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Abstract

We study equilibrium redistributive policy proposals of two parties with

policy preferences. Each party’s ideal policy coincides with that of citizens

with a particular income level and the party’s utility function further em-

bodies its attitude toward incompatible two goals: implementation of more

preferred policy and electoral victory. If parties face uncertainty about citi-

zens’ abstention, diverged equilibrium proposals are derived which are more

moderate than their contrasting ideal policies. Then, political equilibria un-

der different prior beliefs on abstention are compared. We show that the

lower likelihood of abstention in an income group induces both parties to

make proposals catering to the group in equilibrium.
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1 Introduction

In the real politics, parties often modify their courses. The party takes an extreme

stance consistently with its principles, or takes more moderate stances according to

the time. Indeed, the 1960s’ Democratic administration in the U. S. implemented

positive fiscal policies with the slogan ”guns and butter” and gave up balanced

finance, while the Clinton administration of the 1990s succeeded in cutting Medicare

and Medicaid expenses through major legislation and reforms. It appears natural to

suppose that these different stances on redistribution by the identical party might

be affected by its assessment of voter concern and behavior.

The literature is rich with models of two-party political competition. Since

Hotelling’s (1929) pioneering work, the archetypal conclusion in rational-choice

analyses on the competition where the goal of two parties is solely to seek office

has been convergence of their policy positions on the median voters’ ideal point.

In reality, however, even if parties for office sometimes adopt similar positions,

they rarely adopt exactly the same position, which contradicts the prediction of

the median voter theorem. Another category of the literature has supposed that

parties have ideological preferences on policies. While some works in the category

hold with convergence of parties’ positions on the particular citizens’ ideal point

[Wittman (1977) and Calvert (1985)], others produce policy divergence [Wittman

(1983), Hansson and Stuart (1984), Lindbeck and Weibull (1993), Roemer (1994),

and Roemer (1997)]. These models, however, aim mainly at producing equilibrium

policy divergence rather than providing implications for real politics. The excep-

tions are Roemer (1998) and Roemer (1999). They are on two-party competition

with two-dimensional policy space: the former explores how increasing importance

of the non-economic issue affects parties’ choice of redistributive policies, while

the latter derives choice of progressive income taxation by both the leftist and

the rightist parties. On the contrary, our model analysis employs one-dimensional

policy space, constructs the existence theorem of politico-economic equilibrium of
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redistribution, and further shows how the parties’ selection of courses is affected by

their conjecture on abstention, or voting rate, by income group. To our knowledge,

there has been no analysis on parties with policy preferences and conjecture on

voter behavior.

Let’s summarize the model. There are two parties with contrasting preferences

on redistribution. They represent specific income groups in that their ideal policies

coincide with the ideal policies of these groups. Being based on the prior on voters’

income distribution, parties make a binding electoral promise to all the electorate

in the form of posttax income function with two parameters, and the balanced-

budget requirement reduces the policy space to one dimension. Each voter sincerely

votes for the party promising him the highest posttax income. The winning party

implements the policy which it announced in the election campaign. Obviously, in

the game with no abstention and therefore with no uncertainty about vote shares

parties receive, the unique equilibrium involves each party’s choice of the median

voters’ ideal policy. When the parties face uncertainty about income distribution

of the voters who will actually go to the polls, parties’ equilibrium positions are

divergent and located on the side of their respective ideal points. Then, under

the sufficient condition for the uniqueness of equilibrium, political equilibria with

different prior beliefs on abstention are compared. It is shown that parties’ common

prior of the high voting rate among the low-income citizens compared with the high-

income ones induces both parties to take the equilibrium positions more courting

the low-income group, and vice versa. These results provide a well-described picture

of redistributive politics.

Among the works listed above, our model closely relates to Roemer’s (1997).

He employed one-dimensional policy space, candidates with policy preferences, un-

certainty about income distribution of voters, and generated equilibrium policy

divergence. The works before him [e.g., Wittman (1983) and Hansson and Stu-

art (1984)] presupposed that each party’s probability of winning is concave in its
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strategy to deduce the concavity of the payoff function. On the contrary, Roemer

(1997) composed the probability function from microfoundations, but he was in-

stead induced to suppose that the probability function has decreasing hazard rate.

Contrasting with him, we suppose parties’ utility function to embody their attitude

toward the trade-off between ideological contentment and likelihood of victory. The

supposition amounts to a sufficient condition for the existence of equilibrium. Due

to this formulation, as the party takes the rival’s choice as given and moves its posi-

tion away from the rival’s position closer to its ideal point, the ratio of the marginal

increase in utility from its deviation to the marginal decrease in the probability of

victory decreases. We believe that our utility function construction should be as

plausible as suppositions to be set up in the other economic literature to manage

trade-offs.

The paper is constructed as follows. The basic model assumptions on income

distribution among the citizens and citizens’ and parties’ preferences on policies

are given in Section 2. In Section 3, political equilibrium is derived. Section 4

concludes. Proofs except the one of Lemma 3 are gathered in Appendix.

2 The Model

There is a continuum of citizens. Citizens are considered as initially homogeneous

before the nature determines their endowment, which is denoted by x.1 The prob-

ability distribution of x is defined over the real interval X0 = (0, 1]. Suppose that

x is distributed on X0 according to cumulative distribution function F0(x) = x and

hence the expected value of x is 1
2
. The uniform distribution supposition is posited

because it leads us to well-defined solutions.2

1This supposition implies that citizens have no a priori ideological preferences.
2Our results still hold with any cumulative distribution function that produces single-

peakedness of citizens’ preferences and monotonicity of their most preferred policy in their en-

dowment under the tax scheme (1) and parties’ balanced-budget constraint (2).
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Each citizen is supposed to inelastically provide a unit of labor and to earn

income whose amount is identical to endowment. Let’s represent a citizen’s type by

his realized value of x. Define a median voter as type m such that F0(m) = 1
2
, i.e.,

m = 1
2
.

