

gies {αi : i 6= j}. This expected profit is equal to (1− ajt) ijt svj (zct) + ajt [vpαj (it, zt)− fcj (zct)−
(1− ijt) ecj (zct)], where vp

α
j (it, zt) is the expected variable profit

∫
vpj(α−j (it, zt, ε−jt) , zvt ) dG (ε−jt).

As we did in the model for a monopolistic firm, we can represent firms’strategies using CCP

functions:
Pj(i, z) ≡ Pr (αj (it, zt, εjt) = 1 | it = i, zt = z)

= Fε̃|i

(
ṽPj (i, z)

) (15)

where ṽPj (i, z) is the differential value function vPj (1, i, z)−vPj (0, i, z), and vPj (aj , i, z) is equivalent

to the conditional choice value function vαj (aj , i, z) but when we represent players’strategies using

CCPs.

3 Identification of structural functions

3.1 Conditions on Data Generating Process

Suppose that the researcher has panel data with realizations of firms’decisions over multiple mar-

kets/locations and time periods. We use the letter m to index locations. The researcher observes a

random sample of M markets with information on {ajmt, zmt, ijmt : j = 1, 2, ..., N , t = 1, 2, ..., T},
where N and T are small (they can be as small as N = T = 1) andM is large. For the identification

results in this section we assume that M is infinite and T = 1. For most of the rest of the paper,

we assume that the variable profit functions vpj(.) are known to the researcher, or more precisely,

they have been already identified using data on firms’prices, quantities, and exogenous demand

and variable cost characteristics. However, we also discuss below the case when the researcher does

have data on prices, quantities, or revenue to identify in a first step the variable profit function.

We want to use this sample to estimate the structural ‘parameters’or functions of the model:

the three functions in the fixed profit, fcj (zt), ecj (zt), and svj(zt); the transition probability of the

state variables, fz; and the distribution of the unobservables Fε̃|i. Following the standard approach
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in dynamic decision models, we assume that the discount factor, β, is known to the researcher. Fi-

nally, note that the transition probability function {fz} is nonparametrically identified.9 Therefore,
we assume that {vpj(.), fz, β} are known, and we concentrate on the identification of the functions
fcj (.), ecj (.), svj(.), Fε̃|0, and Fε̃|1.

All our identification results apply very similarly to the model of monopolistic competition

and to the dynamic game of oligopoly competition. Given the identification of the variable profit

function vpj(.), and given players’CCP functions, it is clear that the expected variable profit of

firm j in the dynamic game is also identified.10 From an identification point of view, a relevant

difference between the monopolistic and the oligopoly models is that in the oligopoly case the CCP

function of a firm depends not only on its own incumbent status ijt but on the incumbent status of

all the firms, as represented by the vector it. In principle, given that a firm’s fixed profit does not

depend on the incumbent status of the other firms, one may think that this exclusion restriction

might help to separately identify the three components of a firm’s fixed profit. However, that is

not the case. The oligopoly model provides additional over-identifying restrictions that can be

tested, but these over-identifying restrictions do not help in the separate identification of the three

components of the fixed cost. Therefore, for notational simplicity, we omit the firm subindex for the

rest of the paper and we use the notation of the monopolistic case. When necessary, we comment

some differences with the dynamic oligopoly game, and why the additional restrictions implied by

the dynamic game do not help in our identification problem.

3.2 Identification of the distribution of the unobservables

We might consider a semiparametric version of our model where the conditional distributions Fε̃|0

and Fε̃|1 are parametrically specified and known to the researcher up to the scale parameters

σε̃|0 ≡
√
var(ε̃t|it = 0) and σε̃|1 ≡

√
var(ε̃t|it = 1). In that model, the identification of the scale

parameters σε̃|0 and σε̃|1 requires the following type of exclusion restriction: there is a special state

variable yt included in zt such that this variable enters in the variable profit function vp(.) (a

function that has been identified using data on prices and quantities) but not in the fixed profit. It

turns out that this exclusion restriction, together with a large support condition, is also suffi cient

for the nonparametric identification of the distribution functions Fε̃|0 and Fε̃|1. Proposition 1

establishes the nonparametric identification of Fε̃|0 and Fε̃|1.

PROPOSITION 1. Suppose that the following conditions hold: (a) the vector of unobservables

9Note that fz(z′|z) = Pr(zmt+1 = z′ | zmt = z). We can estimate consistently these conditional probabilities
using a nonparametric method such as a kernel or a sieve method.
10Note that the expected variable profit vpPj (aj , i, z) is equal to [

∏
k 6=j Pk (i, z)

ak (1− Pk (i, z))1−ak ] vpj(a−i, zvt ).
Therefore, given vpj and CCPs {Pk : k 6= j}, the expected variable profit function vpPj is known.
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εt is independent of zt; (b) Fε̃|0 and Fε̃|1 are strictly increasing over the real line; and (c) the

vector of state variables zt includes an ‘special’ state variable, yt, such that yt is included in zvt

but not in zct (i.e., it enters in the variable profit function but not in the fixed profit function),

the variable profit function vp(.) is strictly monotonic in yt, and conditional on it and on the

other state variables in zt, the distribution of yt has support over the whole real line. Under these

conditions, the distributions Fε̃|0 and Fε̃|1 are nonparametrically identified. Furthermore, given

vp(.), the nonparametric estimation of these distributions can be implemented separately from the

estimation of the other structural functions in the fixed profit.

Proof: The proof of this Proposition 1 is a direct application of Proposition 4 in Aguirregabiria

(2010) to our model of market entry and exit. Proposition 4 in Aguirregabiria (2010) applies to

a general class of binary choice dynamic structural models with finite horizon, and it builds on

previous results by Matzkin (1992, 1994). Norets and Tang (2012) have extended that result to

infinite horizon dynamic decision models. �

So far, we have assumed that the researcher has data on prices and quantities and the variable

profit function vp can be identified using this information and independently of the dynamic decision

model. Nevertheless, in many empirical applications of models of market entry and exit there is

not data on prices and quantities. In that context, the specification of the (indirect) variable profit

function typically follows the approach in the seminal work by Bresnahan and Reiss (1990, 1991,

and 1994). This specification has the following features: (i) variable profit is proportional to market

size; (ii) market size does enter in the fixed profit; and (iii) the researcher observes market size. In

the monopolistic case, this specification is V Pt = yt α, where α is a parameter and the variable yt

represents market size. In the model of oligopoly competition we have V Pjt = yt [αj −
∑

k 6=j δjk

akt], where α′s and δ′s are parameters, and yt still represents market size. It is possible to extend

Proposition 1 to this specification of the variable profit, with the only difference that the parameter

α is not identified separately from the distribution functions Fε̃|0 and Fε̃|1. The only relevant

implication of the non-identification of α is that the estimated values of the fixed profit (and the δ

parameters) are measured in units of yt instead of dollar amounts.

