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概要
日本では 2011年 3月に発生した東日本大震災を一つの契機に「通常の常識では起こりにくいと

される事象」についてのリスク解析や対策の重要性についての認識が高まっている。経済・社会

における近年の現象でも 2008年に起きたリーマンショック・経済危機、2011年から経験している

ヨーロッパ諸国の金融危機なども我々が暮らしている国際的な経済社会においては、従来の議論

ではほとんど考慮されていない経済変動の例である。こうした事前には予想が困難で無視されて

きた事象、自然災害、経済変動の中でも実際に起きると大きな影響のある不確実な事象を科学的

に理解し、有効な対策を考察する研究が必要であり重要である。本研究プロジェクトでは近年の

日本など現代の経済・社会の理解にとって重要になっている「きわめて稀に起きる事象」と「し

ばしば起きる事象」の評価・分析法について研究する予定である。「稀な事象」に関わる経済リス

クの分析という課題について理論的・実証的な観点から分析することにより、科学的根拠にもと

づいた経済・社会における「経済リスクの分散化」という方策、公共的政策のあり方の提案する

ことが目標である。近年に特に関心が高まっている「従来の常識では希にしか起きない、無視で

きると見なされる事象」と「ときどき経済・社会では起きると見なされる現象」の科学的解析を

柱に、確率論・統計学と経済学・金融（ファイナンス・保険）における既存の理論と現実の乖離、

新しい数理的理論の構築と応用、新しい数理的理論を踏まえた「経済リスクの解析と分散化の方

策」について研究活動を行う予定である。本研究プロジェクトでは経済リスクを (i)社会・人口リ

スク, (ii)自然災害と極端な事象のリスク, (iii)経済・金融・保険の対象となるリスク、に関連した

３つの領域の経済リスクに分類し、リスクに係わる問題と相互に関わる総合的問題という二つの

方向から問題を理論的に解明し、総合的な研究をふまえた経済リスクの科学的制御・管理の方策

を提言することを目指す。さらに、経済統計学における研究・研究者と確率論・統計学など数理科

学の関係者、さらに金融（ファイナンス）の関係者を交え、現代の社会・経済においては重要で

はあるが、既存の研究分野では十分に取り上げられなかった研究課題を研究するとともに、経済

リスクの分析と科学的制御・統計的管理法についての共同研究を行う計画である。

今回の研究集会では、経済リスクの統計学を巡るさまざまなトピックについて報告を行う機会

であった。このような情報交換が関係者の知的刺激となり、経済リスクの統計学の今後の展開の

一助になることを期待する次第である。
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研究集会・プログラム

＜セッション I：リスク尺度と統計分析＞

Chair : 一場知之 (カリフォルニア大学サンタバーバラ校)

9:50～10:30「リスク尺度と法則不変性」楠岡成雄 (東京大学)

10:35～11:15「Backtesting distortion risk measure and its backtestability”」Hideatsu Tsuka-

hara(塚原英敦, 成城大学)

11:20～12:00「Decreasing Trends in Stock-Bond Correlations」Tatsuyoshi Okimoto(沖本竜義,

一橋大学)

(休憩)

＜セッション II：保険市場と統計分析＞

Chair : 松井宗也 (南山大学)

14:00～14:40「公表データにもとづく損保リスクモデル」 田中周二 (日本大学)

14:45～15:25「On a generalization from ruin to default in Levy insurance risks」Yasutaka Shimizu(清

水泰隆, 大阪大学)

＜セッション III：高頻度金融データと統計分析＞

Chair : 一場知之 (カリフォルニア大学サンタバーバラ校)

15:30～16:10「先物市場の高頻度データ」川崎能典 (統計数理研究所)

16:15～16:45「高頻度金融データ分析とシグナル・ノイズ」国友直人 (東京大学)
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1. Distrotion Risk Measures

A random variable X represents a loss of some financial position

DRM� �

Any coherent risk measure satisfying law invariance and comonotonic

additivity is a distortion risk measure:

ρ(X) = ρ(F ) :=

∫
[0,1]

F−1(u) dD(u) =

∫
R

x dD ◦ F (x).

where F is the df of X, F−1 is the quantile of X, and D is a convex

distortion, i.e., a df on [0, 1].
� �

�� a.k.a. spectral risk measure (Acerbi), weighted V@R (Cherny)

Example: Expected Shortfall (ES)

The expected loss that is incurred when VaR is exceeded:

ESθ(X) :=
1

θ

∫ 1

1−θ
F−1(u) du

.
= E(X |X ≥ VaRθ(X))

Taking distortion of the form

DES
θ (u) =

1

θ

[
u − (1 − θ)

]
+, 0 < θ < 1

yields ES as a distortion risk measure.

�� Typical values for θ are: 0.05, 0.01, . . .



Other Examples of DRM:

• Proportional Hazards:

DPH
θ (u) = 1 − (1 − u)θ,

• Proportional Odds:

DPO
θ (u) =

θu

1 − (1 − θ)u

• Gaussian (Wang transform):

DGA
θ (u) = Φ(Φ−1(u) + log θ)

� See Tsukahara (2009) Mathematical Finance, vol. 19.

Figure 1: Distortion densities（θ = 0.5，θ = 0.25）



Figure 2: Distortion densities（θ = 0.1，θ = 0.05）

2. Statistical Estimation

(Xn)n∈N: strictly stationary process with Xn ∼ F

Fn: empirical df based on the sample X1, . . . , Xn

A natural estimator of ρ(F ) is

ρ̂n =

∫ 1

0
F−1

n (u) dD(u)

=

n∑
i=1

cniXn:i, cni := D

(
i − 1

n
,

i

n

]

This type of statistics is called L-statistics



Strong consistency� �

Let d(u) = d
duD(u) for a convex distortion D, and 1 ≤ p ≤ ∞,

1/p + 1/q = 1. Suppose

• (Xn)n∈N is an ergodic stationary sequence

• d ∈ Lp(0, 1) and F−1 ∈ Lq(0, 1)

Then

ρ̂n −→ ρ(F ), a.s.

� �

For a proof, see van Zwet (1980, AP)

[All we need is SLLN and Glivenko-Cantelli Theorem].

Assumptions for asymptotic normality:

• (Xn)n∈N is strongly mixing with rate

α(n) = O(n−θ−η) for some θ ≥ 1 +
√

2, η > 0

• For F−1-almost all u, d is continuous at u

• |d| ≤ B, B(u) := Mu−b1(1 − u)−b2,

• |F−1| ≤ H, H(u) := Mu−d1(1 − u)−d2

Assume bi, di & θ satisfy bi + di +
2bi + 1

2θ
<

1

2
, i = 1, 2



Set

σ(u, v) := [u ∧ v − uv] +

∞∑
j=1

[Cj(u, v) − uv] +

∞∑
j=1

[Cj(v, u) − uv],

Cj(u, v) := P(X1 ≤ F−1(u), Xj+1 ≤ F−1(v))

Theorem (Asymptotic Normality)� �

Under the above assumptions, we have
√

n(ρ̂n − ρ(F ))
L−→ N(0, σ2),

where

σ2 :=

∫ 1

0

∫ 1

0
σ(u, v)d(u)d(v) dF−1(u)dF−1(v) < ∞

� �

• GARCH model:

Xt = σtZt, (Zt) : i.i.d.

σ2
t = α0 +

∑p
i=1 αiX

2
t−i +

∑q
j=1 βjσ

2
t−j

�� If the stationary distribution has a positive density around 0,

then GARCH is strongly mixing with exponentially decaying α(n)

• Stochastic Volatility model:

Xt = σtZt, (Zt) : i.i.d., (σt) : strictly stationary positive

(Zt) and (σt) are assumed to be independent

�� The mixing rate of (Xt) is the same as that of (σt)



Estimation of Asymptotic Variance

Let

Yn :=

∫
[1{Xn ≤ x} − F (x)]d(F (x)) dx, n ∈ Z.

Then Yn is also a strictly stationary and strongly mixing sequence with

the same mixing coefficient as Xn. Furthermore

E(Yn) = 0, σ2 =

∞∑
h=−∞

γ(h) < ∞,

where γ(h) := E(YnYn+h).

Let f be the spectral density of (Yn). Then
∞∑

h=−∞
γ(h) = 2πf (0)

=⇒ Use a consistent estimator of f (0) (JHB approach)

The lag window estimator is defined by

f̂n(λ) =
1

2π

∑
|k|<Kn

w(k/Kn)γ̂n(k) cos kλ

where w is a “lag window”, and γ̂n(k) :=
1

n

n−k∑
i=1

YiYi+k



�� F in the expression of Yn is unknown, so we replace it with the

empirical df. That is, we use

Yi,n :=

∫
[1{Xi ≤ x} − Fn(x)]d(Fn(x)) dx, i = 1, . . . , n

Let

γ̃n(k) :=
1

n

n−k∑
i=1

Yi,nYi+k,n and f̃n(0) :=
1

2π

∑
|k|<Kn

w(k/Kn)γ̃n(k)

Then 2πf̃n(0) should give a consistent estimator of the asymptotic

variance σ2

Theorem� �

In addition to the conditions assumed in the above theorem, suppose

that J is Lipschitz, w is a bounded even function which is continuous

in [−1, 1] with w(0) = 1 and equals 0 outside [−1, 1]. Also assume

E|Yn|4 < ∞ and the fourth-order cumulants

κ(h, i, j) := E(Y1Y1+hY1+iY1+j) − γ(h)γ(i − j)

− γ(i)γ(h − j) − γ(j)γ(h − i)

are summable:
∑∞

h,i,j=−∞ |κ(h, i, j)| < ∞.

