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1. Distrotion Risk Measures

A random variable X represents a loss of some financial position

-~ DRM N

Any coherent risk measure satisfying law invariance and comonotonic

additivity is a distortion risk measure:

R

p(X) = p(F) = /[O | F~ Y (w)dD(u) = / zdD o F(x).

where I is the df of X F—1is the quantile of X, and D is a convex

distortion, i.e., a df on [0, 1].
\ J

» > a.k.a. spectral risk measure (Acerbi), weighted VOR (Cherny)

Example: Expected Shortfall (ES)

The expected loss that is incurred when VaR is exceeded:

| _
ESy(X) := 5/1_01: (u)du = E(X | X > VaRy(X))

Taking distortion of the form
1
DE°(u) = E[u —(1-0)],, 0<0<1

yields ES as a distortion risk measure.

»» Typical values for 6 are: 0.05, 0.01, ...




Other Examples of DRM:

e Proportional Hazards:

e Proportional Odds:
Ou
1 —(1-0)u

DFO(u) =

e Gaussian (Wang transform):

DSMu) = d(®~(u) + log )

% See Tsukahara (2009) Mathematical Finance, vol. 19.
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Figure 1: Distortion densities (# = 0.5, 6 = 0.25)
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Figure 2: Distortion densities (6 = 0.1, 6 = 0.05)
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2. Statistical Estimation

(Xn)nen: strictly stationary process with X, ~ F

IF),: empirical df based on the sample X{,..., X},

A natural estimator of p(F) is

1
Oy = —1y U
pn—/OFnUdD()

This type of statistics is called L-statistics




~ Strong consistency

Let d(u) = %D(u) for a convex distortion D, and 1 < p < o0,

1/p+1/q=1. Suppose

N

o (X)) enN is an ergodic stationary sequence
edec LP(0,1)and F~1 € LY(0,1)
Then

pn — p(F), as.

For a proof, see van Zwet (1980, AP)
[All we need is SLLN and Glivenko-Cantelli Theorem].

Assumptions for asymptotic normality:

o (X;),eN is strongly mixing with rate

a(n) =O0m™) forsome § > 142, >0
e For FL-almost all u, d is continuous at u
o|d| < B, B(u):=Mub(1—u) ",
o |F7Y < H, H(u):=Mu %(1—u)"®

2b; +1 1
Assume b;, d; & 6 satisfy b; + d; + 22;_ < 2 1=1,2




Set

oo oo
o(u,v) = [uAv—uv +Z ) — uv +Z ) — uv,
j=1 j=1

Cju,v) = P(X; < F~\(w), X1 < F~\(0)

~ Theorem (Asymptotic Normality)

Under the above assumptions, we have

Vi(pn — p(F)) -5 N(0,0?),

1 rl
_ / / o (u, v)d(w)d(v) dF~ ()dF~(v) < o0
0 JO

where

e GARCH model:
Xt =012y, (Zp) @ iid.
0152—0‘0+Zz 1 %i t2—¢+23=15j0t2—j

»» If the stationary distribution has a positive density around 0,
then GARCH is strongly mixing with exponentially decaying a(n)

e Stochastic Volatility model:
Xt =017y, (Zp) o iid., (o¢): strictly stationary positive

(Z¢) and (o¢) are assumed to be independent

»» The mixing rate of (X}) is the same as that of (oy)




Estimation of Asymptotic Variance

Let
Y, = /[1{Xn <z} —F(z)dF(x))dz, ne€Z.

Then Y, is also a strictly stationary and strongly mixing sequence with

the same mixing coefficient as X,,. Furthermore

B(Y,) =0, o= i v(h) < o0

h=—o00

where y(h) := E(Y,,Y,, 1 n).

Let f be the spectral density of (Y},). Then
Z 7(h) = 27 £(0)

— Use a consistent estimator of f(0) (JHB approach)

The lag window estimator is defined by

ﬁz()\)zzi Z w(k/Kp)yn(k) cos kA

v
[kl <Ky

where w is a "lag window”, and (k) := — Z Y:Yii
n -




»» [ in the expression of Y}, is unknown, so we replace it with the

empirical df. That is, we use

)

Yip = /[1{XZ- <z} —Fu()|dF,(z)dz, i=1,...,n

Let
|k - |
(k) == YipYiegn and  fo(0) == > w(k/Kn)Tn(k)
=1 k<K

Then 277}%(0) should give a consistent estimator of the asymptotic

variance o2

~ Theorem N
In addition to the conditions assumed in the above theorem, suppose
that .J is Lipschitz, w is a bounded even function which is continuous
in [—1, 1] with w(0) = 1 and equals 0 outside [—1, 1]. Also assume
E|Y;|* < oo and the fourth-order cumulants

k(h, 1, 5) = BEVY14pY14Y145) = v(h)y(@ = 7)
= y(@)y(h = 3) = () (h =)
are summable: > 3;% i |k(h, i, j)] < oo.
Let K}, be a sequence of integers such that K, — oo and

Ky /v/n — 0asn — oo. Then we have

~ L
27 fn(0) =507, n — oo




Bias of L-statistics

By Fubini, for any df F' and any distortion D),

0 o0
—1 = — x €T — x x
/MF (u) dD(u) = / D(F(x))dz + /O 1— D(F(x))d

©.9)

By Fubini and Jensen, for convex D,

E[ /[O ) Ft(u) dD(u)}
_/O%E< D(Fy(a dﬁ/O:E Fo())] d
< [ -DiEE @) i + /O Fo(2))] da
/mF Yu) dD(u)

Therefore

E(pn) = p(F) <0

—> ppn, has a negative bias

Need bias correction methods. For the i.i.d. case,

e Xiang (1995): Modify the form of L-statistics
e Kim (2010): Bootstrap-based method

»» [ he bootstrap methodology is still available in the dependent case
(see Lahiri (2003), Example 4.8).




Moving Block Bootstrap (MBB)

e Data: Xy,..., X,
e Block size: ¢, # of blocks: N :=n —/(+1

e Blocks: B; = (X;,.... X;¢p1), i=1,...,N

Resample k& = [n/{] blocks from {B, ..., By} with replacement
to get By, ..., B},

Write B = (X[ 1)y, ps o0 X))

= X{,..., X} ,; MBB sample

MBB version of py, is

1 & i—1 i
~ vk L v
pn_ﬁilcan;i; Cni = ( n 777,]
Z:

Validity of MBB follows from an argument specific to our case.

»» The approach based on Hadamard differentiability of L-functional

is not convenient. See Boos (1979, AS), Lahiri (2003), Section 12.3.5.




Simulation example: inverse-gamma SV model

Xt = 0144

Z; ii.d. N(0,1) and V; = 1/07 satisfies

Vi

= pVi_1 + &,

where V; ~ Gamma(a, b) for each ¢, (g¢) i.i.d. rv’'s,and 0 < p < 1

= X; has scaled t-distribution with v = 2a, 0% = b/a

»» Lawrance (1982): the distribution of £; is compound Poisson

»» Can be shown that (X;) is geometrically ergodic

Simulation results for estimating VaR, ES & PO risk measures with

inverse-gamma SV observations (n = 500, # of replications = 1000)

Xt = 047, where V; = 1/07 follows AR(1)
with gamma(2,16000) marginal & p = 0.5, Z; i.i.d. N(0,1)

VaR

ES

PO

0 bias RMSE

bias RMSE

bias RMSE

0.1 0.0692 10.9303
SV 0.05 2.5666 17.6755
0.01 14.9577 61.2290

—2.2629 22.1361
—1.2168 37.2719
—11.9600 103.9269

—1.7739 17.5522
—2.0200 28.5053
—15.7888 73.7147

0.1 0.7976 10.5893
ii.d. 0.05 0.7974 16.1815
0.01 10.6838 53.2567

—1.2914 19.5756
—2.6346 31.3166
—12.9355 95.9070

—1.3574 15.3271
—2.8342 23.9933
—15.8086 69.5425




Simulation results for estimating variance and bias of PO risk measure
(n =500, Ky, =5, Parzen kernel w(x) =1 — 22, block size= 5,
# of bootstrap replicates = 800, # of replications = 10000)

P § MCbias MCse. Awse BSbias BS se.

IG-SV 0.1 —0.8328 15.4456 14.0956 —0.8151 13.9829
a=2 01 005 —2.0580 24.6961 20.9719 —1.8170 20.6863
B = 16000 0.01 —13.3608 68.9197 46.6943 —10.2030 46.0788
1G-SV 0.1 —0.3345 10.7979 10.4231 —0.6812 10.3933
a=4 01 005 -—-1.3663 15.1946 14.0623 —1.3511 13.9725
B = 48000 0.01 —6.8659 34.4725 26.4183 —6.0749 26.4446
1G-SV 0.1 —0.5432 9.0853 8.8370 —0.6048 8.8281
a=10 01 005 -—1.1786 11.7923 11.2289 —1.1263 11.2003
B = 144000 0.01 —5.8673 22.9686 18.7767 —4.4474 18.9614

P § MCbias MCse. Awse BSbias BSse.

IG-SV 0.1 —1.0054 17.5469 15.0711 —0.8793 14.6925
a=2 05 005 -—22714 27.1465 22.0852 —1.9450 21.4374
B = 16000 0.01 —13.9208 74.8887 47.7943 —10.6541 46.8379
1G-SV 0.1 —0.5791 11.4856 10.7162 —0.6957 10.5906
a=4 05 005 —1.3472 15.7116 14.4718 —1.3994 14.2658
B = 48000 0.01 —7.4680 35.1014 26.7575 —6.1939 26.7115
IG-SV 0.1 —-0.8213 9.2632 8.9299 —0.6062 8.8957

a=10 05 0.05 -—1.0663 11.9443 11.3608 —1.1368 11.2996
B = 144000 0.01 —5.7987 23.1130 18.8147 —4.4769 18.9896




P § MCbias MCse Ase BSbias BSse.

1G-SV 0.1 —2.0408 28.2224 155015 —0.9609 14.7212
a=2 09 005 -—48204 421005 22.1388 —2.0483 20.9685
G = 16000 0.01 —23.5844 106.4374 43.6402 —10.1556 42.4681
1G-SV 0.1 —1.1973 14.9586 11.1112 —0.7274 10.8092
a=4 09 005 —22346 20.8199 14.8937 —1.4366 14.4566
G = 48000 0.01 —10.2968 42.5085 26.3137 —6.1439 26.0855
1G-SV 0.1 —0.5956 10.3666 9.1248 —0.6262 9.0293
a=10 09 005 —1.4212 13.6534 11.5934 —1.1609 11.4494
B = 144000 0.01 —6.3827 25.2688 18.8986 —4.4824 19.0079
P § MC bias MCse. Awse BSbias BSs.e.

0.1 —0.5734 82886 8.0638 —0.5619 8.0667

N(0,126.5%) iid 0.05 —1.1557 10.1327 9.8175 —1.0116 9.8117
0.01 —4.4730 18.1714 14.9659 —3.6136 15.2192

0.1 —0.9038 15.3536 13.9544 —0.8121 13.8815

t4(0,126.5%) iid 0.05 —1.8468 24.3247 20.8781 —1.7928 20.6468
0.01 —12.5608 73.3170 46.9313 —10.2243 46.3147

0.1 —0.5538 10.7575 10.3154 —0.6687 10.2909

t5(0,126.5%) iid 0.05 —1.4518 14.9271 13.9883 —1.3379 13.9033
0.01 —6.8385 34.8496 26.4076 —6.8385 26.4531

0.1 —0.5470 9.0123 8.8209 —0.5985 8.8127

t20(0,126.52) id 005 —1.1266 11.6915 11.2178 —1.1176 11.1965
0.01 —5.5631 22.9298 18.7808 —4.4588 18.9697




3. Backtesting

Purpose of Backtesting:

1. Monitor the performance of the model and estimation methods for

risk measurement

2. Compare relative performance of the models and methods

~ ldea N
ex ante risk measure forecasts from the model
VS.

ex post realized portfolio loss

Setup

Entire observations: Xi,..., Xp

Estimation window size =n, m =T —n

data estimand realized loss
Lo Xy, Xy p(Xnt1) Xn+1
2. Xo,.. o, Xpt p(Xpy2) Xn+2

m. Xp_p,..., X171 p(X7) Xt




Two approaches to risk measurement

Assume that the loss process (X¢);c7 is a stationary time series with

stationary df F'. At time ¢, we have two options:

. Unconditional Approach
Look at the risk measure associated with F'(z) = P(X; 11 < x)

(For a large time horizon; credit risk and insurance)

Il. Conditional Approach
For a given filtration .%;, look at the risk measure associated with the
conditional df Fy(z) := P(X;11 <2 |.%),

(For a short time horizon; market risk)

In the case of VaR
e Unconditional VaR, denoted by VaR,, satisfies
E(1{X;+1 > VaRa}) =
But 1{X;.1 > VaR,}'s might not be independent

e Conditional VaR, denoted by VaRg, satisfies

E(1{X¢y1 > VaRL} | F) = a

By Lemma 4.29 of MFE, if (Y}) is a sequence of Bernoulli rv's adapted
to (F) and if E(Y; 1| %) =p > 0, then (Y;) must be i.i.d.




Therefore 1{X;.1 > VaRL}, t =n,...,T—1 arei.i.d. Bernoulli rv's.