There are two parties competing for the same office: one is leftist L and the

other is rightist R. An electoral competition takes the form of simultaneous offers

of posttax incomes. Parties make offers to citizens on the basis of the common prior

on the probability distribution of x, which corresponds to F0. Offers are supposed

to be binding. Each party is committed to implementing its offer if elected. In the

case of a tie, a fair coin is flipped to determine a winner.

We define type x’s posttax income offered by party i, i ∈ {L, R}, as

yi(x) = αix
βi, (1)

where yi(x) ∈ (0, αi] denotes posttax income guaranteed to type x by party i;

αi(> 0) and βi ∈ β = [β, β], 0 < β < β ≤ 1, are coefficients chosen by party i.

Notably, βi measures the elasticity of posttax income with respect to pretax income.

This measure of tax progression is well-known as the ”residual income progression”

parameter, which was first introduced by Musgrave and Thin (1948).3 If βi = 1, a

tax scheme is proportional. As we choose successively lower values of βi, the more

progressive the tax scheme becomes, thereby reducing inequality in the resulting

posttax income distribution. According to the suppositions on the ranges of αi and

βi,
∂yi

∂x
> 0 and thus x is mapped into yi in the same order.

Suppose that transfers are financed purely by taxing citizens’ incomes. Then,

the budget constraint for party i is given by the amount of available resources:

∫ 1

0
αix

βidx =
1

2
. (2)

3Bénabou’s (2000) politico-economic model also employs the constant residual progression

scheme, outlining the linkage between the Lorentz curve and it.
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This balanced-budget constraint can be arranged as

αi =
1 + βi

2
, (3)

and hence we can reduce each party’s strategy to choosing only a real number in

the interval β. Define that Y (x, βi) ≡ yi(x). By the proposal of βi = 1, each citizen

is assured of posttax income equal to his pretax income. As βi gets closer to zero,

posttax incomes of all the citizens converge more closely on the mean 1
2
.

Let the utility of type x from party i’s proposal be identical to Y (x, βi). Let β̂x

denote type x’s most preferred policy, i.e., type x’s ideal policy. From (1) and (3),

β̂x corresponds to

arg max
z∈β

1 + z

2
xz, (4)

and (4) is solved for by examining the partial derivative of the maximand with

regard to z:

1 + z

2
xz
(

1

1 + z
+ log x

)
. (5)

It immediately follows from (5) that the maximand in (4) is single-peaked in z ∈ β,

implying that yi(x) is single-peaked in βi ∈ β. By implicit function theorem, for x

such that β < β̂x < β, i.e., for e
− 1

1+β < x < e
− 1

1+β ,

∂β̂x

∂x
=

(1 + β̂x)
2

x
> 0, (6)

and thus ideal policy β̂x is monotonous in voter type x.

Let’s suppose that party i’s utility depends on the preference of the type party

i represents among the electorate, which is denoted by xi, and the policy to be

implemented, βh ∈ {βL, βR}. The utility function of party i is defined by

U(xi, βh) = ũ (Y (xi, βh)) , (7)

where ũ(·) is continuously twice differentiable and strictly increasing. It immedi-

ately follows from (7) that party i’s ideal policy coincides with that of type xi.
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Assumption 1. xL < m < xR.

It is clear from (6) that β̂xL
< β̂m(= 1

log 2
− 1) < β̂xR

under Assumption 1.

Thus, Assumption 1 describes that party L’s stance is associated with an egalitarian

philosophy, preferring higher progression and less inequality. On the contrary, party

R feels that individuals are more entitled to the fruits they have generated, and thus,

it is less concerned about equity.

Let (βL, βR) signify a set of proposals by two parties. Voting is carried out

after each citizen is informed of both parties’ proposals and the realized value of

his endowment (which has been supposed to equal his pretax income). Each one

sincerely votes for one of the two parties whose offer leads to the greatest utility.

Namely, type x votes for party i, i ∈ {L, R}, not party j, j ∈ {L, R|j �= i},
if yi(x) > yj(x). He votes for one of them randomly if two parties propose the

same posttax income. Let Vi(βi, βj) denote the fraction of citizens with x such

that yi(x) > yj(x), given βi and βj. It corresponds to the fraction of votes party i

receives without abstention. Then, we can derive that

Vi(βi, βj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1+βi

1+βj

) 1
βj−βi , if βi < βj,

1
2
, if βi = βj,

1−
(

1+βj

1+βi

) 1
βi−βj , if βi > βj.

(8)

For a detailed derivation of (8), see Appendix. From (8), type
(

1+βi

1+βj

) 1
βj−βi is a

marginal citizen who is indifferent to both parties’ proposals if βi < βj; similarly,

type
(

1+βj

1+βi

) 1
βi−βj is a marginal citizen if βi > βj. Thus, Vi is determinate if given

βL and βR.

The following lemmas on the change in the party’s vote share caused by its de-

viation are intuitively comprehensible from the single-peakedness of citizens’ pref-

erences. Their formal proofs are contained in Appendix.

Lemma 1. If βi < βj,
∂Vi

∂βi
> 0. If βi > βj,

∂Vi

∂βi
< 0.
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Lemma 2. If βj < β̂m, limβi→βj− Vi < 1
2

and limβi→βj+ Vi > 1
2
. If βj > β̂m,

limβi→βj− Vi > 1
2

and limβi→βj+ Vi < 1
2
. If βj = β̂m, limβi→βj− Vi = limβi→βj+ Vi = 1

2
.

Lemma 1 captures the idea that each party can obtain more votes by moving its

policy position closer to the rival’s. It also suggests that ∂Vi

∂βj
> (<)0 if βi < (>)βj

since ∂Vi

∂βj
= −∂Vj

∂βj
. Lemma 2 shows that Vi is continuous on the line βi = βj if and

only if party j takes the median voters’ ideal policy.

According to the standard approach in the literature on parties with policy

preferences, party i’s payoff is given by party i’s expected utility, which is denoted

by Wi:

Wi(βi, βj) = Pi(βi, βj)U(xi, βi) + (1− Pi(βi, βj))U(xi, βj), (9)

where Pi represents party i’s probability of winning the election. The correspon-

dence from Vi to Pi will be mentioned later.