Let Kn be a sequence of integers such that Kn → ∞ and

Kn/
√

n → 0 as n → ∞. Then we have

2πf̃n(0)
L1−→σ2, n → ∞

� �



Bias of L-statistics

By Fubini, for any df F and any distortion D,∫
[0,1]

F−1(u) dD(u) = −
∫ 0

∞
D(F (x)) dx +

∫ ∞

0
[1 − D(F (x))] dx

By Fubini and Jensen, for convex D,

E

[∫
[0,1]

F−1
n (u) dD(u)

]

=

∫ 0

∞
E(−D(Fn(x))) dx +

∫ ∞

0
E[1 − D(Fn(x))] dx

≤
∫ 0

∞
−D(E(Fn(x))) dx +

∫ ∞

0
[1 − D(E(Fn(x)))] dx

=

∫
[0,1]

F−1(u) dD(u)

Therefore

E(ρ̂n) − ρ(F ) ≤ 0

=⇒ ρ̂n has a negative bias

Need bias correction methods. For the i.i.d. case,

• Xiang (1995): Modify the form of L-statistics

• Kim (2010): Bootstrap-based method

�� The bootstrap methodology is still available in the dependent case

(see Lahiri (2003), Example 4.8).



Moving Block Bootstrap (MBB)

• Data: X1, . . . , Xn

• Block size: �, # of blocks: N := n − � + 1

• Blocks: Bi = (Xi, . . . , Xi+�−1), i = 1, . . . , N

Resample k = [n/�] blocks from {B1, . . . ,BN} with replacement

to get B∗
1 , . . . ,B∗

k

Write B∗
i = (X∗

(i−1)�+1
, . . . , X∗

i�)

=⇒ X∗
1 , . . . , X∗

k�: MBB sample

MBB version of ρ̂n is

ρ̂∗n =
1

n

n∑
i=1

cniX
∗
n:i, cni := D

(
i − 1

n
,

i

n

]

Validity of MBB follows from an argument specific to our case.

�� The approach based on Hadamard differentiability of L-functional

T (F ) :=

∫ 1

0
h(F−1(u))J(u) du

is not convenient. See Boos (1979, AS), Lahiri (2003), Section 12.3.5.



Simulation example: inverse-gamma SV model

Xt = σtZt

Zt i.i.d. N(0,1) and Vt = 1/σ2
t satisfies

Vt = ρVt−1 + εt,

where Vt ∼ Gamma(a, b) for each t, (εt) i.i.d. rv’s, and 0 ≤ ρ < 1

⇒ Xt has scaled t-distribution with ν = 2a, σ2 = b/a

�� Lawrance (1982): the distribution of εt is compound Poisson

�� Can be shown that (Xt) is geometrically ergodic

Simulation results for estimating VaR, ES & PO risk measures with

inverse-gamma SV observations (n = 500, # of replications = 1000)

Xt = σtZt, where Vt = 1/σ2
t follows AR(1)

with gamma(2,16000) marginal & ρ = 0.5, Zt i.i.d. N(0,1)

VaR ES PO

θ bias RMSE bias RMSE bias RMSE

0.1 0.0692 10.9303 −2.2629 22.1361 −1.7739 17.5522

SV 0.05 2.5666 17.6755 −1.2168 37.2719 −2.0200 28.5053

0.01 14.9577 61.2290 −11.9600 103.9269 −15.7888 73.7147

0.1 0.7976 10.5893 −1.2914 19.5756 −1.3574 15.3271

i.i.d. 0.05 0.7974 16.1815 −2.6346 31.3166 −2.8342 23.9933

0.01 10.6838 53.2567 −12.9355 95.9070 −15.8086 69.5425



Simulation results for estimating variance and bias of PO risk measure

(n = 500, Kn = 5, Parzen kernel w(x) = 1 − x2, block size= 5,

# of bootstrap replicates = 800, # of replications = 10000)

ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

IG-SV 0.1 −0.8328 15.4456 14.0956 −0.8151 13.9829

α = 2 0.1 0.05 −2.0580 24.6961 20.9719 −1.8170 20.6863

β = 16000 0.01 −13.3608 68.9197 46.6943 −10.2030 46.0788

IG-SV 0.1 −0.3345 10.7979 10.4231 −0.6812 10.3933

α = 4 0.1 0.05 −1.3663 15.1946 14.0623 −1.3511 13.9725

β = 48000 0.01 −6.8659 34.4725 26.4183 −6.0749 26.4446

IG-SV 0.1 −0.5432 9.0853 8.8370 −0.6048 8.8281

α = 10 0.1 0.05 −1.1786 11.7923 11.2289 −1.1263 11.2003

β = 144000 0.01 −5.8673 22.9686 18.7767 −4.4474 18.9614

ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

IG-SV 0.1 −1.0054 17.5469 15.0711 −0.8793 14.6925

α = 2 0.5 0.05 −2.2714 27.1465 22.0852 −1.9450 21.4374

β = 16000 0.01 −13.9208 74.8887 47.7943 −10.6541 46.8379

IG-SV 0.1 −0.5791 11.4856 10.7162 −0.6957 10.5906

α = 4 0.5 0.05 −1.3472 15.7116 14.4718 −1.3994 14.2658

β = 48000 0.01 −7.4680 35.1014 26.7575 −6.1939 26.7115

IG-SV 0.1 −0.8213 9.2632 8.9299 −0.6062 8.8957

α = 10 0.5 0.05 −1.0663 11.9443 11.3608 −1.1368 11.2996

β = 144000 0.01 −5.7987 23.1130 18.8147 −4.4769 18.9896



ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

IG-SV 0.1 −2.0408 28.2224 15.5015 −0.9609 14.7212

α = 2 0.9 0.05 −4.8204 42.1005 22.1388 −2.0483 20.9685

β = 16000 0.01 −23.5844 106.4374 43.6402 −10.1556 42.4681

IG-SV 0.1 −1.1973 14.9586 11.1112 −0.7274 10.8092

α = 4 0.9 0.05 −2.2346 20.8199 14.8937 −1.4366 14.4566

β = 48000 0.01 −10.2968 42.5085 26.3137 −6.1439 26.0855

IG-SV 0.1 −0.5956 10.3666 9.1248 −0.6262 9.0293

α = 10 0.9 0.05 −1.4212 13.6534 11.5934 −1.1609 11.4494

β = 144000 0.01 −6.3827 25.2688 18.8986 −4.4824 19.0079

ρ θ MC bias MC s.e. Â-s.e. BS bias BS s.e.

0.1 −0.5734 8.2886 8.0638 −0.5619 8.0667

N(0, 126.52) iid 0.05 −1.1557 10.1327 9.8175 −1.0116 9.8117

0.01 −4.4730 18.1714 14.9659 −3.6136 15.2192

0.1 −0.9038 15.3536 13.9544 −0.8121 13.8815

t4(0, 126.52) iid 0.05 −1.8468 24.3247 20.8781 −1.7928 20.6468

0.01 −12.5608 73.3170 46.9313 −10.2243 46.3147

0.1 −0.5538 10.7575 10.3154 −0.6687 10.2909

t8(0, 126.52) iid 0.05 −1.4518 14.9271 13.9883 −1.3379 13.9033

0.01 −6.8385 34.8496 26.4076 −6.8385 26.4531

0.1 −0.5470 9.0123 8.8209 −0.5985 8.8127

t20(0, 126.52) iid 0.05 −1.1266 11.6915 11.2178 −1.1176 11.1965

0.01 −5.5631 22.9298 18.7808 −4.4588 18.9697



3. Backtesting

Purpose of Backtesting:

1. Monitor the performance of the model and estimation methods for

risk measurement

2. Compare relative performance of the models and methods

Idea� �

ex ante risk measure forecasts from the model

vs.

ex post realized portfolio loss

� �

Setup

Entire observations: X1, . . . , XT

Estimation window size = n, m := T − n

data estimand realized loss

1. X1, . . . , Xn ρ(Xn+1) Xn+1

2. X2, . . . , Xn+1 ρ(Xn+2) Xn+2

... ... ... ...

m. XT−n, . . . , XT−1 ρ(XT ) XT



Two approaches to risk measurement

Assume that the loss process (Xt)t∈Z is a stationary time series with

stationary df F . At time t, we have two options:

I. Unconditional Approach

Look at the risk measure associated with F (x) = P(Xt+1 ≤ x)

(For a large time horizon; credit risk and insurance)

II. Conditional Approach

For a given filtration Ft, look at the risk measure associated with the

conditional df Ft(x) := P(Xt+1 ≤ x |Ft),

(For a short time horizon; market risk)

In the case of VaR

• Unconditional VaR, denoted by VaRα, satisfies

E
(
1{Xt+1 ≥ VaRα}

)
= α

But 1{Xt+1 ≥ VaRα}’s might not be independent

• Conditional VaR, denoted by VaRt
α, satisfies

E
(
1{Xt+1 ≥ VaRt

α} |Ft
)

= α

By Lemma 4.29 of MFE, if (Yt) is a sequence of Bernoulli rv’s adapted

to (Ft) and if E(Yt+1 |Ft) = p > 0, then (Yt) must be i.i.d.



Therefore 1{Xt+1 ≥ VaRt
α}, t = n, . . . , T −1 are i.i.d. Bernoulli rv’s.

⇓

This gives the grounds for backtesting using 1{Xt+1 ≥ V̂aR
t
α}, where

V̂aR
t
α is an estimate of the VaR associated with the conditional df

Ft(x) := P(Xt+1 ≤ x |Ft). Namely,

(i) Test
T−1∑
t=n

1{Xt+1 ≥ V̂aR
t
α} ∼ Bin(m,α)

(ii) Test independence of 1{Xt+1 ≥ V̂aR
t
α}, t = n, . . . , T − 1

(e.g., runs test)

Backtesting DRMs

Note that, with d(u) = d
duD(u) and X ∼ F ,

ρ(X) =

∫ ∞

−∞
x dD ◦ F (x) =

∫ ∞

−∞
xd(F (x)) dF (x)

= E[Xd(F (X))]

Thus Xd(F (X)) − ρ(X) has mean 0 unconditionally.

�� In the conditional case, E[Xt+1d(Ft(Xt+1)) |Ft] = ρt(Xt+1),

but this does not help much.



I.I.D. case (rough-and-ready)

If X1, . . . , XT are i.i.d. with df F , then we can base the backtesting

of our method/model on

Xn+1d(F̂1:n(Xn+1)) − ρ̂(1:n),

...