4

This gives the grounds for backtesting using 1{X; .1 > @;}, where
\751?{; is an estimate of the VaR associated with the conditional df
Fi(z) = P(X311 < x| F). Namely,

T-1
(i) Test S 1{X; 11 > VaRy} ~ Bin(m, )

t=n

—=1
(ii) Test independence of 1{X; 1 > VaR,}, t=mn,..., T —1
(e.g., runs test)

Backtesting DRMs

Note that, with d(u) = %D(u) and X ~ F,

Thus Xd(F (X)) — p(X) has mean 0 unconditionally.

»» In the conditional case, E[ Xy 1d(Fi(X¢i1)) | Zt] = pe(Xpr1),
but this does not help much.




I.1.D. case (rough-and-ready)

If Xq,..., X7 are i.i.d. with df F', then we can base the backtesting

of our method/model on

Xn-l—ld(@l:n(Xn—i-l)) - ﬁ(l:n)>

XrdFr_pr-1(X1) = Pr—n—1)

where @k:l and ﬁ(k::l) are estimates based on the sample X, ..., X|

»» |f we have dependent data or we use the conditional approach, it

is necessary to introduce more explicit time series models.

Conditional Approach

Write p¢(X;11) for a distortion risk measure with a distortion D for
the conditional df Fi(z) := P(Xy1 < x| F), F = 0(Xs: s < 1)

pu(Xp41) = /[0 JFHwapt

~ Assumption N

Suppose that for .%;_{-measurable 1; and oy,

Xt = put + o1y,

where (Z;) is i.i.d. with finite 2nd moment.
\ J




Example: ARMA(p1, q1) with GARCH(p2, g2) errors

Let (Z¢) be i.i.d. with finite 2nd moment.

Xt = it + oty
i a0

pe =+ ) G Xi— )+ > 0K — ),
=1 =1

p2 a2
2 2 2
of =g+ Y oi(Xei — i) + > Bior,
i—1 =1
where ag > 0, a; > 0,2 =1,...,po, 53' >0,7=1,...,q.

Usually, it is assumed that (X7) is covariance stationary,

D2 , a2 .
and ) ;2 a;+ 2 7 0 < L

By (conditional) translation equivariance and positive homogeneity,

pt(X+1) = pie1 + op10(2)
where 7 is a generic rv with the same df G as Z;'s.

(i) If G is a known df, p(Z) is a known number.

We need to estimate 441 and o441 based on Xy, 11,..., X} using
some specific model and method (e.g., ARMA with GARCH errors
using QML). Then the risk measure estimate is given by

pt(Xer1) = [igr1 + 011p(2)




Observe that
p(Z) = E[Zt11d(G(Zt+1))]
Y
El(Zt11 — p(2))d(G(Z111))] =0

Defining

(Z) _ Xt—l-l o pt<Xt+1)
Ot+1

Riy1 =21 —p

one sees that (Rid(G(Z})))iey is i.i.d.

This suggests that in practice, we may perform backtesting by examin-

ing mean-zero behavior of Ry 1d(G(Zs41)), t =n,...,T — 1, where

X1 — pr(Xeg1)
Op41

Ry =

and

o~ Xo1 — 41 5
Zpy = = Ry +p(2)
Ot+1

»» Bootstrap test can be used




(i) When G is unknown, we need to estimate G in addition to fis4
and oy 1.

In ARMA with GARCH errors model, we could use the empirical df

based on the residuals Zg's: fors=t—n+1,...,¢,

ZS —£4/05, Es: residual from ARMA part

and
D2 q2 ~
52 = a() + Z azgz_z + Z ﬁjO'S_j,
i=1 j=1
Then .
Gilz) == Y 1Z;<z},
s=t—n+1

Simulation study
Simulate GARCH(1,1) process:

Yy =012, Zp~ N(0,1)iid.
o7 = 0.01 +0.907 | +0.08Y |

Set T' = 1000, n = 500 and 6 = 0.05
Fort=n+1,...,T, plot

(i) Xpd(Fy_p—1(Xp)) — P(t—n:t—1) (historical, unconditional)

(i) Red(G(Z;)) (normal-GARCH based, conditional)

(i) mean = —0.0286, std = 2.073
(i) mean = —0.0185, std = 1.019




Original Series
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rigue 3: Backtesting results for expected shortfall (6 = 0.05)
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rigue - Backtesting results for proportional odds distortion (6 = 0.05)




Issue: Backtestability

“It is more difficult to backtest a procedure for calculating expected
shortfall than it is to backtest a procedure for calculating VaR" (Yamai

& Yoshiba, Hull, Danielsson, among others)

1. Because the existing tests for ES are based on

— parametric assumptions for the null distribution

— asymptotic approximation for the null distribution

2. Because testing an expectation is harder than testing a single quan-

tile.

Elicitability

“Expected shortfall (and spectral risk measures) cannot be backtested
because it fails to satisfy elicitability condition” (Paul Embrechts,
Mar 2013, Risk Magazine)

~ Def (Osband 1985; Gneiting 2011, JASA) N

A statistical functional T'(F') is called elicitable r.t. .% if T'(F) is a
unique minimizer of t — EX[S(t,Y)] for some scoring function S,
VF e .7

N J




Examples
e VaRy(F) = F~1(1 — 6) is the unique minimizer for
S(ty) = [1{t <y} = 0l(y — 1)
Oly — t| ift >y
I=0)y—t| ft<y

F = {F: absolutely continuous, [ |y|dF(y) < oco}.

e Mean functional T'(F) = [ ydF(y) is the unique minimizer for

S(tay) - (y_t)2
F ={F: [y*dF(y) < oo}

It is useful when one wants to compare and rank several estimation

procedures: With forecasts x; and realizations y;, use

1 n
- Z S(x4, yi)
=1

as a performance evaluation criterion.

»» But there seems to be no clear connection with backtestability

e.g., mean cannot be backtested nonparametrically based on the sum of
squared errors without invoking asymptotic approximation or assuming

parametric distribution.




Basel Committee on Banking Supervision: Consultative Document

(October 2013)
“Move from Value-at-Risk (VaR) to Expected Shortfall (ES):

A number of weaknesses have been identified with using VaR

for determining regulatory capital requirements, including its in-
ability to capture “tail risk”. For this reason, the Committee
proposed in May 2012 to replace VaR with ES. ES measures the
riskiness of a position by considering both the size and the likeli-
hood of losses above a certain confidence level. The Committee
has agreed to use a 97.5% ES for the internal models-based
approach and has also used that approach to calibrate capital re-

quirements under the revised market risk standardised approach”

Basel Committee on Banking Supervision: Consultative Document
(October 2013)

Backtesting assessment (in Revised Models-based Approach):

“In addition to P&L attribution, the performance of a trading
desk’s risk management models will be evaluated through daily
backtesting. Backtesting requirements would be based on com-
paring each desk’s 1-day static value-at-risk measure at both the
97.5th percentile and the 99th percentile to actual P&L out-
comes, using at least one year of current observations of the
desk’s one-day actual and theoretical P&L. The backtesting as-
sessment would be run at each trading desk as well as for the

global (bank-wide) level.”




Concluding Remarks

e Estimation of DRMs is possible with time series data, but for some

DRMs, we do not get nice asymptotic properties.

e Backtesting procedure can be performed with DRMs. May need

more rigorous/effective procedures.

e Euler capital allocation based on DRMs are easy to compute and

widely applicable (with importance sampling)

e Most of the estimation part is published in Journal of Financial

Econometrics (2013, online)
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Decreasing Trends in Stock-Bond Correlations

Abstract

Previous research documents the existence of long-run trends in comovements among the
stock, bond, and commodities markets. Following these findings, this paper examines possi-
ble trends in stock-bond return correlations. To this end, we introduce a trend component
into a smooth transition regression (STR) model including the multiple transition variables of
Aslanidis and Christiansen (2012). The results indicate the existence of significant decreasing
trends in stock-bond correlations. In addition, although stock market volatility continues to
be an important factor in stock-bond correlations, the short rate and yield spread become
only marginally significant once we introduce the trend component. Our out-of-sample analy-
sis also demonstrates that the STR model including the VIX and time trend as the transition
variables dominates other models. Our finding of decreasing trends in stock-bond correlations
can be considered a consequence of the decreasing effects of diversification and more intensive
flight-to-quality behavior that have taken place in recent years.

JEL classification: C22, G15, G17

Key Words: flight-to-quality; diversification effect; smooth transition regressions

1 Introduction

Understanding time variations in stock-bond return correlations is one of the most important issues
in finance because it has profound implications for asset allocation and risk management. Naturally,
a number of studies examine the dynamics of stock-bond correlations and identify the economic
factors driving their time series behavior. For instance, Li (2002) conducts a regression analysis to
investigate the relationship between stock-bond correlations and macroeconomic variables, showing
that unexpected inflation is the most important determinant of stock-bond correlations. Similarly,
[Imanen (2003) argues that stock-bond correlations are more likely to be negative when inflation
is low and stock market volatility is high. Yang, Zhou, and Wang (2009) examine stock-bond
correlations over the past 150 years using the smooth transition conditional correlation (STCC)
model and find that higher stock-bond correlations tend to follow higher short rates and (to a
lesser extent) higher inflation rates. In addition, Connolly, Stivers, and Sun (2005, 2007) identify
the VIX stock market volatility index as an important determinant of stock-bond correlations.
Furthermore, Aslanidis and Christiansen (2010, 2012) demonstrate that stock-bond correlations
are explained mostly by short rates, yield spreads, and the VIX. On the other hand, Pastor and
Stambaugh (2003) note that changes in stock-bond correlations depend on liquidity. Similarly,
Baele, Bekaert, and Inghelbrecht (2010) find that macroeconomic fundamentals contribute little to

explaining stock-bond correlations but that liquidity plays a more important role. Other related



studies include Guidolin and Timmermann (2006); Bansal, Connolly, and Stivers (2010); and
Viceira (2012).

A number of recent studies also investigate long-run trends in international financial markets.
For instance, Christoffersen et al. (2012) examine copula correlations in international stock mar-
kets and find a significant increasing trend that can be explained by neither volatility nor other
financial and macroeconomic variables. Similarly, Berben and Jansen (2005) and Okimoto (2011)
report increasing dependence in major equity markets. In international bond markets, Kumar
and Okimoto (2011) find an increasing trend in correlations among international long-term gov-
ernment bonds and a decreasing trend in correlations between short- and long-term government
bonds within single countries. Existing trends in comovements are also documented in commodi-
ties markets. For example, Tang and Xiong (2012) show that the prices of non-energy commodity
futures in the US have become increasingly correlated with oil prices. In addition, Ohashi and Oki-
moto (2013) find increasing trends in the excess comovements of commodities prices. Other related
studies include Longin and Solnik (1995), Silvennoinen and Terdsvirta (2009), and Silvennoinen
and Thorp (2013).

The main contribution of this paper is to provide new evidence of long-run decreasing trends in
stock-bond correlations by extending the smooth transition regression (STR) model of Aslanidis
and Christiansen (2012). Although a growing number of studies exploring long-run trends in
international financial markets suggest that it is of interest to analyze possible trends in stock-
bond correlations, none of the previously mentioned studies consider these types of trends. Thus,
it is very instructive to investigate long-run trends in stock-bond correlations. Indeed, our results
indicate that there is a significant decreasing trend in realized stock-bond correlations. More
importantly, although stock market volatility continues to be an important factor for stock-bond
correlations, other important financial variables, namely the short rates and spreads between long-
and short-term interest rates, become only marginally significant once we introduce the decreasing
trend. Our out-of-sample analysis also indicates that the STR model including the VIX and time
trend as the transition variables dominates other models. Our finding of a decreasing trend in
stock-bond correlations can be considered a consequence of the decreasing effects of diversification
and more intensive flight-to-quality behavior that have taken place in recent years.

The remainder of the paper is organized as follows: Section 2 presents the model, while Section

3 conducts the empirical analysis and Section 4 provides the conclusion.



2 Smooth Transition Regression Model

The main purpose of this paper is to examine possible long-run trends in realized stock-bond
return correlations. To this end, we employ the smooth-transition model that was developed
by Terdsvirta (1994) in the AR model framework and later used to analyze the determinants
of stock-bond correlations by, among others, Yang, Zhou, and Wang (2009) and Aslanidis and
Christiansen (2012). The former authors model correlations as latent variables and analyze them
using the STCC model, whereas the latter authors investigate the realized correlation based on the
smooth transition regression (STR) model with multiple transition variables. We employ the latter
approach in this paper because it considerably facilitates the examination of the determinants of
the time series behavior of stock-bond correlations, as emphasized by Aslanidis and Christiansen
(2012). In addition, many other studies, including Ilmanen (2003) and Connolly et al. (2005, 2007),
examine realized correlations. In particular, we apply the STR model with multiple transition
variables to the realized correlations, following Aslanidis and Christiansen (2012).

The STR model used by Aslanidis and Christiansen (2012) is given by
FROt = ,01{]_ — F<St—1)} + ng(St_l) + Et (].)

where F'RC} is the Fisher transformation of the realized correlation, RC;, namely

1+RQ>

1

converting the realized correlation into a continuous variable not bounded between —1 and 1.!
F(s¢—1) in (1) is the logistic transition function, taking values between 0 and 1. If F(s;—1) = 0,
the average value of FFRC would be p; and if F'(s;—1) = 1, the average value of FRC would be
p2. In this sense, p; and py in (1) can be considered the average correlations in regimes 1 and 2,
respectively.? Thus, the conditional mean of FRC; is modeled as the weighted average of the two
correlation extremes; the weight is decided by F(s;—1). S¢—1 = (S14-1 S24-1 - Sks—1) isa K x 1

vector of transition variables,® governing the transition between regimes 1 and 2. Specifically,

1 As a realized correlation, Aslanidis and Christiansen (2012) use the weekly sample correlation calculated from
five-minute high frequency stock and bond returns without demeaning, whereas we use monthly sample correlations
based on daily data with demeaning.