Thus, the electoral game is defined as follows: the strategy set of party i, i ∈
{L, R}, is β and for each pair of strategies (βL, βR) ∈ β2, party i’s payoff is given

by Wi. The equilibrium concept is Nash. An equilibrium is described as a pair of

strategies of parties L and R.

3 Equilibrium

First, as a benchmark, suppose that every citizen casts a vote and hence parties

face no uncertainty on vote shares they receive. Then, party i recognizes Pi in (9)

as

Pi(βi, βj) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if Vi(βi, βj) < 1
2
,

1
2
, if Vi(βi, βj) = 1

2
,

1, if Vi(βi, βj) > 1
2
.

(10)

Namely, the payoff for party i is taken to be U(xi, βi) if it wins on policy βi; U(xi, βj)

if party j wins on policy βj;
1
2
U(xi, βi) + 1

2
U(xi, βj) by a fair lottery in the case of
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a tie.

Theorem 1. Let Assumption 1 hold. Suppose no abstention. Then, (β̂m, β̂m) is a

unique equilibrium of the game where VL(β̂m, β̂m) = VR(β̂m, β̂m) = PL(β̂m, β̂m) =

PR(β̂m, β̂m) = 1
2
.

Theorem 1 says that when there is no uncertainty on vote share the party

receives, each party’s equilibrium strategy involves solely the choice of the me-

dian voters’ ideal policy. Thus, Theorem 1 holds the idea of Hotelling (1929).

Let’s outline the proof in Appendix. In the game with policy preferences, if given

(βL, βR) = (β̂m, β̂m), each party’s deviation from β̂m to its more preferred posi-

tion forces it to lose the competition outright and never raises its payoff. If given

(βL, βR) �= (β̂m, β̂m), one of two parties has a position which is preferable to the

current one and guides it to certain electoral victory. Thus, (βL, βR) �= (β̂m, β̂m)

cannot be a candidate of equilibrium. These results arise from the formulation in

(10).

Then, let parties face uncertainty. Uncertainty about income distribution of

the voters who actually cast votes originates from the possibility of some citizens’

abstention driven by the weather, polls, scandals or booms of party leaders, or

whims. We shall model uncertainty lead by such factors by taking a continuum

of states s ∈ S = [0, 1] and s’s cumulative distribution function H defined on S.

For each s, x is distributed on X0 according to conditional cumulative distribution

function G(x|s). Namely, G(x|s) denotes the fraction of voters with their pretax

income below x in state s.

Assumption 2. (i) H(s) is continuously twice differentiable and strictly increasing

in s ∈ S; (ii) G(x|s) is continuously twice differentiable in (x, s); (iii) for any s ∈ S,

G(x|s) is strictly increasing in x ∈ X0; (iv) G(x|s) is strictly increasing in s ∈ S

if x ∈ (0, 1); G(1|s) = 1 for any s ∈ S; (v) H(·) and G(·|·) are the common prior
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beliefs of L and R.

Put differently, if s1 > s2, G(x|s1) > G(x|s2) for any x ∈ (0, 1). Namely,

G(·|s2) first-order stochastically dominates G(·|s1). To speak intuitively and simply,

the higher s is associated with income distribution with the higher ratio of the

poor, given any definable boundary that divides the electorate into two income

groups. One interpretation of s is the impact of campaign ads invoking the political

awareness among the low-income group: with higher s, more low-income citizens

turn out to vote.

Under Assumption 2, party i’s vote share in state s, denoted by V s
i (βi, βj |s), is

derived as

V s
i (βi, βj|s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G
((

1+βi

1+βj

) 1
βj−βi |s

)
, if βi < βj,

1
2
, if βi = βj,

1−G
((

1+βj

1+βi

) 1
βi−βj |s

)
, if βi > βj.

(11)

See Appendix for the derivation of (11). Thus, V s
i represents the fraction of voters

whose pretax income is below
(

1+βi

1+βj

) 1
βj−βi (above

(
1+βj

1+βi

) 1
βi−βj ) in state s if βi < βj

(βi > βj). Note that V s
i = G (Vi|s) if βi < βj; V s

i = 1 − G (1− Vi|s) if βi > βj.

Thus, V s
i is a random variable defined on S if βi �= βj.

Let’s suppose that given βL �= βR, there is a cutpoint s ∈ (0, 1) such that

V s
L (βL, βR|s) = G (VL(βL, βR)|s) = 1

2
for every VL(βL, βR) if βL < βR; V s

R (βR, βL|s) =

G (VR(βR, βL)|s) = 1
2

for every VR(βR, βL) if βL > βR. Under Assumption 2, VL or

VR is mapped into s in the one-to-one manner. In state s > (<)s, the party with

lower proposal wins (loses) the election since its vote share strictly increases in s,

given βL and βR. Then, we can derive the continuity and the monotonicity of PL

and PR with regard to VL and VR, respectively.

Lemma 3. Let Assumption 2 hold. Then, if βL �= βR, Pi ∈ (0, 1), i ∈ {L, R}, is

continuously differentiable and strictly increasing in Vi.
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Proof. Let βi < βj. Let function s(Vi) be defined by G (Vi|s(Vi)) = 1
2
: since

Vi ∈ (0, 1), Vi is mapped into s in the one-to-one manner under Assumption 2. Then,

from implicit function theorem, ∂s
∂Vi

= − ∂G
∂Vi

/∂G
∂s

< 0. Given Vi, Pi = 1−H (s(Vi))

and thus Pi strictly increases in Vi since s′ < 0 and H ′ > 0.

Let βi > βj. Then, 1−G(1−Vi|s) = 1−G(Vj|s). By definition, 1−G(Vj|s(Vj)) =

1
2

and hence Pi = H (s(Vj)). Thus, Pi strictly increases in Vi since ∂Vj

∂Vi
< 0.