For the rest of the paper, we assume that the conditions of Proposition 1 hold and that the

distributions Fε̃|0 and Fε̃|1 are identified.

3.3 Identification of functions in the fixed profit

By definition, the CCP function P (i, z) is equal to the conditional expectation E(amt | imt = i,

zmt = z) and therefore, it is nonparametrically identified using data on {amt, imt, zmt}. Given the
CCP function P (i, z) and the inverse distribution F−1ε̃|i , we have that the differential value function

10



ṽ (i, z) is identified from the expression:

ṽ (i, z) = F−1ε̃|i (P (i, z)) . (16)

Under the conditions of Proposition 1, function ṽ (i, z) is nonparametrically identified everywhere,

such that we can treat ṽ (i, z) as a known/identified function. ṽ (i, z) is the value of being active

in the market minus the value of not being active for a firm with incumbent status ”i” at previous

period. This differential value is equal to the inverse function of Fε̃|i evaluated at P (i, z), that is the

probability of being active in the market for a firm with incumbent status ”i” at previous period.

Functions ṽ (i, z), vp(z), and Fε̃|i summarize all the information in the data that is relevant for

the identification of the three functions in the fixed profit. We now derive a closed-form relationship

between these identified functions and the unknown structural functions fc, ec, and sv. Given that

by construction ṽ (i, z) is equal to v (1, i, z)−v (0, i, z), and given the definition of conditional choice

value function in equation (8), we have the following system of equations: for any value of (i, z),

ṽ(i, z) = vp(z)− [fc (z) + ec (z)] + i [ec (z)− sv (z)] + β
∑
z′∈Z

fz(z
′|z)

[
V̄
(
1, z′

)
− V̄

(
0, z′

)]
(17)

where V̄ (i, z) is the integrated value function
∫
V (i, z, ε) dG(ε), i.e., the value function integrated

over the distribution of the unobservables in ε. This system summarizes all the restrictions that

the model and data impose on the structural functions.

Using the definition of the integrated value function V̄ (i, z), we can express it as follows:

V̄ (i, z) =

∫
max
a∈{0,1}

{v (a, i, z) + ε(a)} dG (ε)

= v (0, i, z) +

∫
max{0 ; ṽ (i, z)− ε̃} dFε̃|i (ε̃)

= v (0, i, z) + S(ṽ (i, z) , Fε̃|i),

(18)

where S(ṽ (i, z) , Fε̃|i) represents the function
∫ ṽ(i,z)
−∞ [ṽ(i, z)− ε̃] dFε̃|i (ε̃). Note that the arguments

of function S, i.e., functions ṽ and Fε̃|i, are identified. Therefore, function S is also a known or

identified function. Plugging expression V̄ (i, z) = v (0, i, z)+S(ṽ (i, z) , Fε̃|i) into equation (17), and

taking into account that v (0, 1, z) − v (0, 0, z) = sv (z), we have the following system of equations

that summarizes all the restrictions that the data and model impose on the unknown structural

functions fc, ec, and sv.

ṽ(i, z) = vp(z)− [fc (z) + ec (z)] + i [ec (z)− sv (z)] + β
∑
z′∈Z

fz(z
′|z) sv(z′)

+ β
∑
z′∈Z

fz(z
′|z)

[
S(ṽ (1, z′) , Fε̃|1)− S(ṽ (0, z′) , Fε̃|0)

] (19)

11



To study the identification of functions fc, ec, and sv, it is convenient to sum up all the identified

functions in equation (19) into a single term. Define the function Q(i, z) ≡ ṽ(i, z)−β
∑
z′∈Z fz(z

′|z)
[S(ṽ (1, z′) , Fε̃|1)− S(ṽ (0, z′) , Fε̃|0)]. It is clear that function Q(i, z) is identified. This function has

also an intuitive interpretation. It represents the difference between the firm’s value under two

different ’ad-hoc’strategies: the strategy of being in the market today, exiting next period, and

remaining out of the market forever in the future, and the strategy of exiting from the market today

and remaining out of the market forever in the future. Using this definition for function Q(i, z),

we can rewrite the system of equations (19) as follows:

Q(i, z) = vp(z)− [fc (z) + ec (z)] + i [ec (z)− sv (z)] + β
∑
z′∈Z

fz(z
′|z) sv(z′) (20)

This system of equations provides a closed form expression for the relationship between the unknown

structural functions and the identified function Q(i, z).

PROPOSITION 2. The structural functions fc (z), ec (z), and sv (z) are not separately identified.

However, we can identify two combinations of these structural functions which have a clear economic

interpretation: (a) the sunk part of the entry cost when entry and exit occur at the same state z,

i.e., ec (z)−sv (z); and (b) the sum of fixed cost and entry cost minus the discounted expected scrap

value in the next period, i.e., fc (z) + ec (z)− β
∑
z′∈Z fz(z

′|z) sv (z′).

ec (z)− sv (z) = Q(1, z)−Q(0, z),

fc (z) + ec (z)− β
∑
z′∈Z

fz(z
′|z) sv (z′) = −Q(0, z) + vp(z).

(21)

Proof. (i) No identification. Let ec, fc, and sv be the true values of the functions in the population.

Based on these true functions, define the functions: ec∗ (z) = ec (z) +λ (z); sv∗ (z) = sv (z) +λ (z),

and fc∗ (z) = fc (z) − λ (z) + β
∑
z′∈Z fz(z

′|z) λ (z′), where λ (z) 6= 0 is an arbitrary function. It

is clear that ec∗, sv∗, and fc∗ also satisfy the system of equations (20). Therefore, ec, fc, and sv

cannot be uniquely identified from the restrictions in (20). (ii) Identification of two combinations

of the three structural functions. We can derive equations in (21) after simple operations in the

system (20). �

Proposition 2 can be easily extended to the dynamic oligopoly game. In particular, the ad-

ditional structure in the dynamic game does not help to the identification of the components in

the fixed profit. Equation (20) also applies to the dynamic game, only with the following modi-

fications: (i) all the functions are firm-specific and should have the firm subindex j; (ii) function

Qj includes as an argument also the past incumbent statuses of the other firms, i−j , such that we

have Qj(ij , i−j , z); and (iii) the expected variable profit function depends on firms’CCPs and it
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includes as an argument the incumbent statuses of all the firms, i.e., vpPj (i, z). Given this mod-

ified version of equation, (20), it is straightforward to extend the two parts to Proposition 2 to

the dynamic game model. However, the dynamic game provides over-identifying restrictions. For

instance, we have that for every value of i−j the following equation should hold: ecj (z)− svj (z) =

Qj(1, i−j , z)−Q(0, i−j , z). This implies that the value of Qj(1, i−j , z)−Q(0, i−j , z) should be the

same for any value of i−j , which is a testable over-identifying restriction.

