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Abstract

The importance of collateralization through the change of funding cost is now well
recognized among practitioners. In this article, we have extended the previous studies
of collateralized derivative pricing to more generic situation, that is asymmetric and
imperfect collateralization as well as the associated CVA. We have presented approx-
imate expressions for various cases using Gateaux derivative which allow straightfor-
ward numerical analysis. Numerical examples for CCS (cross currency swap) and IRS
(interest rate swap) with asymmetric collateralization were also provided. They clearly
show the practical relevance of sophisticated collateral management for financial firms.
The valuation and the associated issue of collateral cost under the one-way CSA (or
unilateral collateralization), which is common when SSA (sovereign, supranational
and agency) entities are involved, have been also studied. We have also discussed
some generic implications of asymmetric collateralization for netting and resolution of
information.
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1 Introduction

In the last decade, collateralization has experienced dramatic increase in the derivative
market. According to the ISDA survey [11], the percentage of trade volume subject to
collateral agreements in the OTC (over-the-counter) market has now become 70%, which
was merely 30% in 2003. If we focus on large broker-dealers and the fixed income market,
the coverage goes up even higher to 84%. Stringent collateral management is also a crucial
issue for successful installation of CCP (central clearing parties).

Despite its long history in the financial market as well as its critical role in the risk
management, it is only after the explosion of Libor-OIS spread following the collapse of
Lehman Brothers that the effects of collateralization on derivative pricing have started to
gather strong attention among practitioners. In most of the existing literatures, collat-
eral cost has been neglected, and only its reduction of counterparty exposure have been
considered. The work of Johannes & Sundaresan (2007) [12] was the first focusing on the
cost of collateral, which studied its effects on swap rates based on empirical analysis. As
a more recent work, Piterbarg (2010) [13] discussed the general option pricing using the
similar formula to take the collateral cost into account.

In a series of works of Fujii, Shimada & Takahashi (2009) [7, 8] and Fujii & Takahashi
(2010,2011) [9, 10], modeling of interest rate term structures under collateralization has
been studied, where cash collateral is assumed to be posted continuously and hence the
remaining counterparty credit risk is negligibly small. In these works, it was found that
there exists a direct link between the cost of collateral and CCS (cross currency swap)
spreads. In fact, one cannot neglect the cost of collateral to make the whole system
consistent with CCS markets, or equivalently with FX forwards. Making use of this
relation, we have also shown the significance of a "cheapest-to-deliver” (CTD) option
implicitly embedded in a collateral agreement in Fujii & Takahashi (2011) [10].

The previous works have assumed bilateral and symmetric collateralization, where the
two parties post the same currency or choose the optimal one from the same set of eligible
currencies. Although symmetric collateral agreement is widely used, asymmetric situation
can also arise in the actual market. If there is significant difference in credit qualities
between two parties, the relevant CSA (credit support annex, specifying all the details
of collateral agreements) may specify asymmetric collateral treatments, such as unilateral
collateralization and asymmetric collateral thresholds. Especially, when SSA(sovereign,
supranational and agency) clients are involved, one-way CSA is quite common: SSA enti-
ties refuse to post collateral but require it from the counterpart financial firms. One-way
CSA is now becoming a hot issue among practitioners [14]. Since the financial firm needs
to enter two-way CSA (or bilateral collateralization) to hedge the position in financial
market, there appears a significant cash-flow mismatch. In addition, as we will see later,
the financial firm may suffer from the significant loss of mark-to-market value due to the
rising cost of collateral.

Asymmetric collateralization, even if the details specified in CSA are symmetric, may
also arise effectively due to the different level of sophistication of collateral management
between the two parties. For example, one party can only post single currency due to
the lack of easy access to foreign currency pools or flexible operational system while the
other chooses the cheapest currency each time it posts collateral. It should be also impor-
tant to understand the change of CVA (credit value adjustment) under collateralization.
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Although, it is reasonable in normal situations to assume most of the credit exposure is
eliminated by collateralization for standard products, such as interest rate swaps, preparing
for credit exposure arising from the deviation from the perfect collateral coverage should
be very important for the risk management, particularly for complex path-dependent con-
tracts, for which it is unlikely to achieve complete price agreements between the two
parties.

This work has extended the previous research to the more generic situations, that is
asymmetric and imperfect collateralization. The formula for the associated CVA is also
derived. We have examined a generic framework which allows asymmetry in a collateral
agreement and also imperfect collateralization, and then shown that the resultant pricing
formula is quite similar to the one appearing in the work of Duffie & Huang (1996) [3]. Al-
though the exact solution is difficult to obtain, Gateaux derivative allows us to get approx-
imate pricing formula for all the cases in the unified way. In order to see the quantitative
impacts, we have studied IRS (interest rate swap) and CCS with an asymmetric collateral
agreement. We have shown the practical significance for both cases, which clearly shows
the relevance of sophisticated collateral management for all the financial firms. Those
carrying out optimal collateral strategy can enjoy significant funding benefit, while the
others incapable of doing so will have to pay unnecessary expensive cost. We also found
the importance of cost of collateral for the evaluation of CVA. The present value of future
credit exposure can be meaningfully modified due to the change of effective discounting
rate, and can be also affected by the possible dependency between the collateral coverage
ratio and the counter party exposure. There also appear a new contribution called CCA
(collateral cost adjustment) that purely represents the adjustment of collateral cost due
to the deviation from the perfect collateralization.

After the collapse of Lehman Brothers, investors have been suffering from the loss of
transparency of prices provided by broker-dealers, each of them quotes quite different bids
and offers. This is mainly because the financial firms started to pay more attention to
counter party credit risk and also because there was no consensus for the proper method
of discounting of future cash flows for secured contracts with collateral agreements. How-
ever, the situation is now changing. Recently, SwapClear of LCH.Clearnet group, which
is one of the largest clearing house in the world, started to use OIS (overnight index
swap) curve to discount the future cash flows of swaps. This is one of the examples that
the market benchmark quotes for the standardized products are converging to the per-
fectly collateralized ones with standard symmetric CSA. We also think that this should be
the only possible way to achieve enough price transparency, since otherwise we need the
portfolio and counterparty specific adjustment. Our formulation is based on the above un-
derstanding and derives CCA and CVA as a deviation from the collateralized benchmark
price, which should be useful for practitioners who are required clear explanation for each
additional charge to their clients.

We have also discussed some interesting implications for financial firm’s behavior under
(almost) perfect collateralization. One observes that the strong incentives for advanced
financial firms to exploit funding benefit may reduce overall netting opportunities in the
market, which can be a worrisome issue for the reduction of the systemic risk in the market.
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2 Generic Formulation

In this section, we consider the generic pricing formula. As an extension from the previous
works, we allow asymmetric and/or imperfect collateralization with bilateral default risk.
We basically follow the setup in Duffie & Huang (1996) [3] and extend it so that we can
deal with cost of collateral explicitly. The approximate pricing formulas that allow simple
analytic treatment are derived by Gateaux derivatives.

2.1 Fundamental Pricing Formula
2.1.1 Setup

We consider a filtered probability space (€2, F,F,Q), where F = {F : t > 0} is sub-o-
algebra of F satisfying the usualconditions. Here, Q is the spot martingale measure, where
the money market account is being used as the numeraire. We consider two counterparties,
which are denoted by party 1 and party 2. We model the stochastic default time of party 4
(i € {1,2}) as an F-stopping time ¢ € [0, 00], which are assumed to be totally inaccessible.
We introduce, for each i, the default indicator function, Hi=1 {ri<t}r @ stochastic process
that is equal to one if party i has defaulted, and zero otherwise. The default time of
any financial contract between the two parties is defined as 7 = 7! A 72, the minimum
of 71 and 72. The corresponding default indicator function of the contract is denoted by
Hy = 1<ty The Doob-Meyer theorem implies the existence of the unique decomposition
as H* = A"+ M*, where A! is a predictable and right-continuous (it is continuous indeed,
since we assume total inaccessibility of default time), increasing process with AY = 0,
and M is a Q-martingale. In the following, we also assume the absolute continuity of A*
and the existence of progressively measurable non-negative process ht, usually called the
hazard rate of counterparty 4, such that

i
Ag_f hilirisgds, t20. (2.1)
0

For simplicity we also assume that there is no simultaneous default with positive proba-
bility and hence the hazard rate for H; is given by h; = hi + h? on the set of {T > t}.
We assume collateralization by cash which works in the following way: if the party
i (€ {1,2}) has negative mark-to-market, 1t has to post the cash collateral ! to the counter
party j (# 1), where the coverage ratio of the exposure is denoted by 8¢ € Ry. We assume
the margin call and settlement occur instantly. Party j is then a collateral receiver and
has to pay collateral rate ¢ on the posted amount of collateral, which is 8¢ x (|mark-
to-market|), to the party i. This is done continuously until the end of the contract. A
common practice in the market is to set ¢ as the time-t value of overnight (ON) rate of
the collateral currency used by the party i. We emphasize that it is crucially important
to distinguish the ON rate ¢ from the theoretical risk-free rate of the same currency i
where both of them are progressively measurable. The distinction is necessarily for the
unified treatment of different collaterals and for the consistency with cross currency basis
spreads, or equivalently FX forwards in the market (See, Sec. 6.4 and Ref. [10] for details.).

! According to the ISDA survey [11], more than 80% of collateral being used is cash. If there is a liquid
repo or security-lending market, we may also carry out similar formulation with proper adjustments of its
Y P
funding cost.
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We consider the assumption of continuous collateralization is a reasonable proxy of
the current market where daily (even intra-day) margin call is becoming popular. We
are mainly interested in well-collateralized situation where § ~ 1, however, we do also
include the under- as well as over-collateralized cases, in which we have 6! < 1 and & > 1,
respectively. Although it may look slightly odd to include the 6 # 1 case under the con-
tinuous assumption at first sight, we think that allowing under- and over-collateralization
makes the model more realistic considering the possible price dispute between the rele-
vant parties, which is particularly the case for exotic derivatives. Most of the long dated
exotics, such as PRDC and CMS-related products, contain path-dependent knock-out or
early redemption triggers, which makes the sizable price disagreements between the two
parties almost inevitable. Because of the model uncertainty, the price reconciliation is
usually done in ad-hoc way, say taking an average of each party’s quote. As a result,
even after the each margin settlement, there always remains sizable discrepancy between
the collateral value and the model implied fair value of the portfolio. Therefore, even in
the presence of timely margining, the inclusion of generic collateral coverage ration taking
value bigger or smaller than 1 should be important for portfolios containing exotics.

Under the assumption, the remaining credit exposure of the party i to the party j at
time ¢ is given by

max(1 — &7, 0) max(V{, 0) + max (6} — 1,0) max(—V,0) ,

where V;' denotes the mark-to-market value of the contract from the view point of party
i. The second term corresponds to the over-collateralization, where the party i can only
recover the fraction of overly posted collateral when party j defaults. We denote the
recovery rate of the party j, when it defaults at time ¢, by the progressively measurable
process R} € [0,1]. Thus, the recovery value that the party i receives can be written as

Rl (max(l — §1,0) max(V{, 0) + max (8 — 1,0) max(—v;',m) . (2.2)

As for notations, we will use a bracket ”( )” when we specify type of currency, such as

rtw and cgi), the risk-free and the collateral rates of currency (i), in order to distinguish it

from that of counter party. We also denote a spot FX at time ¢ by féi’j) that is the price
of a unit amount of currency (j) in terms of currency (i). We assume all the technical
conditions for integrability are satisfied throughout this paper.

2.1.2 Pricing Formula

We consider the ex-dividend price at time ¢ of a generic financial contract made between
the party 1 and 2, whose maturity is set as T (> t). We consider the valuation from the
view point of party 1, and define the cumulative dividend D; that is the total receipt from
party 2 subtracted by the total payment from party 1. We denote the contract value as
St and define Sy = 0 for 7 < t. See Ref.[3] for the technical details about the regularity
conditions which guarantee the existence and uniqueness of S;. Under these assumptions
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and the setup give in Sec.2.1.1, one obtains

S = BES

/JtT] ﬁ;ll{'r}u}{d‘Du + (b lis.<0y + Yadulis.>0)) Sud’“}

+f B sz (2w, Sum )AHY + Z%(u, S, )AHY)
16T B

J—}} , 23]

on the set of {r > t}. Here, y* = r* — ¢ denotes a spread between the risk-free and
collateral rates of the currency used by party i, which represents the instantaneous return
from the collateral being posted, i.e. it earns r* but subtracted by ¢* as the payment to

the collateral payer. [ = exp ( fot Tudu) is a money market account for the currency on

which S, is defined. Z* is the recovery payment from the view point of the party 1 at the
time of default of party i (€ {1,2}):

Z4(t0) = (1= (1= RO = 1)+ )vlpeny + (14 (1= B - 17 olpzoy (24)
Z2(t,0) = (1 (1= B - )" )vlgsoy + (14 (1 = B - 17 )vlpcoy - (25)

where X denotes max(X,0). Note that the above definition is consistent with the setup
in Sec.2.1.1. The surviving party loses money if the received collateral from the defaulted
party is not enough or if the posted collateral to the defaulted party exceeds the fair
contract value.

Even if we explicitly take the cost of collateral into account, it is possible to prove the
following proposition about the pre-default value of the contract in completely parallel
fashion with the one given in [3]:

Proposition 1 Suppose a generic financial contract between the party 1 and 2, of which
cumulative dividend at time t is denoted by Dy from the view point of the party 1. Assume
that the contract is continuously collateralized by cash where the coverage ratio of the party
i (€ {1,2})’s exposure is denoted by 6; € Ry. The collateral receiver has to pay collateral
rate denoted by ci on the amount of collateral posted by party i, which is not necessarily
equal to the risk-free rate of the same currency, ri. The fractional recovery rate RE € [0, 1]
15 assumed for the under- as well as over-collateralized exposure. For the both parties,
totally inaccessible default is assumed, and the hazard rate process of party i is denoted by
hi. We assume there is no simultaneous default of the party 1 and 2, almost surely. Then,
the pre-default value Vy of the contract from the view point of party 1 is given by

plto) = (W - (- BH( - )Rl + (1 - B - 1*hE) o)

V; = E9

Ft} , ELT (2.6)

where

+ (W - (- B - )"+ (1— BN - D' h)lazey  (27)

if the jump of V' at the time of default (= T) s zero almost surely. and then satisfies
St = Vilynyy for allt. Here, S, is defined in Eq. (2.3).
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See Appendix A for proof. One important point regarding to this result is the fact that we
can actually determine 3* almost uniquely from the information of cross currency market.
This point will be discussed in Sec. 6.4.

Remark: In this remark, we briefly discuss the assumption of AV, = 0. Notice that, since
we assume totally inaccessible default time, there is no contribution from pre-fixed lump-
sum coupon payments to the jump. In addition, it is natural (and also common in the
existing literatures) to assume global market variables, such as interest rates and FX’s, are
adapted to the background filtration independent from the defaults. In this paper, we are
concentrating on the standard fixed income derivatives without credit sensitive dividends,
and hence the only thing we need to care about is the behavior of hazard rates, h! and hAZ2.
Therefore, in this case, if there is no jump on A® on the default of the other party j # 4,
then the assumption AV, = 0 holds true. This corresponds to the situation where there
is no default dependence between the two firms.

If there exists non-zero default dependence, which is important in risk-management
point of view, then there appears a jump on the hazard rate of the surviving firm when
a default occurs. This represents a direct feedback (or a contagious effect) from the
defaulted firm to the surviving one. In this case, if we directly use F-intensities h?, the
no-jump assumption does not hold.

However, even in this case, there is a way to handle the pricing problem correctly. Let
us construct the filtration in the usual way as F; = G, VH} VH?Z, where G; is the background
filtration (say, generated by Brownian motions), and #! is the filtration generated by H'.
Since the only information we need is up to 7 = 7! A 72, we can limit our attention
to the intensities conditional on no-default, which are now the processes adapted to the
background filtration G = (Gt)s>0). Therefore, although the details of the derivation
slightly change, one can show that the pricing formula given in Eq. (2.6) can still be
applied in the same way once we use the G-intensities instead, since now we can write all
the processes involved in the formula adapted to the background filtration.

3 Symmetric Collateralization

Let us define _ o _ o L _
G =6yt — (1= R — 6))*hi + (1 — R})(8} — 1)* R, (3.1)

where 7,7 € {1,2} and j # ¢. In the case of §} = §? = §, we have u(t, Vi) = §; that is
independent from the contract value V;. Therefore, from Proposition 1, we have

fm e (‘ ft - Qu)du) D,

It is clear that simple redefinition of discounting rate allows us to evaluate a contract
value in a standard way. Now, let us consider some important examples of symmetric and
perfect collateralization where (y! = y?) and (6! = 6% = 1). One can easily confirm that
all the following results are consistent with those given in Refs. [7, 8, 10, 9].

V; = E9

ﬂ] ; (3.2)
Case 1: Situation where both parties use the same collateral currency ”(:)”, which is the
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same as the payment currency. In this case, the pre-default value of the contract in terms
of currency (i) is given by

Vt(i) — gev / . (_/ cg)du) dD,
14,7 ¢

where Q) is the spot-martingale measure of currency (7).

]:t] , (3.2}

Case 2: Situation where both parties use the same collateral currency ”(k)”, which is
the different from the payment currency ”(i)”. In this case, the pre-default value of the
contract in terms of currency (i) is given by

Vt(i) _ ge® {f exp ([ (C(ui) +y§f"“))du) dD, J‘E] , (3.4)
16,7 ¢
where we have defined
ylok) = ) _ k) (3.5)
() ~l9) — (0 - ) 35)

Case 3: Situation where the payment currency is (i) and both parties optimally choose
a currency from a common set of eligible collaterals denoted by C in each time they post
collateral. In this case,

Vt(i) — gV / exp (—/ (cg) + max yl(f’k))du) dDg
eal £ keC

gives the pre-default value of the contract in terms of currency (7). Note that collateral
payer chooses currency (k) that maximizes the effective discounting rate in order to reduce
the mark-to-market loss. This is also the currency with the cheapest funding cost. See
Sec. 6.4 and its Remark for details.

A e

Remark: Notice that we have recovered linearity of each payment on the pre-default value
for all these cases. In fact, in the case of symmetric collateralization, we can value the
portfolio by adding the contribution from each trade/payment separately. This point can
be considered as a good advantage of symmetric collateralization for practical use, since it
makes agreement among financial firms easier as the transparent benchmark price in the
market.

4 Marginal Impact of Asymmetry

We now consider more generic cases. When 3 # 77, we have non-linearity (called semi-
linear in particular) in effective discounting rate R(¢, Vi) = ry — p(¢, V). Although it is
possible to get solution by solving PDE in principle, it will soon become infeasible as the
underlying dimension increases. Even if we adopt a very simple dynamic model, usual
"reset advance pay arrear” conventions easily make the issue very complicated to handle.
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For practical and feasible analysis, we use Gateaux derivative that was introduced in
Duffie & Huang [3] to study the effects of default-spread asymmetry. We can follow the
same procedure by appropriately redefining the variables. Since evaluation is straightfor-
ward in a symmetric case, the expansion of the pre-default value around the symmetric
limit allows us simple analytic and/or numerical treatment. Firstly, let us define the
spread process: N _ ‘

=g — . (4.1)
Then, under an assumption that §* and ¢ do not depend on V directly, the first-order
effect on the pre-default value due to the non-zero spread appears as the following Gateaux
derivative (See, Ref. [5] for details.):

T -~
VVi(0;71) = EY U e J7 (ra=T)u o (—1/,(0),0) 72 ds
t

J—}} : (4.2)

where V;(0) is the pre-default value of contract at time ¢ with the limit of 7*! = 0 and

given by
Vi(0) = ER {/ exp (/ (ry — gi)du) dD, J—}} . (4.3)
1¢,T) t
Then the original pre-default value is approximated as
Ve 2 Vi(0) + VVi(0; 7). (4.4)

4.1 Asymmetric Collateralization

We now consider two special cases under perfect collateralization §' = 4% = 1 using the
previous result.