XTd(F̂T−n:T−1(XT )) − ρ̂(T−n:T−1)

where F̂k:l and ρ̂(k:l) are estimates based on the sample Xk, . . . , Xl

�� If we have dependent data or we use the conditional approach, it

is necessary to introduce more explicit time series models.

Conditional Approach

Write ρt(Xt+1) for a distortion risk measure with a distortion D for

the conditional df Ft(x) := P(Xt+1 ≤ x |Ft), Ft := σ(Xs : s ≤ t):

ρt(Xt+1) :=

∫
[0,1]

F−1
t (u) dD(u)

Assumption� �

Suppose that for Ft−1-measurable μt and σt,

Xt = μt + σtZt,

where (Zt) is i.i.d. with finite 2nd moment.
� �



Example: ARMA(p1, q1) with GARCH(p2, q2) errors

Let (Zt) be i.i.d. with finite 2nd moment.

Xt = μt + σtZt,

μt = μ +

p1∑
i=1

φi(Xt−i − μ) +

q1∑
j=1

θj(Xt−j − μt−j),

σ2
t = α0 +

p2∑
i=1

αi(Xt−i − μt−i)
2 +

q2∑
j=1

βjσ
2
t−j,

where α0 > 0, αi ≥ 0, i = 1, . . . , p2, βj ≥ 0, j = 1, . . . , q2.

Usually, it is assumed that (Xt) is covariance stationary,

and
∑p2

i=1 αi +
∑q2

j=1 βj < 1.

By (conditional) translation equivariance and positive homogeneity,

ρt(Xt+1) = μt+1 + σt+1ρ(Z)

where Z is a generic rv with the same df G as Zt’s.

(i) If G is a known df, ρ(Z) is a known number.

We need to estimate μt+1 and σt+1 based on Xt−n+1, . . . , Xt using

some specific model and method (e.g., ARMA with GARCH errors

using QML). Then the risk measure estimate is given by

ρ̂t(Xt+1) := μ̂t+1 + σ̂t+1ρ(Z)



Observe that

ρ(Z) = E [Zt+1d(G(Zt+1))]

⇓
E [(Zt+1 − ρ(Z))d(G(Zt+1))] = 0

Defining

Rt+1 := Zt+1 − ρ(Z) =
Xt+1 − ρt(Xt+1)

σt+1

one sees that (Rtd(G(Zt)))t∈Z is i.i.d.

This suggests that in practice, we may perform backtesting by examin-

ing mean-zero behavior of R̂t+1d(G(Ẑt+1)), t = n, . . . , T − 1, where

R̂t+1 :=
Xt+1 − ρ̂t(Xt+1)

σ̂t+1

and

Ẑt+1 =
Xt+1 − μ̂t+1

σ̂t+1
= R̂t+1 + ρ(Z)

�� Bootstrap test can be used



(ii) When G is unknown, we need to estimate G in addition to μt+1

and σt+1.

In ARMA with GARCH errors model, we could use the empirical df

based on the residuals Z̃s’s: for s = t − n + 1, . . . , t,

Z̃s = ε̃s/σ̃s, ε̃s : residual from ARMA part

and

σ̃2
s = α̂0 +

p2∑
i=1

α̂iε̃
2
s−i +

q2∑
j=1

β̂jσ̂
2
s−j,

Then

G̃t(z) =
1

n

t∑
s=t−n+1

1{Z̃s ≤ z},

Simulation study

Simulate GARCH(1,1) process:

Yt = σtZt, Zt ∼ N(0, 1) i.i.d.

σ2
t = 0.01 + 0.9σ2

t−1 + 0.08Y 2
t−1

Set T = 1000, n = 500 and θ = 0.05

For t = n + 1, . . . , T , plot

(i) Xtd(F̂t−n:t−1(Xt)) − ρ̂(t−n:t−1) (historical, unconditional)

(ii) R̂td(G(Ẑt)) (normal-GARCH based, conditional)

(i) mean = −0.0286, std = 2.073

(ii) mean = −0.0185, std = 1.019
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Figure 3: Backtesting results for expected shortfall (θ = 0.05)
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Figure 4: Backtesting results for proportional odds distortion (θ = 0.05)



Issue: Backtestability

“It is more difficult to backtest a procedure for calculating expected

shortfall than it is to backtest a procedure for calculating VaR” (Yamai

& Yoshiba, Hull, Dańıelsson, among others)

1. Because the existing tests for ES are based on

– parametric assumptions for the null distribution

– asymptotic approximation for the null distribution

2. Because testing an expectation is harder than testing a single quan-

tile.

Elicitability

“Expected shortfall (and spectral risk measures) cannot be backtested

because it fails to satisfy elicitability condition” (Paul Embrechts,

Mar 2013, Risk Magazine)

Def (Osband 1985; Gneiting 2011, JASA)� �

A statistical functional T (F ) is called elicitable r.t. F if T (F ) is a

unique minimizer of t �→ EF [S(t, Y )] for some scoring function S,

∀F ∈ F .

� �



Examples

• VaRθ(F ) = F−1(1 − θ) is the unique minimizer for

S(t, y) = [1{t ≤ y} − θ](y − t)

=

⎧⎨
⎩θ|y − t| if t > y

(1 − θ)|y − t| if t ≤ y

F = {F : absolutely continuous,
∫ |y| dF (y) < ∞}.

• Mean functional T (F ) =
∫

y dF (y) is the unique minimizer for

S(t, y) = (y − t)2

F = {F :
∫

y2 dF (y) < ∞}.

It is useful when one wants to compare and rank several estimation

procedures: With forecasts xi and realizations yi, use

1

n

n∑
i=1

S(xi, yi)

as a performance evaluation criterion.

�� But there seems to be no clear connection with backtestability

e.g., mean cannot be backtested nonparametrically based on the sum of

squared errors without invoking asymptotic approximation or assuming

parametric distribution.



Basel Committee on Banking Supervision: Consultative Document

(October 2013)

“Move from Value-at-Risk (VaR) to Expected Shortfall (ES):

A number of weaknesses have been identified with using VaR

for determining regulatory capital requirements, including its in-

ability to capture “tail risk”. For this reason, the Committee

proposed in May 2012 to replace VaR with ES. ES measures the

riskiness of a position by considering both the size and the likeli-

hood of losses above a certain confidence level. The Committee

has agreed to use a 97.5% ES for the internal models-based

approach and has also used that approach to calibrate capital re-

quirements under the revised market risk standardised approach”

Basel Committee on Banking Supervision: Consultative Document

(October 2013)

Backtesting assessment (in Revised Models-based Approach):

“In addition to P&L attribution, the performance of a trading

desk’s risk management models will be evaluated through daily

backtesting. Backtesting requirements would be based on com-

paring each desk’s 1-day static value-at-risk measure at both the

97.5th percentile and the 99th percentile to actual P&L out-

comes, using at least one year of current observations of the

desk’s one-day actual and theoretical P&L. The backtesting as-

sessment would be run at each trading desk as well as for the

global (bank-wide) level.”



Concluding Remarks

• Estimation of DRMs is possible with time series data, but for some

DRMs, we do not get nice asymptotic properties.

• Backtesting procedure can be performed with DRMs. May need

more rigorous/effective procedures.

• Euler capital allocation based on DRMs are easy to compute and

widely applicable (with importance sampling)

• Most of the estimation part is published in Journal of Financial

Econometrics (2013, online)
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Decreasing Trends in Stock-Bond Correlations

Abstract

Previous research documents the existence of long-run trends in comovements among the
stock, bond, and commodities markets. Following these findings, this paper examines possi-
ble trends in stock-bond return correlations. To this end, we introduce a trend component
into a smooth transition regression (STR) model including the multiple transition variables of
Aslanidis and Christiansen (2012). The results indicate the existence of significant decreasing
trends in stock-bond correlations. In addition, although stock market volatility continues to
be an important factor in stock-bond correlations, the short rate and yield spread become
only marginally significant once we introduce the trend component. Our out-of-sample analy-
sis also demonstrates that the STR model including the VIX and time trend as the transition
variables dominates other models. Our finding of decreasing trends in stock-bond correlations
can be considered a consequence of the decreasing effects of diversification and more intensive
flight-to-quality behavior that have taken place in recent years.

JEL classification: C22, G15, G17

Key Words: flight-to-quality; diversification effect; smooth transition regressions

1 Introduction

Understanding time variations in stock-bond return correlations is one of the most important issues

in finance because it has profound implications for asset allocation and risk management. Naturally,

a number of studies examine the dynamics of stock-bond correlations and identify the economic

factors driving their time series behavior. For instance, Li (2002) conducts a regression analysis to

investigate the relationship between stock-bond correlations and macroeconomic variables, showing

that unexpected inflation is the most important determinant of stock-bond correlations. Similarly,

Ilmanen (2003) argues that stock-bond correlations are more likely to be negative when inflation

is low and stock market volatility is high. Yang, Zhou, and Wang (2009) examine stock-bond

correlations over the past 150 years using the smooth transition conditional correlation (STCC)

model and find that higher stock-bond correlations tend to follow higher short rates and (to a

lesser extent) higher inflation rates. In addition, Connolly, Stivers, and Sun (2005, 2007) identify

the VIX stock market volatility index as an important determinant of stock-bond correlations.

Furthermore, Aslanidis and Christiansen (2010, 2012) demonstrate that stock-bond correlations

are explained mostly by short rates, yield spreads, and the VIX. On the other hand, Pastor and

Stambaugh (2003) note that changes in stock-bond correlations depend on liquidity. Similarly,

Baele, Bekaert, and Inghelbrecht (2010) find that macroeconomic fundamentals contribute little to

explaining stock-bond correlations but that liquidity plays a more important role. Other related

1



studies include Guidolin and Timmermann (2006); Bansal, Connolly, and Stivers (2010); and

Viceira (2012).

A number of recent studies also investigate long-run trends in international financial markets.