Proposition 2 applies also to the version of the model without market re-entry, with the only

difference that Q(0, z) is now defined as ṽ(0, z)−β
∑
z′∈Z fz(z

′|z) S(ṽ (1, z′) , Fε̃|1) such that it does

not include the term β
∑
z′∈Z fz(z

′|z) S(ṽ (0, z′) , Fε̃|0). We discuss the identification of the model

with time-to-build in section 3.5 below.

3.4 ‘Normalizations’and interpretation of estimated functions

In empirical applications, the common approach to deal with this identification problem is to restrict

one of the three structural functions to be zero at any value of z. This is often referred to as a

‘normalization’assumption. The most common ‘normalization’is making the scrap value equal to

zero. That is the approach in applications such as Snider (2009), Collard-Wexler (2010), Dunne

et al. (2011), Varela (2011), Ellickson et al. (2012), Lin (2012), Aguirregabiria and Mira (2007),

or Suzuki (forthcoming), among others. In other papers, such as Pakes et al. (2007), Ryan (2012),

Sweeting (2011) or Igami (2012), the normalization consists in making the fixed cost equal to zero.

Though making the entry cost equal to zero is other possible normalization, this has not been

common in empirical applications.

Though most of the papers in the literature admit that setting the fixed cost of the scrap value

to zero is not really an assumption but a ‘normalization’, they do not derive the implications of

this ‘normalization’ on the estimated parameters, and on the counterfactual experiments using

the estimated model. Based on our derivation of the relationship between identified objects and

unknown structural functions in the system of equations (20), or equivalently in (21), we can obtain

the correct interpretation of the estimated functions under any possible normalization. Ignoring

this can lead to misinterpretations of the empirical results. Table 1 reports the relationship between

the estimated structural functions and the true structural functions under different normalizations.

Functions f̂ c, ŝv, and êc represent the estimated vectors under a given normalization, and they

should be distinguished from the true structural functions fc, sv, and ec. The expressions in

Table 1 are derived as follows. First, the estimated functions f̂ c, ŝv, and êc satisfy the identifying

restrictions in (20) and (21). In particular, êc (z)− ŝv (z) = Q(1, z)−Q(0, z), and f̂ c (z) + êc (z)−
β
∑
z′∈Z fz(z

′|z) ŝv (z′). Of course, these conditions are also satisfied by the true values of these
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Table 1: Interpretation of Estimated Structural Functions Under Various "Normalizations"

Normaliz. Estimated Functions

ŝv (z) f̂ c (z) êc (z)

ŝv (z) = 0 0
fc(z) + sv(z)
−β E[sv(zt+1) | zt= z]

ec(z)− sv(z)

f̂ c (z) = 0
sv(z)

+
∞∑
r=0

βrE[fc(zt+r) | zt= z]
0

ec(z)

+
∞∑
r=0

βrE[fc(zt+r) | zt= z]

êc (z) = 0 sv(z)− ec(z) fc(z) + ec(z)
−β E[ec(zt+1) | zt= z]

0

functions. Therefore, it should be true that for any normalization we have that:

êc (z)− ŝv (z) = ec (z)− sv (z) ,

f̂ c (z) + êc (z)− β
∑
z′∈Z fz(z

′|z) ŝv (z′) = fc (z) + ec (z)− β
∑
z′∈Z fz(z

′|z)sv (z′) .

(22)

These expressions, and the corresponding normalization assumption, provide a system of equations

where we can solve for the estimated functions, and obtain the expression of these estimated

functions in terms of the true functions. These expressions provide the correct interpretation of the

estimated functions.

Suppose that the normalization is ŝv (z) = 0. Including this restriction into the system (22)

and solving for êc (z) and f̂ c (z), we get that êc (z) = ec (z) − sv (z), and f̂ c (z) = fc (z) + sv (z)

−β
∑
z′ fz(z

′|z) sv (z′). The estimated entry cost is in fact the entry cost minus the scrap value

at the same state, i.e., the ‘ex-ante’sunk entry cost.11 And the estimated fixed cost is the actual

fixed cost plus the difference between the current scrap value and the expected, discounted next

period scrap value. When the normalization is êc (z) = 0, we can perform a similar operation to

obtain that ŝv (z) = sv (z) − ec (z), and f̂ c (z) = fc (z) + ec (z) −β
∑
z′∈Z fz(z

′|z) ec (z′). That

is, the estimated scrap value is equal to the ‘ex-ante’sunk entry cost but with the opposite sign,

and the estimated fixed cost is equal to the actual fixed cost plus the difference between current

11The ‘ex-ante’sunk entry cost is not necessarily equal to the ‘ex-post’or realized sunk cost because the value of
the state variables affecting the scrap value may be different at the entry and exit periods.
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entry cost and expected discounted next period entry cost. When the normalization is applied to

the fixed cost, such that f̂ c (z) = 0, obtaining the solution of the estimated functions in terms of

the true functions is a bit more convoluted because the solution of the system of equations is not

point-wise or separate for each value of z, but instead we need to solve recursively a system of

equations that involves every possible value of z. We have the recursive systems [êc (z)− ec (z)] =

fc (z)+β
∑
z′ fz(z

′|z) [êc (z′)−ec (z′)] and [ŝv (z)−sv (z)] = fc (z)+β
∑
z′ fz(z

′|z) [ŝv (z′)−sv (z′)].

Solving recursively these functional equations, we get that êc (z) = ec (z) +
∑∞

r=0 β
r E[fc(zt+r) |

zt = z], and ŝv (z) = sv (z) +
∑∞

r=0 β
r E[fc(zt+r) | zt = z]. That is, the estimated entry cost is

equal to the actual entry cost plus the discounted and expected sum of the current and future fixed

costs of the firm if it would be active forever in the future. A similar interpretation applies to the

estimated scrap value.

EXAMPLE 2. Suppose an industry where firms need to use a particular capital equipment to

operate in the market. For some reason (e.g., informational asymmetries) there is not a rental

market for this equipment, or it is always more profitable to purchase the equipment than to rent

it. Let z be a state variable that represents the current purchasing price of the equipment. Suppose

that the entry cost is ec(z) = ec0 + z, where ec0 > 0 is a parameter that represents costs of entry

other than those related to the purchase of capital. The fixed cost depends also on the price of

capital through property taxes that firms should pay every period they are active: fc(z) = fc0 + τ

z, where τ ∈ (0, 1) is a parameter the captures how the property tax depends on the price of

the owned capital. The scrap value function is sv(z) = λ z, where λ ∈ (0, 1) is a parameter that

captures the idea that there is some capital depreciation, or a firm-specific component in the capital

equipment, such that there is a wedge between the cost of purchasing capital and the revenue from

selling it. Now, consider the identification of these functions. For simplicity, suppose that the real

price of capital z is constant over time, though it varies across markets in our data such that we

can estimate the effect of this state variable. When the normalization is ŝv (z) = 0, we have that