2Specifically, p; is the average “Fisher-transformed correlation.” In what follows, we simply refer to this as
“correlation”.

3In practice, all transition variables are standardized to have a mean of 0 and a variance of 1 as Aslanidis and
Christiansen (2012).



F(s;-1) is expressed as

1
F(si_1) = 1+ oxp— (511 — 9]
) 1 3
1+ exp[-m(sie-1—¢) + - = yr(ske-1 = )]’

where v is assumed to be positive for at least one k to identify the STR model with multiple
transition variables. The location parameter ¢ decides the center of the transition, while the
smoothness parameter vector v = (y1,72,...,7k) specifies the speed of the transition. More
precisely, the transition caused by the transition variable s;,_; is abrupt for large values of ~; and
gradual for small values of ;. One of the main advantages of the STR model is that it can detect
detect, from the data, when and how any transitions occur in stock-bond correlations. In addition,
the STR model can describe a wide variety of change patterns, depending on the parameters ¢ and
v, which can be estimated from the data. Thus, by estimating the STR model, we can estimate
the best transition patterns in stock-bond correlations.

In contrast to Aslanidis and Christiansen (2012), we use time trends as one of the transition
variables to capture long-run trends in stock-bond correlations, following Lin and Terdsvirta (1994).
In this framework, the time-varying correlation F'RC; changes smoothly from p; to po with time,
assuming that v for the time trend is positive. Thus, we can interpret p; as a correlation around
the beginning of the sample and p, as correlation around the end of the sample. A similar model
is applied to conditional correlations by, among others, Berben and Jansen (2005) and Kumar and
Okimoto (2011), who examine trends in stock and bond markets, respectively. This paper differs
from these studies by investigating possible trends in stock-bond return correlations.

One concern about STR model (1) is possible serial correlation in F'RC;. Aslanidis and Chris-
tiansen (2012) address the serial correlation of the error term by calculating the Newey-West
standard errors. However, if F'RC} itself has a serial correlation, this results in the inconsistent
estimates of the correlation parameters. Indeed, a number of studies based on the dynamic con-
ditional correlation (DCC) model of Engle (2002) suggest that the conditional correlations among
financial returns are typically highly serially correlated. To address possible serial correlations in
FRC;, we modify STR model (1) by including the AR(1) term as follows:

FRCt = ,01{1 — F(Stfl)} + pQF(Stfl) + ngRthl + &;. (4)

In this STR model, FFRC}; can be expressed as the weighted sum of the correlations expected by
the economic variables and the previous correlation level. Theoretically, this model is also relevant

because economic conditions may not be reflected immediately due, in part, to slow reactions by



and imperfect information available to market participants. Therefore, the correlation may be
adjusted slowly from the previous level, as in STR model (4).

We estimate STR model (4) using the maximum likelihood estimation (MLE) method, assuming
that e; follows independently and is identically normally distributed. If the normal distribution
assumption is inappropriate, the estimation can be considered to follow the nonlinear least squares

method.

3 Empirical Analysis
3.1 Data

Our empirical analysis is based on monthly data, with the sample period lasting from January
1991 to May 2012. All data used in the analysis are obtained from DataStream. The analyzed
countries are the United States (US), Germany (GER), and the United Kingdom (UK). Initially,
we obtain daily data on futures contracts in the stock and bond markets of these three countries.
Using the daily data, we obtain the realized stock-bond return correlations in each country for
each month. We use futures on the S&P 500 (US), DAX (GER), and FTSE (UK) stock indices to
calculate stock returns and each country’s ten-year bond futures to calculate bond returns.

We also obtain the VIX, short rate, and yield spread as transition variables, following Aslanidis
and Christiansen (2012), who demonstrate that these three variables are the most important
transition variables for determining stock-bond correlation regimes. These three variables are
also documented as important determinants of stock-bond correlations by many previous studies.
For instance, Aslanidis and Christiansen (2010) find that these three variables are by far the most
critical predictors of stock-bond correlations at their low and high quantiles. In addition, Connolly,
Stivers, and Sun (2005, 2007) identify the VIX stock market volatility index a factor that influences
stock-bond correlations, while Baele, Bekaert, and Inghelbrecht (2010) use the short rate as an
important explanatory variable for stock-bond correlations. Furthermore, Viceira (2012) finds that
short rates and yield spreads are the two most important predictors of the realized bond CAPM
beta and the bond C-CAPM beta.

The VIX (VIX) is the volatility index for the Chicago Board of Options Exchange (CBOE)
and is based on the volatility of options on the S&P 500 index. We use the US VIX for all countries
due to the limited availability of VIX data for the two other examined countries.* The short rate

(R) is the three-month Treasury bill rate from the secondary market for the US and the three-

4We confirm that the German and UK VIX indices are highly correlated with the US VIX, with a correlation
that is greater than 0.8. We also confirm that we can obtain quantitatively similar results even if we use each
country’s VIX data with a shorter sample period.



month LIBOR rate for Germany and UK, while the yield spread (SPR) is defined as the ten-year

constant maturity Treasury bond yield minus the short-rate for each country.

3.2 Benchmark Model Results

Our benchmark model is Aslanidis and Christiansen’s (2012) preferred model, namely STR model
(4), with s;_1 = (VIX; 1, Ri_1,SPR;—1)’. We refer to this model Model 1 and its estimation
results are presented in Table 1, in which several items are worth noting. First, the last two rows
of the table report the results of a version of Terdsvirta’s (1994) linearity test and Eitrheim and
Terésvirta’s (1996) additive nonlinearity test. As can be seen, the linearity test rejects the null of
linearity in favor of the STR alternative at the 1% significance level for all countries. In contrast,
the additive nonlinearity test is not significant, meaning that the proposed model adequately
captures all smooth transition regime-switching behavior in the data without additional regimes
for all countries.

Second, the AR parameters ¢ are highly significant, with estimated values of 0.38, 0.34, and
0.25 for the US, GER, and the UK, respectively. In other words, our results indicate that stock-
bond correlations change from the previous level toward the correlation level expected by economic
variables with some serial correlation, which is not captured by Aslanidis and Christiansen’s (2012)
original model.

Third, the correlation parameters for regime 1 are significantly positive, with estimated values
of 0.30, 0.38, and 0.44 for the US, GER, and the UK, respectively, while those for regime 2 are
significantly negative, with respective values of —0.32, —0.40, and —0.36. In other words, there are
two distinct regimes, one with positive average correlations and the other with negative average
correlations. Thus, correlations change smoothly or rapidly from positive to negative or negative
to positive, depending on the transition variables.

Finally, all three transition variables, the VIX, short rate, and yield spread, have statistically
significant effects on the regime transition at the 5% significance level for all countries. These
results are fairly consistent with those of Aslanidis and Christiansen (2012), who demonstrate that
stock-bond correlations are explained mostly by these three variables using STR model (1) without
the AR term. These three variables are also reported to be important determinants of stock-bond
correlations by other studies. For instance, the VIX is identified as a predominant factor for stock-
bond correlations by Connoly et al. (2005, 2007) and Bansal et al. (2010). In addition, Baele et al.
(2010) use the short rate as an important explanatory variable for stock-bond correlations, while
Yang, Zhou, and Wang (2009) find that higher stock-bond correlations tend to follow higher short
rates. Furthermore, Viceira (2012) finds that the yield spread and the short rate are important



predictors for the realized bond CAPM beta and bond C-CAPM beta, which can be regarded as
a transformation of the stock-bond correlation.

To see more detailed information on the regime transitions for each variable, the transition
functions of each variable are plotted in Figure 1, holding the other variables constant at their
mean values of zero. As can be seen, there is little difference across countries in terms of short
rates and yield spreads and the correlation regime changes rather rapidly from the negative regime
to the positive regime as these variables get larger. For instance, if the short rate is lower than
the average by one standard deviation, the transition function takes a value greater than 0.97,
meaning that the weight of the negative correlation regime is greater than 97%. More specifically,
if the short rate is lower than the average value by one standard deviation, the average correlation
is less than —0.30, —0.39, and —0.35 for the US, GER, and the UK, respectively. On the other
hand, if the short rate is higher than the average value plus one standard deviation, the weight
of negative regime becomes less than 0.04, making the average correlation more than 0.28 for all
countries. Similarly, if the yield spread is lower (larger) than the average value by one standard
deviation, the transition function is greater (less) than 0.90 (0.11), with an average correlation of
less than —0.26 (greater than 0.18) for all countries. Since larger yield spreads and short rates
are usually associated with better macroeconomic conditions, the results indicate that stock-bond
correlations tend to be positive when the economy is booming. In other words, when the economy
is in recession, stock-bond correlations have a tendency to be negative. This is arguably consistent
with flight-to-quality behavior because investors do not want to take many risks when economic
conditions are not good.

The VIX transition function also demonstrates flight-to-quality behavior. For the US and GER,
the VIX transition function indicates that the correlation regime changes relatively smoothly from
the negative regime to the positive regime as the standardized VIX changes from —3 to 3. The
UK VIX transition function indicates slower changes in the correlation regime but still suggests
that a higher VIX tends to be associated with negative stock-bond correlations. Thus, the results
demonstrate that when the VIX is high or there is much uncertainty in the market, investors try
to escape from risks, making stock-bond correlations negative.

Finally, the time series of the estimated correlations for Model 1 together with the actual
realized correlations for each country are plotted in Panel (a) of Figures 2-4 to indicate goodness
of fit. As can be seen, the estimated correlation fits the actual correlation quite well for all
countries. More specifically, Model 1 successfully captures the tendency for there to be positive
correlations before 2000 and negative correlations after 2000 because the correlation regimes tend

to be identified as the positive regime before 2000 and the negative regime after 2000.



In sum, the results of Model 1 indicate that the VIX, short rate, and yield spread are important
determinants of stock-bond correlation regimes for all countries, which is consistent with previous
studies such as Aslanidis and Christiansen (2012), who estimated a similar model for the US. In
addition, we demonstrate the significance of including the AR(1) to allow for smooth adjustments in
correlation regimes, in contrast with Aslanidis and Christiansen (2012). Although the performance
of Model 1 is quite satisfactory, it is possible to improve Model 1 by including other variables.
In particular, recent studies find long-run correlation trends in international financial markets,
suggesting that we can modify Model 1 by introducing a time trend component; this is examined

in next subsection.

3.3 Introduction of Time Trend Component

The results of Model 1 are fairly consistent with previous studies examining the dynamics of
stock-bond correlations. On the other hand, the another previous studies suggest the existence of
long-run correlation trends in international financial markets. For instance, Christoffersen et al.
(2012) examine copula correlations in international stock markets and find a significant increasing
trend in the comovements of international stock returns that can be explained by neither volatility
nor other financial and macroeconomic variables. In addition, Kumar and Okimoto (2011) find an
increasing trend in correlations between international long-term government bonds and decreasing
trends in correlations between the short- and long-term government bonds within single countries.
Furthermore, Tang and Xiong (2012) document increasing correlations of commodities returns
with crude oil after 2004. It is therefore of interest to analyze possible trends in stock-bond
correlations by estimating STR model (4) including time (7) as well the VIX, short-rate, and
spread as transition variables (Model 2). Thus, the vector of transition variables for Model 2 is
defined as s; 1 = (VIX; 1, Ry_1,SPR;_1,T})' .}

Table 2 reports the estimation results for Model 2. As can be seen, the results suggest that
the basic structure of Model 2 is reasonably similar to that of Model 1. Specifically, the linearity
and additive nonlinearity tests documented in the last two rows of Table 2 show that the two-
state STR model is preferred to the linear model without regime changes and the three-state STR
model with an additional correlation regime. In addition, Model 2 indicates the existence of two
distinct correlation regimes, with a negative average correlation for one regime and a positive
average correlation for the other, as in Model 1. Furthermore, the AR term is significant at least
at the 10% significance level for the US and GER, suggesting smooth adjustments in stock-bond

correlations in these countries.

5Since T is a non-random predetermined variable, we use T} instead of T;_; as a transition variable.



Although the basic structures of Models 1 and 2 are quite similar, there are important differ-
ences in the determinants of their stock-bond correlation regimes. In particular, the estimation
results of Model 2 indicate that the time trend component is highly significant for all countries,
suggesting that Model 1 omits an important factor of stock-bond correlations. More specifically,
the time trend component coefficient estimates are significantly positive for all countries, mean-
ing that there is a decreasing trend in stock-bond correlations. To see this more clearly, we plot
the time trend for the correlations estimated through Model 2 in Panel (a) of Figure 5. As can
be seen, the stock-bond correlations for all countries have clear decreasing trends, with a rapid
decrease between the late 1990s and the early 2000s, reaching an average of —0.42 by the end of
sample period in May 2012. Our finding of the existence of a time trend in correlations between
financial assets is completely in line with recent studies. For instance, Berben and Jansen (2005)
and Christoffersen (2012) document increasing correlations in the major equity markets. Similarly,
Kumar and Okimoto (2011) find an increasing trend in correlations between international long-
term government bonds and decreasing trends in correlations between a single country’s short-
and long-term government bonds.