Case 1: The situation where the party 2 can only use the single collateral currency (j) but
party 1 chooses the optimal currency from the eligible set denoted by C. The evaluation
currency is (7). In this case, the Gateaux derivative is given by

_ ol /T s .
UV, (0; maxy ) = g U exp (_f (et +y3‘3))d“) max(—V;(0), 0) max y{*) Ft]
keC 7 ; kec
(4.5]
where
vV, (0) — ge¥ [] exp (f (Cl(f) +y£i,i))du) dD; B} ; (4.6)
16,7 t

which is straightforward to calculate. This case is particularly interesting since the situa-
tion can naturally arise if the sophistication of collateral management of one of the parties
is not enough to carry out optimal strategy, even when the relevant CSA is actually sym-
metric. We will carry out numerical study for this example in Sec. 7.

Case 2: The case of unilateral collateralization, where the party 2 is default-free and
do not post collateral. The party 1 needs to post collateral in currency (j) to fully
cover the exposure, or 6 = 1. The evaluation currency is (i). We expand the pre-
default value around the symmetric collateralization with currency (7). In this case,
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R(t,V;) = 7‘?) = yéj)l{vtm} = Cgi) i) yt(j)l{VtZU}'

Ld H T S a ¥ +
vw(o;yt(”zmzo}) e Ut exp (—f (e +y,£f’3))du) max (V;(0),0)y{ds
t

ft] +
(4.7)
where

. 8 . s
V;(0) = EQY f exp (/ (cg) - yt(f’j))du) dDg| Fy (4.8)
1t.7] ¢
is the value in symmetric limit. Detailed implications for the one-way CSA will be dis-
cussed in a later section after considering remaining credit risk.

In both cases, the correction term seems a weighted average of European option on the
underlying contract. If we have analytic formula for V;(0), it is straightforward to carry
out numerical calculation. The important factors determining the correction term are the
dynamics of y and V itself, and their interdependence. This point will be studied in later
sections.

5 CVA as a Deviation from Perfect Collateralization

As another important application of Gateaux derivative, we can consider CVA as a devi-
ation from the perfect collateralization. Most of the existing literature is neglecting the
cost of collateral for the calculation of CVA, which seems inappropriate considering the
significant size and volatility of y, pointed out in our work [10] 2.

5.1 Derivation of CVA

Let us suppose y; = y? = y; for simplicity. In this case, we have

V) = wi— (L= 8Dw+ (- BHQ — 6D hE — (1 = B - 7)) Licoy

—((1= 8w+ (1= B - 3)7h — (1 - BD(8 ~ 1) W} ) Lwisy (5.1)

and consider the Gateaux derivative around the point of 6! = §2 = 1. The result can be
interpreted as a bilateral CVA that takes into account the cost of collateral and its coverage
ratio explicitly. There also appears a new term ”CCA” (collateral cost adjustment) that is
purely the adjustment of collateral cost totally independent from the counterparty credit
risk.

Following the method given in Ref. [5], one obtains

vV, = E¢9

[ e G AR
1,7

{1 - N+ (1 = R - 837 hE = (1 - R - )72 [ 0)<0)
+ {1 e+ (1= R - 27K = (1= BN(Z - )"k v 020)] | 7] 5 (5:2)

For general treatment of CVA and related references, see Ref. [1], for example.
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where

Vi =E2 | [ exp (= [ (ru-wa)du)dD,
1,7 ¢

which represents the contract value under the perfect collateralization. Using the above
result, the contract value can be decomposed into three parts, one is the value under the
perfect collateralization, CCA (collateral cost adjustment) and CVA 3.

ft‘l : (5.3)

Vi ~ V;(0) + CCA + CVA . (5.4)

This decomposition would be useful for practitioners who know that most of their exposure
is collateralized, but still care about the remaining small counter party exposure and
adjustment of collateral cost due to the deviation from the perfect collateralization 4. It
is natural to expand around the perfectly collateralized limit, since it would be the only
choice that can achieve the required transparency as the benchmark price in the market.
By expanding Eq.(5.2), we have

CCcA = E° [/T e~ H ety [(1— 6 [-Vy(0)] T - (1 - 82) [Va(0)] " ds
t

d
(5.5)

which is a pure adjustment of collateral cost due to the deviation from the perfect collat-
eralization, and independent from the credit risk.
For credit sensitive part, we have

CVA =

g2 [ et m - L)+ 6 - 40) e )

.

(5.6)

_E@

/ o= S (rumyuddu(y _ Rﬁ)hi{(l S AMIAOIRECE 1)*[%(0)]+}ds
Jt.7]

The effects of stochastic coverage ratio as well as non-zero jump at the time of default are
our ongoing research topics.

5.2 Implications of Collateralization to Price Adjustment

Although we leave detailed numerical study of CVA under collateralization for a separate
paper, let us make several qualitative observations here. Firstly, although the terms in
CVA are pretty similar to the usual result of bilateral CVA, the discounting rate is now
different from the risk-free rate and reflects the funding cost of collateral. If there is no
dependency between y and other variables, such as hazard rate, the effects of collateral-
ization would mainly appear through the modification of discounting factor. As we have

®Our convention of CVA is different from other literatures by sign where it is defined as the ”charge”
to the clients. Thus, CVAqus = —CVA.

“One can perform the same procedures even if there exist asymmetry in collateralization. Since we
expand around symmetric limit, there also appears correction terms for asymmetry.
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studied in Ref. [10], the change of effective discounting factor due to the choice of collateral
currency or optimal collateral strategy can be as big as several tens of percentage points.
This itself can modify the resultant CVA meaningfully. In the case of correlated y and
other variables, particularly the hazard rates, there may appear new type of "wrong way”
risk. As we will see later, ¢ is closely related to the CCS basis spread that reflects the
relative funding cost difference between the two currencies involved. Hence, y is expected
to be highly sensitive to the market liquidity, and hence is also strongly affected by the
overall market credit conditions. Therefore, although the efficient collateral management
significantly reduce the credit risk, one needs to carefully estimate the remaining credit
exposures when there exists a meaningful deviation from the perfect collateralization.

Secondly, we can also expect important effects from the stochastic coverage ratios.
If the main reason for the imperfectness of collateralization comes from price disputes
over exotic products, §* may be well regressed by market skewness, volatility level, Libor-
OIS and CCS basis spreads, etc. This may create non-trivial dependence among the
collateral coverage ratio, the credit exposure, and also on the funding cost of collateral. By
monitoring the price disagreements, financial firms should be able to construct a realistic
model of §* for each counter party. It will be also useful for stress testing allowing higher
dependence among them.

Thirdly, as we have seen, there appears a new term called ” CCA” which adjusts the cost
of collateral from the perfect collateralization case. Dependent on the details of contracts
and correlation among the underlying variables, CCA can be as important as CVA. As can
be seen from Eq. (5.5), it will be particularly the case when there is significant correlation
between the collateral cost y and the underlying contract value. A typical examples of the
products highly correlated with y are cross currency basis swap and probably sovereign
risk sensitive products.

As the last remark, the valuation of CVA is critically depend on the recovery or closeout
scheme in general, and the result may sometimes be counterintuitive and/or inappropriate,
as clearly demonstrated by the recent work of Brigo & Morini (2010) [2]. However, in the
case of a collateralized contract, the dependency on the closeout conventions is expected
to be quite small. This is because, the creditworthiness of both parties which enter the
substitution trade is largely flattened by collateralization.

5.3 Several special cases for CVA

Let us consider several important examples:

Case 1: Consider the situation where the both parties use collateral currency (i), which
is the same as the payment currency. We also assume a common constant coverage ratio
61 = 6% = 6 (< 1), and also constant recovery rates. In this case, CCA and CVA are given
by

T ;
CCA = —(1-8§EY { / e I Wduy )y (0)gs ft] (5.7)
t
i T s (1
CVA = (1-RY(1-6)E?" U o= el max (—~V4(0),0)ds ft]
(5
; T s (i
—(1- RY)(1 - §)E?Y U e~ J o dup2 1ax (V,(0), 0)ds }"t] . (5.8)
t
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where

Fi

8
v,(0) = B9 / exp ( / cgﬂdu> dD,
16,7 t

is a value under perfect collateralization by domestic currency.

Case 2: Consider the situation where the both parties optimally choose collateral currency
(k) from the eligible collateral set C. The payments are done by currency (i). We assume

the common constant coverage ration § (< 1) and constant recovery rates. In this case,
CCA and CVA are given by

i T ] i 5
CCA = —(1-48)ERY U e 0 (el +maxice v Nduy () (0) g
t

E} (5.10)

{ T s i 1 |
CVA = +(1-RY(a - 8)E” U e~ I (e +maxiec ™ du 1 max(—VS(O),O)ds]—}}
t

—(1— B)(1 - 6)E" { f T e e ek O u2 max (V;(0),0)ds }}} ,
t (5.11)
where
Vi(0) = B9 [ f]t P (— ft (el + rgggcy,&““))) aD; ft] : (5.12)

An interesting point is that the optimal choice of collateral currency may significantly
change the size of CVA relative to the single currency case due to the increase of effective
discounting rates as discovered in Ref. [10].

Case 3: Let us consider another important situation, which is the unilateral collateraliza-
tion with bilateral default risk. Suppose the situation where only the party 2 is required to

post collateral due to its high credit risk relative to the party 1. We have §! =0, §% ~ 1,
and write y? = y;. In this case we have

pt,Ve) =y — [?Jtl{vmo} +(1- 53)3&1{1420}}

—(1 = Ri)h{ (1{v¢<0} — (67 - 1)+1[V.‘.20}) — (1= RH(1 - 83) TR (y;50) - (5.13)
Taking Gateaux derivative around the point of u(t,V;) = y;, we have
T 5
vV, = E° U e~ : ["u-%)d”(A/s(O)) x
t

[ysl{wm} + (1= 8)ys Lm0y + (1 — RDA; (Liv,cop — (82 — 1)1y, 503)

+ (1- B)(1 - ) K20 || 7] - (5.14)
More specifically, if we assume the same collateral and payment currency (i), we have

Vi ~ V;(0) + CCA + CVA, (5.15)
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where

Vi(0) = EQ¥

/ exp (f cgf)du) st}"t} (5.16)
1.7 t
7

and

cca - B9 [ ] e~ d Py {_v,0)] " - (1 - ) [Va(0)] "} ds

t

(5.17)
cvA = E” [ /t T e B Pany _ iy {[~Va@]" + (82 - D* [Vs(0)] "} ds ft]
(&) T e +
—E© U e~ i eidu( _ %) (1 — 62)Th2[V,(0)] T ds ]—}] (5.18)
t

If party 1 receives "strong” currency (that is the currency with high value of '), such
as USD (See, Ref. [10]), and also imposes stringent collateral management 62 ~ 1 on the
counter party, it can enjoy significant funding benefit from CCA. The CVA terms are usual
bilateral credit risk adjustment except that the discounting is now given by the collateral
rate.

Note that, this example is particularly common when SSA (sovereign, supranational
and agency) is involved (as party 1). For example, when the party 1 is a central bank, it
does not post collateral but receives it. From the view point of the counterpart financial
firm (party 2), this is a real headache. As we have explained in the introduction, since
party 2 has to enter bilateral collateralization when it tries to hedge the position in the
market, there clearly exists a significant risk of cash-flow mismatch. In addition, although
the contribution from the CVA will be negligible, there exists a big mark-to-market issue
from the CCA term. Even if it is not a critical matter at the current low-interest rate
market, once the market interest rate starts to go up while the overnight rate c is kept
low by the central bank to support economy, the resultant mark-to-market loss for the

party 2 can be quite significant due to the rising cost of collateral ”"y” (Remember that
(1) = (1) _ £9)
yV=r ).

Case 4: Finally, let us consider the situation where there exist collateral thresholds. A
threshold is a level of exposure below which collateral will not be called, and hence it
represents an amount of uncollateralized exposure. If the exposure is above the threshold,
only the incremental exposure will be collateralized. Usually, the collateral thresholds are
set according to the credit standing of each counter party. They are often asymmetric,
with lower-rated counter party having a lower threshold than the higher-rated counter
party. It may be adjusted according to the "triggers” linked to the credit rating during
the contract. We assume that the threshold of counter party i is set by I > 0, and that
the exceeding exposure is perfectly collateralized continuously.
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In this case, Eq. (2.3) is modified in the following way:

Se = BE?| [ 6 {dDu +g(u,51)Sudu}
Jt,T]
+/ B Lrsuy {21 (u, Su-)dH] + Z%(u, Sy—)dH?} ]—4 . (5.19)
J1t,T)
where
| I¥; 5 Iy
6t St) =4 (14 5 ) Yserty + 01 (1= 5 | Lgsiorgy (5.20)
and
1 1 rg 1
Z(t,8) = S 1+(lﬁRt)§t Lis,<-r3) + Rely_rics.<op + 15,20}
1"2
Z*(t,8) = S Kl—(l“R?)*St:) 1{St>1“$}+Rt21{055t<1“f}+1{51<0}} ;

Here, we have assumed the same recovery rate for the uncollateralized exposure regardless
of whether the contract value is above or below the threshold.

Following the same procedures given in Appendix A, one can show that the pre-default
value of the contract V; is given by

V, = E9 / exp (—/ (ru — p(u, Vu))du) dDy ]—}} , t<T (5.21)
1¢,7) t
where
pt, Vi) = ¥iliycop + ¥ livis0)
1'*1
— (% +hi(1 - Ry)) [1{—1“}5V¢<0} & vil{vt«rg}}
9 | w9 2 7
— (4 +h(1 - R))) [l{ogvmrf} + th{v,zrf}] : (5.22)

Now, consider the case where the both parties use the same collateral currency (i),
which is equal to the evaluation currency of the contract. Then, we have

u(t, Vi) = yf)*{yf)l{mésm@g}
1 2
@ | T I's

+y' [Vzl{m—r}} - ﬁl{vprﬁ}]

I

_h'tl(l - Rtl) {1{—1}15%@} - v, 1{V¢<—I‘§}}

PQ
—hi (1 - R?) {1{05vt<r§} + Vzl{wzrf}] } - (5.23)
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Hence, if we apply Gateaux derivative around the symmetric perfect collateralization with

currency (¢) that is p(t, Vi) = yt(i), we obtain

V: ~ V;(0) + CCA + CVA, (5.24)
where
V4(0) = EQV f exp (— f \ cgj)du) dD, };} , (5.25)
18,71 t
and
al 7T s (i ; |
ccA = -E97 / ek "u)d”yi”%(0)1{-rgsvs(oy<rg}ds\f t]
L/t
r rT 7
i) _ s @) . _
+E9 / e~ Je e ey M1y, o)<ty — Ty 0)2rz] ds ft} (5.26)
LSt
- ,
(i) s L8
CVA = —E¢ /t g e [hi(l - R,)(Vs(0)1{_r1<v,(0)<0) *Fﬁl{vs(o)cfé})}d*" Ft]
QY T fr e [h21 R2)(V4(0)1 r21 ds| F;
L ¢ 2(1 = R)(Va(0)1jpav,oy<rzy + Dslivyoysr2y) [ds| Fe|
(5.27)

It is easy to see that the terms in CCA are reflecting the fact that no collateral is being
posted in the range {—I'} < V; < T'?}, and that the posted amount of collateral is smaller
than |V| by the size of threshold. The terms in CVA: represent bilateral uncollateralized
credit exposure, which is capped by each threshold.

6 Fundamental Instruments

In order to study the quantitative effects of collateralization and its implications on CVA,
we need to understand the pricing of fundamental instruments under symmetric collateral-
ization. It is also necessary for the calibration of the model in the first place. One obtains
detailed discussion in Refs [7, 8, 10], but we extend the results for stochastic y spread and
summarize in this section. We also introduce a slightly simpler cross currency swap, which
is actually tradable in the market, in order to show the direct link of CCS with the cost
of collateral in much simpler fashion. All the results easily follow from Sec. 3.

Throughout this section, we assume that the market quotes of standard products
are the values under symmetric and perfect collateralization, which should be reasonable
considering dominant role of major broker-dealers for these products and their stringent
collateral management. If it is not the case, value of any contract becomes dependent on
the portfolio to a specific counter party, which makes it impossible for financial firms to
agree on the market prices. In fact, to achieve enough transparency in the market quotes,
the broker-dealers should specify the details of CSA to avoid contamination from contracts
with non-standard collateral agreements.
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6.1 Collateralized Zero Coupon Bond

A collateralized zero coupon bond is the most fundamental asset for the valuation of all
the contracts with collateral agreements. We denote a zero coupon bond collateralized by
the domestic currency (i) as

D(?.) (t,T) — EQ(f) |:6_sz s

FtJ (6.1)

If payment and collateralized currencies are different, (i) and (j) respectively, a foreign
collateralized zero coupon bond D7) is given by

D (e, Ty = EQ [efff’ c{ds (e— i yi"”dS) }}} . (6.2)
In particular, if ¢(® and y'h3) are independent, we have
DN, T) = DY (¢, T)e~ STy (t,s)ds , (6.3)
where -
Y9 (1, 5) = _% 1o B [e—f,:‘ y$ P du f‘t} (6.4)

denotes the forward y»7) spread.

6.2 Collateralized FX Forward

Because of the existence of collateral, FX forward transaction now becomes non-trivial,
The precise understanding of the collateralized FX forward is crucial to deal with generic
collateralized products.

The definition of currency-(k) collateralized FX forward contract for the currency pair
(4,7) is as follows:

o At the time of trade inception t, both parties agree to exchange K unit of currency (4)
with the one unit of currency (j) at the maturity T'. Throughout the contract period, the
continuous collateralization by currency (k) is performed, i.e. the party who has negative
mark-to-market value need to post the equivalent amount of cash in currency (k) to the
counter party as collateral, and this adjustment is made continuously. FX forward rate
;Ei"])(t, T k) is defined as the value of K that makes the value of contract at the inception
time zero.

By using the results of Sec. 3, K needs to satisfy the following relation:

KEQ(i) {e— ftT (c&”—}—ygi'k))ds

. ; (), (3.k)
}_{l B f_,gl"j)(t)EQU) = IF (c_;1 +yi* )ds

}}] =0 (6.5)
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and hence the FX forward is given by

£QW {e—ff(cé”wﬁj"‘))ds ]__t]
(6.6)

;

FA k) i )EQ(i) |i€— Tl (C_E;i)—i-ygi’k))ds

D(jxk) (t’ T)
DER(,T)

— (4.9) (t)

T

(6.7)

which becomes a martingale under the (k)-collateralized forward measure. In particular,
we have

e e_fiT (cg");ygl’k))dsﬂgi’j)(T)‘ _7_—4 - D(i’k)(t,T)ET(i’k) [fg(:u) (T,T;k)’}'t]
— DOR @ TS (¢, T k) . (6.8)

Here, we have defined the (k)-collateralized (i) forward measure Tk where D) (-, T)
is used as the numeraire. ET*" [-] denotes expectation under this measure.