êc (z) = ec0+ (1−λ) z. An interpretation of êc (z) as the true entry cost, instead of the sunk entry

cost, implies to underestimate the effect of the price of capital on the entry cost. The estimated

fixed cost is f̂ c (z) = fc0 + (τ + (1 − β)λ) z, such that ignoring the effects of the normalization

and treating f̂ c (z) as the true fixed cost leads to an over-estimation of the effect of the price of

capital on the fixed cost. That is, we over-estimate the impact of the property tax on the fixed

cost. Similar arguments can be applied when the normalization is êc (z) = 0. In particular, f̂ c (z) =

fc0+(τ +(1−β)) z, such that the over-estimation of the incidence of the property tax on the fixed

cost is even stronger than before. When we normalize the fixed cost to zero, both the scrap value

and the entry cost are overestimated by (fc0 + τ z)/ (1− β). The estimated effect of the price of
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capital on the cost of entry includes not only the purchasing cost but also the discounted value of

the infinite stream of property taxes. �

3.5 Model with Time-to-build and Time-to-exit

Most of the expressions for the basic model still hold for this extension, except that now the

one-period payoff π (a, i, z) has a different form. In particular, now π (1, i, z) − π (0, i, z) = −i
sv(z)− (1− i) ec (z), and this implies that the expression for the differential value function ṽ(i, z)

is:

ṽ(i, z) = −i sv(z)− (1− i) ec (z) + β
∑
z′∈Z

fz(z
′|z)

[
V̄
(
1, z′

)
− V̄

(
0, z′

)]
(23)

Also, now we have that v (0, 1, z) − v (0, 0, z) = π (0, 1, z) − π (0, 0, z) = vp(z) − fc (z) + sv (z).

Therefore, the system of identifying restrictions (20) becomes:

Q(i, z) = −i sv(z)− (1− i) ec (z) + β
∑
z′∈Z

fz(z
′|z) [vp(z′)− fc (z′) + sv (z′)] (24)

where Q(i, z) has exactly the same definition as before in the model without time-to-build. Given

this system of equations, Proposition 2 also applies to this model with the only difference that now

we have the following relationship between true functions and identified objects:

ec (z)− sv (z) = Q(1, z)−Q(0, z)

ec (z) + β
∑
z′∈Z

fz(z
′|z) [fc (z′)− sv (z′)] = −Q(0, z) + β

∑
z′∈Z

fz(z
′|z) vp(z′)

(25)

The first equation is exactly the same as in the model without time to build. The second equation is

slightly different: instead of current value of variable profit minus the fixed cost, vp(z)−fc(z), now
we have the discounted and expected value of this function at the next period, i.e., β

∑
z′∈Z fz(z

′|z)
[vp (z′)− fc (z′)]. Based on these equations, we can construct the following Table 2 for the model

with time-to-build with the interpretation of the estimated functions under three different normal-

izations.

4 Counterfactual experiments

4.1 Definition and identification of counterfactual experiments

Suppose that the researcher is interested in using the estimated structural model to obtain an

estimate of the effect on firms’entry-exit behavior of a change in some of the structural functions

such that the environment is partly different from the one generating the data. Let θ0 = {vp0, fc0,
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Table 2: Interpretation of Estimated Structural Functions in the Model with Time-to-Build

Normaliz. Estimated Functions

ŝv (z) β E(f̂ c (zt+1) | zt = z) êc (z)

ŝv (z) = 0 0
β E[fc(zt+1) | zt= z]

+sv(z)− β E[sv(zt+1) | zt= z]
ec(z)− sv(z)

f̂ c (z) = 0
sv(z)

+
∞∑
r=1

βrE[fc(zt+r) | zt= z]
0

ec(z)

+
∞∑
r=1

βrE[fc(zt+r) | zt= z]

êc (z) = 0 sv(z)− ec(z) β E[fc(zt+1) | zt= z]
+ec(z)− β E[ec(zt+1) | zt= z]

0

ec0, sv0, β0, f0z } represent the structural functions that have generated the data. And let θ∗ = {vp∗,
fc∗, ec∗, sv∗, β∗, f∗z } be the structural functions in the hypothetical or counterfactual scenario.
Define ∆θ ≡ {∆vp, ∆fc, ∆ec, ∆sv, ∆β, ∆fz} ≡ θ∗ − θ0. We refer to ∆θ as the perturbation in the

primitives of the model defined by the counterfactual experiment. The goal of this counterfactual

experiment is to obtain how the perturbation ∆θ affects firms’behavior as measured by the CCP

function. In other words, we want to identify ∆P (i, z) associated to ∆θ, where

∆P (i, z) ≡ P (i, z ; θ0 + ∆θ)− P (i, z ; θ0). (26)

The parameter perturbations that have been considered in the counterfactual experiments in

recent empirical applications include regulations that increase entry costs (Ryan 2012, Suzuki forth-

coming), entry subsidies (Das et al. 2007, Dunne et al. 2011, Lin 2012), subsidies on R&D in-

vestment (Igami 2012), tax on revenue (Sweeting 2011), market size (Bollinger 2012, Igami 2012),

economies of scale and scope (Aguirregabiria and Ho 2012, Varela 2011), a ban on some prod-

ucts (Bollinger 2012, Lin 2012), regulation on firms’ predatory conduct (Snider 2009), demand

fluctuation (Collard-Wexler 2010), time to build (Kalouptsidi 2011), or exchange rates (Das et al.

2007).

In the derivation of our identification results on counterfactual experiments, we exploit some

properties of the mapping that relates functions Q and P . Lemma 1 below describes the mapping

and its properties.12

12Lemma 1 is related but quite different to Proposition 1 in Hotz and Miller (1993). That Proposition 1 establishes
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LEMMA 1: Define Q̃ ≡ {Q(i, z) : for all (i, z)} and P̃ ≡ {P (i, z) : for all (i, z)}. For given (β, fz),

there is a mapping q̃(P̃ ;β, fz) from the space of P̃ into the space of Q̃ such that Q̃ = q̃(P̃ ;β, fz).

The definition of this mapping is, q̃(P̃ ;β, fz) ≡ {q(i, z, P̃ ;β, fz) : for all (i, z)} with:

q(i, z, P̃ ;β, fz) ≡ F−1ε̃|i (P (i, z))− β
∑
z′∈Z

fz(z
′|z)

(∫ F−1
ε̃|1 (P (1,z

′))

−∞
[F−1ε̃|1 (P (1, z′))− ε̃] dFε̃|1 (ε̃)

)

+ β
∑
z′∈Z

fz(z
′|z)

(∫ F−1
ε̃|0 (P (0,z

′))

−∞
[F−1ε̃|0 (P (0, z′))− ε̃] dFε̃|0 (ε̃)

)
(27)

The mapping q̃(P̃ ;β, fz) is one-to-one (invertible).