Another important difference between Models 1 and 2 is the significance of the short rate and
yield spread in determining the stock-bond correlation regime. Although the VIX remains an
important factor in determining stock-bond correlations, the short rate and yield spread become
less important in Model 2. Specifically, neither of these measures are significant for the US, while
only one of them is significant for GER and the UK. In addition, the the short rate coefficient
for GER is significantly positive instead of negative, making interpretation of the result rather
difficult. The results are in contrast with the findings of the previously mentioned studies examining
the determinants of stock-bond correlations without a time trend component. Thus, our results
demonstrate that some of the important factors suggested by previous studies are not as relevant
once we consider possible decreasing trends in stock-bond correlations.

To compare the goodness of fit of Models 1 and 2, we plot the time series of the correlations
estimated through Model 2 together with the actual realized correlations for each country in Panel
(b) of Figures 2-4. As can be seen, the correlations estimated through Models 1 and 2 are similar
to each other and do not differ much over the sample. Thus, they qualitatively have the same
power in illustrating the time series behavior of stock-bond correlations.

We can compare the goodness of fit of Models 1 and 2 more formally using the information
criteria reported in Table 3, namely the Schwartz information criterion (SIC) and Akaike infor-
mation criterion (AIC). Although the AIC favors Model 2 for GER and the UK, the SIC prefers

Model 1 to Model 2 for all countries. Thus, in terms of the in-sample fit, our results are somewhat



inconclusive.

To make a more comprehensive comparison between Models 1 and 2, we conduct an out-of-
sample forecast evaluation as follows. First, we estimate both Models 1 and 2 using data from
February 1991 to January 2001 and evaluate the terminal one-month-ahead forecast error based
on the estimation results. The data are then updated by one month, and the terminal one-month-
ahead forecast error is re-calculated from the updated sample (specifically, from March 1991 to
February 2001). This procedure is repeated until reaching one month before the end of the sample
period, namely April 2012. Finally, we calculate the root-mean-squared forecast errors (RMSE)
and mean absolute error (MAE) using the obtained time series of one-month-ahead forecast errors.
The third and fourth rows of Table 4 report the RMSE and MAE values for Models 1 and 2. As
can be seen, the RMSE and MAE values of Model 2 are smaller than those of Model 1 for GER,
while Model 1 exhibits better out-of-sample performance than Model 2 for other two countries.

Overall, our model comparison results show that Model 2 is not necessarily a better model
than Model 1, although the time trend component is highly significant. One possible explanation
for this result is the weak significance of the short rate and yield spread in Model 2, as mentioned.
Indeed, neither of these factors are significant for US, while only one of them is significant for GER
and UK. Thus, we might be able to improve the model by excluding these variables. To examine

this possibility, we will consider a more parsimonious model in next subsection.

3.4 Results with Selected Transition Variables

Our results for Model 2 indicate that the short rate and yield spread become less important
determinants of stock-bond correlations if decreasing trends in stock-bond correlations are taken
into consideration. To illustrate this point more clearly, we estimate a more parsimonious STR
model (4) that includes only VIX and time as the transition variables (Model 3).

The estimation results for Model 3 are shown in Table 3. As can be seen, the estimation
results are essentially same as those of Model 2. The two-state STR model with a negative average
correlation for one regime and a positive average correlation for the other regime is preferred to the
linear model without regime changes and the three-state STR model. In addition, the AR term
is highly significant for the US and GER, suggesting that the stock-bond correlations of these
countries change slowly from the previous level toward the correlation level expected by economic
variables. Furthermore, the VIX is significantly positive for all countries. Thus, the correlation
regime changes from a positive to a negative regime when the VIX is high. Finally, the estimated
time trend component is also significantly positive for all countries, meaning that stock-bond

correlations tend to be in the negative regime in more recent periods. The decreasing trend can be
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confirmed visually from the estimated time trend component of stock-bond correlation depicted
in Panel (b) of Figure 5. As can be seen from the figure, stock-bond correlations in all countries
exhibit clear decreasing trends, with a rapid decrease from an average correlation of over 0.2 in
the beginning of 1999 to an average correlation lower than —0.2 at the end of 2003, reaching an
average of —0.42 around the end of the sample period in May 2012.

We also plot the time series of the estimated correlation for Model 3 together with the actual
realized correlation for each country in Panel (c) of Figures 2-4 to graphically illustrate the per-
formance of Model 3. As can be seen, the estimated correlations of Model 3 are quite similar to
those of other models and do not differ much over the sample, suggesting that all models have the
same qualitative explanatory power over stock-bond correlation behavior. Given that Model 3 has
only two transition variables, this arguably indicates the superiority of Model 3 over the other two
models. We can confirm this point more formally using the SIC and AIC reported in Table 3. As
can be seen, Model 3 has the smallest SIC and AIC values for all countries, meaning that Model
3 is the best among the three models in terms of in-sample fit.

We additionally compare the out-of-sample performance of Model 3 and the other two models
by conducting the same out-of-sample forecast evaluation as before. The results reported in Table
4 indicate that Model 3 exhibits the best out-of-sample performance for all countries, regardless
of the employed performance measure.

In sum, our results are clear: Model 3 is the best among the three models, meaning that
transitions between correlation regimes can be described sufficiently well by the VIX and time
trend components. In other words, we demonstrate the possibility that the short rate and yield
spread are not important factors in relation to stock-bond correlation regimes, in great contrast
to previous studies such as Aslanidis and Christiansen (2012). Thus, flight-to-quality behavior is
not strongly related with economic conditions, measured by short rates and yield spreads, but is
associated with market uncertainty, as captured by the VIX. In addition, flight-to-quality behavior
has become stronger in more recent years, resulting in decreasing trends in stock-bond correlations.

A possible explanation for this trend in flight-to-quality behavior is the recent increasing trend
in correlations in international equity markets, which is documented by Christoffersen, et al.
(2012), among others. Specifically, they emphasize that benefits from international diversifica-
tion have decreased over time and this decrease has been especially drastic among developed
markets, such as those examined in this study. In addition, Berben and Jansen (2005) show that
correlations among the GER, UK, and US stock markets have doubled between 1980 and 2000.
Similarly, Silvennoinen and Terdsvirta (2009) show that stock returns within and across European

and Asian markets exhibit a clear upward shift in the level of correlations between 1998 and 2003,
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which corresponds to the timing of the rapid decrease in the estimated time trend of stock-bond
correlations from our models. Thus, benefits from international diversification seem to begin dis-
appearing after 2000. In this case, the investors who allocated their money into the equity markets
of those countries have been exposed to higher risks of simultaneous drops in stock prices in recent
years. As a consequence, they have more recently needed to make greater use of bond markets
to control their risk exposure, producing the decreasing trend in stock-bond correlations. Indeed,
the beginning of the integration of international equity markets and the beginning of decreases in
stock-bond correlations appear to occur around the same time.

In addition to integration in equity markets, increasing correlations are observed in other
markets as well. For instance, Kumar and Okimoto (2011) show that long-term government
bond markets have become more integrated since the late 1990s, while Silvennoinen and Thorp
(2013) find that correlations among stock, bond, and commodity future returns greatly increased
around the early 2000s. Similarly, Tang and Xiong (2012) document increasing correlations of
non-energy commodity with crude oil after 2004. These phenomena further diminish the effects
of diversification in international financial markets, making investors diversify risks through bond
markets. This phenomenon induces a rebalancing, particularly with from stocks to bonds.

Fleming, Kirby, and Ostdiek (1998) and Kodres and Pritsker (2002) study how cross-market
hedging theoretically influences asset pricing. Specifically, Fleming, Kriby, and Ostdiek (1998)
demonstrate that information linkages in stock and bond markets may be greater if cross-market
hedging effects are considered within daily returns. In addition, Kodres and Pritsker (2002) show
that a shock in one asset market may generate cross-market rebalancing, which influences prices in
non-shocked asset markets. Since the disappearance of diversification effects produces investment
behavior involving rebalancing from stocks to bonds, correlations between stocks and bonds tend

to be negative, which can be captured by a trend variable, as indicated by our results.

4 Conclusion

In this paper, we investigated the existence of long-run trends in realized stock-bond return corre-
lations. To this end, we introduce a trend component into the smooth transition regression (STR)
model with the multiple transition variables of Aslanidis and Christiansen (2012). In addition,
we analyzed not only the US, but also Germany and the UK, to conduct a more comprehensive
examination. The results indicated the existence of a significant decreasing trend in stock-bond
correlations for all countries.

Since a number of studies based on the dynamic conditional correlation (DCC) model of Engle

(2002) suggest that conditional correlations between financial returns are typically highly serially
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correlated, we extended the STR model of Aslanidis and Christiansen (2012) by including the
AR(1) term. The AR parameter estimates are highly significant for all countries. Thus, our
results demonstrated that stock-bond correlations change slowly from the previous level toward
the correlation level expected by economic variables, which is not captured by the original model
of Aslanidis and Christiansen (2012).

In the case of transition variables, we examined three variables, namely the VIX, short rate,
and yield spread, which have been identified by previous studies as arguably three of the most
important factors. All three transition variables have statistically significant effects on regime
transitions for all countries in our extended model. The results are fairly consistent with those
of previous studies, particularly Aslanidis and Christiansen (2012). However, once we introduce
the trend component, although the VIX remains an important factor for stock-bond correlations,
the short rate and yield spread become only marginally significant. Indeed, our in-sample analysis
suggested that the STR model including the VIX and time trend as the transition variables is
the best model based on the SIC and AIC, meaning that the transition of stock-bond correlation
regimes can be described sufficiently well by the VIX and time trend components. In addition,
our out-of-sample analysis also demonstrated that the STR model with the VIX and time trend
as the transition variables dominates other models.

Previous studies document the existence of long-run trends in comovements in the stock, bond,
and commodities markets, suggesting that benefits from international diversification have recently
been disappearing. Therefore, investors have been exposed to higher risks of simultaneous drops
in stock prices in recent years. As a consequence, they have needed to make greater use of bond
markets to control their risk exposure, producing the decreasing trend in stock-bond correlations.
Interestingly, the beginning of the integration of international equity markets suggested by several
previous studies and the beginning of decreases in stock-bond correlations appear to occur around
the same time. Thus, our finding of a decreasing trend in stock-bond correlations can be considered
a consequence of decreasing diversification effects and more intensive flight-to-quality behavior in

recent years.
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Table 1: Estimation results of the benchmark model (Model 1)

us GER UK

Coef St. err Coef St. err Coef St. err

p1 0.298*** 0.101 0.378** 0.164 0.437*** 0.055

P2 -0.321*** 0.129 -0.404*** 0.147 -0.360*** 0.038

[0} 0.380*** 0.090 0.342** 0.134 0.249*** 0.080

VIX 1.370%** 0.206 1.308*** 0.099 0.537*** 0.103

R -3.414*** 1.018 -3.968*** 0.528 -3.824%** 0.097

SPR -2.201*** 0.673 -2.839*** 0.610 -2.476%** 0.219

c 0.046 0.095 0.062 0.208 -0.007 0.077

Log-likelihood -248.86 -250.95 -248.34
Linearity test 12.3%** 24 44%* 16.55%**
Additive nonlinearity test 0.22 0.73 0.20

Note: the table shows the estimation results of the STR Model 1 with transition variables; VIX index
(VIX), short rate (R), yield spread (SPR). */**/*** indicates that the variable is significant at the
10%/5%/1% level of significance, respectively. Linearity test reports the LM-type statistic of null of no
STR-type nonlinearity. Additive non-linearity shows the LM-Type statistic of null on no remaining
STR-type nonlinearity.
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Table 2: Estimation results of the model with time trend component (Model 2)

us GER UK

Coef St. err Coef St. err Coef St. err

P1 0.297** 0.140 0.630*** 0.052 0.502%** 0.117

P2 -0.368*** 0.099 -0.580*** 0.027 -0.440%** 0.075

0 0.346* 0.192 0.140%*** 0.028 0.156 0.105

VIX 1.925%** 0.616 1.142%** 0.083 1.163*** 0.354

R -0.576 0.461 1.323%** 0.039 0.159 0.140

SPR -0.294 0.672 0.051 0.049 -0.450%** 0.161

T 2.571%** 0.943 2.804%** 0.010 2.725%** 0.311

c 0.071 0.165 -0.144%** 0.054 -0.065 0.158

Log-likelihood -248.23 -248.25 -247.29
Linearity test 10.95%** 24.26%** 21.54%**
\dditive nonlinearity tes 1.28 2.55 0.09

Note: the table shows the estimation results of the STR Model 1 with transition variables; VIX index
(VIX), short rate (R), yield spread (SPR), time trend (T). */**/*** indicates that the variable is
significant at the 10%/5%/1% level of significance, respectively. Linearity test reports the LM-type
statistic of null of no STR-type nonlinearity. Additive non-linearity shows the LM-Type statistic of null
on no remaining STR-type nonlinearity.
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Table 3: Results of in-sample comparison

us GER UK
AIC SIC AIC SIC AIC SIC
Model 1 511.72 536.54 515.90 540.71 510.68 535.50
Model 2 512.46 540.82 512.51 540.87 510.58 538.95
Model 3 508.54 529.81 509.30 530.58 507.01 528.28

Table 4: Results of out-of-sample comparison

Note: the table reports the AIC and SIC for STR Models 1-3 to compare in-sample performance.

us GER UK
RMSE MAE RMSE MAE RMSE MAE
Model 1 0.201 0.155 0.322 0.257 0.259 0.212
Model 2 0.203 0.161 0.297 0.231 0.274 0.221
Model 3 0.174 0.136 0.296 0.231 0.241 0.199

18

Notes: the table reports the out-of-sample RMSE and MAE for STR Models 1-3. The forecast horizon
is 1 month and the forecast period is 2000/12-2012/05.