For instance, Christoffersen et al. (2012) examine copula correlations in international stock mar-

kets and find a significant increasing trend that can be explained by neither volatility nor other

financial and macroeconomic variables. Similarly, Berben and Jansen (2005) and Okimoto (2011)

report increasing dependence in major equity markets. In international bond markets, Kumar

and Okimoto (2011) find an increasing trend in correlations among international long-term gov-

ernment bonds and a decreasing trend in correlations between short- and long-term government

bonds within single countries. Existing trends in comovements are also documented in commodi-

ties markets. For example, Tang and Xiong (2012) show that the prices of non-energy commodity

futures in the US have become increasingly correlated with oil prices. In addition, Ohashi and Oki-

moto (2013) find increasing trends in the excess comovements of commodities prices. Other related

studies include Longin and Solnik (1995), Silvennoinen and Teräsvirta (2009), and Silvennoinen

and Thorp (2013).

The main contribution of this paper is to provide new evidence of long-run decreasing trends in

stock-bond correlations by extending the smooth transition regression (STR) model of Aslanidis

and Christiansen (2012). Although a growing number of studies exploring long-run trends in

international financial markets suggest that it is of interest to analyze possible trends in stock-

bond correlations, none of the previously mentioned studies consider these types of trends. Thus,

it is very instructive to investigate long-run trends in stock-bond correlations. Indeed, our results

indicate that there is a significant decreasing trend in realized stock-bond correlations. More

importantly, although stock market volatility continues to be an important factor for stock-bond

correlations, other important financial variables, namely the short rates and spreads between long-

and short-term interest rates, become only marginally significant once we introduce the decreasing

trend. Our out-of-sample analysis also indicates that the STR model including the VIX and time

trend as the transition variables dominates other models. Our finding of a decreasing trend in

stock-bond correlations can be considered a consequence of the decreasing effects of diversification

and more intensive flight-to-quality behavior that have taken place in recent years.

The remainder of the paper is organized as follows: Section 2 presents the model, while Section

3 conducts the empirical analysis and Section 4 provides the conclusion.
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2 Smooth Transition Regression Model

The main purpose of this paper is to examine possible long-run trends in realized stock-bond

return correlations. To this end, we employ the smooth-transition model that was developed

by Teräsvirta (1994) in the AR model framework and later used to analyze the determinants

of stock-bond correlations by, among others, Yang, Zhou, and Wang (2009) and Aslanidis and

Christiansen (2012). The former authors model correlations as latent variables and analyze them

using the STCC model, whereas the latter authors investigate the realized correlation based on the

smooth transition regression (STR) model with multiple transition variables. We employ the latter

approach in this paper because it considerably facilitates the examination of the determinants of

the time series behavior of stock-bond correlations, as emphasized by Aslanidis and Christiansen

(2012). In addition, many other studies, including Ilmanen (2003) and Connolly et al. (2005, 2007),

examine realized correlations. In particular, we apply the STR model with multiple transition

variables to the realized correlations, following Aslanidis and Christiansen (2012).

The STR model used by Aslanidis and Christiansen (2012) is given by

FRCt = ρ1{1 − F (st−1)} + ρ2F (st−1) + εt (1)

where FRCt is the Fisher transformation of the realized correlation, RCt, namely

FRCt =
1

2
log

(
1 + RCt

1 − RCt

)
, (2)

converting the realized correlation into a continuous variable not bounded between −1 and 1.1

F (st−1) in (1) is the logistic transition function, taking values between 0 and 1. If F (st−1) = 0,

the average value of FRC would be ρ1 and if F (st−1) = 1, the average value of FRC would be

ρ2. In this sense, ρ1 and ρ2 in (1) can be considered the average correlations in regimes 1 and 2,

respectively.2 Thus, the conditional mean of FRCt is modeled as the weighted average of the two

correlation extremes; the weight is decided by F (st−1). st−1 = (s1,t−1 s2,t−1 · · · sK,t−1)
′ is a K × 1

vector of transition variables,3 governing the transition between regimes 1 and 2. Specifically,

1As a realized correlation, Aslanidis and Christiansen (2012) use the weekly sample correlation calculated from
five-minute high frequency stock and bond returns without demeaning, whereas we use monthly sample correlations
based on daily data with demeaning.

2Specifically, ρ1 is the average “Fisher-transformed correlation.” In what follows, we simply refer to this as
“correlation”.

3In practice, all transition variables are standardized to have a mean of 0 and a variance of 1 as Aslanidis and
Christiansen (2012).
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F (st−1) is expressed as

F (st−1) =
1

1 + exp[−γ′(st−1 − c)]

=
1

1 + exp[−γ1(s1,t−1 − c) + · · · − γK(sK,t−1 − c)]
, (3)

where γk is assumed to be positive for at least one k to identify the STR model with multiple

transition variables. The location parameter c decides the center of the transition, while the

smoothness parameter vector γ = (γ1, γ2, . . . , γK)′ specifies the speed of the transition. More

precisely, the transition caused by the transition variable sk,t−1 is abrupt for large values of γk and

gradual for small values of γk. One of the main advantages of the STR model is that it can detect

detect, from the data, when and how any transitions occur in stock-bond correlations. In addition,

the STR model can describe a wide variety of change patterns, depending on the parameters c and

γ, which can be estimated from the data. Thus, by estimating the STR model, we can estimate

the best transition patterns in stock-bond correlations.

In contrast to Aslanidis and Christiansen (2012), we use time trends as one of the transition

variables to capture long-run trends in stock-bond correlations, following Lin and Teräsvirta (1994).

In this framework, the time-varying correlation FRCt changes smoothly from ρ1 to ρ2 with time,

assuming that γk for the time trend is positive. Thus, we can interpret ρ1 as a correlation around

the beginning of the sample and ρ2 as correlation around the end of the sample. A similar model

is applied to conditional correlations by, among others, Berben and Jansen (2005) and Kumar and

Okimoto (2011), who examine trends in stock and bond markets, respectively. This paper differs

from these studies by investigating possible trends in stock-bond return correlations.

One concern about STR model (1) is possible serial correlation in FRCt. Aslanidis and Chris-

tiansen (2012) address the serial correlation of the error term by calculating the Newey-West

standard errors. However, if FRCt itself has a serial correlation, this results in the inconsistent

estimates of the correlation parameters. Indeed, a number of studies based on the dynamic con-

ditional correlation (DCC) model of Engle (2002) suggest that the conditional correlations among

financial returns are typically highly serially correlated. To address possible serial correlations in

FRCt, we modify STR model (1) by including the AR(1) term as follows:

FRCt = ρ1{1 − F (st−1)} + ρ2F (st−1) + φFRCt−1 + εt. (4)

In this STR model, FRCt can be expressed as the weighted sum of the correlations expected by

the economic variables and the previous correlation level. Theoretically, this model is also relevant

because economic conditions may not be reflected immediately due, in part, to slow reactions by
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and imperfect information available to market participants. Therefore, the correlation may be

adjusted slowly from the previous level, as in STR model (4).

We estimate STR model (4) using the maximum likelihood estimation (MLE) method, assuming

that εt follows independently and is identically normally distributed. If the normal distribution

assumption is inappropriate, the estimation can be considered to follow the nonlinear least squares

method.

3 Empirical Analysis

3.1 Data

Our empirical analysis is based on monthly data, with the sample period lasting from January

1991 to May 2012. All data used in the analysis are obtained from DataStream. The analyzed

countries are the United States (US), Germany (GER), and the United Kingdom (UK). Initially,

we obtain daily data on futures contracts in the stock and bond markets of these three countries.

Using the daily data, we obtain the realized stock-bond return correlations in each country for

each month. We use futures on the S&P 500 (US), DAX (GER), and FTSE (UK) stock indices to

calculate stock returns and each country’s ten-year bond futures to calculate bond returns.

We also obtain the VIX, short rate, and yield spread as transition variables, following Aslanidis

and Christiansen (2012), who demonstrate that these three variables are the most important

transition variables for determining stock-bond correlation regimes. These three variables are

also documented as important determinants of stock-bond correlations by many previous studies.

For instance, Aslanidis and Christiansen (2010) find that these three variables are by far the most

critical predictors of stock-bond correlations at their low and high quantiles. In addition, Connolly,

Stivers, and Sun (2005, 2007) identify the VIX stock market volatility index a factor that influences

stock-bond correlations, while Baele, Bekaert, and Inghelbrecht (2010) use the short rate as an

important explanatory variable for stock-bond correlations. Furthermore, Viceira (2012) finds that

short rates and yield spreads are the two most important predictors of the realized bond CAPM

beta and the bond C-CAPM beta.

The VIX (V IX) is the volatility index for the Chicago Board of Options Exchange (CBOE)

and is based on the volatility of options on the S&P 500 index. We use the US VIX for all countries

due to the limited availability of VIX data for the two other examined countries.4 The short rate

(R) is the three-month Treasury bill rate from the secondary market for the US and the three-

4We confirm that the German and UK VIX indices are highly correlated with the US VIX, with a correlation
that is greater than 0.8. We also confirm that we can obtain quantitatively similar results even if we use each
country’s VIX data with a shorter sample period.
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month LIBOR rate for Germany and UK, while the yield spread (SPR) is defined as the ten-year

constant maturity Treasury bond yield minus the short-rate for each country.

3.2 Benchmark Model Results

Our benchmark model is Aslanidis and Christiansen’s (2012) preferred model, namely STR model

(4), with st−1 = (V IXt−1, Rt−1, SPRt−1)
′. We refer to this model Model 1 and its estimation

results are presented in Table 1, in which several items are worth noting. First, the last two rows

of the table report the results of a version of Teräsvirta’s (1994) linearity test and Eitrheim and

Teräsvirta’s (1996) additive nonlinearity test. As can be seen, the linearity test rejects the null of

linearity in favor of the STR alternative at the 1% significance level for all countries. In contrast,

the additive nonlinearity test is not significant, meaning that the proposed model adequately

captures all smooth transition regime-switching behavior in the data without additional regimes

for all countries.

Second, the AR parameters φ are highly significant, with estimated values of 0.38, 0.34, and

0.25 for the US, GER, and the UK, respectively. In other words, our results indicate that stock-

bond correlations change from the previous level toward the correlation level expected by economic

variables with some serial correlation, which is not captured by Aslanidis and Christiansen’s (2012)

original model.