Proof. See Appendix.

For some counterfactual experiments, we need to distinguish two components in the vector of

state variables: z ≡ (znosv, zsv), where zsv is the subvector of the state variables that affect the

scrap value, and znosv represents the rest of the state variables. We can represent the transition

probability of the observable state variables as fz(zt+1|zt) = fz,sv(z
sv
t+1|zt) fz,nosv(znosvt+1 |zt, zsvt+1).

Let ∆Q(i, z) be then a function that represents the change in function Q associated to the

change in parameters ∆θ, i.e., ∆Q(i, z) ≡ Q(i, z ; θ0+∆θ)−Q(i, z ; θ0). Given Lemma 1, it should

be clear that ∆P (i, z) is identified if and only if ∆Q(i, z) is identified. For some of our results below

on the (non) identification ∆P (i, z), it is useful to prove them by showing the (non) identification

of ∆Q(i, z). Using the definition of ∆Q(i, z), and taking into account equation (20) relating Q with

the structural functions, we have the following equation that relates ∆Q(i, z) with the structural

functions and the parameter perturbation ∆θ:

∆Q(i, z) = ∆vp(z)− [∆fc (z) + ∆ec (z)] + i [∆ec (z)−∆sv (z)]

+ β0
∑

zsv′∈Z
f0z,sv(z

sv′|z) ∆sv(z
sv′)

+ β0
∑

zsv′∈Z
∆fz,sv(zsv′|z) [sv0(zsv′) + ∆sv(z

sv′)]

+ ∆β
∑

zsv′∈Z
[f0z,sv(z

sv′|z) + ∆fz,sv(zsv′|z)] [sv0(zsv′) + ∆sv(z
sv′)]

(28)

PROPOSITION 3: Suppose that ∆θ implies changes only in functions vp, fc, ec, sv, and fz,nosv such

that β∗ = β0 and f∗z,sv = f0z,sv. And suppose that the researcher knows the perturbation ∆θ =

that for every value of the state variables (i, z), there is a one-to-one mapping between CCPs P and differential
values ṽ. In our binary choice model, Hotz-Miller Proposition simply establishes that function P (i, z) = Fε̃|i(ṽ(i, z))

is invertible. In contrast, Lemma 1 establishes the invertibility of the mapping between vector Q̃ and vector P̃ . Note
that every value Q(i, z) depends on the whole vector P̃ .
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{∆vp (z), ∆fc (z), ∆ec (z), ∆sv (z), ∆fz,nosv (z′|z)} (though he does not know neither θ0 nor θ∗).
Then, ∆Q(i, z), ∆P (i, z), and P (i, z ; θ0 + ∆θ) are identified.

Proof. Under the conditions of Proposition 3, we have that equation (28) becomes:

∆Q(i, z) = ∆vp(z)− [∆fc (z) + ∆ec (z)] + i [∆ec (z)−∆sv (z)]

+ β0
∑

zsv′∈Z
f0z,sv(z

sv′|z) ∆sv(z
sv′)

(29)

The researcher knows all the elements in the right-hand-side of this equation, and therefore ∆Q(i, z)

is identified. Given ∆Q(i, z) and Q(i, z ; θ0), we obtain Q(i, z ; θ0 + ∆θ), and using the inverse

mapping q̃−1, we get P̃ (θ0 + ∆θ) = q̃−1(Q̃(θ0 + ∆θ);β
0, f∗z ) and ∆P (i, z). �

PROPOSITION 4: Suppose that ∆θ implies changes in the discount factor or in the transition

probability of the state variables, such that ∆β ≡ β∗ − β0 6= 0 or/and ∆fz,sv ≡ f∗z,sv − f0z,sv 6= 0,

where the researcher knows both (β0, f0z ) and (β∗, f∗z ). Despite the knowledge of these primitives

under the factual and the counterfactual scenarios, the effect of these counterfactuals on firms’

behavior, as represented by ∆Q(i, z), ∆P (i, z), and P (i, z ; θ0 + ∆θ), is NOT identified.

Proof. Under the conditions of Proposition 4 (and making ∆vp = ∆fc= ∆ec= ∆sv = ∆fz,nosv = 0,

for simplicity but without loss of generality), equation (28) becomes:

∆Q(i, z) = β0
∑

zsv′∈Z
∆fz,sv(zsv′|z) sv0(zsv′)

+ ∆β
∑

zsv′∈Z
[f0z,sv(z

sv′|z) + ∆fz,sv(zsv′|z)] sv0(zsv′)
(30)

Since the scrap value sv0 is not identified, none of the terms that form ∆Q(i, z) are identified. �

4.2 Bias induced by normalizations

Suppose that a researcher has estimated the structural parameters of the model under one of

the ‘normalization’assumptions that we have described in Section 3.4. And suppose that given

the estimated model this researcher implements counterfactual experiments applying the same

‘normalization’assumption that has been used in the estimation. For instance, the model has been

estimated under the condition that the scrap value is zero, and this condition is also maintained

when calculating the counterfactual equilibrium. In this section, we study whether and when this

approach introduces a bias in the estimation of the counterfactual effects. We find that this approach

does not introduce any bias for the class of (identified) counterfactuals described in Proposition 3.

For the class of counterfactuals in Proposition 4, this approach provides a biased estimation. Of

course, this is not surprising because, as shown in that Proposition, that class of counterfactual
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experiments are not identified. More interestingly, we show that the magnitude of this bias can be

economically very significant.

Given a normalization used for the estimation of the model (not necessarily ŝv0(z) = 0), let

ŝv0(z) be the estimated scrap value function. And let ∆̂Q(i, z) be the estimate of ∆Q(i, z) when we

use ŝv0 instead of the true value sv0. Using the general expression for ∆Q(i, z) in equation (28),

the bias induced by the normalization is:

∆̂Q(i, z)−∆Q(i, z) = β0
∑

zsv′∈Z
∆fz,sv(zsv′|z)

[
ŝv0(zsv′)− sv0(zsv′)

]
+ ∆β

∑
zsv′∈Z

[f0z,sv(z
sv′|z) + ∆fz,sv(zsv′|z)]

[
ŝv0(zsv′)− sv0(zsv′)

] (31)

PROPOSITION 5: If the counterfactual experiment is such that ∆β = 0 and ∆fz,sv = 0, then the

bias ∆̂Q(i, z) −∆Q(i, z) is zero, and the ‘normalization’assumption is innocuous for this class of

experiments. Otherwise, the bias ∆̂Q(i, z)−∆Q(i, z) is not zero and the ‘normalization’assumption

introduces a bias in the estimated effect of the counterfactual experiment.