Continuous differentiability of Pi with regard to Vi comes from continuous dif-

ferentiability of H(·) and G(·|·). It is clear that 0 < Pi < 1 from the supposition

that 0 < s < 1. ‖

Accordingly, under Assumptions 1 and 2, party i’s choice of strategy effects its

payoff displayed in (9) through two channels: via a change in Pi(βi, βj) and via a

change in U(xi, βi). From Lemmas 1 and 3, Pi(βi, βj) strictly increases in βi ∈ [β, βj)

and strictly decreases in βi ∈ (βj, β]: it may leap up or down to 1
2

at βi = βj. On

the other hand, U(xi, βi) strictly increases in βi ∈ [β, β̂xi
) and strictly decreases in

βi ∈ (β̂xi
, β]. Thus, party i has to consider the tactical effect on Pi(βi, βj) and the

ideological effect on U(xi, βi) arising from its decision.

Lemma 4. Given βj, βi < min{β̂xi
, βj} or βi > max{β̂xi

, βj} is never a maximizer

of Wi.

Lemma 4 suggests that βi ∈ [min{β̂xi
, βj}, max{β̂xi

, βj}] is a candidate of party

i’s best reaction. Notice that if βj �= β̂xi
, two effects illustrated above work in the

opposite directions in the interval (min{β̂xi
, βj}, max{β̂xi

, βj}) and therefore the

party has to consider their relative strength in making a choice. Let’s measure it by

the ratio of the marginal increase (decrease) in U(xi, βi) to the marginal decrease

(increase) in Pi(βi, βj). Define that ηi ≡ ∂U
∂βi

(xi, βi)/
∂Pi

∂βi
(βi, βj). Then, ηi < 0 if

i’s policy position is located between β̂xi
and βj. The following assumption on the

curvature of function ũ stipulates party i’s attitude toward the trade-off between the
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ideological gain produced by its marginal deviation (represented by ηi’s numerator)

and the tactical gain produced alike (represented by ηi’s denominator).

Assumption 3. Given functions F0, Y , H, and G, function ũ satisfies the following

conditions: (i) the absolute value of ηi = − ∂ũ
∂Y

∂Y
∂βi

/∂H
∂s

∂s
∂Vi

∂Vi

∂βi
weakly increases in

βi ∈ (β̂xi
, βj); (ii) the absolute value of ηi = − ∂ũ

∂Y
∂Y
∂βi

/∂H
∂s

∂s
∂Vj

∂Vi

∂βi
weakly decreases in

βi ∈ (βj, β̂xi
).

Intuition is the following: when i comes up against the trade-off, its ideological

gain relative to its tactical loss gets smaller as its choice gets closer to its ideal policy.

We are now ready to construct the existence theorem of political equilibrium under

uncertainty since Assumption 3 provides a sufficient condition for i’s best reaction

to be single-valued.

Theorem 2. Let Assumptions 1 to 3 hold. Namely, parties L and R face uncertainty

on voters’ distribution. Then, an equilibrium (β∗
L, β∗

R) of the game exists where

β̂xL
< β∗

L < β∗
R < β̂xR

.

Theorem 2 tells us that policy-motivated parties, facing uncertainty, propose

divergent policies in equilibrium. One possible example of the pair of party L’s and

party R’s reaction curves is illustrated in Figure 1. It displays that each party’s

best reaction against the rival’s choice uniquely exists in the interval between its

ideal policy and the rival’s position. The equilibrium of the game, which is marked

by the intersection of two reaction curves, is certainly involved inside the triangle

drawn with the thick dotted lines where β̂xL
< βL < βR < β̂xR

.4

We are now interested in the linkage between parties’ common prior beliefs on

voters’ income distribution and parties’ equilibrium strategies. Redefine H as the

set of cumulative distribution functions of s which satisfy Assumption 2 and take

4Our results are consistent with Roemer’s (1997) conclusion that both policy-motivated parties

and uncertainty are needed to generate equilibrium policy divergence.
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H1, H2 ∈ H. Represent an equilibrium with Hk as (βk∗
L , βk∗

R ), k = 1, 2. Note that

β̂xL
< βk∗

L < βk∗
R < β̂xR

from Theorem 2. Then, let’s examine the movement of

the equilibrium according to the shift of parties’ prior from H1 to H2. We will

concentrate on the shift such that H ′
1(s

1∗) = H ′
2(s

1∗) where s1∗ ≡ s(VL(β1∗
L , β1∗

R )),

i.e., the density at the cutpoint s1∗ is kept constant.5

For our purpose, a sufficient condition for the uniqueness of equilibrium is as-

sumed.

Assumption 4. Let i’s best reaction for every βj ∈ β be denoted by bi(βj) ∈ β. If

βj �= β̂xi
, 0 < ∂2Wi

∂βi∂βj
(bi(βj), βj) < |∂2Wi

∂β2
i

(bi(βj), βj)| with any Hk ∈ H.

It follows from the discussions so far that ∂Wi

∂βi
(bi(βj), βj) = 0 for βj �= β̂xi

.

Then, under Assumption 4, 0 < ∂bi

∂βj
= − ∂2Wi

∂βi∂βj
/∂2Wi

∂β2
i

(bi(βj), βj) < 1 for βj �= β̂xi

since ∂2Wi

∂β2
i

(bi(βj), βj) < 0, and thus, L and R’s reaction curves intersect only once,

just as displayed in Figure 1. Note that Assumption 4 also assures that political

equilibrium is stable.

Remind that the higher s is associated with income distribution with the higher

ratio of voters whose income is below the certain level. Accordingly, to speak intu-

itively and simply, the lower (higher) value of the cumulative distribution function

for fixed s1∗ is associated with the higher likelihood of the high voting rate among

the poor (rich) compared to the rich (poor). The following theorem suggests that

both parties, with the prior belief of the higher likelihood of the high voting rate

among the poor relative to the rich, take equilibrium positions closer to β̂xL
, and

vice versa.