Third, the correlation parameters for regime 1 are significantly positive, with estimated values

of 0.30, 0.38, and 0.44 for the US, GER, and the UK, respectively, while those for regime 2 are

significantly negative, with respective values of −0.32, −0.40, and −0.36. In other words, there are

two distinct regimes, one with positive average correlations and the other with negative average

correlations. Thus, correlations change smoothly or rapidly from positive to negative or negative

to positive, depending on the transition variables.

Finally, all three transition variables, the VIX, short rate, and yield spread, have statistically

significant effects on the regime transition at the 5% significance level for all countries. These

results are fairly consistent with those of Aslanidis and Christiansen (2012), who demonstrate that

stock-bond correlations are explained mostly by these three variables using STR model (1) without

the AR term. These three variables are also reported to be important determinants of stock-bond

correlations by other studies. For instance, the VIX is identified as a predominant factor for stock-

bond correlations by Connoly et al. (2005, 2007) and Bansal et al. (2010). In addition, Baele et al.

(2010) use the short rate as an important explanatory variable for stock-bond correlations, while

Yang, Zhou, and Wang (2009) find that higher stock-bond correlations tend to follow higher short

rates. Furthermore, Viceira (2012) finds that the yield spread and the short rate are important
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predictors for the realized bond CAPM beta and bond C-CAPM beta, which can be regarded as

a transformation of the stock-bond correlation.

To see more detailed information on the regime transitions for each variable, the transition

functions of each variable are plotted in Figure 1, holding the other variables constant at their

mean values of zero. As can be seen, there is little difference across countries in terms of short

rates and yield spreads and the correlation regime changes rather rapidly from the negative regime

to the positive regime as these variables get larger. For instance, if the short rate is lower than

the average by one standard deviation, the transition function takes a value greater than 0.97,

meaning that the weight of the negative correlation regime is greater than 97%. More specifically,

if the short rate is lower than the average value by one standard deviation, the average correlation

is less than −0.30, −0.39, and −0.35 for the US, GER, and the UK, respectively. On the other

hand, if the short rate is higher than the average value plus one standard deviation, the weight

of negative regime becomes less than 0.04, making the average correlation more than 0.28 for all

countries. Similarly, if the yield spread is lower (larger) than the average value by one standard

deviation, the transition function is greater (less) than 0.90 (0.11), with an average correlation of

less than −0.26 (greater than 0.18) for all countries. Since larger yield spreads and short rates

are usually associated with better macroeconomic conditions, the results indicate that stock-bond

correlations tend to be positive when the economy is booming. In other words, when the economy

is in recession, stock-bond correlations have a tendency to be negative. This is arguably consistent

with flight-to-quality behavior because investors do not want to take many risks when economic

conditions are not good.

The VIX transition function also demonstrates flight-to-quality behavior. For the US and GER,

the VIX transition function indicates that the correlation regime changes relatively smoothly from

the negative regime to the positive regime as the standardized VIX changes from −3 to 3. The

UK VIX transition function indicates slower changes in the correlation regime but still suggests

that a higher VIX tends to be associated with negative stock-bond correlations. Thus, the results

demonstrate that when the VIX is high or there is much uncertainty in the market, investors try

to escape from risks, making stock-bond correlations negative.

Finally, the time series of the estimated correlations for Model 1 together with the actual

realized correlations for each country are plotted in Panel (a) of Figures 2-4 to indicate goodness

of fit. As can be seen, the estimated correlation fits the actual correlation quite well for all

countries. More specifically, Model 1 successfully captures the tendency for there to be positive

correlations before 2000 and negative correlations after 2000 because the correlation regimes tend

to be identified as the positive regime before 2000 and the negative regime after 2000.
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In sum, the results of Model 1 indicate that the VIX, short rate, and yield spread are important

determinants of stock-bond correlation regimes for all countries, which is consistent with previous

studies such as Aslanidis and Christiansen (2012), who estimated a similar model for the US. In

addition, we demonstrate the significance of including the AR(1) to allow for smooth adjustments in

correlation regimes, in contrast with Aslanidis and Christiansen (2012). Although the performance

of Model 1 is quite satisfactory, it is possible to improve Model 1 by including other variables.

In particular, recent studies find long-run correlation trends in international financial markets,

suggesting that we can modify Model 1 by introducing a time trend component; this is examined

in next subsection.

3.3 Introduction of Time Trend Component

The results of Model 1 are fairly consistent with previous studies examining the dynamics of

stock-bond correlations. On the other hand, the another previous studies suggest the existence of

long-run correlation trends in international financial markets. For instance, Christoffersen et al.

(2012) examine copula correlations in international stock markets and find a significant increasing

trend in the comovements of international stock returns that can be explained by neither volatility

nor other financial and macroeconomic variables. In addition, Kumar and Okimoto (2011) find an

increasing trend in correlations between international long-term government bonds and decreasing

trends in correlations between the short- and long-term government bonds within single countries.

Furthermore, Tang and Xiong (2012) document increasing correlations of commodities returns

with crude oil after 2004. It is therefore of interest to analyze possible trends in stock-bond

correlations by estimating STR model (4) including time (T ) as well the VIX, short-rate, and

spread as transition variables (Model 2). Thus, the vector of transition variables for Model 2 is

defined as st−1 = (V IXt−1, Rt−1, SPRt−1, Tt)
′.5

Table 2 reports the estimation results for Model 2. As can be seen, the results suggest that

the basic structure of Model 2 is reasonably similar to that of Model 1. Specifically, the linearity

and additive nonlinearity tests documented in the last two rows of Table 2 show that the two-

state STR model is preferred to the linear model without regime changes and the three-state STR

model with an additional correlation regime. In addition, Model 2 indicates the existence of two

distinct correlation regimes, with a negative average correlation for one regime and a positive

average correlation for the other, as in Model 1. Furthermore, the AR term is significant at least

at the 10% significance level for the US and GER, suggesting smooth adjustments in stock-bond

correlations in these countries.

5Since T is a non-random predetermined variable, we use Tt instead of Tt−1 as a transition variable.
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Although the basic structures of Models 1 and 2 are quite similar, there are important differ-

ences in the determinants of their stock-bond correlation regimes. In particular, the estimation

results of Model 2 indicate that the time trend component is highly significant for all countries,

suggesting that Model 1 omits an important factor of stock-bond correlations. More specifically,

the time trend component coefficient estimates are significantly positive for all countries, mean-

ing that there is a decreasing trend in stock-bond correlations. To see this more clearly, we plot

the time trend for the correlations estimated through Model 2 in Panel (a) of Figure 5. As can

be seen, the stock-bond correlations for all countries have clear decreasing trends, with a rapid

decrease between the late 1990s and the early 2000s, reaching an average of −0.42 by the end of

sample period in May 2012. Our finding of the existence of a time trend in correlations between

financial assets is completely in line with recent studies. For instance, Berben and Jansen (2005)

and Christoffersen (2012) document increasing correlations in the major equity markets. Similarly,

Kumar and Okimoto (2011) find an increasing trend in correlations between international long-

term government bonds and decreasing trends in correlations between a single country’s short-

and long-term government bonds.

Another important difference between Models 1 and 2 is the significance of the short rate and

yield spread in determining the stock-bond correlation regime. Although the VIX remains an

important factor in determining stock-bond correlations, the short rate and yield spread become

less important in Model 2. Specifically, neither of these measures are significant for the US, while

only one of them is significant for GER and the UK. In addition, the the short rate coefficient

for GER is significantly positive instead of negative, making interpretation of the result rather

difficult. The results are in contrast with the findings of the previously mentioned studies examining

the determinants of stock-bond correlations without a time trend component. Thus, our results

demonstrate that some of the important factors suggested by previous studies are not as relevant

once we consider possible decreasing trends in stock-bond correlations.

To compare the goodness of fit of Models 1 and 2, we plot the time series of the correlations

estimated through Model 2 together with the actual realized correlations for each country in Panel

(b) of Figures 2-4. As can be seen, the correlations estimated through Models 1 and 2 are similar

to each other and do not differ much over the sample. Thus, they qualitatively have the same

power in illustrating the time series behavior of stock-bond correlations.

We can compare the goodness of fit of Models 1 and 2 more formally using the information

criteria reported in Table 3, namely the Schwartz information criterion (SIC) and Akaike infor-

mation criterion (AIC). Although the AIC favors Model 2 for GER and the UK, the SIC prefers

Model 1 to Model 2 for all countries. Thus, in terms of the in-sample fit, our results are somewhat
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inconclusive.

To make a more comprehensive comparison between Models 1 and 2, we conduct an out-of-

sample forecast evaluation as follows. First, we estimate both Models 1 and 2 using data from

February 1991 to January 2001 and evaluate the terminal one-month-ahead forecast error based

on the estimation results. The data are then updated by one month, and the terminal one-month-

ahead forecast error is re-calculated from the updated sample (specifically, from March 1991 to

February 2001). This procedure is repeated until reaching one month before the end of the sample

period, namely April 2012. Finally, we calculate the root-mean-squared forecast errors (RMSE)

and mean absolute error (MAE) using the obtained time series of one-month-ahead forecast errors.

The third and fourth rows of Table 4 report the RMSE and MAE values for Models 1 and 2. As

can be seen, the RMSE and MAE values of Model 2 are smaller than those of Model 1 for GER,

while Model 1 exhibits better out-of-sample performance than Model 2 for other two countries.

Overall, our model comparison results show that Model 2 is not necessarily a better model

than Model 1, although the time trend component is highly significant. One possible explanation

for this result is the weak significance of the short rate and yield spread in Model 2, as mentioned.

Indeed, neither of these factors are significant for US, while only one of them is significant for GER

and UK. Thus, we might be able to improve the model by excluding these variables. To examine

this possibility, we will consider a more parsimonious model in next subsection.