Proof. It follows simply from equation (31). �

Proposition 5 defines the class of counterfactual experiments for which the ‘normalization’

assumptions introduces a bias. This class consists of those experiments involving a change in the

transition probability of a state variable that enters into the scrap value function, or a change in

the discount factor. While most of the counterfactual experiments in recent applications look at

the impacts of the change in structural functions other than transition functions, several studies

have examined the change in firms’behavior under different transition functions. For instance,

Collard-Wexler (2010) examines the effect of demand uncertainty on industry dynamics and market

structure by implementing a counterfactual experiment that changes the transition probability

function of state variables affecting demand. The normalization used consists of setting the scrap

value to zero. This normalization is innocuous and the predictions of the counterfactual experiment

are unbiased if the state variables affecting demand do not have any impact on scrap value. In

another example, Das et al. (2007) examines the change in firms’decisions to enter foreign markets

when the currency of their home country is devalued by 20 percent. In this case, their normalization

(zero scrap value) is innocuous only if all scarp values come from selling domestic assets. If a part of

scrap value comes from selling foreign assets (e.g., subsidiaries), their normalization is not innocuous

any more as its value depends on the exchange rate.
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4.3 Numerical Example

In this section we present a simple example that illustrates how the bias induced by the normaliza-

tion assumption can be sizeable and economically significant. Consider a retail industry in which

market entry requires land ownership. Examples include big-box stores and hotels. Let zt represent

land price. The form of the entry cost, fixed cost , the scrap value functions are ec (z) = ec0 + ec1

z, fc (z) = fc0 + fc1 z, and sv (z) = sv0 + sv1 z, where ec0, ec1, fc0, fc1, sv0, and sv1 are para-

meters. Variable profits do not depend on land price: vp (z) = vp0, where vp0 is a parameter. The

stochastic process of land price is described by the following AR(1) process: zt+1 = α0 +α1 zt +σz

ut+1, where ut+1 is an i.i.d. shock with standard normal distribution.

There are two groups of markets in the data, type H and type L. For instance, each group may

represent a metropolitan area, or a region. Each group consists of a large number of local markets.

Suppose that the only difference between these two groups of markets is the stochastic processes

of land price:

Type H : zt = α0H + α1H zt−1 + σH ut

Type L : zt = α0L + α1L zt−1 + σL ut where u ∼ iid N (0, 1)

All structural cost functions are the same in all local markets, whether they belong to type H or

type L. However, this is not known to the researcher. The researcher observes that land prices

are, on average, different between the two groups, but he does not know whether this is the only

structural difference between the two groups.

Given a data set generated from this model, the researcher observes, or estimates consistently,

the CCP functions for each group of markets. For every land-price z, he knows the probabilities

of entry of a potential entrant in a market type H and in market group L, i.e., PH(0, z) and

PL(0, z), respectively, and the probabilities of exit of an incumbent in these two types of markets,

i.e., PH(0, z) and PL(0, z). The researcher also knows the variable profit vp0, the discount factor β,

and the parameters {α0j , α1j , σj}j∈{H,L} in the stochastic process of land price. Suppose that the
main interest of this researcher is to understand the contribution of different structural factors to

the differences in the CCP functions in the two groups of markets. More specifically, he is interested

in estimating what part of this difference CCPs can be attributed purely to the difference in the

stochastic process of land prices, rather than to the differences in cost functions. Unfortunately, as

shown in Proposition 5, the researcher cannot obtain an unbiased/consistent estimator of this effect.

Performing this experiment requires the knowledge of scrap value function sv (z) but functions

ec (z) , sv (z), and fc (z) are not separately identified from data. Suppose that the researcher makes

a normalization assumption on these functions, and uses the same normalization to implement the
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Figure 1: Stationary Distribution of Land Price: Type H vs Type L

counterfactual experiment. The goal of this numerical exercise is to quantify the extent to which

this approach introduces a bias in the estimated effect of the counterfactual experiment.

For our numerical example we consider the following values for the parameters in the Data

Generating Process: ec0 = 6.5, ec1 = 1, sv0 = 0.9, sv1 = 0.96, vp0 = 1.1, fc0 = 0.1, fc1 = 0.03,

β = 0.95, α0H = 1.0, α0L = 0.9, α1H = α1L = 0.9, and σH = σL = 0.5. Under this setting, the

average land price of group H is ten-percent higher than that of group L (10.0 vs 9.0), while the

standard deviation of land price is the same (1.3). Figure 1 illustrates the distributions of these

two groups.

Figure 2 shows the CCPs of both a potential entrant and an incumbent in each group of markets.

Note that the observed difference in the CCPs of these two groups is entirely due to the difference

in the stochastic processes of the land price (though the researcher does not know it). For every

land price, the probability of entry and the probability of staying in the market is higher for group

H than for group L. This is because the lower average land price in group L implies that, at any

level of current land price, a firm’s expectation on future land price decreases. As a result, a new

entrant is more likely to postpone its entry as future entry cost is likely to be lower. An incumbent

is more likely to exit today as scrap value is likely to decrease in the future. Of course, on average,

there is more entry and less exit in type L markets than in type H. For a potential entrant, the

unconditional probability of being in the market is 7.1 percent in group H and 10.4 percent in

group L, and these probabilities are 94.7 percent and 96.5 percent, respectively, for an incumbent.
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Figure 2: Estimated CCPs

Note that having a probability of staying in the market that declines with land price is not by

itself evidence that there is a scrap value that depends on land price. This correlation can be also

generated by a model where the scrap value is constant and the fixed cost of an incumbent firm

increases with land price (e.g., property taxes, or leasing price that depends on the price of land).

In this example, both effects play a role in generating this dependence.

Figure 3 presents the estimated entry cost and fixed cost functions in group H with zero scrap

value normalization. With this normalization, the estimated entry cost function is smaller and less

sensitive to a change in land price than the true function, i.e., êc(z) = ec(z)−sv(z) = [5.6+0.4z] <

[6.5 + z] = ec(z). In contrast, the estimated fixed cost function is larger for most land price level

and more sensitive to a change in land price than the true function. Under the normalization of the

scrap value to zero the researcher may interpret that the effect of land price on the probability of

exit comes only the fixed operating cost, but the truth is that it may also come from the dependence

of the scrap value with respect to the land price, as in this example.
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Figure 3: Estimated Structural Cost Functions with sv (z) = 0 Normalization

We do not present a figure with the estimated entry cost and fixed cost functions in group L.

In this example and under this normalization, the estimated entry cost is the same for the two

groups of markets. This is because the stochastic process of land price does not play any role in

the estimated entry cost under the normalization of zero scrap value. The estimated fixed cost

functions are different: f̂ cH(z) = −0.767 + 0.1692 z for group H, and f̂ cL(z) = −0.675 + 0.1692 z

for group L. Given these results, the researcher will conclude that the sunk entry cost is the same

in the two groups of markets. And he might be even willing to conjecture that the two groups have

the same entry cost function and the same scrap value function. However, this correct conjecture

is still not enough to identify the effect of a change in the stochastic process of land price. Also

given the difference in the estimated fixed cost function, the researcher cannot identify how much

of this difference can be attributed to the difference in the level of land prices and how much to

possible actual differences in the fixed cost functions of the two groups.