Table 5: Estimation results of the parsimonious model (Model 3)

us GER UK

Coef St. err Coef St. err Coef St. err
p1 0.289%*** 0.001 0.459*** 0.002 0.483*** 0.185
P2 -0.363*** 0.002 -0.570%** 0.006 -0.419** 0.173
) 0.359%*** 0.001 0.136*** 0.005 0.173 0.192
VIX 1.983*** 0.003 1.901**= 0.009 1.373*** 0.345
T 2.959%** 0.003 3.315*** 0.095 2.808*** 0.675
c 0.068* 0.041 0.005 0.067 -0.106 0.192

LLF -248.27 -248.65 -247.51

Linearity test 21.33*** 36.88*** 38.87***
Additive nonlinearity test 1.25 0.02 0.61

Note: the table shows STR Model 3 with transition variables; VIX index (VIX), Time Trend (T).
*[**[*** indicates that the variable is significant at the 10%/5%/1% level of significance, respectively.
Linearity test reports the LM-type statistic of null of no STR-type nonlinearity. Additive non-linearity
shows the LM-Type statistic of null on no remaining STR-type nonlinearity.
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Figure 1: Estimated transition function
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Notes: the graph shows the estimated transition function of modell against each of the transition
variables holding the other transition variables constant at their sample mean. The transition variables
are VIX index (VIX), short rate (R ) ,and yield spread (SPR).
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Figure 2: Estimated stock-bond correlation for US
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Notes: the graph shows the time series of the actual and estimated stock-bond correlation for Models

1-3 for US.
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Figure 3: Estimated stock-bond correlation for GER
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Notes: the graph shows the time series of the actual and estimated stock-bond correlation for Models

1-3 for GER.
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Figure 4: Estimated stock-bond correlation for UK
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Figure 5: Estimated time trend component in the stock-bond correlation
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Note: the graph shows the time series of the estimated time trend component in the stock-bond
correlation for Models 2 and 3.
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Motivations and Main Results

Motivations

1. Stock-bond return correlations have profound implications on

(a) Asset allocation
(b) Risk management

2. Understanding the stock-bond correlations might not be easy due
to the time variation of the correlation

3. Identifying the economic factors driving its time series behavior is
one of the most important issues




4. Identified determinants of stock-bond correlations

(a) Li (2002): (unexpected) inflation

(b) Ilmanen (2003): inflation and stock market volatility
(¢) Yang, Zhou, and Wang (2009): short-rate and inflation
(d) Connolly, Stivers, and Sun (2005, 2007): VIX

)

(e) Aslanidis and Christiansen (2010, 2012): short-rate, yields spread,
VIX

(f) Pastor and Stambaugh (2003): liquidity
(g) Baele, Bekaert, and Inghelbrecht (2010): liquidity

5. Long-run trends in international financial markets

(a) Christoffersen et al. (2012)
1. Find a significant increasing trend in correlations in interna-
tional equity markets
ii. Trend is much lower for emerging markets
iii. Confirm that trend can be explained by neither volatility nor
other financial and macroeconomic variables
(b) Berben and Jansen (2005): international equity markets
(c) Okimoto (2011): international equity markets
(d) Kumar and Okimoto (2011)
i. Find an increasing trend in correlations among international
long-term government bonds

ii. Detect a decreasing trend in correlations between short- and
long-term government bonds within single countries




(e) Tang and Xiong
i. There was a significant and increasing trend in return correla-
tions of non-energy commodities with oil after 2004

ii. Increasing trend is significantly stronger for indexed commodi-
ties (listed in either the SP-GSCI or DJ-UBS index) than for

off-indexed commodities

(f) Silvennoinen and Thorp (2013): S&P500 and commodity future
returns and returns to the majority commodity futures have in-
creased

(g) Ohashi and Okimoto (2013): Excess comovements of commodi-
ties prices

(h) Few studies consider the possible trends in stock-bond correla-
tions

Main Results

1. Examine the possible trend in stock-bond correlation

2. Extend Aslanidis and Christiansen (2012) in several ways

(a) Treat serial correlations in stock-bond correlations explicitly

(b) Introduce a time-trend component in stock-bond correlations

(c) Examine Germany (GER) and UK as well as US
3. Find a significant decreasing trend in stock-bond correlations

4. Short rates and yield spreads become only marginally significant
once we introduce the decreasing trend

5. STR model including the VIX and time trend as the transition
variables dominates other models

6. Can be considered a consequence of the decreasing effects of diver-
sification and more intensive flight-to-quality behavior




Related Literature

Aslanidis and Christiansen (2012)

1. Explores the time variation in the stock-bond correlation using high-
frequency data

2. Consider the smooth transition regression (STR) model with mul-
tiple transition variables

FRCt = pi{l — F(s¢—1)} + p2F (s¢-1) + &t
where F'RC} is the Fisher transformation of the realized correlation

3. Examined transition variables: VIX, short-rate, yield spread, stock
return, bond return, inflation, GDP growth

4. Detect one positive and one negative correlation regime system-
atically related to movements in financial and to a minor extent
macroeconomic transition variables

5. Conclude that the short rate, the yield spread, and the VIX are the
most important factors

Methodology

STR model
1. Developed by Terésvirta (1994) in the AR framework

2. STR Model for F'RCY
FRCy = pi{l — F(st—1)} + poF'(st-1) + &t

3. One of the regime switching models
(a) Regime 1. F'=0= E(FRC}) = p;
(b) Regime 2: F'=1= E(FRC}) = py
4. Regime transition is modeled by a logistic transition function F
1

L+ exp(—7(st—1 —¢))’
(a) s¢ : Transition variable

F(si_1;¢,7) = v >0

(b) ¢: Location parameter

(¢) v: Smoothness parameter




5. I increases monotonically in s;_1 from 0 to 1

(a) p1: conditional mean of FRC when s;_1 is small

(b) po: conditional mean of FRC when s;_q is large

6. Typical choice of a transition variable
(a) sp—1=VIXy
i. p1: conditional mean of FRC when VIX;_q is small
ii. po: conditional mean of FRC when VIX;_q is large
(b) st—1=1/T
i. p1: value of FRC around the beginning of the sample
ii. po: value of FRC around the end of the sample

7. Can capture dominant long-run trends by adopting s; = t/T" as one
the transition variables (Lin and Terésvirta, 1994)

8. Can describe a wide variety of patterns of change depending on the
values of 7, ¢

Logistic Function

G(S,) 190 [ /‘ ——y=10, c=0.5
0.9
0.8 —y=10, c=0.8
0.7 —y=100, c=0.2
06 v=5, ¢=0.3
05 —y=1, c=0.7
04 /
0.3
0.2
0.1
0.0




9. Transition variable can be a vector of variables

1
F . p—
A QA S Py
1
14 eXp[_’Yl<31,t—1 —C)+ = ’YK(SK,t—l —¢)]

10. All transition variables are standardized to have a mean of 0 and a
variance of 1

11. Treat serial correlations in stock-bond correlations explicitly by in-
cluding the AR term

FRCy = pi{1 = F(s¢—1)} + p2F'(st—1) + 9F RCy_1 + &4

Test of linearity against the STR model
1. STR model: FRCt = p1{1l — F(st_1)} + poF(s4_1) + &4
2. Interesting to test linearity or the null of Hy : p1 = p

3. Cannot use the standard F-test due to the unidentified parameters
~v and ¢ under the null

4. Luukkonen, Saikkonen, and Terésvirta (1988) propose a simple test
for the STR model with the logistic transition function

5. Derive auxiliary regression model by replacing F' with a first order
Taylor expansion around v = 0

FRCy = By+ Pr1s14-1+ Posot—1+ -+ BrsSki—1+ €t
6. Hy : p1 = po is equivalent to H6 B == Pk
7. H(/) : 81 = --- = B can be tested by the standard F' test

8. Can test the additive nonlinearity (i.e. two state v.s. three state)
based on similar idea (Eitrheim and Terasvirta, 1996)




Empirical Analysis

Data

1.

W

7.
8.

Sample period: from January 1991 to May 2012
Analyzed countries: GER, UK, US

Collect daily data on futures contracts in the stock and bond mar-
kets

Stock: S&P 500 (US), DAX (GER), and FTSE (UK) stock index
futures

. Bond: each country’s ten-year bond futures

. Calculate the Fisher transformation of monthly sample stock-bond

return correlation
Obtain the VIX, short rate, and yield spread as transition variables

Use the US VIX for all countries due to the limited availability of
VIX data for the two other examined countries

Benchmark model results

L.
2.
3.

Model 1: STR model with s;_; = (VIX;_1, Ry—_1, SPR;_1)
Aslanidis and Christiansen’s (2012) preferred model

Linearity test rejects the null of linearity in favor of the STR alter-
native at the 1% significance level for all countries

. Additive nonlinearity test is not significant for all countries

. Two-state model adequately captures all smooth transition regime-

switching behavior in the data

. AR parameters ¢ are highly significant

. There are two distinct regimes, one with positive average correla-

tions and the other with negative average correlations

. All three transition variables have statistically significant effects on

the regime transition

. Mostly consistent with Aslanidis and Christiansen’s (2012)




Table 1: Estimation results of the benchmark model (Model 1)

us GER UK
Coef St. err Coef St. err Coef St.err
P1 0.298*** |  0.101 0.378** | 0.164 | 0.437*** | 0.055
P2 -0.321***| 0.129 |-0.404***| 0.147 |-0.360***| 0.038
) 0.380*** | 0.090 | 0.342** | 0.134 | 0.249*** | 0.080
VIX 1.370*** | 0.206 | 1.308*** | 0.099 | 0.537*** | 0.103
R -3.414***| 1018 |-3.968***| 0.528 |-3.824***| 0.097
SPR -2.201***| 0.673 |-2.839***| 0.610 |-2.476***| 0.219
c 0.046 0.095 0.062 0.208 -0.007 0.077
Log-likelihood -248.86 -250.95 -248.34
Linearity test 12.3*** 24 447%** 16.55***
Additive nonlinearity test 0.22 0.73 0.20

10.

11.

12.

13.

14.
15.
16.

17.

Plot the transition functions of each variable, holding the other
variables constant at their mean values of zero

Correlation regime changes rather rapidly from the negative regime
to the positive regime as short rates and yield spreads get larger

If short rate is lower (larger) than the average value by 1SD; the
average correlation is less than —0.30 (more than 0.28) for the US

Stock-bond correlations tend to be positive when the economy is
booming

VIX transition function also demonstrates flight-to-quality behavior
Estimated correlation fits the actual correlation quite well

Recent studies find long-run correlation trends in international fi-
nancial markets

Instructive to examine whether we can modify Model 1 by intro-
ducing a time trend component




Figure 1: Estimated transition function for Model 1
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Figure 2: Estimated stock-bond correlation for US (Model 1)
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Introduction of time trend component
1. Model 2: STR model with s;_1 = (VIX;_1, Ry_1, SPR;_1,T})

2. Two-state model adequately captures all smooth transition regime-
switching behavior in the data

3. T'wo distinct correlation regimes, with a negative average correlation
for one regime and a positive average correlation for the other

4. AR term is significant at least at the 10% significance level for the
US and GER

5. Time trend component coefficient estimates are significantly positive
for all countries

6. There is a decreasing trend in stock-bond correlations

7. Rapid decrease between the late 1990s and the early 2000s, reaching
an average of —0.42 by the end of sample period in May 2012

Table 2: Estimation results of the model with time trend component (Model 2)

us GER UK
Coef St.err Coef St.err Coef St.err
p1 0.297** 0.140 | 0.630*** | 0.052 | 0.502*** | 0.117
P2 -0.368***| 0.099 |-0.580***| 0.027 -0.440 0.075
) 0.346* 0.192 | 0.140*** | 0.028 0.156 0.105
VIX 1.925*** | 0.616 | 1.142***| 0.083 | 1.163***| 0.354
R -0.576 0.461 | 1.323*** | 0.039 0.159 0.140
SPR -0.294 0.672 0.051 0.049 |-0.450***| 0.161
T 2.571*** | 0.943 | 2.804*** | 0.010 |2.725***| 0.311
c 0.071 0.165 |-0.144***| 0.054 -0.065 0.158
Log-likelihood -248.23 -248.25 -247.29
Linearity test 10.95*** 24.26*** 21.54%**
Additive nonlinearity test 1.28 2.55 0.09




Figure 5: Estimated time trend component in the stock-bond correlation
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13.

lations

. Short rate and yield spread become less important in Model 2
10.
11.
12.