Theorem 3. Let Assumptions 1 to 4 hold. Then, a unique equilibrium of the game

with H1, (β1∗
L , β1∗

R ), and a unique equilibrium of the game with H2, (β2∗
L , β2∗

R ), are as

5We will do so because without the supposition of H ′
1(s

1∗) = H ′
2(s

1∗), we have to incorporate

further more suppositions to demonstrate the movement of the equilibrium, which would make

the model too complicated to hold its descriptive power.
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follows: (i) (β1∗
L , β1∗

R ) � (β2∗
L , β2∗

R ) if H1(s
1∗) > H2(s

1∗); (ii) (β1∗
L , β1∗

R ) � (β2∗
L , β2∗

R )

if H1(s
1∗) < H2(s

1∗).

Theorem 3 has two major practical implications. First, if we classify the elec-

torate into two income groups and if one group is likely to vote at the higher rate

than the other, then the party pro that group takes more extreme equilibrium posi-

tion (closer to its ideology) than it would do otherwise, where the party can count

on a decent level of the probability of winning despite its radicalization. Second,

the equilibrium position of the party con that group is also shifted to the point

possibly more preferred by that group.

4 Concluding Remarks

The paper has presented a model where two parties, the leftist and the right-

ist, propose tax-transfer schemes as their electoral promises. This is a reasonable

framework since redistribution is one of the main campaign issues of interest to the

electorate. Each of the leftist and the rightist parties represents a group of citi-

zens with a particular income level in the electorate in that the party’s ideal policy

coincides with that of the group. It is assumed that the ideal policy of the leftist

(rightist) party is more (less) redistributive than that of the median voter. Parties’

policy preferences, however, are not perfectly identical to the citizens’ since parties’

utility function embodies their attitude toward the trade-off between implementa-

tion of more preferred policy and electoral victory. Our formulation of the utility

function provides a sufficient condition for the existence of equilibrium. It leads to

the decreasing ratio of the marginal increase in the party’s utility from its choice

of policy to the marginal decrease in its probability of victory as the party deviates

away from the rival’s position more closely to its ideal policy.

Political competitions with and without uncertainty have been studied. Uncer-

tainty about income distribution of the voters who actually go to the polls and cast

14



votes arises from the possibility of some citizens’ abstention. We model uncertainty

by employing parties’ common prior on the probability distribution of states each of

which is linked with a certain income distribution of voters. In equilibrium without

uncertainty, both parties propose the median voters’ ideal policy as a campaign

promise. By introducing uncertainty into the model, however, equilibrium policy

divergence is produced where each party chooses a more moderate stance than its

ideological ideal. Then, under the sufficient condition for the uniqueness of equi-

librium, political equilibria with different prior beliefs are compared. It is shown

that parties’ common prior belief of the high voting rate among the certain income

group induces both parties to take the equilibrium positions catering to that group.

The results from our analysis of the competition with uncertainty epitomize real

politics. Parties should modify their courses according to their inference on voting

behavior as well as on the rival’s action. For instance, Theorem 3 predicts that when

the rise in the voting rate among low-income citizens is likely, not only the leftist

party’s appeal of egalitarianism but also the rightist party’s moderation should

be observed. Thus, we have shown theoretically that one party’s radicalization

and seemingly ideological compromise of the other party may arise from parties’

changed belief on voting behavior, not from changed ideologies.

A Appendix

A.1 Formal Proofs

Proof of Lemma 1. Let βi < βj. Let i choose a higher value βi + dβi rather than

βi, where dβi is sufficiently small and βi + dβi < βj. Then, due to the single-

peakedness of Y (x, ·), citizens with x such that β̂x ≥ βj or citizens with x such that

β̂x ≤ βi never change the party they vote for. Let’s investigate voting behavior

of the citizens with x such that βi < β̂x < βj. Among them, those with x such

that x <
(

1+βi

1+βj

) 1
βj−βi still vote for i since Y (x, βj) < Y (x, βi) < Y (x, βi + dβi).
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Furthermore, due to the continuity of Y (·, βi), we have an interval x with strictly

positive length such that βi < β̂x < βj and Y (x, βi) < Y (x, βj) < Y (x, βi + dβi).

These discussions imply that ∂Vi

∂βi
> 0 if βi < βj. We can derive that ∂Vi

∂βi
< 0 if

βi > βj in the same manner. ‖

Proof of Lemma 2. Let βi < βj. The logarithm of
(

1+βi

1+βj

) 1
βj−βi is given by

log (1 + βi)− log (1 + βj)

βj − βi

. (A1)

Then,

lim
βi→βj−

log (1 + βi)− log (1 + βj)

βj − βi

=
d (− log (1 + βi))

dβi

(βj) = − 1

1 + βj

. (A2)

From (A2), the limit of i’s vote share when it moves its policy position toward j’s

position from below is given by

lim
βi→βj−

Vi = e
− 1

1+βj . (A3)

Since β̂m = 1
log 2
− 1 and e

− 1

1+β̂m = 1
2
, e

− 1
1+βj < 1

2
if βj < β̂m; e

− 1
1+βj = 1

2
if βj = β̂m;

e
− 1

1+βj > 1
2

if βj > β̂m. The similar logic can be applied to the case where βi > βj.

These discussions lead to Lemma 2. ‖

Proof of Theorem 1. Let (βL, βR) = (β̂m, β̂m). Then, Vi(β̂m, β̂m) = 1
2

and Wi(β̂m, β̂m) =

U(xi, β̂m), i ∈ {L, R}. If i deviates from β̂m to β̂m − ε, ε > 0, Vi(β̂m − ε, β̂m) < 1
2

from Lemmas 1 and 2 and hence Wi(β̂m − ε, β̂m) = U(xi, β̂m) = Wi(β̂m, β̂m). If i

deviates from β̂m to β̂m + ε, ε > 0, Vi(β̂m + ε, β̂m) < 1
2

and hence Wi(β̂m + ε, β̂m) =

U(xi, β̂m) = Wi(β̂m, β̂m). Thus, i’s deviation never raises its payoff and (β̂m, β̂m) is

indeed an equilibrium of the game.