Figure 4 presents the main results of a counterfactual experiment that measures to what extent

the difference in average land prices can explain the different firm turnover rates between type H
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Figure 4: The Estimated Change in CCPs

and type L markets.13 This experiment consists of solving for the equilibrium CCPs in type H

market when we keep the structural cost functions at the estimated values for this group H but we

replace the stochastic process of land price with that of type L. The upper panel shows the true

and the estimated changes in the probability of entry (i.e., the difference between counterfactual

and factual probabilities) where the estimated values are based on zero-scrap value normalization.

Similarly, the lower panel shows the change in the probability of staying in the market for an

incumbent.

The true effect of this counterfactual experiment, that consists of reducing average land price

by ten percent, is that both new entrants and incumbents are less likely to be in the market at

13Land price is discretized into 20 equally spaced distinct points between one percentile and ninty-nine percentile.
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every land price, i.e., the schedules that represent the probability of entry and stay, as functions of

z, move downward. The reduction in average land price implies that, at any level of current land

price, a firm’s expectation on future land price decreases. As a result, a new entrant is more likely

to postpone its entry as future entry cost is likely to be lower. An incumbent is more likely to exit

today as scrap value is likely to decrease in the future. Of course, despite this shift downward in

these probability schedules, we have that there is more entry and less exit on average with the lower

mean land price, i.e., the counterfactual probability function of entry (stay) evaluated at the low

mean land price is greater than the factual probability of entry (stay) evaluated at the high mean

land price. More specifically, the counterfactual change increases the unconditional probability of

being in the market from 7.1 percent to 10.4 percent for a potential entrant and from 94.7 percent

to 96.5 percent for an incumbent.

The predictions are considerably different when we perform the same counterfactual experiment

using the estimated structural cost functions that are ‘identified’from data under zero-scrap value

restriction. In contrast to the true effect, the estimated effect shows an upward shift in the schedules

that represent the probability of entry and the probability of stay at every possible land price. For

instance, at the mean land price in the original distribution (z = 10), the probability of being in the

market increases by 2.0 percentage points (from 5.3 to 7.3) for a new entrant and by 1.2 percentage

points (from 95.7 to 96.9) for an incumbent. This experiment also overshoots the unconditional

probability of being in a market in the next period by 4.7 percentage points for a potential entrant

(15.1 vs. 10.4) and by 1.4 percentage points for an incumbent (97.9 vs. 96.5).

This bias is generated by the difference in the structural cost functions. As shown in the

first row of Table 1, imposing zero scrap value restriction leads overestimation of fixed cost and

underestimation of entry cost. In addition, fixed cost estimates under this restriction depend on

land price, while both entry cost and scrap value do not. Under the original distribution of land

price, a firm’s equilibrium policy under this (incorrect) cost structure is exactly equal to the one

under the true cost structure. When the distribution shifts to the left, however, a firm is more

likely to choose to be in the market for every land price level, as a firm expects lower fixed cost in

the future. In this environment, firms do not consider the change in entry cost and scrap value as

they do not depend on land price any more.

5 Brief Discussion of Possible Solutions

In this section we present a brief discussion of two natural approaches to deal with the non identifi-

cation of the three structural functions in the fixed cost and some of the counterfactual experiments:

(a) partial (interval) identification; and (b) using data on firms’value or scrap values.
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5.1 Partial identification

There are plausible restrictions on the fixed profits functions that provide bounds of our estimates

of these functions. For instance, suppose that the researcher is willing to assume that the three

components of the fixed profit are always positive, i.e., ec(z) ≥ 0, fc(z) ≥ 0, and sv(z) ≥ 0.

These restrictions, together with equation (21), imply sharper lower-bounds for the entry cost and

the scrap value. More specifically, we have that ec(z) ≥ ec(z) ≡ max{0, Q(1, z) − Q(0, z)}, and
sv(z) ≥ sv(z) = −ec(z). That is, if the ‘ex ante’sunk cost is positive (i.e., Q(1, z)−Q(0, z) ≥ 0),

then the entry cost should be at least as large as the sunk cost, and if the sunk cost is negative

(i.e., Q(1, z) − Q(0, z) < 0), then the scrap value should be at least as large as the negative sunk

cost. Other restriction that seems quite plausible is sv(z) ≥ β E(sv(zt+1) | zt = z). Combining

this restriction with equation (21), we have the following upper bound on the fixed cost function:

fc(z) ≤ fc(z) ≡ −Q(1, z) + vp(z).

5.2 Using data on transaction prices from the acquisition of firms

In some industries, a common form of firm exit (and entry) is that the owner of an incumbent firm

sells all the firm’s assets to a new entrant. For instance, this is very frequent in the bulk shipping

industry, as shown in Kalouptsidi (2011), and it is also common in some retail industries intensive

in land input such as the hotel industry. Sometimes, the researcher has data on firm acquisition

prices. Under some assumptions, these additional data can be used to deal with the identification

problem that we study in this paper. We now illustrate this approach in a simple framework.

For simplicity, suppose that the industry is such that the only form of entry is by acquiring an

incumbent firm, and similarly the only form of exit is by selling your assets to a new entrant. Then,

the entry cost has two components: ec(zt) = r(zt) + τ en(zt), where r(zt) represents the acquisition

price that the new entrant should pay to the exiting incumbent, and τ en(zt) represents costs of

entry other than the acquisition price. Similarly, the exit value of a firm has also two components:

sv(zt) = r(zt) − τ ex(zt), where τ ex(zt) represents costs associated with market exit. We assume

that the acquisition price r(zt) is the solution of a Nash bargaining problem between the seller and

the buyer. Taking into account that V̄ (1, z)− V̄ (0, z) is the value of being an incumbent minus the

value of being a potential entrant, we have that the surplus of the buyer is V̄ (1, z)− V̄ (0, z)−ec(z),
and the surplus of the seller is sv(z) − V̄ (1, z) + V̄ (0, z). The Nash bargaining solution implies

that:

r(z) = V̄ (1, z)− V̄ (0, z) + α τ ex(z)− (1− α) τ en(z) (32)

where α ∈ (0, 1) is a parameter that represents the seller bargaining power.
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Let Rt be the selling price of a firm, and suppose that the researcher observes this price when a

transaction actually occurs. For simplicity, to abstract from selection problems, consider that Rt is

a deterministic function of the observable state variables zt plus a measurement error ξt that is not

a state variable of the model, has zero mean, and is independent of the observed state variables zt

(i.e., classical measurement error): Rt = r(zt)+ξt, with E(ξt|zt) = 0.14 Under these conditions, the

pricing function r(z) is identified from the data. Now, the researcher has three sets of restrictions

to identify the three unknown functions fc(z), τ en(z), and τ ex(z):

τ en (z) + τ ex (z) = Q(1, z)−Q(0, z),

fc (z) + r(z) + τ en(z)− β
∑
z′∈Z

fz(z
′|z) [r (z′)− τ ex (z′)] = −Q(0, z) + vp(z).