Neither of Short rate and yield spread are significant for the US
Only one of them is significant for GER and the UK

. VIX remains an important factor in determining stock-bond corre-

Correlations estimated through Models 1 and 2 are similar to each

other and do not differ much over the sample

AIC favors Model 2 for GER and the UK, while the SIC prefers

Model 1 to Model 2 for all countries

21




Figure 2: Estimated stock-bond correlation for US
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Out-of-sample forecast evaluation

1. Conduct an out-of-sample forecast evaluation
(a) Estimate both Models 1 and 2 using data from February 1991 to
January 2001

(b) Evaluate the terminal one-month-ahead forecast error based on
the estimation results

(c) Data are updated by one month

(d) Terminal one-month-ahead forecast error is re-calculated from
the updated sample

(e) Repeat (c¢) and (d) until reaching one month before the end of
the sample period

(f) Calculate the root-mean-squared forecast errors (RMSE) and
mean absolute error (MAE)

2. Model 2 performs better than Model 1 for GER
3. Model 1 exhibits better than Model 2 for other two countries

23




Results with selected transition variables

1. Short rate and yield spread become less important determinants of
stock-bond correlations if decreasing trends are accommodated

2. Possible to improve the model by excluding these variables
3. Model 3: STR model with s;_1 = (VIX;_1,T)

4. Estimation results are essentially same as those of Model 2
5

. Stock-bond correlations in all countries exhibit clear decreasing trends,
with a rapid decrease between 1999 and 2003

0. Estimated correlations are similar to those of other models

7. Model 3 is the best among the three models in terms of in-sample
fit for all countries

8. Model 3 exhibits the best out-of-sample performance for all coun-
tries

24

Table 5: Estimation results of the parsimonious model (Model 3)

usS GER UK

Coef St. err Coef St.err Coef St.err
P1 0.289*** | 0.001 | 0.459*** | 0.002 |0.483*** | 0.185
P2 -0.363***| 0.002 |-0.570***| 0.006 -0.419** 0.173
o 0.359*** | 0.001 | 0.136***| 0.005 0.173 0.192
VIX 1.983*** | 0.003 1.901*** | 0.009 | 1.373*** | 0.345
T 2.959*** | 0.003 | 3.315*** | 0.095 |2.808*** | 0.675
c 0.068* 0.041 0.005 0.067 -0.106 0.192

LLF -248.27 -248.65 -247.51

Linearity test 21.33*** 36.88*** 38.87***
Additive nonlinearity test 1.25 0.02 0.61
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Figure 5: Estimated time trend component in the stock-bond correlation
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Figure 2: Estimated stock-bond correlation for US
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Table 3: Results of in-sample comparison

US GER UK

AlIC SIC AIC SIC AlIC SIC

Model 1 | 511.72 536.54 515.90 540.71 510.68 535.50

Model 2 | 512.46 540.82 512,51 540.87 | 510.58 538.95

Model 3 | 508.54 529.81 509.30 530.58 507.01 528.28

Table 4: Results of out-of-sample comparison

UN) GER UK

RMSE MAE RMSE MAE RMSE MAE

Model 1 0.201 0.155 0.322 0.257 0.259 0.212

Model 2 0.203 0.161 0.297 0.231 0.274 0.221

Model 3 0.174 0.136 0.296 0.231 0.241 0.199

28

Interpretation of the results

1.

Short rate and yield spread are not important factors in relation to
stock-bond correlation regimes

. Flight-to-quality behavior is not strongly related with economic con-

ditions, but is associated with market uncertainty

. Significant decreasing trends in stock-bond correlations
. Flight-to-quality behavior has become stronger in more recent years

. Many studies find an increasing trend in correlations in international

equity markets as well as other financial markets

. Diminish the effects of diversification in international financial mar-

kets

. Investors need to make greater use of bond markets to control their

risk exposure, producing decreasing trend in stock-bond correlations

29




Conclusion

1. Examine the possible trend in stock-bond correlation for US, GER,
UK

2. Find a significant decreasing trend in stock-bond correlations

3. Short rates and yield spreads become only marginally significant
once we introduce the decreasing trend

4. STR model including the VIX and time trend as the transition
variables dominates other models

5. Can be considered a consequence of the decreasing effects of diver-
sification and more intensive flight-to-quality behavior

30

Future topics

1. High frequency data
2. Model correlation as a latent variable
3. Asymmetric dependence

4. Source of long-run trends in international financial markets

31
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Insurance risk theory Ruin theory

Insurance Risk Models

@ Objective: quantify and analyze the risk of insolvency associated with
insurance business.
o Model setup: X; = A; — L; (risk process)
o Assets A = (A¢)t>0 (incoming cash flows):
Initial surplus, premium income, investment income, ...
o Liabilities L = (L;):>0 (outgoing cash flow):
Claim payments, dividends, expenses, ...

o Risk measures: X0
e Ruin probability: PX(Xo = x) =1, 4

P(x) =P (10 < 00).
o Distribution of “severity” of ruin:

o(x; u,v)
=P (Xrp_ < u,|Xry| < v, 7m0 < 00).

7o = inf{X(t) < 0}

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013 4 /31



(NENMENINE Sl Classical model

Classical ruin theory
Cramér-Lundberg model- classical model; Lundberg (1903, Ph.D Thesis):

P.Lundberg

x > 0: initial surplus.

¢ > 0: premium rate.

N; ~ Po(At): a number of claims.
Y: € Q: IID; ith claim size.

Main concern:

\4
~

P(x) = P(1p < o0).

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013 5 /31



(NENMENINE Sl Classical model

Classical tools for analysis of “ruin”

Let T > 0 and distinguish the following 3 cases:
@ No claim in (0, T) (not ruin): probability e=*7.

@ First claim occurs in [t, t + dt) with t < T: probability Ae ™t dt

its amount is y < x + ¢T: (not ruin)

© First claim occurs in [t, t + dt) with t < T: probability Ae™*t dt

its amount is y > x + ¢T: (ruin)

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013
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(NENMENINE Sl Classical model

@ Distinguish the cases: for any T > 0,

¥(x) = e *p(x + cT) (1. no claim)

T xX—+ct
+ / e Mt dt/ Y(x + ct —y) Q(dy)
0 0

(2. first claim t < T, y < u+ct)

T [e%s)
+ / e M dt Q(dy)
0

x+ct
(3. first claim t < T, but y > u + ct)

o Take % on both sides, and set T = 0: Integro-differential equation,

e/ (x) + A /0 T — y) — 6] Q(dy) + AQ(x) = 0.

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013
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(NENMENINE Sl Classical model

Making some computations, we have a renewal-type equation:

V) = 21+ Q100 + 2T, 0,

where:
o Tof(x) =¥ [ e ¥f(y)dy: Dickson-Hipp operator,
o p> 0. Solution to the Lundberg fundamental equation:

log EX[e#4)] = cp + A / (9% — 1) Q(dz) = 0.
0

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013
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(LEMENICNGEIR IS Gerber-Shiu functions

Recent development of ruin theory

Expected discounted penalty function (Gerber and Shiu, 1998, NAAJ):

¢(X) =E~ [6_5T0 W(XTO—’ |XT0|)1{To<oo}] ,
where:
e 7o :=inf{t > 0|X; < 0}: Time of ruin.
o w : R?2 = R: “Penalty” depending on surplus prior to ruin and deficit at ruin.

@ Expected Present Value (EPV) of risk at ruin.
o Gerber-Shiu function.

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013 9 /31



(NEMENC NS SN Gerber-Shiu functions

Example (Gerber-Shiu functions)
00=0; w=1: ¢(x) =P*(r0 < 00).
© 0=0; w(x,y) = lix<uy<v): a (defective) density of (Xr,—,|X5]):

o(x; du, dv) = P*(X;, € du,|X,| € dv, 70 < 0).

@ §>0; w=(ax+ By)k: the kth-order (discounted) moment of a claim
causing ruin: «, 8 € R,

o(x; a, B) = EX [e*‘ST“(ozXTU_ + ,B|X7-0|)k1(7'0 < oo)] .
e §>0; w(x,y)=e *~": moment generating function of (79, Xr,—, | Xs|):
§(xi8,€,m) = E* [~ X0t (7 < oc)| (5,6, > 0).

@ e.g., option pricing, dividend strategy, capital injection, ...; Gerber and Shiu
(1998a,b), Cai et al. (2009a,b,c), Eisenberg and Schmidli (2011), etc.

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013 10 / 31



(LEVTENICNE S CIAN  Gerber-Shiu functions

Risk measures by Gerber-Shiu function

@ VaR-type risk measure due to G-S risks:
Ve :=inf{x > 0] ¢(x) < €},

the minimum requirement of G-S risk does not exceed the level € > 0.
0eg,d=0, wix,y)=1(y > z) in ¢,

¢(X;Z) =P (|X7‘0| >z, 70 < OO),
the tail function of the Deficit at Ruin:
DaR,(x) :=inf{z > 0|¢(x;z) < 1—a}.

so-called “VaR at ruin” when the initial capital is x > 0.
@ Solve x, = DaR,(xa), then

Xq: Surplus level to cover the deficit at ruin with 100a%

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013
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Generalization INHGIEEH]

Generalized risk process
Lévy insurance risk: spectrally negative Lévy process

Xt:X+Ct+O'Wt—St,

e W: Wiener process, (o > 0: const.)
o Uncertainty of income process; Dufresne and Gerber (1991),
@ S: Subordinator,

e Pure jump Lévy process with increasing path, possibly infinite activity,
representing frequent “small” claims, costs, etc;
Huzack et al. (2004), Biffis and Morales (2011), etc.

o Lévy characteristics:

E[e"*] = exp (t /0 oo(e"“ —1)u(z2) dz) ,

where v: Lévy density with [ zv(z) dz < co.

@ Time of Ruin:
70 := inf{t > 0|X; < 0}.

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013
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Generalization INHGIEEH]

Connection to Credit Risk Modeling

Firm's asset value (or stock price) process:
Vi = Woexp (ct + o Wi — S;),

“Geometric” spectrally negative Lévy process,

e Madan and Schoutens (2008; J. of Credit Risk): It reasonably includes jumps
and incorporates skewness in the underlying return distribution. A firm's
asset value is exposed to shocks (represented by negative jumps), which is
the main concern in risk management practice.

e Carr et al. (2002; J. of Business): risk-neutral processes for equity prices
should be processes of infinite activity and finite variation.

e Time of Default (structural model):
T4 = inf{t > 0|X; < d}, deR,

where X; := log V4, x := log V.

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013 14 / 31



Generalization NS S{TIEEN]

“Ruin” to “Default”

Time of default:

=inf{t > 0|X; < d}, deR,

“Default-related” quantities:

Td
Ha(x) = EX [/ e I(Xz) dt} 1>ay,
0

a ‘path-dependent penalty up to default”.

@ G-S function due to default:
da(x) =B [e ™ w(Xr,_, | Xy N {ryccc}] s x> d,

is given by /(x) = w(0,0)eq(x) + [ w(x,z — x)v(z) dz.
@ As w =1, = 0: probability of default

Ya(x) =P (14 < ), x>d.

@ Hence g C ¢g C Hy.
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Generalization Example

Example (Total costs due to claims up to default)

@ Suppose that dealing with a claim at time t costs C(X;—, X;), where C is a
positive cost function.

@ EPV of total costs up to time T is given by

Hy(x; T) = EX Z ef‘;tC(Xt—,Xt)l{Ax»o}

0<t<7TyAT
T4NT (e%e]
=[E~¥ l/ / e Ot C(Xem, Xe— — 2)1(2) dzdt] .
0 0

o As T — oo,

Holx) = Jim_Hy(u; T) = X [/0 e3t/(X,) dt] ,

where /(x) = [©

C(x,x — z)v(z) dz.
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Part 1l

Some representations for “Default-related quantities”
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Theorems [M|v]=

Integro-differential equation

Theorem (Integro-differential Eq.)

Suppose that | is continuous on (d, o) except for a countable set of
discontinuities D such that

Td
E~ [/ e Ot|1( X)) dt] < oo forall x> d,
0

and that Hy has the bounded second derivative on (d,o0) N D€. Then Hy is the
solution to the following integro-differential equation:

(A—=9)Hq(x) = —I(x), x€(d,o0)Nn DS,

where

Af(x) = cf’(x) + %f”(x) + /Ooo[f(x —z) — f(x) + zf'(x)]v(z2) dz.
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Theorems BN

Renewal type equation
Let

Exf() = [ dy Tt = [T e i)y
0 X

Theorem (Defective renewal Eq.)

Suppose the same assumptions as in the previous, and the net profit condition:
¢ > [;7 zv(z) dz, and 0 > 0. Then Hy satisfies the following (defective) renewal
equation:

x—d
Ha(x) = hi(x) + / Hi(x - )e0) dy, x> d,

where
2
h(x) = ZETH0x) + [Hd(d) 2 g5 Toi(d)| &80,
2
£0) = ZET(x),

B =2c/a® + p and p is a solution to the Lundberg fundamental equation:

V(p) := log E*[e"P17] = 4.

Y.Shimizu (Osaka University) Ruin to Default December 26, 2013

19 /31



Theorems BN

Remarks |

e As g% > 0:
o Hg(d) = 0 if 1(0) < oco.
o Hqy(d) = w(0,0) in G-S cases.

e As 02 =0, Hy(d) is not clear (depending on the case): e.g.,
Hd(X) = PX(Td < OO),
1 oo
Hy(d) = —/ v(z,00) dz
0
e Case of 02 = 0 is obtained by ¢ — 0:

1
c

o(x) = —[¢>*7'1/](X) Tpl(x),

. 2 1
since ;c‘,’gf(x) — Ef(x).
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Theorems BN

Remarks I

@ Series representation:

Hy = h+gxHy
= h,+g*[h,+g*Hd]:h,+g*h,+g*2*Hd

— hl % Zg*n
n=0
1 x—d
= — hi(x — y)Gs(dy),
5 [ = yGilay)
where Gs: Compound Geometric Distribution s.t.

Go(x) = (1 - p)+ 3 (1 - p)p* / 03 (x) dx,

X
0
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Theorems BN

Corollary (Compound geometric representation)

Ha(x) = 1%pxﬁ[h,(x “Y) x>d,

where Y = Uy + -+ - + Un; Ui ~ gs(x) dx (iid), N ~ Geo(p).