6.3 Overnight Index Swap

The overnight index swap (OIS) is a fixed-vs-floating swap which is the same as the usual
IRS except that the floating leg pays periodically, say quarterly, daily compounded ON
rate instead of Libors. Let us consider Ty-start Ty-maturing OIS of currency (j) with
fixed rate Sy, where Tp > ¢. If the party 1 takes a receiver position, we have

N By
dD, = Z o, (3) lAnSN + 1 —exp (f cEf)du)] (6.9)
n=1

Tn—l

where A is day-count fraction of the fixed leg, and §7(-) denotes Dirac delta function at
i

Using the results of Sec. 3, in the case of currency (k) collateralization, we have

v = g¥ f exp (— f () + yg=k))du> dD, ft} (6.10)
]T ,TN] it
= () Tn ()4 G5 a [ D du
o 3 [ (50 1 )| 5] e
n=1
In particular, if OIS is collateralized by its domestic currency (i), we have
. N . 3 -
v =3 ADOt, T) Sy — (D(JJ (t.To) - DO (£, T)) . (6.12)

n=1

and hence the par rate is given by

Dt Ty — D@ )
Si’\j - (IVS 0) - (t') TV) i (6.13)
Zn:l AnD(J) (t’ Tn)
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6.4 Cross Currency Swap

Cross currency swap (CCS) is one of the most fundamental products in FX market. Espe-
cially, for maturities longer than a few years, CCS is much more liquid than FX forward
contract, which gives CCS a special role for model calibrations. The current market is
dominated by USD crosses where 3m USD Libor flat is exchanged by 3m Libor of a dif-
ferent currency with additional (negative in many cases) basis spread. The most popular
type of CCS is called MtMCCS (Mark-to-Market CCS) in which the notional of USD leg
is rest at the start of every calculation period of Libor, while the notional of the other leg
is kept constant throughout the contract period. For model calibration, MtMCCS should
be used as we have done in Ref. [10] considering its liquidity. However, in this paper, we
study a different type of CCS, which is actually tradable in the market, to make the link
between y and CCS much clearer.

We study the Mark-to-Market cross currency overnight index swap (MtMCCOIS),
which is exactly the same as the usual MtMCCS except that it pays a compounded ON
rate, instead of the Libor, of each currency periodically. Let us consider (4, j)-MtMCCOIS
where currency (¢) intended to be USD and needs notional refreshments, and currency (j)
is the one in which the basis spread is to be paid. Let us suppose the party 1 is the spread
receiver and consider Ty-start Ty -maturing (7, 7)-MtMCCOIS. For the (j)-leg, we have

_ N Tn ()
dDg.?) — _6T0(3) + 5TN (3) -+ ZéTn(S) |:(6an1 ¢y du o 1) e 571,BN:{ i (6.14)
n=1

where By is the basis spread of the contract. For (¢)-leg, in terms of currency (¢), we have

N

; i 1 . Tn ) g,
dD{) = {5Tn1(8)fé“”(Tn~1) — 67, () S (T e s 4 ] ‘ (6.15)

n=1

In total, in terms of currency (j), we have

dD, = dDY) + £ (s)dD{ (6.16)
PR PNTn) g2
= d.DS + Z 5Tn—1($) — §TR(S)W (617)
n=1 n—l
o fT" &9 du :J:J’z (T’,‘]) Tn mdu
= ) or.(s) |1 T +5,By — e gy . (6.18)
=1 fm ’ (T —1)

If the collateralization is done by currency (k), then the value for the party 1 is given
by

Z EQU)

( () ;
T (e Ty { Iy, J)du—i—énBN— - (T) cﬁ)du}‘}_t} ;

(6.19)
where Ty > t. In particular, let us consider the case where the swap is collateralized by
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currency (7) (or USD), which looks popular in the market.

Vi = Zc; BND (t, Tp)e™ S 400 (tu)du

- Z DO (8, Tyy_q)e ™ 99 e (1 _ eI (tmdu)

n=1
N

n=1

Il

Tn (4,2)
8, By DUA (¢ T,) — DUA (¢, T, _ )(1-3 T ¥ (t“)d"'ﬂ . (6.20)

Here, we have assumed the independence of ¢t and yU#). In fact, the assumption seems
reasonable according to the recent historical data studied in Ref. [10]. In this case, we
obtain the par MtMCCOIS basis spread as

A, DU (E, Tya) (1 e u)du)
e : 6.21
’ SN 8,DUA (8, T;) (6.21)

Thus, it is easy to see that

1 ™ (4,%) )
T i 22
By ™ T / y M (¢, u)du, (6.22)

which gives us the relation between the relative difference of collateral cost % and the
observed cross currency basis. Therefore, the cost of collateral y is directly linked to the
dynamics of CCS markets.

Remark: Origin of y) in Pricing Formula
Here, let us comment about the origin of y spread in our pricing formula in Proposition 1.
Consider the following hypothetical but plausible situation to get a clear image:

(1): An interest rate swap market where the participants are discounting future cash flows
by domestic OIS rate, regardless of the collateral currency, and assume there is no price
dispute among them. (2): Party 1 enters two opposite trades with party 2 and 3, and they
are agree to have CSA which forces party 2 and 3 to always post a domestic currency U
as collateral, but party 1 is allowed to use a foreign currency E as well as U. (8): There
ts very liguid CCOIS market which allows firms to enter arbitrary length of swap. The
spread y s negative for CCOIS between U and E, where U is a base currency (such as
USD in the above explanation).

In this example, the party 1 can definitely make money. Suppose, at a certain point, the
party 1 receives N unit amount of U/ from the party 2 as collateral. Party 1 enters a
CCOIS as spread payer, exchanging N unit amount of U and the corresponding amount
of E, by which it can finance the foreign currency E by the rate of (E’s OIS +y). Party
1 also receives U'’s OIS rate from the CCOIS counter party, which is going to be paid
as the collateral margin to the party 2. Party 1 also posts E to the party 3 since it has
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opposite position, it receives E’s OIS rate as the collateral margin from the party 3. As
a result, the party 1 earns —y (> 0) on the notional amount of collateral. It can rollover
the CCOIS, or unwind it if y’s sign flips.

Of course, in the real world, CCS can only be traded with certain terms which makes
the issue not so simple. However, considering significant size of CCS spread (a several tens
of bps) it still seems possible to arrange appropriate CCS contracts to achieve cheaper
funding. For a very short term, it may be easier to use FX forward contracts for the same
purpose. In order to prohibit this type of arbitrage, party 1 should pay extra premium
to make advantageous CSA contracts. This is exactly the reason why our pricing formula
contains the spread y.

6.5 Calibration to swap markets

For the details of calibration procedures, the numerical results and recent historical behav-
ior of underlyings are available in Refs. [7, 10]. The procedures can be briefly summarized
as follows: (1) Calibrate the forward collateral rate c(*(0,¢) for each currency using OIS
market. (2) Calibrate the forward Libor curves by using the result of (1), IRS and tenor
swap markets. (3) Calibrate the forward y%7)(0,¢) spread for each relevant currency pair
by using the results of (1),(2) and CCS markets.

Although we can directly obtains the set of y(%7) from CCS, we cannot uniquely deter-
mine each y¥, which is necessary for the evaluation of Gateaux derivative when we deal
with unilateral collateralization and CCA (collateral cost adjustment). For these cases,
we need to make an assumption on the risk-free rate for one and only one currency. For
example, if we assume that ON rate and the risk-free rate of currency (j) are the same,
and hence y') = 0, then the forward curve of yYSP is fixed by yUSP(0,t) = —yBUSD)((, £).
Then using the result of yVSP, we obtains {y¥)} for all the other currencies by making
use of {y(k’USD)} obtained from CCS markets. More ideally, each financial firm may carry
out some analysis on the risk-free profit rate of cash pool or more advanced econometric
analysis on the risk-free rate, such as those given in Feldhiitter & Lando (2008) [6].

7 Numerical Studies for Asymmetric Collateralization

In this section, we study the effects of asymmetric collateralization on the two fundamental
products, MtMCCOIS and OIS, using Gateaux derivative. For both cases, we use the
following dynamics in Monte Carlo simulation:

el = (em(t) - n(»")cﬁ”) dt + o@D dw} (7.1)
dcti) = (9(i)(t) — p2acPof) — f‘(i)cf)) dt + oWy (7.2)
a9 = (afm(z) - ,g(jsi?yt(ﬁ'"“) dt + o aw (7.3)
din fU = (cgj) — e 44U _ %(o—g@)?) dt + oY dw (7.4)

where {W*,i = 1---4} are Brownian motions under the spot martingale measure of cur-
rency (j). Every 6(t) is a deterministic function of time, and is adjusted in such a way that
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we can recover the initial term structures of the relevant variable. We assume every s and
o are constants. We allow general correlation structure (d[W*, W7, = p; ;dt) except that
p3; = 0 for all j # 3. The above dynamics is chosen just for simplicity and demonstrative
purpose, and generic HIM framework can also be applied to the evaluation of Gateaux
derivative. For details of more general dynamics in HJM framework, see Refs. [8, 9]. In
the following, we use the term structure for the (i, j) pair taken from the typical data of
(USD, JPY) in early 2010 for presentation. In Appendix E, we have provided the term
structures and other parameters used in calculation.

The discussed form of asymmetry is particularly interesting, since even if the relevant
CSA is actually symmetric, the asymmetry arises effectively if there is difference in the
level of sophistication of collateral management. From the following two examples, one
can see that the efficient collateral management is practically relevant and the firms who
are incapable of doing so will have to pay quite expensive cost to the counter party, and
vice versa.

7.1  Asymmetric Collateralization for MtMCCOIS

We now implement Gateaux derivative using Monte Carlo simulation based on the model
we have just explained. To see the reliability of Gateaux derivative, we have compared it
with a numerical result directly obtained from PDE using a simplified setup in Appendix D.
Firstly, we consider MtMCCOIS explained in Sec. 6.4. We consider a spot-start, Thy-
maturing (7, 7)-MtMCCOIS, where the leg of currency (i) (intended to be USD) needs
notional refreshments. Let us assume perfect but asymmetric collateralization as follows:
(1) Party 1 is the basis spread payer and can use either the currency () or (j) as collateral.
(2) Party 2 is the basis spread receiver and can only use the currency (¢) as collateral.

In this case, the price of the contract at time 0 from the view point of party 1 is given

by
, 8
Vy = EQ¥ l / exp (— f R(x, Vu)du) dps} (7.5)
105TN] 0
R(t,V;) = CEJ) + yt(”) + max(—yt(j’z), 0) 1y, <o} (7.6)
and
L] T Tl (4:) n gy
dD; = Z {5’1}1(3) {—ean—l G _ 0n B+ (;i)iWean—l ol } } ; (7.7)
=1 fm’ (Tﬂ—l)

Using Gateaux derivative, we can approximate the contract price as
Vo = o(0) + V¥ (05 max(—y 09, 0)) | (7.8)
where
VVo (O; max(fy(j’i), O))

; Ty sp (3 43 :
= g® U e I3 v )du an (—V,(0),0) max(—ygm),o)ds] . (7.9)
0
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Although V;(0) is simply a price under symmetric collateralization using currency (i), we
need to be careful about the advance reset conventions. One can show that

N ‘ , L ; (4.4 ;
i n ( ! AT
vioy = > B e*ff“@if’wi“wu{efﬂl%“d“—an3+——(fa e eﬁl—l“{”‘”} ft]
n=v(t)+1 fx’ (Tn—l)

¢ (i}
v2 ; y d
£ +J, "’(”)ci;"’du LR

; Ty ), (D) T : iz
+EQD | = f T (@ +ual ) du fe( HCE — 8y B+ ———e/: " C‘(‘)d“fa{cj’l}(T—y(t) Fe| »
PO T ) :
()~

(7.10)

where v(t) = min{n; T, > t,n = 1--- N}. Note that T} -1 < t since we are considering
spot-start swap (or Ty = 0). Assuming the independence of 3% and other variables, we
can simplify V4(0) and obtains

N N
B0) = - Y DUET)YUIET)6B+ Y D<f'>(t,Tn_1)(Y(ivﬂ(t,:rn_l)—y(f=f)(t,Tn))
n=1(t) n=y(t)+1

) (4,4) t ()
cIlds 4 (j{)m (t) efT'r(t)*l cs’ds ,
fx ’ (T'y(t)fl)

where we have defined Y09 (¢, T) = EQY [e_ [ v ds .7-}} .

In Figs. 1 and 2, we have shown the numerical result of Gateaux derivative, which is
the price difference from the symmetric limit, for 10y and 20y MtMCCOIS, respectively.
The spread B was chosen in such way that the value in symmetric limit, V5(0), becomes
zero. In both cases, the horizontal axis is the annualized volatility of %%, and the vertical
one is the price difference in terms of bps of notional of currency (j). When the party 1
is the spread receiver, we have used the right axis. The results are rather insensitive to
the FX volatility due to the notional refreshments of currency-(i) leg. From the historical
analysis performed in Ref. [10], we know that annualized volatility of 3% tends to be
50bps or so in a calm market, but it can be (100 ~ 200)bps or more in a volatile market
for major currency pairs, such as (EUR,USD) and (USD, JPY). Therefore, the impact of
asymmetric collateralization in this example can be practically very significant when party
1 is the spread payer. When the party 1 is the spread receiver, one sees that the impact of
asymmetry is very small, only a few bps of notional. This can be easily understood in the
following way: When the party 1 has a negative mark-to-market value and has the option
to change the collateral currency, y%%) tends to be large and hence the optimal currency
remains the same currency (7).

Finally, let us briefly mention about the standard MtMCCS with Libor payments. As
discussed in Ref. [10], the contribution from Libor-OIS spread to CCS is not significant rel-
ative to that of yU%). Therefore, the numerical significance of asymmetric collateralization
is expected to be quite similar in the standard case, too.

t
_y(w)(t,Tv(t))efTw(z)—l (7.11)

7.2 Asymmetric Collateralization for OIS

Now we study the impact of asymmetric collateralization on OIS. We consider OIS of
currency (j), and assume the following asymmetry in collateralization:
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1) Party 1 is the fixed receiver and can use either the currency (z) or (j) as collateral.

(
\
(2) Party 2 is the fixed payer can only use the currency (j) (domestic currency) as collateral.

For spot-start, Ty-maturing OIS, we have

7 EQ(J) / - fosR(u’V“)dust , (7.12)
]O:TN]
where
N T c(j)du
dDs =S or,(s) [5,15 - (e Too G700 _ 1)] , (7.13)
n=1
and

R(t, Vi) = ¢’ + max(y™”,0)1(v<0y - (7.14)

Using Gateaux derivative, the above swap value can be approximated as
Vo = Vo(0) + VV; (0 max(yf*”,0)) , (7.15)

where
4 ) T s () i
VW (O;max(y(*”“),())) = E9 [[ e~ Jo ci’du max (—V;(0),0) max(yéj’z),ﬂ)ds] , (7.16)
0

and

() wl Tn (j)d Tn c(j)du
Vi (0) = EX Z el e “{5n8—(eTn1 u. 1)} -
n=y(t)
¥ , : oy ,
= Y DU Tn)6.S8 - /o1 ® 4 pO)(e, Tyy) - (7.17)
n=x(t)

Here, S is the fixed OIS rate.

In Figs. 3, 4, and 5, we have shown the numerical results Gateaux derivative for 10y
and 20y OIS. In the first two figures, we have fixed o*gj) = 1% and changed Jéj’i) to
see the sensitivity against CCS. In the last figure, we have fixed the yU9 volatility as
oJ") = 0.75% and changed the volatility of collateral rate ). Since the term structure
of OIS rate is upward sloping, the mark-to-market value of a receiver tends to be negative
in the long end of the contract, which makes the optionality of collateral currency choice
larger and hence bigger price difference relative to the payer case.

8 General Implications of Asymmetric Collateralization

From the results of section 7, we have seen the practical significance of asymmetric collat-
eralization. It is now clear that sophisticated financial firms may obtain significant funding
benefit from the less-sophisticated counter parties by carrying out clever collateral strate-
gies.
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Before concluding the paper, let us explain two generic implications of collateralization
one for netting and the other for resolution of information, which is closely related to the
observation just explained. Although derivation itself can be done in exactly the same
way as Ref. [3] after the reinterpretation of several variables, we get new insights for
collateralization that can be important for the appropriate design and regulations for the
financial market.

8.1 An implication for Netting

Proposition 2 ° Assume perfect collateralization. Suppose that, for each party i, yi
s bounded and does not depend on the contract value directly. Let V2, V® and Vo
be, respectively, the wvalue processes (from the view point of party 1) of contracts with
cumulative dividend processes D*, D, and D* + Db. If y* > 42, then VO > Ve 4+ Vb,
and if y' <42, then Ve < Ve 4 Vb,

Proof is available in Appendix B. The interpretation of the proposition is very clear:
The party who has the higher funding cost y due to asymmetric CSA or lack of sophistica-
tion in collateral management prefer to have netting agreements to decrease funding cost.
On the other hand, an advanced financial firm who has capability to carry out optimal
collateral strategy to achieve the lowest possible value of y tries to avoid netting to exploit
funding benefit. For example, an advanced firm may prefer to enter an opposite trade
with a different counterparty rather than to unwind the original trade. For standardized
products traded through CCPs, such a firm may prefer to use several clearing houses
cleverly to avoid netting.

The above finding seems slightly worrisome for the healthy development of CCPs. Ad-
vanced financial firms that have sophisticated financial technology and operational system
are usually primary members of CCPs, and some of them are trying to set up their own
clearing service facility. If those firms try to exploit funding benefit, they avoid concentra-
tion of their contracts to major CCPs and may create very disperse interconnected trade
networks and may reduce overall netting opportunity in the market. Although remaining
credit exposure is very small as long as collateral is successfully being managed, the dis-
persed use of CCPs may worsen the systemic risk once it fails. In the work of Duffie &
Huang [3], the corresponding proposition is derived in the context of bilateral CVA. We
emphasize that one important practical difference is the strength of incentives provided
to financial firms. Although it is somewhat obscure how to realize profit/loss reflected in
CVA, it is rather straightforward in the case of collateralization by making use of CCS
market as we have explained in the remarks of Sec. 6.4.

8.2 An implication for Resolution of Information

We once again follow the setup given in Ref [3]. We assume the existence of two markets:
One is market F', which has filtration I, that is the one we have been studying. The other
one is market GG with filtration G = {G; : t € [0,T]}. The market G is identical to the
market F' except that it has earlier resolution of uncertainty, or in other words, 7 C Gs

*We assume perfect collateralization just for clearer interpretation. The results will not change quali-
tatively as long as §'y; > (1 — Ri)(1 — 6i)Thi — (1 — RI)(8 — 1)Thi.
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for all t € [0,T] while Fy = Gg. The spot marting measure ¢ is assumed to apply to the
both markets.

Proposition 3 ¢ Assume perfect collateralization. Suppose that, for each party i, y* is
bounded and does not depend on the contract value directly. Suppose that r, y' and y* are
adapted to both the filtrations F and G. The contract has cumulative dividend process D,
which s a semimartingale of integrable variation with respect to filtrations F and G. Let
VF and VG denote, respectively, the values of the contract in markets F and G from the
view point of party 1. If y* > y?, then V¥ > V&, and if y* < 42, then Vi < VF.

Proof is available in Appendix C. The proposition implies that the party who has the
higher effective funding cost y either from the lack of sophisticated collateral management
technique or from asymmetric CSA would like to delay the information resolution to avoid
timely margin call from the counterparty. The opposite is true for advanced financial firms
which are likely to have advantageous CSA and sophisticated system. The incentives
to obtain funding benefit will urge these firms to provide mark-to-market information
of contracts to counter parties in timely manner, and seek early resolution of valuation
dispute to achieve significant funding benefit. Considering the privileged status of these
firms. the latter effects will probably be dominant in the market.

9 Conclusions

This article develops the methodology to deal with asymmetric and imperfect collateral-
ization as well as remaining counterparty credit risk. It was shown that all of the issues
are able to be handled in an unified way by making use of Gateaux derivative. We have
shown that the resulting formula contains CCA that represents adjustment of collateral
cost due to the deviation from the perfect collateralization, and the terms corresponding
CVA, which now contains the possible dependency among cost of collaterals, hazard rates,
collateral coverage ratio and the underlying contract value. Even if we assume that the
collateral coverage ratio and recovery rate are constant, the change of effective discount-
ing rate induced by collateral cost and its correlation to other variables may significantly
change the value of CVA.