β
∑
z′∈Z

fz(z
′|z) [r (z′)− α τ ex (z′) + (1− α) τ en (z′)] = ṽ (i, z)−Q(i, z)

(33)

where the third set of restrictions comes from combining the price equation in (32) with the defin-

ition of Q(i, z) as Q(i, z) ≡ ṽ (i, z)− β
∑
z′ fz(z

′|z) [V̄ (1, z′)− V̄ (0, z′)].

PROPOSITION 6: Given a value of the parameter that represents seller bargaining power, α, the

set of restrictions in (33) identify the functions τ en(.), τ ex(.), and fc(.).

6 Conclusions

The solution and estimation of dynamic structural models of oligopoly competition is a useful tool

in Industrial Organization and in other fields in empirical microeconomics such as trade, health

economics, or public economics, among others. Empirical applications of these models typically use

panel data on firms’entry and exit decisions in multiple local markets, together with information

on exogenous market and firm characteristics, and sometimes information of firms’ prices and

quantities. In this class of models, the functions that represent fixed operating cost, entry cost,

and exit value play an important role in firms’entry and exit behavior. Furthermore, many public

policies and managerial policies can be described in terms of changes in some of these functions.

This paper is motivated by a fundamental identification problem: these three functions cannot be

separately identified using these data. The conventional approach to deal with this identification

problem has been to ‘normalize’some of structural parameters to zero. We study the implications of
14This assumption is testable: it implies that the residual price ξ ≡ [R − E(R|z)] should be independent of firms’

entry and exit decisions. In general, unless the dataset is rich enough to include in z all the relevant variables
affecting the price of a firm, we should expect that this assumption will be rejected by the data. That is, we expect
R = r(z, ε) + ξ, where ε is the vector of state variables observable to firms but unobservable to the researcher.
Allowing for this type of unobservables as determinants of the transaction price implies that we should deal with a
potential selection problem. We only observe the transaction price for those firm-market-period observations when
a firm is sold, but those firms that are sold can be systematically different in terms of unobserved state variables ε
from those firms that are not sold, i.e., E(R|z, firm is sold) 6= E(R|z).
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this ‘normalization’approach. First, we obtained closed-form expressions that provide the correct

interpretation of the estimated objects that are obtained under the ‘normalization assumptions’

that have been considered in applications. Second, we show that there is a class of counterfactual

experiments that are identified and for which the normalization assumptions are innocuous. We

also show that there is a class of experiments for which the normalization assumptions introduce

a bias. Using a simple numerical experiment, we show that this bias can be very significant

both quantitatively and economically. We also discuss alternative approaches to deal with this

identification problem.
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APPENDIX. Proof of Lemma 1

By definition Q(i, z) ≡ ṽ(i, z) − β
∑
z′ fz(z

′|z) [S(ṽ (1, z) , Fε̃|1)− S(ṽ (0, z) , Fε̃|0)], where ṽ (i, z) =

F−1ε̃|i (P (i, z)) and S(ṽ (i, z) , Fε̃|i) ≡
∫ ṽ(i,z)
−∞ [ṽ(i, z)−ε̃] dFε̃|i (ε̃). These expressions imply the mapping

in equation (27). We can describe mapping q̃(P̃ ;β, fz) as the composition of two mappings: (1) the

mapping from CCPs to differential values, i.e., ṽ (i, z) = F−1ε̃|i (P (i, z)); and (2) the mapping from

differential values to Q′s, i.e., Q(i, z) = ṽ(i, z)− β
∑
z′ fz(z

′|z) [S(ṽ (1, z) , Fε̃|1)− S(ṽ (0, z) , Fε̃|0)].

The first mapping is point-wise for every value of (i, z), and in our binary choice model it is obviously

invertible. Proposition 1 in (Hotz and Miller 1993) establishes the invertibility of that mapping

for multinomial choice models. Therefore, we should prove the invertibility of the second mapping,

between the vector ṽ ≡ {ṽ(i, z) : for all (i, z)} and the vector Q̃ ≡ {Q(i, z) : for all (i, z)}. Define
this mapping as Q̃ = g̃(ṽ) where g̃(ṽ) ≡ {g(i, z, ṽ) : for all (i, z)} and:

g(i, z, ṽ) ≡ ṽ(i, z)− β
∑
z′∈Z

fz(z
′|z)

(∫ ṽ(1,z′)

−∞
[ṽ(1, z′)− ε̃] dFε̃|1 (ε̃)

)

+ β
∑
z′∈Z

fz(z
′|z)

(∫ ṽ(0,z′)

−∞
[ṽ(0, z′)− ε̃] dFε̃|0 (ε̃)

)

In vector form, we can express this mapping as:

g̃(ṽ) ≡
[
g̃(0, ṽ)
g̃(1, ṽ)

]
=

[
ṽ(0, .)− β Fz ẽ(ṽ)
ṽ(1, .)− β Fz ẽ(ṽ)

]
where Fz is the transition probability matrix with elements fz(z′|z), and ẽ(ṽ) ≡ {ẽ(z; ṽ) : for all

z} with ẽ(z; ṽ) =

∫ ṽ(1,z)

−∞
[ṽ(1, z) − ε̃] dFε̃|1 (ε̃)−

∫ ṽ(0,z)

−∞
[ṽ(0, z) − ε̃] dFε̃|0 (ε̃). The mapping g̃(ṽ) is

globally invertible if and only if its Jacobian matrix J(ṽ) ≡ ∂g̃(ṽ)/∂ṽ′ is non-singular for every

value of ṽ. It is simple to show that this Jacobian matrix has the following form:

J(ṽ) = I− β
[(

1
1

)
⊗
(
Fz

∂ẽ(ṽ)

∂ṽ′

)]
where I is the identity matrix. Given the form of function ẽ(z; ṽ), it is straightforward to show

that ∂ẽ(z; ṽ)/∂ṽ(0, z) = Fε̃|0(ṽ(0, z)) = −P (0, z), and ∂ẽ(z; ṽ)/∂ṽ(1, z) = Fε̃|1(ṽ(1, z)) = P (1, z).

Therefore,
∂ẽ(ṽ)

∂ṽ′
= [−diag{P (0, .)} ; diag{P (1, .)}]

where diag{P (i, .)} is diagonal matrix with elements {P (i, z)} for every value of z. The Jacobian
matrix J(ṽ) is invertible for every value of ṽ.
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