Next we shall demonstrate that any pair of (βL, βR) �= (β̂m, β̂m) is not an equi-

librium.

Let max{βL, βR} < β̂m. Then, R can increase its payoff by choosing β̂m instead

of βR since WR(βR, βL) ≤ max{U(xR, βL), U(xR, βR)} < U(xR, β̂m) = WR(β̂m, βL)
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from Assumption 1 and this deviation thus enables R to win the election outright

and to implement its more preferred policy. The case where min{βL, βR} > β̂m is

similarly examined.

Let βR = β̂m and βL �= β̂m. Then, VR(βR, βL) > 1
2
. Since β̂xR

> β̂m under

Assumption 1 and VR(·, βL) is continuous if not on the line βL = βR, R can choose

an ε > 0 such that VR(βR + ε, βL) > 1
2

and U(xR, βR + ε) > U(xR, βR). Then,

WR(βR+ε, βL) = U(xR, βR+ε) > U(xR, βR) = WR(βR, βL) and thus R can increase

its payoff by deviating from β̂m to its more preferred policy. The case where βL = β̂m

and βR �= β̂m is similarly examined.

Let βR < β̂m < βL and VL(βL, βR) > 1
2
. Then, VL(β̂m, βR) > 1

2
, U(xL, β̂m) >

U(xL, βL), and hence WL(β̂m, βR) = U(xL, β̂m) > U(xL, βL) = WL(βL, βR). Thus,

L’s deviation to β̂m sustains L’s victory and moreover leads to implementation of

its more preferred policy. The case where βR < β̂m < βL and VR(βR, βL) > 1
2

is

similarly examined.

Let βR < β̂m < βL and VL(βL, βR) = VR(βR, βL) = 1
2
. Then, R can choose an

ε > 0 such that VR(βL− ε, βL) > 1
2
, U(xR, βL − ε) > 1

2
U(xR, βR) + 1

2
U(xR, βL), and

therefore WR(βL−ε, βL) = U(xR, βL−ε) > 1
2
U(xR, βR)+ 1

2
U(xR, βL) = WR(βR, βL).

Thus, R can increase its payoff by choosing the policy which is closer to its ideal

policy and enables R’s victory.

Let βL < β̂m < βR and VL(βL, βR) > 1
2
. Then, VR(β̂m, βL) > 1

2
, U(xR, β̂m) >

U(xR, βL), and hence WR(β̂m, βL) = U(xR, β̂m) > U(xR, βL) = WR(βR, βL). Thus,

R’s deviation to β̂m enables R to win the election outright and to implement its

more preferred policy. The case where βL < β̂m < βR and VR(βR, βL) > 1
2

is

similarly examined.

Let βL < β̂m < βR and VL(βL, βR) = VR(βR, βL) = 1
2
. Then, R can choose an

ε > 0 such that VR(βR− ε, βL) > 1
2
, U(xR, βR− ε) > 1

2
U(xR, βR) + 1

2
U(xR, βL), and

therefore WR(βR−ε, βL) = U(xR, βR−ε) > 1
2
U(xR, βR)+ 1

2
U(xR, βL) = WR(βR, βL).

Thus, R can increase its payoff by choosing the policy which enables R’s victory.
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These results prove that (βL, βR) �= (β̂m, β̂m) is not an equilibrium of the game.

The assertion on each party’s vote share and its probability of winning is immedi-

ately derived from (8) and (10). ‖

Proof of Lemma 4. Define that I = [min{β̂xi
, βj}, max{β̂xi

, βj}]. It is clear that if

βj = β̂xi
, βi ∈ β/I is not a best strategy since U(xi, βi) < U(xi, β̂xi

) (= U(xi, βj))

and i can increase its payoff by taking its ideal policy.

Next, let βj �= β̂xi
. Let βi ∈ β/I and |βi− βj| < |βi− β̂xi

|, i.e., let βi be located

on the side of βj. Then, βi is not a best strategy since U(xi, βi) < U(xi, βj) and

i can increase its payoff by choosing the same policy as j’s. Let βi ∈ β/I and

|βi − βj| > |βi − β̂xi
|, i.e., let βi be located on the side of β̂xi

. Then, βi is not

a best strategy since Pi(β̂xi
, βj) > Pi(βi, βj), U(xi, β̂xi

) > U(xi, βi), U(xi, β̂xi
) >

U(xi, βj), and hence Wi(β̂xi
, βj) = Pi(β̂xi

, βj)
(
U(xi, β̂xi

)− U(xi, βj)
)

+ U(xi, βj) >

Pi(βi, βj) (U(xi, βi)− U(xi, βj)) + U(xi, βj) = Wi(βi, βj). Thus, i can increase its

payoff by taking its ideal policy. ‖

Proof of Theorem 2. We shall prove the existence of a Nash equilibrium in the

domain D = {(βL, βR) ∈ β2|β̂xL
< βL < βR < β̂xR

} (corresponding to the area

inside the triangle drawn with thick dotted lines in Figure 1), which leads us to

Theorem 2. For this purpose, our strategy that follows involves showing that (i)

each party has a single-valued and continuous best reaction in β against any strategy

by the rival in β, that (ii) by Brouwer’s fixed point theorem, a pair of strategies

which constitutes a Nash equilibrium exists in β2, but that (iii) any pair of strategies

contained in β2/D is not a Nash equilibrium.

(i) We have shown in Lemma 4 that Wi does not have a maximizer in β/I against

any βj ∈ β. Particularly, it has been demonstrated in the proof of Lemma 4

that given βj = β̂xi
, Wi is maximized solely by β̂xi

. Then, we shall show that given

βj �= β̂xi
, Wi has a single-valued maximizer within (min{β̂xi

, βj}, max{β̂xi
, βj}) ⊂ I .
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It is clear from the continuity of Pi(·, ·) and U(xi, ·) where βi �= βj that Wi(·, ·)
is continuous for all points (βL, βR) where βL �= βR. We will adapt Lemma 1 in

Roemer (1997) to our framework and assure the continuity of Wi(·, ·) for all points

(βL, βR) ∈ β2 and the existence of the maximizer of Wi(·, βj) in the interval I .