Direct link of CCS spread and collateral cost allows us to study the numerical signif-
icance of asymmetric collateralization. From the numerical analysis using CCS and OIS,
the relevance of sophisticated collateral management is now clear. If a financial firm is
incapable of choosing the cheapest collateral currency, it has to pay very expensive funding
cost to the counter party. We also explained the issue of one-way CSA, which is common
when SSA entities are involved. If the funding cost of collateral (or ”y”) rises, the financial
firm that is the counterparty of SSA may suffer from significant loss of mark-to-market
value as well as the huge cash-flow mismatch.

The article also discussed some generic implications of collateralization. In particular,
it was shown that the sophisticated financial firms are likely to avoid netting of trades
if they try to exploit funding benefit as much as possible, which may reduce the overall
netting opportunity and potentially increase the systemic risk in the financial market.

SWe assume perfect collateralization just for clearer interpretation. The results will not change quali-
tatively as long as d'yi > (1 — Ri){(1 — &) hi — (1 — RI)(8 — 1) hi.
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A Proof of Proposition 1

Firstly, we consider the SDE for S;. Let us define L; = 1 — H;. One can show that

B8 + / By Ly (dDy + g(u, Su)Sydu) + B, Ly (2" (103 8= YAHL 4 57w, Su-)dH?)
10,¢]

10,2]

= E¢ - ﬁ;ll{wu}{dDu + (yicﬁ,l{su-:m + yﬁdal{sugo}) gudu}
iz BB (Zl(u, Su-)dH, + Z*(u, Su_)ng) ]:t} = m;
10,7]
where
q(t,v) = Y 6} L{pcop + Y2071 (50} (A2)

and {m;}:>0 is a Q-martingale. Thus we obtain the following SDE:

St — r¢Spdt + Ly (dD; + q(t, S¢)Sidt) + Ly— (Z'(t, Sy YdH} + Z2(t, S;-)dH?) = Brdm .
(A.3)
Using the decomposition of H}, we get

dSy — 74Sedt + Lt (dDy + q(t, S3)Sidt) + Ly (Z' (¢, Se)hy + Z2(t, Se)hd)dt = dny ,  (A.4)
where we have defined
dny = Bydmy — Ly (21 (¢, Sp_)dM} + Z%(t, S, )dM?) (A.5)
and {n;};>0 is also a some Q-martingale. Using the fact that
q(t, 86)St + Z*(t, Se)hi + Z2(¢, Se)hi = Se(u(t, S) + he) (A.6)
one can show that the SDE for S; is given by
dS; = —L4dDy + Ly (ry — p(t, Sp) — he) Sedt + dng . (A.7)

Secondly, let us consider the SDE for V;. By following the similar procedures, one can
easily see that

Rlreriy g | e Bbousw)agp,
0

10,7] 0
where {m;}+>0 is a Q-martingale. Thus we have
dV, = —dDy + (re — plt, Vo)) Vedt + dy (A.9)
where .
diy = eJo (rumm(w Vi) dugz (A.10)
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and hence {7 }+>p is also a Q-martingale. As a result we have

A1y Ve) = d(LeVe)
= L dV; — Vi_dH; — AV, AH,
= —L;_dDy+ Ly(re — pu(t, Vi) Vadt — LiVihydt — AV;AH,
+L;_ (diy, — Vi (dM} + dM?))
= —LdDy + L (re — p(t, Vi) — he) Vidt — AV, AH, +dN;,  (A.11)

where {Nt}tzg is a Q-martingale such that
dN; = Ly (diyy — V- (dM} + dMP)) . (A.12)

Therefore, by comparing Eqs. (A.7) and (A.11) and also the fact that Sp = 1,57 Vr =0,
we cannot distinguish 17,4 V; from Sy if there is no jump at the time of default AV, = 0. &

B Proof of Proposition 2

Consider the case of y' > y?. From Eq. (2.6), one can show that the pre-default value V'
can also be written in the following recursive form:

V, = E9 lm/ (rs — ,u,(s,VS))Vsds +/ daD, ft] . (B.1)
1t,T] 16,T]
Let us define the following variables:
V., = e Jolre—ydldsy, (B.2)
P, — / e i ru—vhdugp (B.3)
10,1]

Note that

re—u(t,Ve) = (re—u) + (W — )l vis0
= (r—y)+ ml’zl{vtzo} 3 (B.4)

where we have defined 5%/ = y* — 3. Using new variables, Eq. (B.1) can be rewritten as

=9 |- [ gt [ ab5]. (53)
Jt.T) - Jt.T]
And hence we have,
Vet —ve - VP =E9 --/ nh? (max(f/;"b,()) - max(ﬁ.a,f)) - max(ﬂ'sb,ﬂ)) ds Ft} .
1t.7T]
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Let us denote the upper bound of n'? as a, and also define ¥ = Ve — ye — b and
Gy = —ni* (max(ﬁ“b,ﬂ) — max(Vg3,0) — max(‘l}sb,o)). Then, we have Y7 = 0 and

Y =E® [ Gds J—}} ; (B.7)
1.7
G, = —m? (ma.x(l?s“b,()) — max (V2#,0) - max(‘?sf’,()))
> —n}? (max(V;*,0) - max(V + V,0))
> gl max (V2 V7 - 72,0)
> —alYy . (B.8)

Applying the consequence of the Stochastic Gronwall-Bellman Inequality in Lemma B2 of
Ref. [4] to Y and G, we can conclude ¥; > 0 for all £ € [0, T, and hence V% > Ve 4+ V' R

C  Proof of Proposition 3

Consider the case of y' > y?. Let us define

VE = e fé(rs—yi)dsmf’ (C.1)
Ve = e hota-vdsyC (C.2)
as well as
¥ =/ e~ Jo(re—wu)dugpy (C.3)
10,t]
as in the previous section. Then, we have
V¢ = E@ { / nh? max(VE,0)ds + f dD gt} (C.4)
16.7] 16,71
vF = E° (—/ 72 max(f/SF,O)ds-l—/ dDy| Fi| . (C.a)
[ t,7) 16,71
Now, let us define
v =E?|VE| R . (C.6)
Then, using Jensen’s inequality, we have
U; < E° (—f n;‘Qmax(Us,U)dsir/ dD, ]—}} : (a7
16,77 t.77]

Therefore, we obtain

VF-U, > E° {f b2 (max(f/f,()) —max(Us,O)) ds
Je.7]

}1] (C.8)

v

£ l_/ b2 VE — U&.|ds.‘f4 : (C.9)
6.7 |
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Using the stochastic Gronwall-Bellman Inequality as before, one can conclude that f@F
Uy for all t € [0,77], and in particular, Vi = VOG.I

D Comparison of Gateaux Derivative with PDE

In order to get clear image for the reliability of Gateaux derivative, we compare it with the
numerical result directly obtained from PDE. We consider a simplified setup where MtM-
CCOIS exchanges the coupons continuously, and the only stochastic variable is a spread
y. Consider continuous payment (7, 7)-MtMCCOIS where the leg of currency (7) needs
notional refreshments. We assume following situation as the asymmetric collateralization:
(1) Party 1 is the basis spread payer and can use either the currency (%) or (j) as collateral.
(2) Party 2 is the basis spread receiver and can only use the currency (i) as collateral.

In this case, one can see that the value of #-start T-maturing contract from the view
point of party 1 is given by (See, Eq. (6.19).)

V; = B9 [/tTexp( /R(uV)du)( ) _ )ds

R(t, V) = (1) + 57 + max (~58,0) 13,0 (D2)

ff] , (D.1)

where

and B is a fixed spread for the contract. (%% is the only stochastic variable and its
dynamics is assumed to be given by the following Hull-White model:

dy = (g(j,i)(t) 1)y 1)) dt + oGIaw2?. (D.3)

Here, 899 (t) is a deterministic function specified by the initial term structure of YU,
k5% and oé."’z) are constants. W@ is a Brownian motion under the spot martingale
measure of currency (7).

The PDE for V4 is given by
) OV (t,y (2 g2
vty + ( 2 T Py - R V)V @9y - B =0,

(D.4)

where
1t ) = 899 (2) — xy (D.5)
If party 1 is a spread receiver, we need to change y — B to B — y, of course.

Terminal boundary condition is trivially given by V(T,:) = 0. On the lower boundary
of y or when y = —M (= ymin) < 0, we have V; < 0 for all ¢. Thus, we have R(s,V(s,y)) =
cl9)(s) for all s > ¢, if y = —M at time ¢. Therefore, on the lower boundary, the value of
MtMCCOQIS is given by

; T .
vit,-M) = E9” U e~ I} Padu(yGi) _ Byds|
t

(Js g —M}

T
= / DU)(¢, 5) (—B — glny(ﬁ)(t, s)) ds . (D.6)
t S
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Since c\9)(t) is a deterministic function, DU (¢,s) = DW(0,s)/DU)(0,t) is simply given
by the forward.

On the other hand, when y = M (= ymax) > 0, we have V; > 0 for all £. Thus we
have R(s,V(s,y)) = ¢ (s) +y09(s) for all s > t, if y = M at time £. Thus, on the upper
boundary, the value of the contract becomes

j T j i s i
v, M) = E [ / e Ji (e 4y ) du (ygm = B)‘yt(”) - M}
t
T : » . 3
= / {—BD(J)(t,s)Y(M)(t, 8) — D(S')(t,5)(‘9—1/(3.1)@j s)} ds . (D.7)
t 5

Now let us compare the numerical result between Gateaux derivative and PDE. In the
case of Gateaux derivative, the contract value is approximated as

Vi 2 Vi(0) + VV; (0 max(~y09,0)) (D.8)

where .
vi(0) = EQY [ f o= J2 (P +yF ) (ygj,z') _ 3) i
t

Ft] 3 (D.g)
and
YV (03 max(—y9,0))

7 T k) j iy P
= EQ¥ [f e Ji @ +yd V) max (—V;(0), 0) max(-y¥?,0)ds

£
t

J—',g] .(D.10)

V4(0) is the value of the contract under symmetric collateralization where both parties
post currency (i) as collateral, and VV; is a deviation from it.

In Fig. 6, we plot the price difference of continuous 10y-MtMCCOIS from its symmetric
limit obtained by PDE and Gateaux derivative with various volatility of y(%%. Term
structures of ¥y and other curves are given in Appendix E. Here, the spread B is chosen
in such a way that the swap price is zero in the case where both parties can only use
currency (i) as collateral, or B is a market par spread. The price difference is V; — V;(0)
and expressed as basis points of notional. From our analysis using the recent historical
data in Ref. [10], we know that the annualized volatility of y is around 50 bps for a calm
market but it can be more than (100 ~ 200) bps when CCS market is volatile (We have
used EUR/USD and USD/JPY pairs.). One observes that Gateaux derivative provides
reasonable approximation for wide range of volatility. If the party 1 is a spread receiver,
both of the methods give very small price differences, less than 1bp of notional.

E Data used in Numerical Studies

The parameter we have used in simulation are

k) =k = 1.5% (E.1)
o) =) = 1% (E.2)
o) = 12% . (E.3)
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All of them are defined in annualized term. The volatility of 3 is specified in the main
text in each numerical analysis.

Term structures and correlation used in simulation are given in Fig. 7. There we have
defined

1 (k)
RSCI)S(T) = -7 In EQ® {e_drgcsk ds]

1 G [ _ TG0
Ruo(T) = —TInEQ“T [e Jo vs ds]

The curve data is based on the calibration result of typical JPY and USD market data
of early 2010. In Monte Carlo simulation, in order to reduce simulation error, we have
adjusted drift terms #(¢) to achieve exact match to the relevant forwards in each time step.

10y MtMCCOIS
300 e

- 10Y Payer ~o— 10Y Recuiver

250

200 -

150 -

100

Price difference {bps of Notional)

0 -

o
3
€

0.00%  0.25%  050%  0.75%  100%  125%  130%  178%  2.00%
y™(i,1}} annualized volatility

Figure 1: Price difference from symmetric limit for 10y MtMCCOIS
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Price difference|bps of Notional)

20y MtMCCOIS

1800 . 9.0
~o—20Y Payer —— 20Y Recgivar

1600 8.0
1400 7.0
1200 6.0
1000 5.0
800 4.0
600 30
400 2.0
200 10
0 0.0

0.00% 0.25% 0.30% 0.75% 1.00%

1.25% 1.50% 1.75% 2.00%

yM(. 1)} annualized volatility

Figure 2: Price difference from symmetric limit for 20y MtMCCOIS
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Price difference {bps of Notional)

Price difference (bps of Notional)

10y OIS a_cM({])} = 1% per annum

—- 10V rec =g 10Y pay

0.00% 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00%
yM{}L1)} annuslized volstility

Figure 3: Price difference from symmetric limit for 10y OIS

5o 20y OIS o_cM(j)}=1% per annum

~o- 20Y rac @ 20Y pay

350 -
2%0

1%0 -

100

0.00% 0.25% 0.30% 0.7%% 1.00% 1.25% 1.50% 1.7%% 2.00%
y™(j.i}} annualized volatility

Figure 4: Price difference from symmetric limit for 20y OIS
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Figure 5: Price difference from symmetric limit for 20y OIS for the change of oz

Price Difference [bps of notional)

Price difference (bps of Notional)

20y OIS a_y7(},1)}=0.75% per annum
250

—=20Y rec --20Y pay

200

150

100

o i ; 2 .
0.00% 0.23% 0.30% 0.73% 1.00% 1.25% 1.30% 1.75% 2.00%

cM(j)} annualized volatility
(4)

10y Continuous MtMCCOIS
300
~4=10Y payer G-derivative ~@- 10Y payer PDE

250
200
1%
100
30
0

0.00% 0.20% 0.40% 0.60% 0.80% 1.00% 1.20% 1.40% 1.60% 1.80% 2.00%

y™(. 1)} volatility (annualized)

Figure 6: Price difference from symmetric limit for 10y continuous MtMCCOIS
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Instantaneous correlation ©

G} .l fx{ L1} wil

cj 100% 24% -5% o%

cl 24% 100% 15% 0%

fx ~5% 15% 100% 0%

vii 0% 0% o% 100%
OIS of currency (j) OIS of currency (i) v (ii)] spresd
term R OIS term R OIS term Ryij
1D 0 0950% oD 025271% oD -0 174%
1M 0 0B43% dm 02547% 1Y -Q187%
3IM 0 0B43% iy 0.3886% 2Y -0232%
1] 0.0960% 2y 0B272% 3Y -0262%
1Y Q0970% 3y 1 .3508% 4Y -0287%
10M 01060% 4y 1 B071% SY ~Q0301%
2y 01313% Sy 21577% 6y —0309%
3y 0 1BG6%R Ty 2 6198% 7Y -0312%
4Y Q0 2805% 10w 30111% 8Y -0 308%
SY 0 3883% 12y 3 1560% 9Y -0 307%
6Y 05167% 1Sy 3 2666% 10Y -0300%
Y 06584% 20y 3 .2659% 12Y -0 288%
8Y 0 8000% 25y 32452% 15Y -0270%
9Y 09418% 30y J2224% 20Y —-0242%
10Y 107712% 25Y -0211%
12y 1 3163% 30Y -0 188%
15Y 15727%
20Y 1 8339%
25Y 1 9249%
30Y 19627%

Figure 7: Term structures and correlation used for simulation
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4.7 SEREFEE

FHSEOBIEESERERICE 2 2 FE2NNT 20, SHRSRHATELT, FHIKE
0 LERSEVSEF S NAEHEIAIL, SEEFEEL TS, SoWRYI—v, BEY -
v, b=y —v LRI, TEEEEETEE, BEEFEE, RERMEEO IEEEEAS. I
B H d B4 t OTHEEHEE q;‘j{i %, BRI OVTENREORERB» oRLl t £ TORED
SEESEE 2 £#RIc oL TAT LAEoNEME T3, 86 5|8 d Rl ¢ ORTEFHE of
%, ZORMOSTSEORERKY SFHEt F TCORBOREEFHEEONME L 5. i W
Mﬂdﬁ%t@@ﬁﬁﬁﬁgﬁgu,%ﬁiﬁﬂtrat&ﬁ%%ﬁ%qﬁ,ﬁ%%ﬁ%@ﬁ&b,
d=1,...,D OBNEZAWTH LELRAREFLOREL T5. ThbLUFOHGER af, @
EOHEIHEE B L L2 L&, ofy=qli—a]—Biglh TH2, BRI EDOEBETVIZOWT, 3
BEROBEOHEHE 5; DFH1X 0,926, REREDTIFIZ 0379 TH 5, WEEFELE, BEAEHE
THERE, BEIFHEEOVWTAL 8BS o THEISNS2, IR0 DUKRII SR FERALER
EBLDET D,

HHSE L L TEBREO/MIOKELRESIN TV 5%, AW TCIRERSAEDOEHO A2 O
WHRE T2, FHKED S LRESERE, RENEGNECEEL S5 2 5 L) REXHBEIC
HHINZ0IHL, RESEOMIOKE I, RENIEEEICEEEERLES L L0 EXHH:
EAICEHRING, 22T, MBERICIEVWTINEETHL LEIONIBRRARICERZE
2. il z1% Cao et al. (2009) 13, G IEEFORIZOWT, RRAEDIMIDHRZEDTOHTL,
BESEOBHIBLEETHL LREL T3, FHKEICET 2REREDOIMIE L UEED
BEIZOWTODHIE, SHROBEETH 2,

4.8 BIKET=Z—

HEEOMEEHIRAL — L Ic & b, HEEIBGBHRICERSINGBIIRER, MRELSIIA oK
Lo Twa, —F, HEFERL—LOREBFEINDE LE, REROBIBNAETEICL ), I
B AT OSE b AEHIR O M E 2\ 2 AHEMEDSH 5. HlA 13 Subrahmanyam (1997) (2, EEF
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PP 5 G OBIEIIETE I DL TR RO 2T TED, —7%4, George and Hwang
(1995) (&, HAEK BT 2BEHEIEICOWTEIEDTITET> TV 5,

DL RREHSREOHEE v —AT 5o, BIREY I —2HviaiziT). %A
i H5|H d ORFAISKELY 2 — LY 2, 9B 1 JEATE TICRAONENH - Hic¥a, Zhbisto
Hic1%2E25I—8BHETS, Btz s, LY, FAENLISUEBEEL, 9K 1R
REPREEINTWAHIZ1 2L 35 —FEHTH 5,

MHBEEICOVTORFIRESY 2 — LY %, 2 OMATHESEN 1 S EBN 2 L 2RTS
S—EEHLETE EREIHICDWT IR 1 FHETE TICRIIDNELH - 828R, Z0FE%
L3k, UB5#MATHS. ZnEMAL, LY %, 9F 1 9% TICRIOKEDH - 78425 170
AP 148 SEMLI T TH B HIC L, ZnLNOHIC¥ o2 L35I —EHLET 5,

"I —THLE BAO LY Offild, 9F 1 SEATAEREL L, A—8#AR-HicEVTTXTOR
Zlcile 35, I THRERIZ, IROTEICEYT, 91 SE TICHNEMNBIN 2 5%ES
FHTEZ LRELTV S, BEIBBIIOREOKEC X D, FHKE OS2 H 2 RETRCE
ZOTHNUL, T8RS FIKEVT, 1 0BIKFMH T Ear2ELTRTESL LT L{RER,
FHIEEBRWRETIE AW EEZ NS,

5 BEETFILOHEST

AEITIE, RE1 TREIBIATTORA / 4 A T35 L, FfERBREEL Tw3 ) Io2w»wT, 9h
HEREALEE eV y—y, EHEVY—r, F—F LY ¥ —rOFNFNITOWTO unbiasedness
regression DHEFIERZHRET 2,

5.1 BBFETFTI

HEtich b, HIEOMBHRIBAL—-—LVEZEZRL T, HHISREYI -V y—rv it /nAHE2S
WD, WY Z—ICowTIE, BEle Jkic, BBIHd=1,...,D OBflfE#2H»T,

ApM = o+ BAPY + ALY ApY + €4 (4)

EHET TS, ok BICINA v bEMRFEETH D, UTTHERKE T3, § OH#tEHEDREDHEREIE
HOHEETHD, 0 LD OREFFIUE/ A ATHHFHEREEATED, 1 THIUIERDEN, 0
B 1R THIUDHF G, 1B THNUULNIIGTH S Z E2HERT 5, ¥y OHEGHIED 0 LIS
Dk, I5IHmESORHKECOEMED, MigERIciE %5 2 T4, unbiasedness regression
RIS S — L) 9= D7 u AHE ST Z 1220 T, #lA1E Comerton-Forde and Rydge
(2006) b [AfgIZ, &I —FEH LY ¥ — LD RAE% &S unbiasedness regression #H#EH LT
Vg,
BEHEYF—vico2nwTi3, #iRiRE: ZEic, B5IHd=1,...,D DERAIEZHWT,

Aplly = a+ BAPYY, + YLy + e (5)

EHEFT S, P—FAVS—vicowTHERRIC, SR RRIt Tk, W5IHd=1,...,D D8

HlEZ AT,
ApTly = o+ BAPLY + YLEAPT, + e (6)

<

ZHEET 3,
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R 1 ORI BT, MRS, 8K 59 HLEIDHFHICE T, V¥ — v ORE B D,
TH5L, —F, WMIUREHIZ, VI—rOREFIPE TH5.