Corollary (Fourier transform)

_ Fl(s) = LI(p) + Ha(d)(p + is)o?/2
d — W(is) ’

fHd(s)

s € R,

where

Ff(s) = /R f(x)e™ dx, Lf(s)= /O h f(x)e™ dx,

2 o0
V(is) = isc + %52 - / (e — 1) v(dx).
0
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Theorems BN

Corollary (Large initial capital)
Suppose that, for Ry > 0,

/ eMu(z) dz < 00, (light — tailed)
0

and that there exists the negative solution —R € (—Ro,0) to the Lundberg fundamental
equation:

2 [e]
W(—R) = —cR + %RZ +/ (e® — 1)u(z) dz = 5,
0

and Then we have
fo “) du —R(x—d)

e
Jo B ’

Ha(x) ~ X — 00,

where
A(u) = &R {%Eﬁﬁ/(u) aF [Hd(d) + %55773/(0')] e*Bu} 7

B(u) = ue® *&sTp v(u)-
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Part IV

Connection to Lévy fluctuation theory
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Scale function

o First passage problem for Lévy process: e.g., Kyprianou (2006).

@ JO-scale function is defined via

o0 R 1
—sx /(%) — )
/0 e (x) dx () =3’ s> p,

where p > 0: W(p) = ¢ (Lundberg fundamental equation).
o Linking to “Potential Measure”: U(‘s)(dx) =E (/ e_‘”l(xtedx) dt).
0

@ Our target Hy has a representation via the scale function.

@ Recently, scale functions for various spectrally negative Lévy processes are
explicitly known; see, e.g., Hubalek and Kyprianou (2011).
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Example (Scale functions)
o BM: X; = ut + oW,

WO®(x) = \/ﬁeﬂ“‘/"z sinh (%\/2502 + u) , x>0.

o CPP with Exp.Jumps: X; = ct — Zf\il Y: with Y; ~ Exp(1/u), N ~ Po(At)

_ (pHp)er = (utpT)er X
V2 +4cpd 7
where pt = (r £ /r2 + 4cud)/2c, r= A+ 6 — cp.
@ s.n. [-stable process with 3 € (1,2): log E[e?%:] = e

x>0

)

W(é)(x)

WO (x) = BxP1E}(6x7), x>0,

where Eg(z) = >, zX/T(1 + Bk): the Mittag-Leffler function.
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Fluctuation-theoretic solution

Theorem (via the scale function)

Let W) be the scale function of the risk process X = (X;):>0, and suppose that
the corresponding d-scale function W®) js differentiable. Then

x—d 2
Ha(x) = / T,l(x — y) K(dx) + %K[O,x —d), x>d
0
where ;
K(dx) = {WW(O)EO(X) + d—w<5)(x) + pWO(x)| dx.
X
o It is well known that the ruin probability
PY(x) =P (10 < 00) = 1 — W (0+)WO)(x).

@ For the classical G-S function: see, e.g., Biffis and Kyprianou (2011).
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Example (Total costs due to claims up to default)

e Total costs up to 74: for I(x) = [~ C(x,x — z)v(z) dz,

Hy(x) := EX [/0” e %t(X,) dt} :

@ Suppose, e.g., C(x,y) = a(x—y) for a € (0,1) (100a%-cost for each claim):

I(x) = a/ooo 20(2) dz = fia,

@ Then M
Hq(x) = Ta (1 —E<¢ [6_67-01{.,-0<00}]) g
the last term is the “Gerber-Shiu function” ¢(x — d), which is easily
computed.

@ In particular,
x—d

Ha(x) = o (% W —d) - [

W (y) dy) :
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Part V

Concluding remarks
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Concluding remarks

@ We consider a generalized insurance risk process using spectrally negative
Lévy processes.

@ Beyond the classical insurance ruin theory, we consider “default-related
quantities”, which is EPVs of (path-dependent) default risks under the
general s.n. Lévy risks.

@ We obtain several representations for quantities of interest: from classical
analytical ways to modern fluctuation-theoretic argument.

@ Those results are possibly applied to the “credit risk” problems.

@ Statistical inference and more reasonable approximations for those quantities
are future issues.
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Abstract

For estimating the integrated covariances of continuous time diffusion process with micro-market
noise, Kunitomo and Sato (2008, 2013) have proposed the Separating Information Maximum Like-
lihood (SIML) method by using high frequency financial data. We can improve the SIML method
such that the modified SIML (MSIML) method is asymptotically optimal in a sense while it has
the asymptotic robustness when the sample size is large. We investigate the effects of market
adjustments (autocorrelated noises), round-off errors, and random sampling. We find that the

MSIML estimator has reasonable finite sample properties and thus it would be useful for practice.
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1. Introduction

Recently a considerable interest has been paid on the estimation
problem of the continuous time diffusion processes and their relation-
ships. It is partly because there are many theoretical use of diffusion
processes in the area of mathematical finance. Since it is possible to
use a large number of high-frequency data in financial markets, the
estimation of the continuous time diffusion processes and their rela-
tionships have potentially many applications in practice. Although
there were some discussion on the estimation of continuous stochastic
processes in the statistical literature, the earlier studies often had ig-
nored the presence of micro-market noises in financial markets when
they tried to estimate the underlying stochastic processes. Because
there are several reasons why the micro-market noises are important
in high-frequency financial data both in economic theory and in sta-
tistical measurement, several new statistical estimation methods have
been developed.

The main purpose of this paper is to propose a way to improve the
Separating Information Maximum Likelihood (SIML) method for esti-
mating the continuous time diffusion process by using high frequency
data in the presence of possible micro-market noise. We shall call
the resulting one as the MSIML (modified SIML) method because the
SIML method was originally proposed by Kunitomo and Sato (2008,
2011) and its properties has been investigated by Kunitomo and Sato



(2013), Kunitomo and Misaki (2013). In this paper we shall show that
the MSIML method estimator has reasonable asymptotic properties
in the sense that it is asymptotically optimal when the sample size is
large and it improves the finite sample properties of the SIML method
under quite general situations.

The main motivation of our study is two-fold. First, the SIML
method has reasonable asymptotic properties, but generally it does
not attain the optimal rate in the ideal situation. Hence it may be
important to improve the SIML and also understand the underlying
main reason why the original SIML estimator does not attain the
optimal convergence rate. Secondly, the variance-covariances of micro-
market noise are also important because they cause important effects
and thus the estimation of their magnitude gives key information on
the underlying process. Because it is difficult to observe the micro-
market noises, the assumption of i.i.d. random variables may be often
too strong in the view of micro-market structure. In this paper we shall
investigate the effects for estimating the variance and covariances of

noises when they are weakly auto-correlated.

2. The MSIML estimation of the diffusion process with micro-

market noise



2.1 The statistical models in continuous time and discrete

time

Let y4(t7) be the i—th observation of the (log-) price of the first asset
at i for 0 =15 <t <--- < {3, <{; =1and yf(tf) be the j—th

observation of the (log-) price of the second asset at t{ for 0 = tg <
t <o <th <t =1 Let £, = maxisy e £, the = max, ) oy 1]

and we denote n as a constant index and n* as a stochastic index.
We consider the situation that the high-frequency data are observed
at random times t¢ (a = s or f) under some conditions on random

sampling.

Assumption 2.1 : There exist positive constants ¢, (a = s or f)

such that

(2.1) G L I
n

and

(2.2) Eltf —t{ 1] =0(n™")

as n — oo, where a = s or f.

These conditions imply that n~! corresponds to the average duration
of observations of the intervals in [0,1] when n is relatively large.
Without loss of generality we take ¢, = ¢y = 1.

A typical example is the Poisson Process Sampling on ¢/ and tlf with
the intensity functions A(¥) = nc, and A/} = ne;. In this case the se-
quence of random variables 7 (a = s, f) are exponentially distributed

with £(77) = 1/n (7§ = t7 —t¢ ;) if we take ¢ = ¢y = 1. In this



paper we make a further assumption on the independence of X (¢) and

1o (i > 1).

Assumption 2.2 : The stochastic process X (t) (0 < ¢ < 1) is inde-

pendent of the random sequences ¢ and tf (1,5 > 1).

The underlying two-dimensional continuous process X (¢) = (X,(t), X(t))')
(0 <t < 1) is not necessarily the same as the observed (log-)price at

t? and t; (7, > 1) and
(2.3) X(t) = X(0) + [ C.(s)dB(s) (0 <t<1),

where B(s) is the two-dimensional Brownian motion, C,(s) is the 2x 2
instantaneous volatility matrix adapted to the o —field F(x(r), B(r),r <
s). The main statistical objective is to estimate the quadratic varia-

tion or the integrated volatility matrix

() (%)
1 g g

(2.4) pI :/ So(s)ds=| . ¥

0 P CIRC)

sf 2 ff

(2,(5) = C,(5)C,(s)) of the underlying continuous process X(t) (0 <
t < 1) from the set of discrete observations on (ys(tf),yf(t}t )) with
the condition that 3,(s) is a progressively measurable matrix and
SUPp<s<q 2z (5) < 00 (a.s.).

We also consider the situation that the observed (log-)prices ys(t7) and

yf(tjf ) are the sequence of discrete stochastic processes generated by

(2.5) ys(t7) = hs (X(7), ys(ti-1), us(17))

5



and

(2.6) yp(t) = hy (X(t), ys (1), up(8]))

where hg( - ) and hs( - ) are measurable functions, the (unobservable)
continuous martingale process X(t) (0 < ¢ < 1) is defined by (2.3) and
the micro-market noises us(t) and u f(tj'c ) are the discrete stochastic
processes. In particular, we assume that u,(¢{) and u f(tf ) are a se-
quence of independently and identically distributed random variables
with &(us(£)) = 0,E(us(t])) = 0 and E(us(#)?) = 0@, E(up(t])?) =

o, E(us () (t))) = o(t2,t))al.

There are special cases of (2.3), (2.5) and (2.6), which reflect the im-
portant aspects on modeling financial markets and the high frequency
financial data. The basic (high-frequency) financial model with micro

market noises can be represented by
(27)  walt]) = Xolt]) +uslt]) , ys(t]) = Xp(t]) + ug(t))

where the underlying process X(t) = (X,(t), X;(t)) is given by (2.3).
The synchronous sampling means t; = tzf and the fixed grid obser-
vation means t¢ — t¢ ; = n~'. We shall consider the more general
situations, that is, we have the non-synchronous observations as well
as the random sampling.

The most important statistical aspect of (2.7) is the fact that it
is an additive (signal-plus-noise) measurement error model. However,

there are some reasons why the standard situation as (2.7) is not



enough for applications. For instance, the high frequency financial
models for micro-market price adjustments and the round-off-errors
models for financial prices are not in the form of (2.7), but they can
be represented as special cases of (2.3), (2.5) and (2.6). Sato and
Kunitomo (2012) have discussed several important examples of (2.5)
and (2.6) when the state variable is one dimension.

More generally, it is straightforward to extend our analysis to the
cases when the observatios are the p-dimensional vector value process
yj(tgj )), j=1,---,p. The model we have discussed has been the case
when p = 2.

2.2 The MSIML estimation

We consider the situation when x; and v; (i = 1,---,n) are inde-
pendent with 3,(s) = 3, (0 < s < 1), and v; are independently,
identically and normally distributed as N,(0,X,). We use an n X p
matrix Y = (y;) and consider the distribution of np x 1 random vector

(y/17 cee y;L)/. Given the initial condition y, we have

(2.8) Y, ~ Nusp (1o ¥0, 1. ® £, + C,.C,, @ hy %)



where 1, = (1,---,1), h, = 1/n (=17 —t7 ;) and
1 0 0 0
1 1 O -0
(2.9) C,=[11 1 -0
1 - 1 1 0
1 - 1 1 1
We transform Y, to Z, (= (z;)) by
(2.10) Z, = h,"”P,C." (Y, — Yy
where
1 0 0 0
-1 1 O 0
(2.11) C,'=| 0 -1 1 0 - |,

o 0 -1 1 0O
o 0 0 -1 1

2
(2.12) P, = (pji) , pjr = o Cos

and Yo = 1, -y, . We have the spectral decomposition C,;'C/~! =
PnDnP;l = 2I, — 2A,, and D,, is a diagonal matrix with the k-th

s <2k — 1)
2 \2n+1
Then given the initial condition y( the likelihood function can be

defined as

2T 1. 1
103

element
2k — 1
2n+1

(2.13)  ag, = 2[1 — cos(n( ))] = 4n sin®

n 1 n ,
(214)L, = Y- log |ap By + B = 0 Y- gyfan Dy + o] 'z
k=1 k=1
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Since ay,, — 0 as n — oo when k, = O(n®) (0 < a < 1) and
ans1-1,n = O(n) when [,, = O(n”) (0 < 3 < 1). Then we may approx-
imate 2 X L, by 2 x L,, and the separating information maximum

likelihood (SIML) estimator of 3, is defined by

1 T
(2.15) = — 3 7z,
Mp k=1
and the SIML estimator of 32, is defined by
- 1 n 1
(2.16) So=— Y, ap,ZrZy -
ln k=n+1-1,,

For both f]v and Sx, the number of terms m,, and [,, are dependent on
n and we have the order requirements that m, = O(n®) (0 < a < 3)
and [, = O(n”) (0 < B < 1) for B, and X, respectively.

In order to improve the SIML method, we notice that the (1st

order) asymptotic bias term of 3, is given by

1 mn m2
(2.17) ABIAS = (— >~ apn) By + 0,(—") .
Mp =1 n

In this paper we propose to modify the SIML method and to use the
MSIML estimator of 3, by

(2.18) So=7 % [apnmz

where [, = ny — nq and ny = n*, ny = n™ (% <G < P <1).
Then given (2.14) the modified SIML (MSIML) estimator of 3, is
defined by

. 1 m 1 m
(2.19) Yom [ > zkzk} — { > akn}
My =1 My =1

9



2.3 Asymptotic Properties of the MSIML estimator

The asymptotic properties of the SIML estimator have been investi-
gated by Kunitomo and Sato (2008, 2011) on the estimation problem
of the integrated volatility and integrated covariances. For the simplic-
ity, we take the case of p = 1 and we consider the estimation problem
of the variance of micro-market noise. It seems that there have not
been any clear statement on the asymptotic properties of alternative
estimators for the noise variance.