3.4 Results with Selected Transition Variables

Our results for Model 2 indicate that the short rate and yield spread become less important

determinants of stock-bond correlations if decreasing trends in stock-bond correlations are taken

into consideration. To illustrate this point more clearly, we estimate a more parsimonious STR

model (4) that includes only VIX and time as the transition variables (Model 3).

The estimation results for Model 3 are shown in Table 3. As can be seen, the estimation

results are essentially same as those of Model 2. The two-state STR model with a negative average

correlation for one regime and a positive average correlation for the other regime is preferred to the

linear model without regime changes and the three-state STR model. In addition, the AR term

is highly significant for the US and GER, suggesting that the stock-bond correlations of these

countries change slowly from the previous level toward the correlation level expected by economic

variables. Furthermore, the VIX is significantly positive for all countries. Thus, the correlation

regime changes from a positive to a negative regime when the VIX is high. Finally, the estimated

time trend component is also significantly positive for all countries, meaning that stock-bond

correlations tend to be in the negative regime in more recent periods. The decreasing trend can be
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confirmed visually from the estimated time trend component of stock-bond correlation depicted

in Panel (b) of Figure 5. As can be seen from the figure, stock-bond correlations in all countries

exhibit clear decreasing trends, with a rapid decrease from an average correlation of over 0.2 in

the beginning of 1999 to an average correlation lower than −0.2 at the end of 2003, reaching an

average of −0.42 around the end of the sample period in May 2012.

We also plot the time series of the estimated correlation for Model 3 together with the actual

realized correlation for each country in Panel (c) of Figures 2-4 to graphically illustrate the per-

formance of Model 3. As can be seen, the estimated correlations of Model 3 are quite similar to

those of other models and do not differ much over the sample, suggesting that all models have the

same qualitative explanatory power over stock-bond correlation behavior. Given that Model 3 has

only two transition variables, this arguably indicates the superiority of Model 3 over the other two

models. We can confirm this point more formally using the SIC and AIC reported in Table 3. As

can be seen, Model 3 has the smallest SIC and AIC values for all countries, meaning that Model

3 is the best among the three models in terms of in-sample fit.

We additionally compare the out-of-sample performance of Model 3 and the other two models

by conducting the same out-of-sample forecast evaluation as before. The results reported in Table

4 indicate that Model 3 exhibits the best out-of-sample performance for all countries, regardless

of the employed performance measure.

In sum, our results are clear: Model 3 is the best among the three models, meaning that

transitions between correlation regimes can be described sufficiently well by the VIX and time

trend components. In other words, we demonstrate the possibility that the short rate and yield

spread are not important factors in relation to stock-bond correlation regimes, in great contrast

to previous studies such as Aslanidis and Christiansen (2012). Thus, flight-to-quality behavior is

not strongly related with economic conditions, measured by short rates and yield spreads, but is

associated with market uncertainty, as captured by the VIX. In addition, flight-to-quality behavior

has become stronger in more recent years, resulting in decreasing trends in stock-bond correlations.

A possible explanation for this trend in flight-to-quality behavior is the recent increasing trend

in correlations in international equity markets, which is documented by Christoffersen, et al.

(2012), among others. Specifically, they emphasize that benefits from international diversifica-

tion have decreased over time and this decrease has been especially drastic among developed

markets, such as those examined in this study. In addition, Berben and Jansen (2005) show that

correlations among the GER, UK, and US stock markets have doubled between 1980 and 2000.

Similarly, Silvennoinen and Teräsvirta (2009) show that stock returns within and across European

and Asian markets exhibit a clear upward shift in the level of correlations between 1998 and 2003,
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which corresponds to the timing of the rapid decrease in the estimated time trend of stock-bond

correlations from our models. Thus, benefits from international diversification seem to begin dis-

appearing after 2000. In this case, the investors who allocated their money into the equity markets

of those countries have been exposed to higher risks of simultaneous drops in stock prices in recent

years. As a consequence, they have more recently needed to make greater use of bond markets

to control their risk exposure, producing the decreasing trend in stock-bond correlations. Indeed,

the beginning of the integration of international equity markets and the beginning of decreases in

stock-bond correlations appear to occur around the same time.

In addition to integration in equity markets, increasing correlations are observed in other

markets as well. For instance, Kumar and Okimoto (2011) show that long-term government

bond markets have become more integrated since the late 1990s, while Silvennoinen and Thorp

(2013) find that correlations among stock, bond, and commodity future returns greatly increased

around the early 2000s. Similarly, Tang and Xiong (2012) document increasing correlations of

non-energy commodity with crude oil after 2004. These phenomena further diminish the effects

of diversification in international financial markets, making investors diversify risks through bond

markets. This phenomenon induces a rebalancing, particularly with from stocks to bonds.

Fleming, Kirby, and Ostdiek (1998) and Kodres and Pritsker (2002) study how cross-market

hedging theoretically influences asset pricing. Specifically, Fleming, Kriby, and Ostdiek (1998)

demonstrate that information linkages in stock and bond markets may be greater if cross-market

hedging effects are considered within daily returns. In addition, Kodres and Pritsker (2002) show

that a shock in one asset market may generate cross-market rebalancing, which influences prices in

non-shocked asset markets. Since the disappearance of diversification effects produces investment

behavior involving rebalancing from stocks to bonds, correlations between stocks and bonds tend

to be negative, which can be captured by a trend variable, as indicated by our results.

4 Conclusion

In this paper, we investigated the existence of long-run trends in realized stock-bond return corre-

lations. To this end, we introduce a trend component into the smooth transition regression (STR)

model with the multiple transition variables of Aslanidis and Christiansen (2012). In addition,

we analyzed not only the US, but also Germany and the UK, to conduct a more comprehensive

examination. The results indicated the existence of a significant decreasing trend in stock-bond

correlations for all countries.

Since a number of studies based on the dynamic conditional correlation (DCC) model of Engle

(2002) suggest that conditional correlations between financial returns are typically highly serially
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correlated, we extended the STR model of Aslanidis and Christiansen (2012) by including the

AR(1) term. The AR parameter estimates are highly significant for all countries. Thus, our

results demonstrated that stock-bond correlations change slowly from the previous level toward

the correlation level expected by economic variables, which is not captured by the original model

of Aslanidis and Christiansen (2012).

In the case of transition variables, we examined three variables, namely the VIX, short rate,

and yield spread, which have been identified by previous studies as arguably three of the most

important factors. All three transition variables have statistically significant effects on regime

transitions for all countries in our extended model. The results are fairly consistent with those

of previous studies, particularly Aslanidis and Christiansen (2012). However, once we introduce

the trend component, although the VIX remains an important factor for stock-bond correlations,

the short rate and yield spread become only marginally significant. Indeed, our in-sample analysis

suggested that the STR model including the VIX and time trend as the transition variables is

the best model based on the SIC and AIC, meaning that the transition of stock-bond correlation

regimes can be described sufficiently well by the VIX and time trend components. In addition,

our out-of-sample analysis also demonstrated that the STR model with the VIX and time trend

as the transition variables dominates other models.

Previous studies document the existence of long-run trends in comovements in the stock, bond,

and commodities markets, suggesting that benefits from international diversification have recently

been disappearing. Therefore, investors have been exposed to higher risks of simultaneous drops

in stock prices in recent years. As a consequence, they have needed to make greater use of bond

markets to control their risk exposure, producing the decreasing trend in stock-bond correlations.

Interestingly, the beginning of the integration of international equity markets suggested by several

previous studies and the beginning of decreases in stock-bond correlations appear to occur around

the same time. Thus, our finding of a decreasing trend in stock-bond correlations can be considered

a consequence of decreasing diversification effects and more intensive flight-to-quality behavior in

recent years.
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Table 1: Estimation results of the benchmark model (Model 1) 
 

 
Note: the table shows the estimation results of the STR Model 1 with transition variables; VIX index 
(VIX), short rate (R), yield spread (SPR). */**/*** indicates that the variable is significant at the 
10%/5%/1% level of significance, respectively. Linearity test reports the LM-type statistic of null of no 
STR-type nonlinearity. Additive non-linearity shows the LM-Type statistic of null on no remaining 
STR-type nonlinearity. 
 
 
  

Coef St. err Coef St. err Coef St. err

ρ1 0.298*** 0.101 0.378** 0.164 0.437*** 0.055

ρ2 -0.321*** 0.129 -0.404*** 0.147 -0.360*** 0.038

ϕ 0.380*** 0.090 0.342** 0.134 0.249*** 0.080

VIX 1.370*** 0.206 1.308*** 0.099 0.537*** 0.103

R -3.414*** 1.018 -3.968*** 0.528 -3.824*** 0.097

SPR -2.201*** 0.673 -2.839*** 0.610 -2.476*** 0.219

c 0.046 0.095 0.062 0.208 -0.007 0.077

Log-likelihood -248.86 -250.95 -248.34

Linearity test 12.3*** 24.44*** 16.55***

Additive nonlinearity test 0.22 0.73 0.20

US GER UK
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Table 2: Estimation results of the model with time trend component (Model 2) 
 

 
 
Note: the table shows the estimation results of the STR Model 1 with transition variables; VIX index 
(VIX), short rate (R), yield spread (SPR), time trend (T). */**/*** indicates that the variable is 
significant at the 10%/5%/1% level of significance, respectively. Linearity test reports the LM-type 
statistic of null of no STR-type nonlinearity. Additive non-linearity shows the LM-Type statistic of null 
on no remaining STR-type nonlinearity. 
  

Coef St. err Coef St. err Coef St. err

ρ1 0.297** 0.140 0.630*** 0.052 0.502*** 0.117

ρ2 -0.368*** 0.099 -0.580*** 0.027 -0.440*** 0.075

ϕ 0.346* 0.192 0.140*** 0.028 0.156 0.105

VIX 1.925*** 0.616 1.142*** 0.083 1.163*** 0.354

R -0.576 0.461 1.323*** 0.039 0.159 0.140

SPR -0.294 0.672 0.051 0.049 -0.450*** 0.161

T 2.571*** 0.943 2.804*** 0.010 2.725*** 0.311

c 0.071 0.165 -0.144*** 0.054 -0.065 0.158

Log-likelihood -248.23 -248.25 -247.29

Linearity test 10.95*** 24.26*** 21.54***

Additive nonlinearity tes 1.28 2.55 0.09

US GER UK
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Table 3: Results of in-sample comparison 
 

 

Note: the table reports the AIC and SIC for STR Models 1-3 to compare in-sample performance. 
 