BHEVS—rEBIXC =LY F—O#ET L OREENTIE, DUT OBRFEE Sl L L THE
poAT. HETRAPFITOEXERF AT A B CEHRECF Y Y2 T 5 I EHTE, FaIKAIR
FERZEROF v eV Z2ERLAEXORE2Z T 2 WEESH 2. Thbb, flitgEE2HE)
BEYREAERLAVEC L D FHKRENIKE(EEL, ZRKECT—HMOEHE, BFET
FrioB 720 0lic 2 2 rlglEdd 2, EnE2AnELEL 200k, ERCHEMNETREILES L
THHRBEFRICE > TEELZMETHS L b, HEHERICAA 7 AR L6 THEERNES L AT
R 2 5T 2 5 A TLEETH 2, HEORIICED X ) L HEE2BAW3OHEYTH S
PlE, BEOS 2B sEETH A, ZITIE, EHEY Y —rOBRASREOHEEHICE LT,
BHAER Apll, B L UBHER Apl DEFNEND 1 R—R T AN L 99—V F A L DI
KHHBEAMEEZANEE LTRATS, 3 7TAE2H—T24:0, At InALYA v
DEHIEE, FP—F LY F—rEAVBHETFICELTHERAT 3.

ST EOHEICL D, FRAICE VT 170 $#HOFHBEERORHDHEFHEDBR N B, Th
KR LT tBEEZTWHRROEEEL2 MW T2, HLSERMCcOBREZOHBEOEELZER T30,
Chordia et al. (2008) & [Alfk, FHEMOBREDTE L HME TOREDOHEEHENICEDL & TR —
THEERELS ETHERZEBETS. SEEHHE 170 O t 20 HEIRERK 0.025 252 28X
M3 1.974, EMIEESR0.01 25 2 2REESIL 2348 TH 5,

BASES I -V F—r 070 RAEOFER y &, ROXIZFFCLs L FHEINS, fiilg
R 5 oL IBRIENS D, 9R0TDIERE R4 9FE TlE, MMEHERIC X D REEDELLIE
Db, yOHEFHEIRIECR 5 & FHEINS. 8K 59 BIETICE V) BH#E T, + DHEEHEDR
FiEFobr sy, HL, RELTHRTEMEBELORIINER S, 7HEXTHIUIMED
IO EGEN, BuEXTHIUIMBED L HHOEIDNEICEWTHEEI NS, HEFRIHT
ZHERICT 520 Z0L ) REXE2HE>THTOTH T, FHRESBERIRNLKERZEL
TRELSEMTZETREKIGCERZY, v O EIZEICR S,

5.2 EIHER

#Fz2i, HMHUVY—v, EEVY—Y, F—=FNVF—vDEFNFHITOT, SEES5T95 9
W5 3 DEREZ] 2" L 12, unbiasedness regression DHEFHEREZ E L 0L DTHL, BWHY ¥ —v
EF—FRYF—vionTiE, BEBASHET LEFEEZIT:, BEZICOWT 170 #FHOFHE
HOBBOHIHEDEHE L URERBOFEEZRIIFL T2, BRI tETHS. () DEE
REHEHEROREVE 0 LEREL 2D, [ | OBGETHHEEROBED 1 LERICEL 2D, %
METLIEOOt{EZTLTWS,

8 55 h 5 8B 59 FDHEEHI BT, V¥ — v OREE, BV Y—r, eV Y-, b—
NV FZ = DOTRICBVWTLIETHD, FAEFENRE IR TREEY D ORERIIZIEHNSINS.
I, Rl EEANRESRTH Y, RTHRLAR, BEZEb2uREICHERSRBRL T
WBIEERLTWS, BEROKRZTIE, 9BAMZI1 LD LS CBRERGHEEIN S, 9IC
EDLEE LISEDWTERE D, BEIRGESE $ 212 EREOBRH2THMFH S T3, LER
THIEWTES,

HEIFHBEIR D1 S ORI OwT, mHYFy—y, BEVSY—v, F—FLYF—rD
LWTNORBOHFEDFI 1T, 1 LABCERS R, Zaud, WSIRBE 1 2RI ERE
I MiETER A THON T WA I L2 RBL TV 5,

_64_



® 2. BERE T VORGSR
RFNA: BRER TR ) 7~ (ApM,
W% ¢ EHH Apl, LY apM, R?

8:55 0.000 (1.69) 0460 (7.03) [8.24 0121 (1.64) 0.438
8:56  0.000 (1.55) 0.497 (7.52) [-7.60] 0.103 (1.40) 0.462
8:57  0.000 (1.54) 0.521  (7.70) [-7.08]  0.095 (1.26) 0.472
8:58  0.000 {1.25) 0.556 (8.00) [-6.38] 0.093 (1.20) 0.492
8:59 -0.000 (-0.10) 0.809  (10.8) [-2.55] 0.030 (0.37) 0.612

9:01 -0.000 (-1.25)  0.990
9:02  -0.000 (-0.86) 0.985
9:03 -0.000 (-0.61) 0.977
9:04 -0.000 (-0.40) 0.977
9:05 -0.000 (-0.28) 0.956  (12.2
A3 B: BRUIEBCER ) ¥ —> (Apl)
FEAl ¢ et Apl?, LiApl R?
855 -0.000 (-6.30) 0.479 (20.1) [-21.9] 0.039 ( 1.87) 0.233
8:56 -0.000 (-6.36) 0.510  (20.6) [-19.8] 0.024 (1.25) 0.249
8:57 -0.000 (-5.69) 0.548  (20.9) [-17.3] 0.003 (0.17) 0.267
8:58 -0.000 (-4.91) 0.603  (21.2) [-14.0] -0.032 (-1.48) 0.293
8:59 -0.000 (-2.98) 0.751  (31.1) [-10.3] -0.133 (-5.93) 0.336
9:00 -0.000 (-6.28) 1.008  (52.6) [0.40] 0.167 (5.00) 0.353
9:01 -0.000 (-6.39) 1.000 (55.4) [-0.01] 0.212 (6.10) 0.370
9:02 -0.000 (-6.50) 0.998  (58.7) [-0.12] 0233 (6.82) 0.384
9:03 -0.000 (-6.45) 0.999  (59.0) [-0.06] 0228 (6.78) 0.395

)

)

0.324  {3.20) 0.621
0.303 (3.04) 0.623
0.280 (2.96) 0.627
0.283 (2.92) 0.631

)

(7.52)

(7.70)

(10)

9:00 -0.000 (-1.74) 1.037  (11.2)
(11.3)

(11.4)

(11.6)

(11.7)

) 0115 (1.32) 0.649

[-8.24)
[-7.60]
[-7.08)
=
(0.40] 0.318 (3.01) 0.621
[-0.12]
-0.18]
[-0.27]
[-0.28]
[-0.57]

9:04 -0.000 (-6.74) 1.009  (62.6) [0.53] 0.221 (6.20) 0.407
9:05 -0.000 (-5.60) 1.008  (67.1) [0.18] -0.024 (-1.03) 0.447
A3 C BHAER: P =YL 8 = (Aplh)
el ¢ EBIH Aply Liselt R?
8:55 0.000 (044) 0.524 (5.06) [4.60] 0.116 (164) 0313
8:56  0.000 (0.32) 056 (543) [4.28] 0.08 (1.24) 0.330
857  0.000 (0.25) 0601 (571) [-3.79] 0055 (0.77) 0.346
858  0.000 (0.01) 0672 (6.39) [3.11] -0.001 (-0.02) 0.372
8:59 -0.000 (-0.57) 0.864 (12.2) [1.91] -0.144 (-2.09) 0.420

)

)

)

)

)

)

)
9:00 -0.000 (-0.77) 1.054  (19.2) [0.98]  0.270 (2.52) 0.448
-0.58) 1.029 (19.0) [0.53]  0.307
)
)
)

9:01  -0.000 ( (2.78)  0.462
9:02 -0.000 (-0.34) 1.022  (20.0) [0.43] 0.322 (2.88) 0476
9:03 -0.000 (-0.24) 1.015  (20.5) [0.30] 0.323 (2.96) 0.484
9:04 -0.000 (-0.15) 1.017  (22.1) [0.38] 0.319 (2.83) 0.495
9:05 -0.000 (-0.18) 1.014  (22.6) [0.32] 0.022 (028 0518

2004 HH> 5 2005 FIE VT, BN HETHEEASFTH D ADR MRS Ty 170 #HEIC D
T, unbiasedness regression OHEFHFERZT L Tv5, iU ¥ — 13 170 $M OO ZE, +—
FN ¥ — AN OISR, BEHY) F— i RO v Fy 2 A - EFAOBETSH S, () Hid
MBI D L ERICRLIDERET 00 ¢ i, [ HIEFHED 1 LAEICERIDERET L2200 ¢
HTHE, EEVF—vEIV =71 - DESIIHHBT L IcHEH L, REOEYE XU R2 9,
HAMHBEEEO ¢ fHEHE L Tw5,
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B |HMaRT Iz 817 2 MEEHROEE CO>WT, MEVI—v L b= LY F—vTiE, VF—V
LERISE S S — L0y 0 AEOEROKEHER, 8BS 405 SR SETHE D LHREICE
Bonds, SEEROciifakzh, Lab¥o tARICRLSE, IoKRIE, MEGFRITFES
NnBEx, WEIEGENCREIREICEST 5, ERRERRICERT S L SMEFlRICH
MhBT, LnIIEERBLTVS, fiHY¥—ricowTid, WEIFHRETTO 7 0 RIROHRE
O¥EHERETY O L EECELZ ST, BERGREZEI Ny, BL, Z0FKRIE, W) d—
VIO BT OERSEY I —DERICKELTWS, F2/80)V A T, THEEFI2WLTOR
GRS T — LM, FASHTERL LK), 9K 1 HE TIRRMONEL B - 7 #1170 8
Wb 48 BRI T THAHIC 1 2253 —BRELTWS, I LTHAIIR, 148 SR TIE
¢ 100 ML TTHaHIC12 L2 LENREY S —OEREZEELLES, SHOTCETS
)= LENRE Y I — 0y 0 AEOREOHHER, AETREEZVIDODRLELS.

BB BERE OMBEROEE I HowT, V¥ —ry LEIRAESY I — 0y o REOREOHEHE
13, HEYY—v EEVY—V - PP AN = DLTHhOBRED, IR0 TPL IR4TE
CETY¥D LERICERZD, MEEHEISENIN2 9B tERREZSLWEIZE TE
FTLTWS, ZHUEEEIL—A2eFRINGERTH S,

6 EXS|BARAETDREER

AT, BB KRR BT B0 2 LA L B, TG AN R ALY
HUEF NG, oL TOMTETS. AT, HRELIAS % A 2SR ERETH 2
Bedzs, HOLMTIOREEHAL, $AABNCEROERET). 209 AT, FHRE
EFROTHNAEELTRL, & 5 IMEE L AREF O TORRITORI HRERET 5

6.1 fHiigFROEYES DR

MRRESESETH 2 L2, FHAR2EL MERAFREN L VEE L L 2RSS S. £
DFd, KH20 ki, MEFHERNEHTH 3 L EHFHREPFRICEHRSNIDEHELT 5. [
BRI 3NEHic, MBREEIRETH2 LETHoTH, FRKRELZEBEL MERRZTHIC
LT, MiRRENESETHL L E LABCESAMEERSTORTO a2, E2EEY 5. iEHER
i3, AEHGEOZSAEFVEZICEIELVLEELI NS, K1 OBIEERLD, 90
SOSERIEEYNICERNENTH D, KENMESECEEIGND, Z2OAOEMTIR, TTH
14855 30 SEEIEB IS ECOHBY ¥ — v BIUERY ¥y —v i, FHE BT 5K
BB 2OREEKE T3, 8B FUAENIZIZ, WHD5MH 9K 04 F TOMEEMEIS
BHTH 2L ECMERREETY, $EETFHATH 2D CMBREREITHIH, FEMNICMBEMLIR
2o AR ENESE ch--HEELZ, 2O0HICEDL S ICMBRERRET b2 IWT
532 kich 5,

Mt EZ | TORBEHE LT, A 4B UH9RF0FETDYF—r2Hw5
D, DTo4-o08Hc ks, (1) SO 6, FIKEVEES ATy aThE, 9K0T
O ZBEESENTH 2. 2) FHZOMBRREOMITHLOT, FHE»LKRE (HEIER
LaLAREE Ly, (3)8E 59 FLEIETOY ¥ —r2 AV 3B&I0E, FiKELEENS /A
XOBEBEZIFTLES. £, () DHOTAERNRIIFEBHPRIKONTHD, IFFOIFTLYL
305 E I 1 e TOMEBEICN L TREFREZRET 22 L CERRBER W EEFR
5N3,
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3 IREEAL & REURAC TS

0 1 0 1

A ¢ V?i 0 0 1 1
8:55 49.0 532 548 57.9
8:56 52.1 56.8 586 62.0
8:57 55.7 60.8 62.8 66.4
8:58 60.0 65.6 678 71T
8:59 67.3 729 755 79.4

2004 225 2005 FICEWT, ARPEIC HEETRERSNTH h ADR I ST w4 170 80, 9
RUSARCALSPHES > & BINA E TORBIOAREFFE LT LT3, TR ¥ —vOoRpE LG ) -+
DR E D EIE T 525 VM IZETH 14 B 55 20640 9 R 0 F X TG ¥ —r sk E R
1258 T8, VIS O 14 B 55 54 H 0 B0 FETOEAY ¥ —> pikEREHI 1
BLBYI-ERHTHDE, VI—VORMIEDIBIHE V=7 Lic ) 2T, SRR &I B
DHAEYHIEDEE % £, &0 Wi E 2 EEHEZRLTVS,

fHifEAE) & AACEST & OBREFRZ 2012, 1 HOMEELOKRE X Ic k> THEIHZ 4217
W=7 F L) AT, 8RS 0H 6 8 59 T TOXRBLEHFEED 2T 2. Jr—7
G, THY Y- ORENENRECHICLIZ LS I—ER VM, BLUMR OERY ¥ —
VOMMERKRE VR 12 LI KRV #Av3, VML, BiH 14655 00 54H 9K
0RETORBY ¥—> Apdl, , BV, d=1,---,D QBRI L b P (2¥ LBl oM %
FEL, P05 OREBEOENEDBRERZ ORI EMA B |Apdl, 4 — pbiol > ohto/2 THBHIC
1,%nuﬂwamﬁn%kﬁfi—ﬁﬁvéé.Kfu,%ﬁiﬁcmf%ﬁbﬂ#%ﬁﬁééa
IF0TETOETY ¥ — Apliye g 20, £¥d=1,...,D OBHIEL b BERZ of, 2itH
s, @ﬁU?*/®ﬂﬁﬁﬁ%®P$ﬁ%®#ﬁ%ﬁn%m%mﬂ>amd21%5ﬂk, zh
SO BIERE 28 —ERTHB, Ioic (VM V) icky, BEIHZ (0,0), (1,0), (0,1),
(1,1) ® 4 248U, HBER I L D EiEIAE CBvd, BEERTHiESA S S Bvibd,
ZXANT 3. _

AHTE, YHIRODETOY Y — v 28R RORMES ONBEEHR L T 228, K3 O
TIRY—FP2EEACY, ABRTHELLY I —ERVM BIXUVVE2AVE, V¥—rDk/nh
ERBERIEH O BMEDORNIE OB THIET 21385 I —EROBENKEL 25, HEE
TOOHEFHERL D 9 0 TOKE I FHEICERIENTH 5700, BEDEHKICKELRTI
pwEFRSIND, FAMEFRICLD, KENMEGIAS CELTZEEICY ¥ —riidhck
55, fHEHIRICHDSLZVHDOY Y= Wby —v2NILTHRTREVDT, VM &
GV, fEEFIRY» S KERASAATAEZR 2w, DEOL ) ic, BICRE 3 ORETE, Mg
ZM®k§é%ﬁ%%E®%Lé®ﬁE£ﬁtT% L oRETHRIER, LhhIwEEZS
ns,

flitg R A OREES CBIL, fAITRIHIEIE TH# 2 & Y HEG I BT E Ticfl o h DfRo AR
wH BEECMBRRGSEETH 2, L LTHNT 288z on s, FI2ITHEIHBER O
ERPBIFREtOnFER, MERROESES CEEL52 2T BENH 2. L L, BICHEES
DY —=F 22T, FRD=DITTALBOERAFHEEFET 2 LI3HLVWLEXI NS, £
DI DAKETIE, ffifEDEEz Mg ROREES ONEEH L T3, CEOERARCBNHE
DRRD, FHEDMETHERICED L ) RFEEELEZ 20OV TOSNIE, SHOBETH 3,

6.2 SKEEHHAE

£33, (VM VI 2ROTIGIHE2SELAS AT, FHAEOREEGD ML ¢ $TOR
MOSEESHE DT E M LR, 25 BAMOTH2HEL 2EERLTVS, BLD,
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R IGHIRASE D 12 ERAFDPFEHICEXZHL, [EPEBECEFHINT0E I L0025, fl
A, WBEDNE R (VM VE)=(0,0) DHIZIZ, 88555 TORBOREEFFAEIITFY
490HB-7EZ 5, 8FF6 T TIF521HTHD, 856 05D 1 oHICRBRE ZEH» §iEX
VIEREREINTVE I b5, IND SR 59 HEICIZ 7 ERECHEMT 2,

it 2l L [ECEHT OGRS OBEIC DT, FHBEBEEIC L WEEIRE (BT 5H Y, #iR
EHERIC X Wi AE CEMLTZ2HY, 2 ThVHICH L TREMERICEFIN T3, B
EEICiE, VM =0F2RB VM =103 LT, WTFRORAIEWTL V/i=0kh Vii=10
BRREOEFHEENT ., BRIV =023 V]/i=10beT, VM=0kh VM =108
BRAEOEFEEIE ., ZOKRE, RH2 LEANTH S,

6.3 MMBE({EK[EER

B#2 ZMELT 570, WHEPEREWRENELE, EAEFMEREREFREEL L, 39
EF e MEEOEEL LERRST 2T o7, RROFTPEER L, MEEROHEL Z0BETH
5%, REEZHE LT, WH 1455 34 6% H 9B 0 DY) ¥ — ¥ ORRHE |Apdl, | & &
CHIE 14 B 55 00 5 4B 9K 0 T DER ) & — > OHENE |Aplly, .| ZFIV 3. Zhs) F—>
ik, VM B VI OZRICAVWRY Y- TH S,

TIREHEE o} LMEELL OBEREHARL LD, BEIHd=1,...,D 0BHEZHVT,

59,0 = @ + 71APg0 al + €a (7)

2T 5. FEEEEHEE o, LREFEE ) 1KowT, B8, BEBEd=1,...,D
DEHEEHT,

Ghis0,a = o + B1APYG0 al + 71 APEHo 4l + €4 (8)
qgég,d =a+ ﬁmf-’éfao,d] + 'YlApS{UO,A +€q (9)
ZHEEH T 5.