We have the following result.

Theorem 2.1 : We assume that X (¢') and v; = v(t]) (i =1,---,n")
are given by (2.1) and (2.2) with supy<,<; 02(s) < oo.

For 1/2 < (1,0 <1 and 0 < a < 0.5, as n — 00,

(2.20) i [62 =02 S N0, V],
where
(2.21) V =20".

For the deterministic time varying volatility case the asymptotic
properties of the MSIML estimator can be summarized as the next

proposition.

Theorem 2.2 : We assume that X () and v; = v(t}) (i =1,---,n")
are given by (2.1) and (2.2) with supj<,<; 02(s) < oo and o2 =
Jo 02(s)ds is a positive constant (or deterministic). Define the MSIML
estimator of o2 by (2.19).

10



For m, =n“and 0 < a < 0.5, as n — o0

(2.22) Vi (62, — a2 L N0, V],
where
(2.23) V= 2/01 02(s)] " ds .

When 02 is a random variable, we need the concept of stable conver-
gence in law because the limiting distribution of the SIML estimator
is the mixed-Gaussian distribution. In order to discuss the stable
convergence in law we extend the probability space (€2, F, P) to the
extended probability space (€, F, P) as explained by Chapter VIII of
Jacod and Syriyaev (2003) or Jacod (2007). We say that a sequence

of random variables Z,, with an index n stably converges in law if
(2:24) E[Y f(Z,)] — E[Y f(2)]

for all bounded continuous functions f(-) and all bounded random
variables Y, and E[] is the expectation operator with respect to the

extended probability space. We write this convergence as
(2.25) Z, 55 7

(See Jacod and Shriyaev (2003) and Jacod (2007) for the details.)
As a typical stochastic volatility case in the continuous time, we con-
sider that the volatility function o,(t) is a strong solution of the

stochastic differential equation (SDE)

(226:(8) = 02(0) + [ pol5.02(5))ds ++ [ 7(s.04(5))dB(s)
[ s, 0(5))dB (s)

11



where the coefficients p,(s),7,(s) and ~v*(s) are in the class of A
(extensively measurable, continuous and bounded), and B*(s) is a
Brownian motion which is orthogonal to B(s). Here we set B(t) =
(B(t), B(t)*) as the vector of Brownian motions. Then there exists
a strong solution such that supyc,<;E[os(s)] < oo. (There can be
weaker conditions on the coefficients which give the existence of a
strong solution and the moment conditions. See Chapter III of Ikeda
and Watanabe (1989) for the notations and the details.)

The asymptotic properties of the MSIML estimator in the stochastic

volatility cases can be summarized as Theorem 2.3.

Theorem 2.3 : We assume that X (') and v; = v(t}') (i =1,---,n")
are given by (2.1) and (2.2) with supj.,<;02(s) < oo and o2 =
Ja 02(s)ds (> 0) is finite (a.s.). We assume that E[v(t?)?] < oo. For

m, =n® and 0 < a < 0.5, as n — oo we have the weak convergence

(2.27) T =Ty |0 — 03] = ZF,
where the characteristic function g,(t) = Elexp(itZ,~)] of Z,- con-

verges to the characteristic function of Z*, which is written as

(2.28) g(t) =Ele 2],
where
(2.29) V= 2/01 [02(s)]” ds .

12



2.4 Generalizations

It is straightforward to extend our analysis in the previous section
to the p dimension cases (p > 1). Another direction to extend our
analysis would be to assume that the p x 1 vector noise process {v;}

is stationary process which can be represented as

(230) v; = Z VsWi_g (i:--~,—1,0,1,'-~)7

S§=—00

where w; = (w;;) are the vector sequence of independent random vari-
ables with &€(w;;) = 0, E(w;) = 05, E(wiwig) = 0 (i # j), E(wj;) < oo

and % ||3, 2 < .

3. Simulations

We have investigated the robustness properties of the MSIML es-
timator for the integrated volatility based on a set of simulations
and the number of replications is 1,000. We have taken the sam-
ple size n = 20,000, and we have chosen a = 0.5 and ny = n“,ny =
n—n? (c; = 0.85,¢c5 = 0.66). The other details of the simulation pro-
cedure are similar to the corresponding ones reported by Kunitomo
and Sato (2008, 2011).

In our simulations we consider several cases when the observations

are generated by (2.3) and (2.7) as the basic case. The volatility

2
T

function (¢2(s)) is given by
(3.1) o2(s) = 0(0)* [ag + ars + ass?]

13



where a; (i = 0,1,2) are constants and we have some restrictions
such that o,(s)?> > 0 for s € [0,1]. It is a typical time varying (but
deterministic) case and the integrated volatility o2 is given by

ai a9
ag+ — + —

(3.2) 02 = /01 0,.(s)%ds = 0,(0)? 5 T3

In this example we have taken several intra-day volatility patterns
including the flat (or constant) volatility, the monotone (decreasing or
increasing) movements and the U-shaped movements.

In our Monte-Carlo simulations, we also investigate the situation
that the observed (log-)price y(t}') is a sequence of discrete stochastic

process generated by

(3-3) y(ti) = h(X(t7), y(ti ), v(t}))

where h( - ) is a measurable function and the (unobservable) continu-
ous martingale process X (t) (0 <t < 1) is defined by (2.3) and v(t}")
is the micro-market noise process. In Appendix we give some results

and each model corresponds to the cases when we take h(-,-,-) as

Model 1 hi(z,y,u) =y +g(xr —y)+u (g :aconstant) ,

Model 2 ha(@,y,u) =y + gy(w —y +u) (gy(-) 1 (2.7))

Model 3 hs(z,y,u) =y + go(z —y) +u (g,() is (2.7)) ,

Model 4 ha(oyu) = g+t gi(x —y) ify >0 (g1 : a constant)
g2(x —y) ify <0 (g2 : aconstant)

Model 5 hs(z,y,u) =y + [g1 + g exp(—v|z — y*)] (z — y)

(g1, g2 : constants) ,

14

9



respectively.

Model 1 is the basic additive model when ¢ = 1. When 0 < g <
2, Model 1 corresponds to the linear price adjustment model with
the micro-market noise. Model 2 and Model 3 are the micro-market
models with the round-off errors. Model 2 is the basic round-off errors
model and Model 3 has a more complicated nonlinearity. Model 4 and
Model 5 are the SSAR model and the exponential AR model, which
have been known as nonlinear (discrete) time series models.

For a comparison we have calculated the historical volatility (HI)
estimates. Overall the estimates of the MSIML method are quite
stable and robust against the possible values of the variance ratio
even in the nonlinear transformations we have considered.

For Model-1, the estimates obtained by historical-volatility (H-vol)
are badly-biased, which have been known in the analysis of high fre-
quency financial data. Actually, the values of H-vol are badly-biased
in all cases of our simulations.

By examining these results of our simulations we conclude that we
can estimate the integrated volatility of the hidden martingale part
reasonably by the MSIML estimation method despite of the possi-
ble non-linear transformations. It may be surprising to find that the
MSIML method gives reasonable estimates even when we have non-
linear transformations of the original unobservable security (intrinsic)
values. We have conducted a number of further simulations, but the

results are quite similar as we have reported in this section.

15



4. Concluding Remarks

In the present study we propose a way to improve the statisti-
cal estimation method of the integrated volatility and covariances in
the presence micro-market noises. We extend the Separating Informa-
tion Maximum Likelihood (SIML) method proposed by Kunitomo and
Sato (2008, 2011). We have shown that the modified SIML (MSIML)
method has reasonable asymptotic properties; it is consistent and it
has the asymptotic normality (or the stable convergence in the general
case) and it is asymptotically optimal in a sense when the sample size
is large and the data frequency interval is small under reasonable con-
ditions. The MSIML estimator has reasonable finite sample properties
and also it has the asymptotic robustness properties.

The MSIML estimator is so simple that it can be practically used
not only for the integrated volatility but also the integrated covari-
ances of the multivariate high frequency financial series and the hedg-
ing ratios. Further developments of applications will be discussed in

other occasions.
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APPENDIX : TABLES

In Tables the estimates of the variance (02) are calculated by the MSIML method while
H-vol are calculated by the historical volatility estimation. The true-val means the true
parameter value in simulations and mean, SD and MSE correspond to the sample mean,
the sample standard deviation and the sample mean squared error of each estimators,

respectively.

B-1 : Estimation of integrated volatility (Model-1)
(ap = 1,a1 = 0,a2 = 0;02 = 1.00E — 04,9 = 0.2)

n=20000 o2 o2 H-vol U§7m
true-val 1 1.00E-04 1 1
mean 1.000648 6.93E-05 2.333708 1.000422
SD 0.118420 9.85E-07 0.023389 0.118420
MSE 0.014024 9.44E-10 1.779325 0.014024

B-2 : Estimation of integrated volatility (Model-1)
(ap = 1,a1 = 0,a3 = 0;02 = 0.0,g = 0.2)

n=20000 o2 o? H-vol o2
true-val 1 0.00E+00 1 1
mean 0.992748 1.16E-06 0.1110989 0.992744
SD 0.111878 2.38E-08 0.0024040 0.111878
MSE 0.012569 1.35E-12  0.7901510 0.012569

B-3 : Estimation of integrated volatility (Model-1)
(ao =1,a1 = 0,a2 = 0;02 = 0.0,g = 1.5)

n=20000 o2 o2 H-vol O'%m
true-val 1 0.00E4-00 1 1
mean 1.003343 6.53E-05  2.99923 1.00313
SD 0.12221  7.87E-07 0.036817 0.12221
MSE 0.014946 4.27E-09 3.998269 0.01494
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B-4 : Estimation of integrated volatility (Model-1)
(ap = 1,a1 = 0,as = 0;02 = 1.00E — 05,9 = 1.0)

n=20000 o2 o2 H-vol 02
true-val 1 1.00E-05 1 1

mean 1.004956 3.84E-05  1.3997  1.00483
SD 0.121406 4.88E-07 0.013967 0.121406
MSE 0.014764 8.06E-10 0.159962 0.014763

B-5 : Estimation of integrated volatility (Model-1)
(aop = 1,a1 = 0,a2 = 0;02 = 1.00E — 06,9 = 0.01)

n=20000 o2 o2 H-vol 02
true-val 1 1.00E-06 1 1

mean 0.523326 5.77E-07 0.0250976 0.523324
SD 0.071447 8.16E-09 0.0005492 0.071447
MSE 0.232323 1.79E-13  0.9504351 0.232325

B-6 : Estimation of integrated volatility (Model-2)
(ap = 7,a1 = —12,a2 = 6;02 = 2.00E — 02, = 0.5)

n=20000 o2 o2 H-vol o2
true-val 45 0.02 45 45
mean 46.59003 0.004002 136.3733 46.57694
SD 6.399936  0.00019 6.166522 6.399906
MSE 43.48737 0.000256 8387.097 43.44555

B-7 : Estimation of integrated volatility (Model-3)
(ap = 7,a1 = —12,a2 = 6;02 = 1.00E — 02,7 = 0.5)

n=20000 o2 o2 H-vol O3 m
true-val 45 1.00E-02 45 45
mean 47.185  1.17E-02  394.7923  47.14678
SD 6.548271 2.29E-04  7.1138  6.548203
MSE 47.6541 2.91E-06 122405.23 47.48761
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B-8 : Estimation of integrated volatility (Model-3)

(a0 = 1,a1 = 0,a2 = 0;02 = 0.0, = 0.005)
n=20000 o2 o2 H-vol 02
true-val 1 0.00E4-00 1 1
mean 1.002935 1.94E-05 0.68542  1.002872
SD 0.117878  3.32E-07 0.008776 0.117878
MSE 0.013904 3.78E-10  0.099037 0.013903

B-9 : Estimation of integrated volatility (Model-4)
(ao =1,a1 = 0,a2 = 0;02 = 0.0,91 = 0.2,g0 = 5)

n=20000 o2 o2 H-vol O3
true-val 1 0.00E+400 1 1
mean 1.001114  6.76E-05 2.221652 1.000893
SD 0.11993  2.22E-06 0.068095 0.11993
MSE 0.014384  4.57E-09  1.497069 0.014384

B-10 : Estimation of integrated volatility (Model-4)
(ao = 1,a1 = O,CLQ = O;Ug = 1.00E — 03,91 = 0.2,92 = 5)

n=20000 o2 o2 H-vol o2
true-val 1 1.00E-03 1 1

mean 1.029582 1.99E-03  66.6307  1.02307
SD 0.122565 4.86E-05 1.547753 0.122566
MSE 0.015897 9.86E-07 4309.795 0.015555

B-11 : Estimation of integrated volatility (Model-5)
(ap = 1,a1 = 0,a2 = 0;02 = 0.0,¢1 = 1.9,g0 = —1.7,7 = 10000)

n=20000 o2 o2 H-vol O3
true-val 1 0.00E+00 1 1
mean 0.996518  9.72E-05 6.375448  0.9962
SD 0.121183  3.21E-06 0.367669 0.12118
MSE 0.014697  9.46E-09 29.03062 0.01470
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