Lemma A1 [Roemer (1997)]. limβi→βj
Wi(βi, βj) = Wi(βj, βj) and limβj→βi

Wi(βi, βj) =

Wi(βi, βi).

Proof. Remind that Wi(βi, βj) = Pi(βi, βj) (U(xi, βi)− U(xi, βj))+U(xi, βj). Then,

limβi→βj
Wi(βi, βj) = U(xi, βj) = Wi(βj, βj) since Pi(βi, βj) is bounded and

limβi→βj
(U(xi, βi)− U(xi, βj)) = 0. Similarly, limβj→βi

Wi = U(xi, βi) = Wi(βi, βi).

‖

As the second step, the following lemmas set forth that βi = βj or βi = β̂xi
is

not i’s best strategy for βj such that βj �= β̂xi
.

Lemma A2. Given βj �= β̂xi
, βj is never a maximizer of Wi.

Proof. By definition, any convex combination of U(xi, β̂xi
) and U(xi, βj) with posi-

tive weights takes a higher value than U(xi, βj). Therefore, Wi(β̂xi
, βj) > Wi(βj, βj)

and i can increase its payoff by taking its ideal policy. ‖

Lemma A3. Given βj �= β̂xi
, β̂xi

is never a maximizer of Wi.

Proof. If β̂xi
> βj,

∂Wi

∂βi

|βi=β̂xi
=

∂Pi

∂βi

|βi=β̂xi

(
U(xi, β̂xi

)− U(xi, βj)
)

< 0, (A4)

from lemmas 1 and 3 and ∂U
∂βi

(xi, β̂xi
) = 0, and thus i can increase its payoff by

choosing a value closer to βj instead of β̂xi
. The case where β̂xi

< βj is similarly

examined. ‖

From Lemma 4 and Lemmas A1 to A3, we have a candidate of the maximizer
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of Wi(·, βj), i.e., i’s best reaction, in the interval (min{β̂xi
, βj}, max{β̂xi

, βj}) given

βj �= β̂xi
. It suffices to show that the maximizer is convex-valued in the interval

in order to construct the existence theorem. See that in the interval (βj, β̂xi
) or

(β̂xi
, βj), the partial derivative of Wi with regard to βi is given by

∂Wi

∂βi

=
∂Pi

∂βi

(U(xi, βi)− U(xi, βj)) + Pi
∂U

∂βi

=
∂Pi

∂βi

(U(xi, βi)− U(xi, βj))

(
1 +

Pi

U(xi, βi)− U(xi, βj)
ηi

)
. (A5)

Let βj < β̂xi
. Then, for βi ∈ (βj, β̂xi

), ∂Pi

∂βi
< 0 from Lemmas 1 and 3, U(xi, βi)−

U(xi, βj) > 0, and the sign of (A5) depends on the sign of 1 + Pi

U(xi,βi)−U(xi,βj)
ηi. See

that Pi

U(xi,βi)−U(xi ,βj)
(> 0) strictly decreases in βi. Furthermore, under Assumption 3,

|ηi| weakly decreases in βi, thus implying that 1+ Pi

U(xi,βi)−U(xi,βj)
ηi strictly increases

in βi. Thus, Wi(·, βj) is strictly quasiconcave in the interval (βj, β̂xi
) and indeed i

has a unique best reaction in the interval.

Let βj > β̂xi
. Then, for βi ∈ (β̂xi

, βj),
∂Pi

∂βi
> 0, U(xi, βi)−U(xi, βj) > 0, and the

sign of (A5) depends on the sign of 1+ Pi

U(xi,βi)−U(xi ,βj)
ηi. See that Pi

U(xi,βi)−U(xi,βj)
(> 0)

strictly increases in βi, |ηi| weakly increases in βi, and hence 1 + Pi

U(xi,βi)−U(xi,βj)
ηi

strictly decreases in βi. Thus, Wi(·, βj) is strictly quasiconcave in the interval

(β̂xi
, βj) and indeed i has a unique best reaction in the interval.

To summarize, i has a unique best reaction in β for any βj ∈ β: it exists in

(βj, β̂xi
) if βj ∈ [β, β̂xi

); it corresponds to β̂xi
if βj = β̂xi

; it exists in (β̂xi
, βj) if

βj ∈ (β̂xi
, β].

(ii) As in Assumption 4, let’s denote party i’s best reaction function for every

βj ∈ β by bi(βj). Continuity of bi(·) comes from continuity of Wi(·, ·), which has

been proved in Lemma A1.

Let’s define the function b(βL, βR) = bL(βR) × bR(βL). This function is a map

from the nonempty, compact, and convex set β2 into itself. Functions βL(·) and

βR(·) are continuous and so b(·, ·) is. Thus, all the conditions of Brouwer’s fixed

point theorem are satisfied and hence there exists a fixed point (β∗
L, β∗

R) ∈ β2 such
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that (β∗
L, β∗

R) = b(β∗
L, β∗

R), which constitutes a Nash equilibrium of the game.

(iii) Define that DR1 = {(βL, βR)|βL ∈ [β, β̂xR
), βR ∈ (βL, β̂xR

)}, DR2 = (β̂xR
, β̂xR

),

DR3 = {(βL, βR)|βL ∈ (β̂xR
, β], βR ∈ (β̂xR

, βL)}, and DR = ∪3
k=1DRk. Thus, the

pair of strategies (βL, bR(βL)) exists in DR for every βL. Similarly, define that DL1 =

{(βL, βR)|βR ∈ [β, β̂xL
), βL ∈ (βR, β̂xL

)}, DL2 = (β̂xL
, β̂xL

), DL3 = {(βL, βR)|βR ∈
(β̂xL

, β], βL ∈ (β̂xL
, βR)}, and DL = ∪3

k=1DLk. Then, it is clear that there exists

an equilibrium (β∗
L, β∗

R) in D = DL ∩DR. ‖

Proof of Theorem 3. It follows immediately from Assumption 4 and Theorem 2 that

the equilibrium (βk∗
L , βk∗

R ), k = 1, 2, uniquely exists and β̂xL
< βk∗

L < βk∗
R < β̂xR

.