(R 2 OREGEEIC BT, TEHEFHEEOHI B 2 IRERTIL, THY ¥ — 2 OENEOFRE
Pen, M REIEEENIE, ThHL, EEEFEEOHINC BT ARERHIL, BEYY—vD
HHEDRE 2 0, WILEFHIIRENE, THs, BEFHEEOHE IR 2 RERSIZ, E
Y=V OMMMEDRE 3 ELUHEY ¥ — v ORNEORE y ¥ 0, NiIEHIZ-TFhdro
BEMIE, TH5.

F4DHFHERETL TS, BHNOKER tETHS. BEEFEES L UCREHEREO#
ShCld, SR LIS ERT, REOHEHEOFEE L URERROFEEERLTEY, £
FIMAIC B EREAHBBEERD t E2 A LT 5, (R 2 DRERSIZ, THEFIFEES X CHEEE
PFHREETCHEEKRE I RTEHN SN S, REFEE TR, BFY 57— 0NMEDREY o 0FE
REWGEEKE 1R TENIN, WEY ¥ — > OEWNEOREY 0 0RERSE D BKE 1% TEH
EINB 20OFHPLELIYOTHE L) RERBICOVWIEHIRIE FBRERTIE, FE
DFEHIL 163 TH D, £7: 029%DH#HMB CHRERFUIFENE I%TEANSI NS, LEXY, KB
DHP IR 2 EBANTH Y, TTHY Y — 2 OEMMESKZ G & FICHBESECRE O HTTHTE
Hick-TED, EREV Y- O EIRE W E S ICHABREICREOEFHIERICE> TV 3,
LWz 3,
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R 4 AL & AFATREC O WH

TS EROH EEDR ) B F—vD R?
HRHE ([apliy, o) HOEE (1 ApSL, 4D
TRMHHIL (g3, ;) 9.370  (567.3) 19.17  (5.60)  0.065
EHEHHE (gif, ;) -0.071  (-8.45) 14.38 (15.6) -0.405  (-0.25)  0.054
M BT AE (qg":;g,d 4.033  (17.25) 16.93 (3.90) 17.47 (3.09) 0.068

2004 F 5 2005 FiTB T, #EEENYIC TSRS TH D ADR SB[ T AT Vw70 170 8D
T, B 59 47 Z COMACUS 2B HNIZESR, (00 14 B8 55 555 4 H 0 15 0 4 % T Ok (Y % 52 %
ELZEHEF VO EET L TH5, FHNIE t HTH 3, BSIESHEE EFHIER & R
Boga, SAILHETL, REOFEELY R? 0Ty, BAHEMEESRO t 285 L Twn3,

7 [MEFNMARRERICEZDIRE
AT, B3 TG IBAROMELR L, MR - REOEFREOBEEZI A, 1o

WTDTHZIT). ETHEREFTAEHALL ) A THHE2EE L, 2B ICHEEEICOWT
E TR
7.1 ERETFTIL

BEHOERETLTIE, HiH»ODY Y-, BIURIGESI— LYy -V D70 RTE
ZHBAZE E L. AHTICE T % unbiasedness regression T, X &2, AL L OGS ES
DERIERTFI—FHEV Y- L7 0 ATTRFATEIOEML, #H2F5.

W5 & —O#EFTE, FI-ERAM, VM, HMVM 2Fv3. VM i, S48 TERL
ti%u,m%u&—vwﬁﬁﬁﬁkgmaml%aafs—ﬁﬁvéé.ﬁ%u,ﬁ%tivm
THEEOREEHVEFOHLD LBV L 2R TV I —EHTH 2, HEWICIE, TEEE
Boly &, BRIt L, d=1,---,D OBEEZ AT oM, 0T uI™ & MRS oM %
HEL, ¢t BEDFYT I ABEEREDLGEBAT M > i + oM 2D L iz, 2R
BE¥OREZYI—FERLET S, #ET3ETLIE,

ApYy = a+ BiAPYy + B HM ApY, + BsVM ApM, + BaHM VM ApYty + yLY ApM, + ¢4 (10)

ThH 5,

BRY & —vofEtTid, 5F-ERH, Vi, HLV #Hvs. Vi, S48HiTEERLE
LI, EHMOEEY ¥ - DMMENKEVEIZ 1 2L 25 I—EHTHD, H] 13, #HEE
AOEFZ VRt FTORMLEFIVERTHL L X IT 12 L2257 —FHTH D, BERIDIE,
Eﬁﬁﬁ%ﬁﬁg%mh.%ﬁiﬁﬂt@%n?ntowf,%B@ﬁﬂﬁ%ﬁmf@@@@ﬁﬁ
# ol RO, of, VEREREOERI BRI ¢lL > ol 20 EIC1, 25 ThvEEIEDE
LY I-BERET S, #ETETAE,

Aplly = a+ BiAply + B HIL AP, + BV Apll + B HIVE AP, + yLiApE, + eq (1)

TH5,

F=F AU Y- ot BB AT, VI HIVI 2 Res, BT, SEAOR
AEHVEEIDOVEETHI2LE 12 LB I—FHTHD, 05 —F8L, BB
LIS, MEHHE o OB HOBRMER AT ufT B X UBIERE of " ZHEL, oJ) 0
177 ABEREOLGEEA qT > T v ol 2D LB, 2RO EF Y ORLE S
I-EHTHS, VIIBHHI IV BB S - ORMED BT NLRKEVEZICL, 2R
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PAIE O R E B I —EHTHY, Vi=1-(1-VM)1-VF) LEKTE. hss
#He T,

ApTY = o+ BLOPLY + B HEAADT: + BV ApTi + BaHTAV)Y Aply + yLyApfy +ea (12)

EHRT 3.

(R34 3 DBEEIC BT 2RERSIIRD L H itk s, R2OERETFTVOMEERLD, j e (M, Ii, T}
DEAFIIOVT, WEIAERD 9B 0 TICBT 5 Apl , DIREOHEMER 1 LHRICRES
L, ZOfEHER AR L, MBELOKEEEPAEOERNERLSAICD, Apl, DK
BORIHED 1 LERIER LBV RIRIET 5. RERDIL, 9B 0TICBVT, Apl, ORED
1, 7 H Apl, offps¥n, 90 ViAp], ot n, »o H] ViAp] , oY o
Hh, AR WT O REDIEEE Eik %, Ths. bL unbiasedness regression DRI D
HEEMEIC N T ADH 27 L LT, MBELOARELAPREEFERZHICLAKRIINS T
ADVRETLOTHNE, FI—EHREVI— v DI/ uABORBBE0THIDERETS I
LT, Bz > TREOHBIESR CHERD 202 BHET 5 2 LAITE S,

7.2 HEHER

HEHERAESICT LOTV S, FROMEHED TO () NIZIZfEHERY O & Bk 5 2805E
THE-ODLERRLTED, [|NICEH#THES 1 LELZDERET220DD tHZRLTWS,
FE, EHICHOWITFBREERT-ZEBEDOETHS, BFVI-vEIV LIV FI—vD
HEFTIE, BHWILHEL, MEOHIHEOTEH, RERROFY, BIUORHEIITOVWTIDF
EOFEHZHREL T35, t{HR, BEABRBEROHETHS. FHEOTO <> AT, KH3ICH
T2FRECELT, RERNZEEKESHTEAL LBAOLRLRL T3,

THVF—vic2nT, BE5AFVANTT LI, 8K 59280, VMApY, OREDHEEHE
METYO LEEICE LS, i, WREEIRERHICE VT, HEIHBMOREIZ, FHE
T AR RMBELE TSCHRMAAATES T, HNNICKEDRHEIGEESREL TWET
ERFRLTWS, L L 859 h 6 9 141ch T, ApM, DRBOMEEHEIR 1 LERITER
57, 7 ApM, LY I —EH L 07 u AHORBOHEHER, KIHKRES S — LY tDs7nRIH
BT, FNFREDEFRCELZSR L, KH3ICOWTOFEETIE, 9K 0TICHEEKE
5%TIRERNEEAL 2V, ZOHER, MiBELoREIEICREOEFREEICI2DST,
QB O I IEHBERIZ DWW TOMBHENET L TwE I L 2RBLTED, RHE3 LEANT
A,

BEY Y —ic2wToR5 /2L B ORI D, 8K 593D Aply DFRBDHEFHER 0.496 T
1 EERICERD, VEApE, ORBOHEEHEIZ 0278 TY D L HRIC B p. 7 80%LL L D8R
TﬁﬂSLﬂh?@h%ﬁﬁmﬁam£5%1ﬁﬂéh%.uwﬁﬁi,ﬂﬂﬁﬁﬁmi?Lﬂﬁ
BERCEATAMERRRETET, ﬁ’ﬁ%ﬁMﬁx%wasm%ﬁﬁ@o<baﬁm?%@mﬁ
%%Q&QTLTW —7, O 0FBIC IR L FICBIT 5 Apll; ORBOHEEHEIZ 1 LHE
KB 59, Aply a&‘—ﬁﬁtmamzﬁwﬁﬁ@ﬁ#ﬁi %%%ﬁfa—sz®7nzﬁ
%be,%n%ﬂknkﬁﬁkﬁm%tm.ﬁﬁsu DBTHDFREICE T, BEKESRT
IR A EH T 2 B0 EIE, SEESIFICEB VLT 8% TH2DICH L, 9IF0TIidf 25%T
Hh, KEZETHIBEINS. DEX), BEEROMERERIZIRFOFICIZIZIFRTLTWS
tEZoNB, ZHUE, REHI EEENLERTHE. SEFLCOF—FA ) F—icBET 3H#HEE
HEHEY HEYS—VORRIEEY Y- ORBREOFHTHED, F—FALY—F VIOV THIR
3 LEANTH S,
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5 fASZEAL & SRR ICBE 3 2 HERHRGR

AL A BEEAERCTEY ¥ - (A;Di\f“d)

Wal e  EEOR apM, HMapM,  vMapM, HMvMapM, LY Apl, R? F {i
8:57  0.001 0.253 0.163 0.470 -0.271 -0.057 0490  16.7
(2.27)  [-7.35] (0.52) (3.71) (-0.86) (-0.64)
858  0.001  0.304 0.134 0.442 -0.253 -0.041 0507 138
(1.96)  [-6.60] (0.42) (3.38) (-0.78) (-0.45)
859  0.000 0.801 -0.208 0.039 0.106 0.040 0.615  2.33
(0.24)  [-1.23] (-0.62) (0.22) (0.31) (0.46)
9:00 -0.000 1.335 -0.532 -0.299 0.378 0.382 0.625 124
(-1.73) [ 1.39] (-1.24) (-1.17) (0.86) (3.35)
9:01  -0.000  1.12 -0.402 -0.109 0.252 0.363 0.624  0.84
(-1.02)  [0.54] (-0.96) (-0.45) (0.58) (3.32)
Sl B BARNERCER Y 7= (ApL)
RiRl e ERIN AplY, HIYApY  ViAplY,  HILVIiAp[Y  LiAplt,  R? F i
857 -0.000 0.255 0.015 0.346 0.023 -0.032 0.287  33.8
(-5.58)  [-31.7] (0.32) (12.5) (0.45) (-1.56) <99.4>
858  -0.000  0.319 0.025 0.333 0.006 -0.064 0.311 2638
(-4.93)  [-25.8] (0.48) (11.1) (0.10) (-3.04) <97.1>
859  -0.000  0.496 0.042 0.278 -0.007 -0.147  0.348  9.08
(-3.22) [-15.3] (0.61) (7.76) (-0.09) (-6.54) <84.1>
9:00  -0.000  1.077 0.133 -0.105 -0.042 0.157 0.358  1.69
(-6.62)  [1.32] (0.89) (-1.76) (-0.27) (4.67) <24.7>
9:01  -0.000 1.016 0.067 -0.042 0.003 0.203 0.376  1.70
(-6.47)  [0.35] (0.59) (-0.92) (0.03) (5.79) <18.2>
RELC: B EH: F—F ) 7= (Aply)
Rl e B0 ApTh  HTiApTL  VI'ApT, HTVIiApTY  LiapTy  R? F f#i
857  0.000 0.351 -0.009 0.296 -0.048 0.047 0.356  24.3
(0.43)  [-4.65] (-0.03) (2.06) (-0.13) ( 0.67) <90.6>
8:58  0.000  0.451 -0.032 0.268 -0.030 -0.008 0.382 163
(017) [-3.52] (-0.09) (1.72) (-0.08) (-0.11) <86.5>
859  -0.000  0.693 -0.159 0.198 0.113 -0.140  0.426  3.59
(-0.45)  [-1.79] (-0.35) (1.17) ( 0.25) (-2.03) <46.5>
9:00  -0.000  1.199 -0.200 -0.137 0.175 0.277 0452  1.38
(-0.78) [ 0.77] (-0.33) (-0.50) (0.29) (2.56) <16.5>
9:01  -0.000  1.101 -0.144 -0.058 0.102 0.315 0.467  1.40
(-0.55) [ 0.5]] (-0.23) (-0.28) ( 0.16) (2.83) <17.1>

2004 4> 6 2005 EITB VT, BRI HEEESRAMH TS D ADR HHGEI 2T 0 170 #HIZo W
T, unbiasedness regression DHEFHHERZR LT3, () WZREOHEGHEE 0 L GFEICRL 502 HUE
TEHEOD M, [] NIRROHEHED 1 EARC AL 2METE-O0tHTH S, FHE, KH3
WCOWT FHRERToREEOETH S, HHHLEEPEE) Y —vE8L U0 =210 ¥ — D&,
W EcHERH L, REOHEHEDTE, R? 0T, BEHBMSIESR ¢ b, FHOPHEMELTw5, F
MO TFO <> WL, KH 3T FREICEWT, WEREE /SR 5% THRAIL 28O LETH S,
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£ 6: BH Y Y — v oftFHcE T S EEN:

BElt wBOA  Aply, HiLApl, VIApl,  HIL VAT, LiApl, R F
F—ALBEGISI—v e F— L) F— Vv ElMR ) I —vDEET B
859  -0.000 0.475 0.031 0.300 -0.005 0120 0.359 9.2
(-1.79)  [-14.7) (0.42) { 8.10) (-0.07) (-5.33) <87.1>
9:00 -0.000  1.079 0.217 -0.110 -0.141 0.194 0.370 1.7
(-0.90) [ 1.40] (1.63) (-1.94) (-1.02) ( 5.09) <24.1>
=R 2: Sl L L
859  0.000 0.538 0.048 0.268 -0.038 -0.260 0.402  11.55
(0.99) [14.1] (0.78) ( 7.70) (-0.57) (-10.2) <80.0>
9:00 -0.000  1.001 0.186 -0.106 0.002 0.332  0.404 2.23
(-5.11) [ 1.94] (1.49) (-2.18) ( 0.02) ( 9.66) <31.2>
TR 3 MU F—v D2 —E FANE 98 A—k v 74 LOIHIERI
859 -0.000 0.458 0.046 0.286 -0.001 -0.107 0.318 9.67
(-4.47)  [-16.8] { 0.67) ( 7.84) (-0.02) (-4.68) <87.6>
9:00 -0.000 1.028 0.113 -0.094 -0.038 0.096 0.325 1.69
(-7.98) [0.44] ( 0.74) (-1.46) (-0.24) ( 2.76) <24.1>
=3 4 9 B 0 ICRRIRACARCH i T Tt LY = 1 ohidiciRit
8:59 -0.000  0.466 0.024 0.308 0.028 0.306 9.27
(-4.84)  [-15.0] { 0.30) ( 7.85) { 0.34) <B0.6>
9:00 -0.000  1.080 0.062 -0.092 -0.020 0.322 1.66
(-6.15)  [1.19] ( 0.37) (-1.36) (-0.12) <22.4>

2004 fE40 5 2005 FFIC BT, ST HEEFSERASHETH D ADR ARG S 4Tzl 170 #MRI v
T, unbiasedness regression OHETHINETR L Twa, BRI LALTL, REOMEHIOTEB LT RZ O
Ty, BAHBEESD t fizHELTw3, L () ARREOHTEIY o LRI EL2h2MET S
7@t i, [ HIREROMETHED 1 LABIKEL2»2RET OOt ETHS. FiEl, #RILK
IOV T FREXT-HEOOHEDFETHS, FHEOTO <> Wik, K3 cl$2 FEEicEy
T, WHERHE A AN SR THRA L MAOIEETH S,

ARG O RE 2B L CHEEESTON T3 L 2, [EOERLZ2EFVIEOBERE &
HEUOL BT, ARESOBRSERT S I-EHRH] (e (M Ii,Ti}) LV F—vinsn
AEDBEHEDBICR L EFREINE, LELRFOVTHOEERTY, Z085I-EHE2E0
r o AEORBOHIHEIY 0 EEBICBR o\, —F, [EBEHEHHELE L L ERTHR
DF 4 OHEFHRERIZ, MBRELNRER L FLREOEFMNERTHL L2 L TwS, Jhid,
ERIRIEIC X D KRRV ICERH SN, Lo THEBAECEML T30 TH 2 WHAESDLH S,
b UESREDEZ ICTbh T 30 Thnid, BEIBERICMEOBRMIBEEMET T2 EEL
S 5D%, F2BIUERS O#FHERIE, IEIBMBEROMBEHEIIERIENTHEEILZTL
T3, M EDRERIZ, SEEHNERICE- 7 EFIEBREN TR TR VI LY, ffig
EAE (EBEERPRETH 2 L 2, RERVFASHMICHERIIEE - v 2L 280ER
LD oA 2B CEEPERTHmETOABSHABREEZ L TwE, L) RALESN
Th3, HL, FEOEMNIE, [EOERNLMERR L OFENLEREzoRTAILICHD, M
BBREICET 5 X hER2E, SBROBETHS.