 
 
 

Table 4: Results of out-of-sample comparison 
 

 

Notes: the table reports the out-of-sample RMSE and MAE for STR Models 1-3. The forecast horizon 
is 1 month and the forecast period is 2000/12-2012/05. 
 
 
 
 
  

AIC SIC AIC SIC AIC SIC

Model 1 511.72 536.54 515.90 540.71 510.68 535.50

Model 2 512.46 540.82 512.51 540.87 510.58 538.95

Model 3 508.54 529.81 509.30 530.58 507.01 528.28

US GER UK

RMSE MAE RMSE MAE RMSE MAE

Model 1 0.201 0.155 0.322 0.257 0.259 0.212

Model 2 0.203 0.161 0.297 0.231 0.274 0.221

Model 3 0.174 0.136 0.296 0.231 0.241 0.199

US GER UK
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Table 5: Estimation results of the parsimonious model (Model 3) 
 

 

 
Note: the table shows STR Model 3 with transition variables; VIX index (VIX), Time Trend (T).  
*/**/*** indicates that the variable is significant at the 10%/5%/1% level of significance, respectively. 
Linearity test reports the LM-type statistic of null of no STR-type nonlinearity. Additive non-linearity 
shows the LM-Type statistic of null on no remaining STR-type nonlinearity. 
 
  

Coef St. err Coef St. err Coef St. err

ρ1 0.289*** 0.001 0.459*** 0.002 0.483*** 0.185

ρ2 -0.363*** 0.002 -0.570*** 0.006 -0.419** 0.173

ϕ 0.359*** 0.001 0.136*** 0.005 0.173 0.192

VIX 1.983*** 0.003 1.901*** 0.009 1.373*** 0.345

T 2.959*** 0.003 3.315*** 0.095 2.808*** 0.675

c 0.068* 0.041 0.005 0.067 -0.106 0.192

LLF -248.27 -248.65 -247.51

Linearity test 21.33*** 36.88*** 38.87***

Additive nonlinearity test 1.25 0.02 0.61

US GER UK

19



Figure 1: Estimated transition function 
 

(a) US 

 
 

(b) GER 

 
 

(c) UK 

 
 
Notes: the graph shows the estimated transition function of model1 against each of the transition 
variables holding the other transition variables constant at their sample mean. The transition variables 
are VIX index (VIX), short rate (R ) ,and yield spread (SPR). 
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Figure 2: Estimated stock-bond correlation for US 
 

(a) Model 1 

 
 

(b) Model 2 

 
 

(c) Model 3 

 
 
Notes: the graph shows the time series of the actual and estimated stock-bond correlation for Models 
1-3 for US.  
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Figure 3: Estimated stock-bond correlation for GER 
 

(a) Model 1 

 
 

(b) Model 2 

 
 

(c) Model 3 

 
 

Notes: the graph shows the time series of the actual and estimated stock-bond correlation for Models 
1-3 for GER.    
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Figure 4: Estimated stock-bond correlation for UK 
 

(a) Model 1 

 
 

(b) Model 2 

 
 

(c) Model 3 

 
 

 
Notes: the graph shows the time series of the actual and estimated stock-bond correlation for Models 
1-3 for UK. 
 

23



Figure 5: Estimated time trend component in the stock-bond correlation 
 

(a) Model 2 

 
 

(b) Model 3 

 
 
Note: the graph shows the time series of the estimated time trend component in the stock-bond 
correlation for Models 2 and 3. 
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Motivations and Main Results

Motivations

1. Stock-bond return correlations have profound implications on

(a) Asset allocation

(b) Risk management

2. Understanding the stock-bond correlations might not be easy due
to the time variation of the correlation

3. Identifying the economic factors driving its time series behavior is
one of the most important issues
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4. Identified determinants of stock-bond correlations

(a) Li (2002): (unexpected) inflation

(b) Ilmanen (2003): inflation and stock market volatility

(c) Yang, Zhou, and Wang (2009): short-rate and inflation

(d) Connolly, Stivers, and Sun (2005, 2007): VIX

(e) Aslanidis and Christiansen (2010, 2012): short-rate, yields spread,
VIX

(f) Pastor and Stambaugh (2003): liquidity

(g) Baele, Bekaert, and Inghelbrecht (2010): liquidity

2

5. Long-run trends in international financial markets

(a) Christoffersen et al. (2012)

i. Find a significant increasing trend in correlations in interna-
tional equity markets

ii. Trend is much lower for emerging markets

iii. Confirm that trend can be explained by neither volatility nor
other financial and macroeconomic variables

(b) Berben and Jansen (2005): international equity markets

(c) Okimoto (2011): international equity markets

(d) Kumar and Okimoto (2011)

i. Find an increasing trend in correlations among international
long-term government bonds

ii. Detect a decreasing trend in correlations between short- and
long-term government bonds within single countries

3



(e) Tang and Xiong

i. There was a significant and increasing trend in return correla-
tions of non-energy commodities with oil after 2004

ii. Increasing trend is significantly stronger for indexed commodi-
ties (listed in either the SP-GSCI or DJ-UBS index) than for
off-indexed commodities

(f) Silvennoinen and Thorp (2013): S&P500 and commodity future
returns and returns to the majority commodity futures have in-
creased

(g) Ohashi and Okimoto (2013): Excess comovements of commodi-
ties prices

(h) Few studies consider the possible trends in stock-bond correla-
tions

4

Main Results

1. Examine the possible trend in stock-bond correlation

2. Extend Aslanidis and Christiansen (2012) in several ways

(a) Treat serial correlations in stock-bond correlations explicitly

(b) Introduce a time-trend component in stock-bond correlations

(c) Examine Germany (GER) and UK as well as US

3. Find a significant decreasing trend in stock-bond correlations

4. Short rates and yield spreads become only marginally significant
once we introduce the decreasing trend

5. STR model including the VIX and time trend as the transition
variables dominates other models

6. Can be considered a consequence of the decreasing effects of diver-
sification and more intensive flight-to-quality behavior

5



Related Literature

Aslanidis and Christiansen (2012)

1. Explores the time variation in the stock-bond correlation using high-
frequency data

2. Consider the smooth transition regression (STR) model with mul-
tiple transition variables

FRCt = ρ1{1− F (st−1)} + ρ2F (st−1) + εt,

where FRCt is the Fisher transformation of the realized correlation

3. Examined transition variables: VIX, short-rate, yield spread, stock
return, bond return, inflation, GDP growth

4. Detect one positive and one negative correlation regime system-
atically related to movements in financial and to a minor extent
macroeconomic transition variables

5. Conclude that the short rate, the yield spread, and the VIX are the
most important factors

6

Methodology

STR model

1. Developed by Teräsvirta (1994) in the AR framework

2. STR Model for FRCt

FRCt = ρ1{1− F (st−1)} + ρ2F (st−1) + εt

3. One of the regime switching models

(a) Regime 1: F = 0 =⇒ E(FRCt) = ρ1
(b) Regime 2: F = 1 =⇒ E(FRCt) = ρ2

4. Regime transition is modeled by a logistic transition function F

F (st−1; c, γ) =
1

1 + exp(−γ(st−1 − c))
, γ > 0

(a) st : Transition variable

(b) c: Location parameter

(c) γ: Smoothness parameter

7



5. F increases monotonically in st−1 from 0 to 1

(a) ρ1: conditional mean of FRC when st−1 is small

(b) ρ2: conditional mean of FRC when st−1 is large

6. Typical choice of a transition variable

(a) st−1 = V IXt−1

i. ρ1: conditional mean of FRC when V IXt−1 is small

ii. ρ2: conditional mean of FRC when V IXt−1 is large

(b) st−1 = t/T

i. ρ1: value of FRC around the beginning of the sample

ii. ρ2: value of FRC around the end of the sample

7. Can capture dominant long-run trends by adopting st = t/T as one
the transition variables (Lin and Teräsvirta, 1994)

8. Can describe a wide variety of patterns of change depending on the
values of γ, c

8
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9. Transition variable can be a vector of variables

F (st−1) =
1

1 + exp[−γ′(st−1 − c)]

=
1

1 + exp[−γ1(s1,t−1 − c) + · · · − γK(sK,t−1 − c)]

10. All transition variables are standardized to have a mean of 0 and a
variance of 1

11. Treat serial correlations in stock-bond correlations explicitly by in-
cluding the AR term

FRCt = ρ1{1− F (st−1)} + ρ2F (st−1) + φFRCt−1 + εt.