Signify party i’s probability of winning with Hk by P k
i . Then, the equilibrium

(βk∗
L , βk∗

R ) satisfies the following condition:

∂P k
i

∂βi

(
βk∗

i , βk∗
j

) (
U(xi, β

k∗
i )− U(xi, β

k∗
j )
)

+ P k
i

(
βk∗

i , βk∗
j

) ∂U

∂βi

(xi, β
k∗
i ) = 0, (A6)

where i ∈ {L, R} and j ∈ {L, R|j �= i}.
Now let (A6) hold with k = 1. Suppose that H1(s

1∗) > H2(s
1∗). Then,

P 1
L(β1∗

L , β1∗
R ) = 1−H1(s

1∗) < 1−H2(s
1∗) = P 2

L(β1∗
L , β1∗

R ) from the proof of Lemma

3. Similarly, P 1
R(β1∗

R , β1∗
L ) > P 2

R(β1∗
R , β1∗

L ). Note that
∂P 1

i

∂βi

(
β1∗

i , β1∗
j

)
=

∂P 2
i

∂βi

(
β1∗

i , β1∗
j

)
since

∂P k
L

∂βL
(β1∗

L , β1∗
R ) = −∂Hk

∂s
∂s

∂VL

∂VL

∂βL
(β1∗

L , β1∗
R ) and

∂P k
R

∂βR
(β1∗

R , β1∗
L ) = −∂Hk

∂s
∂s

∂VL

∂VR

∂βR
(β1∗

R , β1∗
L )

are constant for k = 1, 2 from the model composition.

Let i = L and j = R. Given (β1∗
L , β1∗

R ), with the prior of H2,

∂P 2
L

∂βL

(
β1∗

L , β1∗
R

) (
U(xL, β1∗

L )− U(xL, β1∗
R )
)

+ P 2
L

(
β1∗

L , β1∗
R

) ∂U

∂βL

(xL, β1∗
L ) < 0, (A7)

since ∂U
∂βL

(xL, β1∗
L ) < 0 and P 1

L(β1∗
L , β1∗

R ) < P 2
L(β1∗

L , β1∗
R ). To recover the equality, we

have to have β′
L such that β′

L < β1∗
L , instead of β1∗

L , for given β1∗
R due to the strict

quasiconcavity of WL(·, β1∗
R ).

Let i = R and j = L. Given (β1∗
L , β1∗

R ), with the prior of H2,

∂P 2
R

∂βR

(
β1∗

R , β1∗
L

) (
U(xR, β1∗

R )− U(xR, β1∗
L )
)

+ P 2
R

(
β1∗

R , β1∗
L

) ∂U

∂βR

(xR, β1∗
R ) < 0, (A8)

21



since ∂U
∂βR

(xR, β1∗
R ) > 0 and P 1

R(β1∗
R , β1∗

L ) > P 2
R(β1∗

R , β1∗
L ). To recover the equality, we

have to have β′
R such that β′

R < β1∗
R , instead of β1∗

R , for given β1∗
L due to the strict

quasiconcavity of WR(·, β1∗
L ).

From these discussions, with the common prior of H2, L’s and R’s reaction

curves pass through (β′
L, β1∗

R ) and (β1∗
L , β′

R), respectively. See Figure 2 and con-

sider four quadrants around (β1∗
L , β1∗

R ). It follows from Assumption 4 that we

have no equilibrium with H2 in the southeast, northwest, and northeast quad-

rants since two parties’ reaction curves under H2 cannot intersect there. There-

fore, there exists (β2∗
L , β2∗

R ) in the southwest quadrant of (β1∗
L , β1∗

R ), which leads to

(β1∗
L , β1∗

R )� (β2∗
L , β2∗

R ). The case where H1(s
1∗) < H2(s

1∗) is examined in the similar

manner. ‖

A.2 Parties’ Vote Share without Uncertainty (Derivation

of (8))

From (1) and (3), type x prefers βi to βj if and only if

1 + βi

2
xβi >

1 + βj

2
xβj , (A9)

that is, iff

xβi−βj >
1 + βj

1 + βi

. (A10)

If βi < βj, (A10) is arranged as

x <

(
1 + βi

1 + βj

) 1
βj−βi

, (A11)

and the probability of (A11) is given by F0

((
1+βi

1+βj

) 1
βj−βi

)
=
(

1+βi

1+βj

) 1
βj−βi , which

corresponds to party i’s vote share.

If βi > βj, (A10) is arranged as

x >

(
1 + βj

1 + βi

) 1
βi−βj

, (A12)
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and the probability of (A12) is given by 1− F0

((
1+βj

1+βi

) 1
βi−βj

)
= 1−

(
1+βj

1+βi

) 1
βi−βj .

Finally, if βi = βj, type x votes for party i with the probability of 1
2
.

A.3 Parties’ Vote Share with Uncertainty (Derivation of

(11))

If βi < βj, from (A11), V s
i (βi, βj|s) is given by

G

⎛
⎝
(

1 + βi

1 + βj

) 1
βj−βi |s

⎞
⎠ = G (Vi(βi, βj)|s) . (A13)

If βi > βj, from (A12), V s
i (βi, βj |s) is given by

1−G

⎛
⎝
(

1 + βj

1 + βi

) 1
βi−βj |s

⎞
⎠ = 1−G (1− Vi(βi, βj)|s) . (A14)

If βi = βj, the voter votes for one of i and j randomly and hence V s
i (βi, βj |s) = 1

2
.
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Figure 1: Parties’ Reaction Curves
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Figure 2: Shifts of Reaction Curves with H2
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