7.3 TEfRHE

=5 0EFFERDI L, RICEAY ¥ — v OFINIcE W TH LOMENKE (L2 REND
5, LBLERGICRT LIS, RO4D2ARICE 2HEHRIKRS LinigAkRTH -7,
FFEAY ¥ —rofffFFZDL DI onT, HFIVI—vEA YTy IR - ETLORELLT
WED, AT I A ETAHRCEBTLBEZOFEL2RITS, 20D r—A 1T, EE
JE—2 B b= NN I—VEHB) I LDOELERLBEOHEEITI. Ric, £5 Dt
STl EEVS—rD 1A=y YA E 99—y A NOIMAlIcH ZEEIEEANEE LT
BHAEDPSBRA LTS, TOBEZALLDIC, F—R 2 TIE, TNTOEBIERHTH#ET
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TV, =R 3T, 28—k FANE B A—2 v ¥ A LD S 5 BHIE = 5SS
SRUHEET 2179, BRBRICy — R 4 Tk, RRIKEOREEG BRENTO SRR I EEr 51 Tw
BZLEREBELT, OROTICEKAHSEVTES N TOAEIEEZ TRTBRIALA#TE2TS. oo
ek, FIREY -ty —r o7 AHERREF L 43N 5,

EHRY S =i 20 THUED 4 2D —ADHFT2To - ERE2R6ICELDTWE, BRLT
WHERIZIR S LRA—TH 5, K6 OHFERIE, WTNOr—26%K 5471 B LIZIFAETH
h, HEFICEVLTIEE) Y-V OHEAEE L UANEOHEIIREI{ AW EEI NS,

8 &HbHHIC

AfTld, HILICE T ZHGIBBITOMIEHE R I\ T, unbiasedness regression I X 2 43#7 %
fTo7, DRGSR L AR, EEIFBITICEFI N TV 2KEL / 4 XT3 7 { FifliEin it L <
W5, i, EHEESKE (MBRARGEETH L LELSNIHICEWT, HEIHKETICEE
FTERICELEH LD X » e LD T2 2 LIk Y REPEECHEHFTIATHLS, J51,
i D fEHMENHNE I LM E MO R E SPHFNREOEHFLEOHE » 2117, HEIBBES ik
FRIZIZTET L, HEENLMEEEIZ I TS,

FHOTH LD, FRIKAOEFHEE L, MERRLESOVTWVEZ Labhor. WEIBE
AR RSHETH S L E, BXPF v v RERICEDIETZ & 28U 758 F 7 11555
Rz iTw, RENMHEEZERL T2 LNz, LrL, Fi&KE» S BENCED LI I
FREIUVHERZHEEZ LT0 2D I LTREAHATSH 2. 2000, GIATIGIFGEENIIcES T2 A
AFEXDOREEPELD X v Ve APERIERICED L) LhBEE 252 TV I E W T 2 408N
%, E-APETIE, BEVPERMFEASEEO 5 5 ADR BEF SR TuAa LRI RE2E
FE LT3, HifEHEH~DFRAS® ADR O848, HEIHABOMBRRICrOLI hERS
B LTVERIE2BTOFID, SHOPEE LTBIN TV S,
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For estimating the realized volatility and covariance by using high frequency data, Kunitomo and
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1. Introduction

Recently a considerable interest has been paid on the estimation problem of the
realized volatility by using high-frequency data of financial price processes in fi-
nancial econometrics. Since the earlier studies often had ignored the presence of
micro-market noises in financial markets and there has been a consensus that the
micro-market noises are important in high-frequency financial data, several new sta-
tistical estimation methods have been developed. See Bandorff-Nielsen et al. (2008)
and Malliavin and Mancino (2009) for recent literatures on the related topics. In
this respect Kunitomo and Sato (2008a, b) have proposed a new statistical method
called the Separating Information Maximum Likelihood (SIML) estimation for es-
timating the realized volatility and the realized covariance by using high frequency
data with the presence of possible micro-market noises. The SIML estimator has
reasonable asymptotic properties; it is consistent and it has the asymptotic normal-
ity (or the stable convergence in the more general case) when the sample size is
large and the data frequency interval is small under a set of regularity conditions for
the non-Gaussian underlying processes and wvolatility models. Kunitomo and Sato
(2010, 2011) have also shown that the SIML estimator has the robustness properties,
that is, it is consistent and asymptotically normal even when the noise terms are
autocorrelated and/or there are endogenous correlations between the market-noise
terms and the (underlying) efficient market price process. There has been recent
finance literature on the importance of these aspects in high frequency financial data
including Engle and Sun (2007), for instance.

In this paper we shall investigate the robustness property of the SIML esti-
mation when we have the micro-market adjustment mechanism and the round-off
errors in the process of forming the observed prices. The micro-market models in-
cluding the price adjustments have been discussed in the framework of micro-market
literature in financial economics (Hansbrouck (2007), for instance). Among many
micro-market models, we first take the (linear) adjustment model proposed by Ami-

hud and Mendelson (1987) as a benchmark case. Then we shall extend it to the
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nonlinear price adjustment models and we regard a continuous martingale as the
hidden intrinsic value of underlying security. A new feature in this context to fi-
nancial econometrics is to utilize the nonlinear (discrete) time series models and
one possible non-linear model is the Simultaneous Switching Autoregressive (SSAR)
model developed by Sato and Kunitomo (1996) and Kunitomo and Sato (1999).
Also we shall consider the round-off error model as a non-linear transformation for
financial price data. The problem of round-off error models has been recently in-
vestigated in statistics (Delattre and Jacod (1997), for instance). It reflects the
common observation in actual financial markets that we have the tick-size effects
(the minimum price change size and the minimum order size) and we often observe
bid-ask spreads on securities in the stock markets.

In these problems there is a common econometric aspect that the observed price
can be different from the underlying intrinsic value of the security and we can in-
terpret this phenomenon as a nonlinear transformation from the intrinsic value to
the observed prices. We can represent the present situation as the nonlinear statis-
tical models of an unobservable (continuous-time) state process and the observed
(discrete-time) stochastic process with measurement errors. When the effects of
measurement errors are present, it seems that the existing statistical methods mea-
suring the realized volatility and covariance have some problems to be fixed in var-
ious ways. They could handle the problem of our interest, but often they need
some special consideration on the underlying mechanism of price process. On the
contrary, we shall show that the SIML estimator is robust in these situations; that
is, it is consistent and asymptotically normal as the sample size increases under a
reasonable set of assumptions. The asymptotic robustness of the SIML method on
the realized volatility and covariance has desirable properties over other estimation
methods from a large number of data sets for the underlying continuous stochastic
process with micro-market noise in the multivariate non-Gaussian cases. Because
the SIML estimation is a simple method, it can be practically used for analyzing
the multivariate (high frequency) financial time series.

In Section 2 we introduce the micro-market adjustment models and the round-off
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error models. Then in Section 3 we explain the SIML estimation method and we give
the asymptotic robustness properties of the SIML estimator when there a‘re micro-
market adjustments and the round-off error models. In Section 4 we shall report
the finite sample properties of the SIML estimator based on a set of simulations.
Finally, in Section 5 some brief remarks will be given. Some mathematical details
of the proofs of theorems in Section 3 are given in Appendix A. Tables and figures

based on simulations in Section 4 are given in Appendix B.

2. Micro-market adjustment Models and the Round-off error
Models

2.1 A General Formulation

Let y(t?) be the i—th observation of the (log-) price at ¢? for j=1,---,p;0 =1f <
th <. <tr=1. Weset y, = (y(t}) be an n x 1 vector of observations and we

assume that the underlying (vector-valued) continuous process X (¢) (0 < ¢t < 1),

which is not necessarily the same as the observed (log-)prices at t* (i = 1,---,n)
and

i
(2.1) X (%) :X(0)+/ oa(s)dB, (0<t< 1),

0

where B; is the standard Brownian motion, 0,(s) is a function adapted to the
o—field F(X,, Br,7 < s), and the instantaneous volatility function is o,(s). The

main statistical objective is to estimate the quadratic variation

(252 o2 = /01 oz(s)ds

of the underlying continuous process X (t) (0 <t < 1).

In this paper we consider the situation that the observed price y(t7) is different
from the continuous martingale X (¢) and it a sequence of discrete stochastic process
given by
(2.3) y(t7) = h (X (), y(E ), u(tf) , 0<t<#})
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where the (unobservable) continuous martingale process X (¢) (0 <t < 1) is defined
by (2.1) and u(¢}) is the micro-market noise process. For simplicity, we assume that
E(u(t?)) =0, E(u(t})?) = o2, and h(-) is a measurable function at 0 = 2 < ¢? <
<t =1witht® —t*  =1/n(i=1,---,n).

2

There are several special cases of (2.1) and (2.3), which have some interesting
aspects for practical applications on modeling the financial markets and the high
frequency financial data. The simple (high-frequency) financial model with micro

market noise can be represented by
(2.4) y(&) = X (&) +u(tf) ,

where y(t?') (¢ = 1,---,n) is observable while the underlying continuous process
X(t) is given by (2.1).

The most important aspect of (2.4) is the fact that it is an additive measurement
error model, which has been often assumed in the statistical literature. As we shall
discuss in this section, however, there are some reasons that (2.4) is not enough
for some applications. For instance, the hight-frequency financial models for micro-
market price adjustments and the round-off-errors models for financial prices can be

represented as some special cases of (2.1) and (2.3).

2.2 A Micro-market price adjustment model

There have been a large number of micro-market models in the area of financial
economics in the past which have tried to explain the role of noise traders, in-
siders, bid-ask spreads, the transaction prices and the associated price adjustment
processes. (See Hansbrouck (2007) for the detailed discussions on the major micro-
market models in financial economics, for instance.) We illustrate the underlying
arguments on the financial markets by showing Figures 2-1 and 2-2 in Appendix B.

For this purpose, we denote that P and () are the price and the quantity (demand,
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supply and traded) of a security ' . When the demand curve and supply curve for a
security do not meet as Figure 2.1, there is no transaction occurred at the moment
in a financial market. The minimum (desired) supply price level P is higher than
the maximum (desired) demand price level P, and then there is a (bid-ask) spread.
When there were some information in the supply side indicating that the intrinsic
value of a security at ¢ could be less than the latest observed price at ¢t — At (i.e.
V, — P,_a; < 0, At > 0), however, the supply schedule would be shifted down-ward
When, however, there were some information in the demand side indicating that the
intrinsic value of a security at ¢ could be higher than the latest observed price (i.e.
Vi; — Pi_at > 0), the demand schedule would be shifted up-ward. In these situations
while the trade of a security occur at the price P* and the quantity @* as in Figure
2.2, the financial market would be under pressure to further price changes.

We set y; = P(t?) (i=1,--,n) and z; = X(t?) ({ = 1,---,n) and we consider

the (linear) micro-market price adjustment model given by
(2.5) P() — P(t2y) = g [X (&) — P(£2,)] +u(t]) ,

where X (t) (the intrinsic value of a security at t) and P(t') (the observed price at

t%) are measured in logarithms, the adjustment (constant) coefficient g (0 < g < 2),

2
u

and u(#}) is an i.i.d. sequence of noise with £[u(t?)] =0 and E[u(t})?] =0
The specific linear model of (3.2) was originally proposed by Amihud and Mendelson
(1987). We take this model as the starting example because it has been one of well-
known models involving transaction costs, interactions among market participants
and micro-market structure. We shall depart our discussion from the Amihud-
Mendelson model because we are mainly interested in the price adjustment dynamics
of a security while their main purpose of study was to investigate the micro-market
mechanisms by using daily (open-to-open and close-to-close) data. While Amihud
and Mendelson (1987) used that X (¢7') follows a (discrete) random walk process in
the discrete time series framework, we assume that X(t) is a (scalar) continuous

martingale, which is given by (2.1) and 0 < fj 02ds < oo (a.s.).

! This is only an illustration for the exposition, which may be analogous to the current market

practice for the periodic call option of the Tokyo Stock Exchange (TSE).
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2.3 The Round-off-error model

Next, we consider the round-off-error model with the micro-market noise. One
motivation has been the fact that in financial markets actual transactions occur
with the minimum tick size and the observed price data do not have continuous
values. The traded quantity also usually has the minimum size in actual financial
markets. For instance, the Nikkei-225-futures, which have been the most important
traded derivatives in Japan (as explained in Kunitomo and Sato (2008b)), has the
minimum 10 yen size while the Nikkei-225-stock index is around 10,000 yen in the
year of 2010. (See Hansbrouck (2007) for the details of major stock markets in the
U.S., for instance.) Thus it is quite interesting and important to see the effects of
round-off-errors on the estimates of the realized volatility when we have realistic
round-off errors. We can illustrate the underlying typical argument on the financial
markets by showing Figure 2-2 in Appendix B. When the demand curve and supply
curve do meet at a point as Figure 2-2, the quantity Q* is traded at the price P*. Still
there would be excess demand which could not be traded at the particular moment
because of the positive tick-size (n > 0) and the minimum order size effects, i.e. the
number of orders should be integers in actual financial markets.

We assume that
(2.6) P(t7) — P(t1) = g0 [X () = P(£) + u(t?)]

where u(t?) is an i.i.d. sequence of noise with £[u(t?)] = 0,€[u(t?)?] = o2 and the

nonlinear function
T

(2.7) gn(z) =7 [5} ,

where g;(y) is the integer part of y and [y] is the largest integer being less than y
and 1 is a small positive constant.

This model corresponds to the micro-market model with the restriction of the
minimum price change and 7 is the parameter of minimum price change. We set
yi = P(t7) and z; = X(¢) (i =1,---,n). We represent (2.7) as

(2.8) P(t7) — X(&7)
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= go [~ (P(7y) — X(£20) + AX(E) +u(th)] — [P(E,) — X (8,) — AX(8})]
= gp [P(t2,) — X(£,), AX (), u(t?))]

where

(2.9) AX (") = /t o2(5)dB,

i—1

is a sequence of martingale differences.

2.4 Nonlinear Micro-market price Adjustment models

We generalize the linear price adjustment model and consider nonlinear price
adjustments models. As often discussed in the cases of financial crises in the past
several decades, there could be different mechanisms among the up-ward phase of
financial prices and the down-ward phase of financial prices. In the context of
micro-market models in financial economics, some economists have tried to find
econometric models involving transaction costs and micro-market structures. In
many stock markets usually there are regulations on the maximum limits of down-
ward price movements within a day, for instance. One common approach in financial
econometrics has been to build statistical models with asymmetrical movements of
instantaneous volatility and covariance. The present approach is slightly different
from the standard one because we try to consider the micro-market price adjust-
ment processes directly. As an example of the discrete time series modeling of the
nonlinear price adjustment model of the security price, we take a non-linear version
of (2.5) with
(2.10) g{z) = q1zl{z > 0) + gozl(z < 0)
where g; (i = 1,2) are some constants and I(-) is the indicator function. This has
been called the SSAR (simultaneous switching autoregressive) model, whic have
been investigated by Sato and Kunitomo (1996) and Kunitomo and Sato (1999).
It is related to one of the threshold autoregressive models in the non-linear time
series analysis. A set of sufficient conditions for the geometric ergodicity of the

price process is given by

(2.11) 91>0,0:>0, (1-g1)(1—g) <1.
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This condition has been discussed by Kunitomo and Sato (1999) in the context
of nonlinear time series analysis. If we set g1 = go = ¢, then we have the linear
adjustment case and the geometrically ergodicity condition is given by 0 < g < 2.

More generally, we consider the model
(2.12) P(t7) - P(ty) = g [X () — P(¢2)] +u(ty) ,

where u(t}) is an i.i.d. sequence of noise with £[u(t?)] = 0 and £[u(t?)?] = 2. We

set y; = P(t}) and z; = X (¢?) and define a sequence of martingale differences by

213 AX(E) = X() = X() = [ ou(s)dB,

From (2.13) and (2.14), let
(2.14) V(tf) = P(t}) — X (t7) — u(t})
and w(t?) = —AX () + u(t? ;). Then we have

(2.15) V() = V() +w() +g[-V{E,) — w(t?)]
= ¢ [V + )]

where g*(z) = z + g(—2), E[w(t)] = 0, E[w(#})?] < oo and E[V (L )w(t})] = 0.

3. The SIML Estimation and its Asymptotic Robustness Prop-
erties

3.1 The SIML Method

We summarize the derivation of the separating information maximum likelihood
(SIML) estimation proposed by Kunitomo and Sato (2008a,b).. Let y(t7) be the
i—th observation of the the (log-) price at ¢ for j =1,---,p;0 =2 <t < -+ <
th =1 and we set y, = (y}') be an n x 1 vector of observations. The underlying

(vector-valued) continuous process X(¢) (0 < ¢ < 1), which is not necessarily the
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same as the observed (log-)prices at t? (i = 1,---,n) and let u; = u(t}) be the vector
of the micro-market noise at ¢ (i =1,---,n).

We first consider the standard situation (2.4) when we have y(t?) = X (t7) + u;,
where X(t) (0 <t < 1) and u; (i = 1,--+,n) are independent with o2(s) = o2
(time-invariant), and u; are independently, identically and normally distributed as

N(0,02). Then given the initial condition y,, we have

(3.1) Ya ~ Na (901, 0T + hn0zCaCy)
where
=1
1 0 0 0 1 0 0 0
1 1 0 0 = T R 0
1 - 1 1 @ 0 -1 1 0
1 - 1 1 1 0 B =l 1

1,=(1,---,1) and hy, = 1/n (=} —t1,).
By transforming y, to z, (= (2x)) by

(3.3) 2z, = h;'/*PLC, (v, — F0)

where ¥o = yoln, Pr = (pjx) and for j,k=1.---,n

(34) mwm s[5 = )= 5)] -

Then the transformed variables vy (k = 1,---,n) are mutually independent, vy ~

N(0,02% + apno?) where

(3.5) (g = 4n sin? [g_ (%_1)] (k=1,---,n).

2n+1

Because the ML estimator of unknown parameters is a rather complicated function
of all observations and each ay, terms depend on £ as well as n, one way to have a

simple solution of the problem is to approximate the likelihood function. Let m and
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[ be dependent on n and we write m, and [, formally. Then we define the SIML

estimator of 62 by

1 -5
(3.6) Bo=—2Y %
=
and the SIML estimator of 52 by
1 n
(3.7) 62=— > agi.
ln k=n+1-l,

The numbers of terms m,, and [, we use are dependent on n such that my,, [, — oo
as n — co. We impose the order requirement that m, = O(n®) (0 < o < 3) and

I, = 0(nf) (0 < 8 < 1) for 62 and o2, respectively.

3.2 On Asymptotic Properties of the SIML estimator under
the standard additive Model

It is important to investigate the asymptotic properties of the SIML estimator when
the instantaneous volatility function ¢2(s) is not constant over time. When the re-
alized volatility is a positive (deterministic) constant a.s. (i.e. o2 is not stochastic)
while the instantaneous covariance function is time varying, we have the consistency
and the asymptotic normality of the SIML estimator as n — oco. For the determin-
istic time varying case, the asymptotic properties of the SIML estimator can be
summarized as the next proposition and its proof has been given in Kunitomo and
Sato (2010).

Theorem 3.1 : We assume that X; and u; (i =1,---,n)in (2.1) and (2.4) are inde-
pendent, 02 = [, 02(s)ds is a positive constant (or deterministic). positive definite
matrix, E[||v/n(X; — Xi—1)||*] < oo and &]||ui]|*] < oo. Define the SIML estimator
&2 of o2 by (3.6) and (3.7), respectively.

(i) For mp =n®and 0 < @ < 0.5, as n —» 0

(3.8) 62 -0 250,

(ii) For m, =n®*and 0 < @ < 0.4, as n — oo

(3.9) Vi [62 =02 S N[0, V],
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provided that

3.10)V, = 2 [fol a_,i(s)dsr + 2 zﬂ: (mnc; — 1) [/:i o2(s)ds /tjl Jg(s)ds]

ij=1 i-1 B
- V,
which is positive constant and for ¢,7 =1,---,n,
] D 27 1 1
. = — + 5 —1)(k— = L — 1)k — =)}
(1) ey = - Yfeosl g o5 = 1k = )+ ool T =)k - )}

There are some remarks on the limiting distribution of the SIML estimator and
its asymptotic covariance formula in Theorem 2.1. The quantity V{2 defined by
n 1 1
(3.12) VD =23 (mack, — 1) f o2 (s)ds f ’ o2(s)ds
'i,jZI ti1 tj“l
is bounded because [y 02(s)ds is bounded.
Then it may be reasonable to assume the convergence of V2 to the second part of

V (V)| say). When the instantaneous covariance o2(s) is constant, then

1 2
(3.13) v=2|f ag(s)ds] —20*.
0

When o2 is a random variable, we need the concept of stable convergence. The
result of Theorem 3.1 can be held in the proper stochastic case with an additional

assumption.

Theorem 3.2 : We assume that X (¢) and u; ({ = 1,---,n) in (2.1) and (2.4) are
independent and o2(s) > 0 (positive). Additionally we assume that each elements
of 62(s) (0 < 5 < 1) and 02 = [ 02(s)ds are bounded and &€[||us]|*] < co. Define the
SIML estimator 2 of o2 by (3.6).