10

Test of linearity against the STR model

1. STR model: FRCt = ρ1{1− F (st−1)} + ρ2F (st−1) + εt

2. Interesting to test linearity or the null of H0 : ρ1 = ρ2

3. Cannot use the standard F -test due to the unidentified parameters
γ and c under the null

4. Luukkonen, Saikkonen, and Teräsvirta (1988) propose a simple test
for the STR model with the logistic transition function

5. Derive auxiliary regression model by replacing F with a first order
Taylor expansion around γ = 0

FRCt = β0 + β1s1,t−1 + β2s2,t−1 + · · · + βKsK,t−1 + et

6.H0 : ρ1 = ρ2 is equivalent to H ′
0 : β1 = · · · = βK

7.H ′
0 : β1 = · · · = βK can be tested by the standard F test

8. Can test the additive nonlinearity (i.e. two state v.s. three state)
based on similar idea (Eitrheim and Teräsvirta, 1996)

11



Empirical Analysis

Data

1. Sample period: from January 1991 to May 2012

2. Analyzed countries: GER, UK, US

3. Collect daily data on futures contracts in the stock and bond mar-
kets

4. Stock: S&P 500 (US), DAX (GER), and FTSE (UK) stock index
futures

5. Bond: each country’s ten-year bond futures

6. Calculate the Fisher transformation of monthly sample stock-bond
return correlation

7. Obtain the VIX, short rate, and yield spread as transition variables

8. Use the US VIX for all countries due to the limited availability of
VIX data for the two other examined countries

12

Benchmark model results

1. Model 1: STR model with st−1 = (V IXt−1, Rt−1, SPRt−1)
′

2. Aslanidis and Christiansen’s (2012) preferred model

3. Linearity test rejects the null of linearity in favor of the STR alter-
native at the 1% significance level for all countries

4. Additive nonlinearity test is not significant for all countries

5. Two-state model adequately captures all smooth transition regime-
switching behavior in the data

6. AR parameters φ are highly significant

7. There are two distinct regimes, one with positive average correla-
tions and the other with negative average correlations

8. All three transition variables have statistically significant effects on
the regime transition

9. Mostly consistent with Aslanidis and Christiansen’s (2012)

13



Table 1: Estimation results of the benchmark model (Model 1)

Coef St. err Coef St. err Coef St. err

1 0.298*** 0.101 0.378** 0.164 0.437*** 0.055

2 -0.321*** 0.129 -0.404*** 0.147 -0.360*** 0.038

0.380*** 0.090 0.342** 0.134 0.249*** 0.080

VIX 1.370*** 0.206 1.308*** 0.099 0.537*** 0.103

R -3.414*** 1.018 -3.968*** 0.528 -3.824*** 0.097

SPR -2.201*** 0.673 -2.839*** 0.610 -2.476*** 0.219

c 0.046 0.095 0.062 0.208 -0.007 0.077

Log-likelihood -248.86 -250.95 -248.34

Linearity test 12.3*** 24.44*** 16.55***

Additive nonlinearity test 0.22 0.73 0.20

US GER UK
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10. Plot the transition functions of each variable, holding the other
variables constant at their mean values of zero

11. Correlation regime changes rather rapidly from the negative regime
to the positive regime as short rates and yield spreads get larger

12. If short rate is lower (larger) than the average value by 1SD, the
average correlation is less than −0.30 (more than 0.28) for the US

13. Stock-bond correlations tend to be positive when the economy is
booming

14. VIX transition function also demonstrates flight-to-quality behavior

15. Estimated correlation fits the actual correlation quite well

16. Recent studies find long-run correlation trends in international fi-
nancial markets

17. Instructive to examine whether we can modify Model 1 by intro-
ducing a time trend component

15



Figure 1: Estimated transition function for Model 1
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Figure 2: Estimated stock-bond correlation for US (Model 1)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1991 1994 1997 2000 2003 2006 2009 2012

Actual Correlation Estimated Correlation

17



Introduction of time trend component

1. Model 2: STR model with st−1 = (V IXt−1, Rt−1, SPRt−1, Tt)
′

2. Two-state model adequately captures all smooth transition regime-
switching behavior in the data

3. Two distinct correlation regimes, with a negative average correlation
for one regime and a positive average correlation for the other

4. AR term is significant at least at the 10% significance level for the
US and GER

5. Time trend component coefficient estimates are significantly positive
for all countries

6. There is a decreasing trend in stock-bond correlations

7. Rapid decrease between the late 1990s and the early 2000s, reaching
an average of −0.42 by the end of sample period in May 2012

18

Table 2: Estimation results of the model with time trend component (Model 2)

Coef St. err Coef St. err Coef St. err

1 0.297** 0.140 0.630*** 0.052 0.502*** 0.117

2 -0.368*** 0.099 -0.580*** 0.027 -0.440 0.075

0.346* 0.192 0.140*** 0.028 0.156 0.105

VIX 1.925*** 0.616 1.142*** 0.083 1.163*** 0.354

R -0.576 0.461 1.323*** 0.039 0.159 0.140

SPR -0.294 0.672 0.051 0.049 -0.450*** 0.161

T 2.571*** 0.943 2.804*** 0.010 2.725*** 0.311

c 0.071 0.165 -0.144*** 0.054 -0.065 0.158

Log-likelihood -248.23 -248.25 -247.29

Linearity test 10.95*** 24.26*** 21.54***

Additive nonlinearity test 1.28 2.55 0.09

US GER UK
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Figure 5: Estimated time trend component in the stock-bond correlation

(a) Model 2
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8. VIX remains an important factor in determining stock-bond corre-
lations

9. Short rate and yield spread become less important in Model 2

10. Neither of Short rate and yield spread are significant for the US

11. Only one of them is significant for GER and the UK

12. Correlations estimated through Models 1 and 2 are similar to each
other and do not differ much over the sample

13. AIC favors Model 2 for GER and the UK, while the SIC prefers
Model 1 to Model 2 for all countries
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Figure 2: Estimated stock-bond correlation for US

(a) Model 1

(b) Model 2
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Out-of-sample forecast evaluation

1. Conduct an out-of-sample forecast evaluation

(a) Estimate both Models 1 and 2 using data from February 1991 to
January 2001

(b) Evaluate the terminal one-month-ahead forecast error based on
the estimation results

(c) Data are updated by one month

(d) Terminal one-month-ahead forecast error is re-calculated from
the updated sample

(e) Repeat (c) and (d) until reaching one month before the end of
the sample period

(f) Calculate the root-mean-squared forecast errors (RMSE) and
mean absolute error (MAE)

2. Model 2 performs better than Model 1 for GER

3. Model 1 exhibits better than Model 2 for other two countries
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Results with selected transition variables

1. Short rate and yield spread become less important determinants of
stock-bond correlations if decreasing trends are accommodated

2. Possible to improve the model by excluding these variables

3. Model 3: STR model with st−1 = (V IXt−1, Tt)
′

4. Estimation results are essentially same as those of Model 2

5. Stock-bond correlations in all countries exhibit clear decreasing trends,
with a rapid decrease between 1999 and 2003

6. Estimated correlations are similar to those of other models

7. Model 3 is the best among the three models in terms of in-sample
fit for all countries

8. Model 3 exhibits the best out-of-sample performance for all coun-
tries
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Table 5: Estimation results of the parsimonious model (Model 3)

Coef St. err Coef St. err Coef St. err

1 0.289*** 0.001 0.459*** 0.002 0.483*** 0.185

2 -0.363*** 0.002 -0.570*** 0.006 -0.419** 0.173

0.359*** 0.001 0.136*** 0.005 0.173 0.192

VIX 1.983*** 0.003 1.901*** 0.009 1.373*** 0.345

T 2.959*** 0.003 3.315*** 0.095 2.808*** 0.675

c 0.068* 0.041 0.005 0.067 -0.106 0.192

LLF -248.27 -248.65 -247.51

Linearity test 21.33*** 36.88*** 38.87***

Additive nonlinearity test 1.25 0.02 0.61

US GER UK
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Figure 5: Estimated time trend component in the stock-bond correlation

(b) Model 3
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Figure 2: Estimated stock-bond correlation for US

(b) Model 2

(c) Model 3
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Table 3: Results of in-sample comparison

Table 4: Results of out-of-sample comparison

AIC SIC AIC SIC AIC SIC

Model 1 511.72 536.54 515.90 540.71 510.68 535.50

Model 2 512.46 540.82 512.51 540.87 510.58 538.95

Model 3 508.54 529.81 509.30 530.58 507.01 528.28

US GER UK

RMSE MAE RMSE MAE RMSE MAE

Model 1 0.201 0.155 0.322 0.257 0.259 0.212

Model 2 0.203 0.161 0.297 0.231 0.274 0.221

Model 3 0.174 0.136 0.296 0.231 0.241 0.199

US GER UK
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Interpretation of the results

1. Short rate and yield spread are not important factors in relation to
stock-bond correlation regimes

2. Flight-to-quality behavior is not strongly related with economic con-
ditions, but is associated with market uncertainty

3. Significant decreasing trends in stock-bond correlations

4. Flight-to-quality behavior has become stronger in more recent years

5. Many studies find an increasing trend in correlations in international
equity markets as well as other financial markets

6. Diminish the effects of diversification in international financial mar-
kets

7. Investors need to make greater use of bond markets to control their
risk exposure, producing decreasing trend in stock-bond correlations
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Conclusion

1. Examine the possible trend in stock-bond correlation for US, GER,
UK

2. Find a significant decreasing trend in stock-bond correlations

3. Short rates and yield spreads become only marginally significant
once we introduce the decreasing trend

4. STR model including the VIX and time trend as the transition
variables dominates other models

5. Can be considered a consequence of the decreasing effects of diver-
sification and more intensive flight-to-quality behavior
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Future topics

1. High frequency data

2. Model correlation as a latent variable

3. Asymmetric dependence

4. Source of long-run trends in international financial markets

31



References

[1] Aslanidis, N. and C. Christiansen (2010), ‘Quantiles of the Realized Stock-Bond
Correlation,’ Working paper, CREATES.

[2] Aslanidis, N. and C. Christiansen (2012), ‘Smooth Transition Patterns in the
Realized Stock-Bond Correlation,’ Journal of Empirical Finance 19(4), 454-
464.

[3] Baele, L., G. Bekaert and K. Inghelbrecht (2010), ‘The Determinants of Stock
and Bond Return Comovements,’ Review of Financial Studies 23(6), 2374-
2428.

[4] Berben, R.P. and W.J. Jansen (2005), ‘Comovement in International Equity
Markets: A Sectoral View,’ Journal of International Money and Finance 24,
832-857.

[5] Christoffersen, P., V. Errunza, K. Jacobs and H. Langlois (2012), ‘Is the Potential
for International Diversification Disappearing? A Dynamic Copula Approach,’
Review of Financial Studies 25(12), 3711-3751.

[6] Connolly, R.A., C. Stivers and L. Sun (2005), ‘Stock Market Uncertainty and the
Stock-Bond Return Relation,’ Journal of Financial and Quantitative Analysis
40(1), 161-194.

32

[7] Connolly, R.A., C. Stivers and L. Sun (2007), ‘Commonality in the Time-
Variation of Stock-Stock and Stock-Bond Return Comovements,’ Journal of
Financial Markets 10(2), 192-218.
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