(i) For mp =n%and 0 < o < 0.5, a8 n — 0

(3.14) 62 —02 250.

__86_



(ii) For m, = n® and 0 < & < 0.4, as n — oo we have the weak convergence
(3.15) Zn = /T [62 = 02| B Z*

where the characteristic function g,(t) = £[exp(itZ,)] converges to the characteristic

function of Z*, which is written as

(3.16) g(t) = £l 7]

and we assume the probability convergence given by
n

(8. 17) V=g [.[01 Uz(s)dSJQ + 2 plim > (mac; — 1) {/jﬂ Jﬁ(s)dsr :

1,§=1
3.3 Robustness of the SIML estimator with micro-market

adjustments and the round-off error models

We investigate the asymptotic properties of the SIML estimation under micro-
market adjustment models and the round-off error models. First, we investigate
the situation in Section 2.2. We have a sequence of discrete observations P(t7) with
0=ty <tf <---<t} =1 and the main purpose is to estimate the realized volatil-
ity of the intrinsic value of the underlying security o2 = [ 0,(s)?ds. We re-express
(3.2) as

(3.18) P(t7) = (1-g)P(t) +gX(#7) + u(ty)

i1 i-1
= g2 (1—g)X(#;) + > (1 - g)u(ty;)

+[901 - g)'X(#3) + (1 - g)'u(td)]

and

1

19 (-gPXtL,) = 0-of [X@)+ [T 0B

= 1-grx@) -0 -gp |7 cuam].

i—j
Then we have the next result and the proof will be given in Appendix A, which is

similar to the one given in Kunitomo and Sato (2010).
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Theorem 3.3 : Assume 0 < g < 2 in (2.5). Define the SIML estimator of the
realized volatility of X (¢) with m,, = n® (0 < a < 0.4) by (3.6) with p = 1.
Then the asymptotic distribution of |/m, [62 — 02] is asymptotically (mn,n — o)
equivalent to the limiting distributions given by Theorem 2.1 and Theorem 2.2 under

their assumptions.

We note that the present micro-market (linear) adjustment model is quite similar
to the structure of the micro-market model with autocorrelated micro-market noise

discussed in Kunitomo and Sato (2010).

Second, we investigate the situation of Section 2.3 when we have a sequence of

discrete observations under the round-off error models. Define
(3.20) W(tt) = P(t7) — X(7) — u(t?) -

If |P(t? ;) — X(t7) — u(t?)| > n , then from (3.7) we have P(t}) = X(t7) + u(t}),
which means W () = 0. On the other hand, if |P(¢} ;) — X (t}) — u(t?)| < 7, then
P(t?) = P(t? ;) and |[W(¢})| < n. By defining v; = w(t}) + W(}) i =1,--,n), we
have the condition

(3.21) (W) <n.

By using the similar arguments to the results reported as Theorems 2.1 and 2.2
on the limiting distribution of the realized volatility estimator (Kunitomo and Sato

(2010), we have the next result and the proof is given in Appendix A.
Theorem 3.4 : Assume (2.6), (2.7), and n = 7, depends on n satisfying
(3.22) av/n = O(1) .

Define the SIML estimator of the realized volatility of X (¢) with m, =n* (0 < a <
0.4) by (3.6). We write the limiting random variable of the normalized estimator

VMy (67 — 02] of 62 when n — co. Then as 1, — 0 the limiting distributions of &7
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is equivalent to the distributions given by Theorem 2.1 and Theorem 2.2.

We have imposed the condition (3.21) on 5, which means that itt is a parameter
with small size. This condition could be relaxed because the results of simulations
in Section 4 have suggested so. The SIML estimator has the asymptotic robust

property against a large number of the round-off-errors models.

Third, we investigate the situation of Section 2.4 when we have a sequence of
discrete observations under the non-linear adjustments models. Because the discrete
time series V' (¢}) satisfies the stochastic difference equation (2.15), it is a Markovian
process. In order to have the desired result, we need a set of sufficient conditions,
which are some type of ergodic conditions. We summarize our results under some
additional conditions with the nonlinear price adjustments and the proof will be

given in Appendix A.

Theorem 3.5 : For the non-linear time series process V (¢7) satisfying (2.14) and

(2.15), we assume that there exist functions p;( - ) and p( -,- ) such that
(3.23) Cov[V/ (&), V()] = eupn(fi — 41)

where ¢, is a (positive) constant and 32°, p;(s) < oo and

(3.24) Cov [VEV (), VEOWV(ER)] = capalli = 1], 17 - 51,

where c; is a (positive) constant and Y3, _, pa(s, 5) < oc.

Define the SIML estimator of the realized volatility of P(t?) with m, =n® (0 < a <
0.4) by (3.6). Then the asymptotic distribution of \/m, [62 — 02| is asymptotically
(as my,n — o0) equivalent to the limiting distributions given by Theorem 2.1 and
Theorem 2.2.

In the above theorem we impose a set of sufficient conditions as (3.22) and (3.23),

which may be relaxed. A simple example is the linear case when g(z) =cz (cis a
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constant with 0 < ¢ < 2 and v; are weakly dependent process. It is straightforward
to have (3.22) and (3.23) in this case. The second example is the SSAR(1) model
with (3.11). It seems that we need more stringent conditions than (2.11) to have
(3.22) and (3.23). There can be a large number of non-linear models for X (¢7') and
P(t?), and the sufficient conditions for the desired results have been under further

investigation.

4. Simulations

We have investigated the robust properties of the SIML estimator for the realized
variance based on a set of simulations and the number of replications is 1000. We
have taken 20,000, and we have chosen @ = 0.4 and 8 = 0.8. The details of the
simulation procedure are similar to the corresponding ones reported by Kunitomo
and Sato (2008a, b).

In our simulation we consider several cases when the observations are the sum
of signal and micro-market noise. The the instantaneous volatility function is given
by
(4.1) o2(s) = a(0)? [ag + 018+ (1282] ,

where a; (i = 0,1, 2) are constants and we have some restrictions such that o, (s)? >
0 for s € [0,1]. It is a typical time varying (but deterministic) case and the realized

variance 2

< is given by

(4.2) o = fo " ole)ds = o (O

a1 a9
CLO+ 9 + 3] i

In this example we have taken several intra-day volatility patterns including the flat
(or constant) volatility, the monotone (decreasing or increasing) movements and the
U-shaped movements.

Among many Monte-Carlo simulations, we summarize our main results as Tables
of Appendix B. We have used several models in the form of (2.3) and each model

corresponds to

Model 1 hi(z,y,u) =y + g(x —y) +u (g : a constant) ,
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Model 2 ha(z,y,u) =y +gplz —y +u) (g9(-)is (3.8)),

Model 3 hs(z,y,u) =y + golz —y) +u (g,(-) is (3.8)),
T — ify >0 : a constant

Model 4 he(z,y,u) =y +u+ a1l v) y20(g ustant)

g2(x —vy) ify <0 (gs:aconstant)
Model 5 hs(z,y,u) =y + [gl + go exp(—v|z — y|2)] (z —y) (g1, g2 : constants) ,
Model 6 he(x,y,u) =y + g1sin (g2(z — y)) (g1, g2 : constants) ,
Model 7 he(z,y,u) =y+hoohy 0 hi(z,y,u),
respectively.

Model 1 is the standard model when g = 1. When 0 < g < 2, Model 1 corre-
sponds to the linear model with the micro-market adjustment. Model 2 and Model
3 are the models with the round-off errors. Model 2 is the standard round-off model
and Model 3 has a more complicated nonlinearity. Model 4 and Model 5 are the
SSAR model and the exponential AR model, which have been known as nonlin-
ear (discrete) time series models. Model 6 is an artificial nonlinear model with a
trigonometric function. Model 7 is a combination of three nonlinear models, which
corresponds to the most complicated nonlinearity in our examples.

For a comparison we have calculated the historical volatility (HI) estimates and
the Realized Kernel (RK) estimates, which were developed by Bandorff-Nielsen et
al. (2008). It is because there is a natural question on the comparison of the
HI estimator, RK estimator and the SIML estimator, then we can compare three
methods in each tables. In order to make a fair comparison we have tried to follow the
recommendation by Bandorff-Nielsen et al. (2008) on the choice of kernel (Tukey-
Hanning) and the band width parameter H. One important issue in the RK method
has been to choose H, which depends on the noise variance and the instantaneous
variance and we can interpret as H = c\/m . We have found that the RK
estimation gives a reasonable estimate if we had taken the reasonable value of the
key parameter H. In most cases the bias and the variance of the RK estimator are
larger than the corresponding values of the SIML estimator. Overall the estimates

of the SIML method are quite stable and robust against the possible values of the
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variance ratio even in the nonlinear situations we have considered.

For Model-1, the estimates obtained by historical-volatility (H-vol) are badly-
biased, which have been known in the analysis of high frequency data. Actually,
the values of H-vol are badly-biased in all cases of our simulations. Both the SIML
method and the RK method give reasonable estimates and the variance of the RK
estimator is sometimes smaller than the SIML estimator. (See Tables B1-B4.) For
Model-1, however, the RK estimation sometimes gives biased-estimates while the
SIML estimation gives reasonable estimates. (See Table B5.) For Model-2 and
Model-3, the RK estimation often gives biased-estimates while the SIML estimation
gives reasonable estimates. (See Tables B6-B8.) Contrary to our conjecture, for
Model-4 and Model-5 both the SIML and the RK estimations often give reasonable
results. Finally, for Model-6 and Model-7 the RK estimation sometimes give biased
estimates while the SIML estimation gives reasonable estimates.

By examining these results of our simulations we can conclude that we can esti-
mate both the realized volatility of the hidden martingale part. It may be surprising
to find that the SIML method gives reasonable estimates even when we have non-
linear transformations of the original unobservable security (intrinsic) values. We
have conducted a number of further simulations, but the results are quite similar as

we have reported in this section.

5. Conclusions

In this paper, we have shown that the Separating Information Maximum Likeli-
hood (SIML) estimator has the asymptotic robustness in the sense that it is consis-
tent and it has the asymptotic normality under a fairly general conditions even when
the standard conditions are not satisfied. They include not only the cases when the
micro-market noises are possibly autocorrelated and they are endogenously corre-
lated with the underlying continuous signal process, but also the cases when the
micro-market structure has the nonlinear adjustments and the round-off errors un-
der a set of reasonable assumptions. The micro-market factors in actual financial

markets are common in the sense that we have the minimum price change and the
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minimum order size rules; we often observe the bid-ask differences in stock markets,
for instance. Therefore the robustness of the estimation methods of the realized
volatility and covariance has been quite important. By conducting large number
of simulations, we have confirmed that the SIML estimator has reasonable robust
properties in finite samples even in these non-standard situations.

As a concluding remark, we should stress on the fact that the SIML estimator
is very simple and it can be practically used not only for the realized volatility but
also the realized covariance and the hedging coefficients from the multivariate high
frequency financial series. Some applications on the analysis of stock-index futures

market have been reported in Kunitomo and Sato (2008b, 2011) as illustrations.
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APPENDIX A : Mathematical Derivations of Theorems

In Appendix A, we give some details of the proofs of Theorem 3.3, Theorem 3.4 and
Theorem 3.5 given in Section 3. Since Theorem 3.5 essentially contains Theorem
3.3, we shall give the proof of Theorem 3.5. (The only difference is the effects of

additional terms which are smaller order than O,(1).)

The proof of Theorem 3.5
(Part-I) We shall investigate the asymptotic properties of the SIML estimator in
two steps. The first step is to investigate the conditions that the measurement errors
are stochastically negligible.

Define v; = V(¢#) (i = 1,---,n) by (2.14) and we represent y; = z; + v;, where
y; = P(t%),z; = X(t7) and v; = V(7). We set u(t?) = 0 in (2.14) and o,(s) = o

for the resulting simplicity. We write the returns in (¢;_1,%;] as
t

(A1) 7"1':%:_161'—1=f odB, {1=1,7+%;n)
tio1

withO0=t¢t <t <---<t, =1 and t; — t;_1 = 1/?’?, (Z = 1,'--,7’1,). We note that
the (instantaneous) volatility function o2 (0 < s < 1) and the realized volatility
= [, 02ds can be stochastic.

Let z,g,i) and zfi) (#=1,---,n) be the i-th elements of
(A.2) 2 = k2P, Crl (% — F0) , 20 = B VPP, CLva,

respectively, where x, = (x;), v, = (v;) and z, = (2y) are n x 1 vectors with
i = 2D 52,
Then by following Kunitomo and Sato (2010), we shall use the arguments devel-

oped for investigating the effects of the (possibly) autocorrelated noise term on the

asymptotic distribution of 62— o2 and 02 = [ 02ds. We shall use the decomposition
I 2
a) i [o2-a2] = Vi o 3 -
Mn =1
_ 1 222
I £
I % 1
(2)2 (2)2 (1) (2)
2 —E 2" Bigi| -
;—mnk=1l:k ] kz:l[ nkn]
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Then we shall investigate the conditions that three terms except the first one of
(A.3) are 0,(1). It is because we could estimate the realized volatility consistently
as if there were no noise terms in this situation.

Let by = ¢, P, C;' = (b;) and e, = (0,---,1,0,---) be an n x 1 vector. We
write zﬁ) = > j—1 bijvy; and notice that 357, by;by = d(k, k')agn. Also we shall use
the notation that K; (¢ > 1) are some positive constants.

First by using the condition (3.22) and the Cauchy-Schwartz inequality, we have

EY_ bkivi Y byjvj]
i=1 =1

> c1pi(8)[D bribk,ii]
s=0 i=1

< lea’kn:

(A.4) [T

IA

provided that £(v?) are bounded and we use the notation b;; = 0 (j < 0). By using
(3.5) and the relation sinz = z — (1/6)2® + (1/120)z° + o(z7),

1 o= T . s 2k —1
A.. —_— n = —2 1 —
(A.5) mnkz::lak oo nkz::l [ COS(W2n+1):|
_ Py, STy
M tosinmgs
~ [2 _{rfa) - é(wz%%)?']
Mp (21:;1) - é(m::rl)s
2
m
= O™
(C)
Then the second term of (A.3) becomes
1 Mn 2) 1 Mn m5/2
A6 Pz & = O(—2
( ) Ton }; [an} — 1 \/ﬂTn kgl Qkn ( n )
if0<a<04.
For the fourth term of (A.3),
L. & ’ I =
£ | —— z(i)z(zn) = — £ qu)z(}) z(i)z(?)
(A7) = > & [2 > sjksjfkwg(rjrjf|]-"mjn(j,jf))z,(m3zl(cfi
k' =1 g =1
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Ty

= Z £ {zzsﬂsgk’g |-7:J I)ZJE;Qn) f ]

Mn kk' =
2 gk e 2B +5| = Y o fErn
= 03331 5 n 2 4 mn k k k el
Mo
% OP(Z Qkn)
k=1
3
m
— Op(?n)
In the above evaluation we have used the relation
L 1 2
f osds < — | sup o;
ti—i n 0<s<1

and

1> sies; el <D s5]=n/2+1/4 forany k> 1.
=1 =1

Hence we need the condition 0 < & < 1/3. When o, = oy, i.e., the instantaneous
volatility function is constant, (A.7) becomes O(m2/n), which is satisfied if 0 < a <
0.4.

For the third term of (A.3), we need to consider the variance of
2)2 2)2 -
Zl(m) - S[Zi(m) |= Z bk.’fbk,j' [Ujv,j' - S(Uj”j’)]
=1
and we need to evaluate the expectation of [z,(;):z - & [z,(cip]] [zfj)j = S[zé?)ﬁ]] . By
using (3.23) and we utilize the fact that
k) k02 . ,
(A.8) Do D buibyby by poalli— i1 15— 5]) ~ K3 X aGrnt -
=17, =1

Then by collecting each terms, we obtain

(Ag) \/— Z( zkflp}) E; kkz Apn Q!

IA

= 0(E x %oy

5
mﬂ
= o)
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sinee Yo Gin = O(md In),
Thus the third term of (A.2) is negligible if 0 < a < 0.4.

(Part-II) The remaining task is to prove the asymptotic normality of the first term
of (A.3), that is,
1

Mn
(A.10) m [E‘ A2 _ ag]

T k=1
because it is of the order Op(1). The proof of the asymptotic normality of (A.10) is
lengthy, but quite similar to the one given in Kunitomo and Sato (2010) and thus
it is omitted here. This completes the proof of Theorem 3.5. Q.E.D.

The proof of Theorem 3.4 : The most parts of the proof are very similar to
the corresponding ones in the proof of Theorem 3.5. We write y; = z; + v;,v; =
u; +w; (i =1,---,n), where |w;| < n,. Then we need to check that the effects of
a sequence of random variables w; (i = 1,---,n) are negligible under the additional
assumption (3.21) on the threshold parameter 7, (> 0).

We shall illustrate the underlying arguments. From (A.3) and (A.4), we notice
that

(A.11) [z}jj]z = [f:bm(wwi)r

2:1 2 n n n 2
= [Z bkiuz‘] +2 [Z bkiui] [Z bkiwi:| + [Z bkiwi] .
i=1 i=1 i=1 i=1

By using the Cauchy-Swartz inequality, under (3.21) we have

2
< 2a
. n”n kn -

(A.12) [é briw;

Then we can find a positive constant such that
2 B ? 2
(A13) £ [zﬁ)] = [Z bki(ui =+ ’U}i):| S K4G'.kn [1 - T]ﬂ\/ﬁ]
i=1
By using the similar arguments to other terms in the decomposition of (A.3) as

(A.11), we can apply the same arguments as the proof of Theorem 3.5. Then we
have the desired result in Theorem 3.4. Q.E.D.

_99_



APPENDIX B : TABLES and FIGURES

In Tables the variances (o2) are calculated by the SIML estimation method while H-vol and
RK are calculated by the historical volatility estimation and the realized kernel estimation
methods, respectively. The true-val means the true parameter value in simulations and
mean, SD and MSE correspond to the sample mean, the sample standard deviation and

the sample mean squared error of each estimator, respectively.

B-1 : Estimation of Realized Volatility (Model-1)
(ap = 1,a1 = 0,a2 = 0;02 = 1.00E — 04,9 = 0.2)

n=20000 a2 H-vol RK
true-val | 1.00E+00 1.00E4+00 1.00E400
mean 1.01E4+00 2.33E400 1.04E+00
SD 1.97E-01  2.32E-02  6.58E-02

MSE 3.80E-02 1.78E+00 6.00E-03

B-2 : Estimation of Realized Volatility (Model-1)
(ap = 1,a; = 0,a2 = 0;02 = 1.00E + 00, g = 0.2)

n=20000 o2 H-vol RK

true-val | 1.00E+00 1.00E+00 1.00E+00
mean 9.96E-01 1.11E-01 9.71E-01
SD 1.93E-01  2.35E-03  6.30E-02
MSE 3.74E-02  7.90E-01  4.80E-03

B-3 : Estimation of Realized Volatility (Model-1)
(ag=11;01 = B,z = Upo2 = L.00E 4+ 00,5=1.5)

n=20000 7= H-vol RK

T

true-val | 1.00E+00 1.00E4+00 1.00E+00
mean 1.00E+00 3.00E+00 1.01E+00
SD 1.94E-01  4.03E-02  6.55E-02
MSE 3.78E-02 4.00E4+00  4.34E-03
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B-4 : Estimation of Realized Volatility (Model-1)
(ao = 1,a1 = 0,02 = 0; 02 = 1.00E — 05,9 = 1.0)

2

n=20000 o H-vol RK
true-val | 1.00E4+-00 1.00E+400 1.00E4-00
mean 9.88E-01 1.40E400 9.97E-01
SD 1.99E-01  1.40E-02  6.53E-02
MSE 3.97E-02 1.60E-01  4.27E-03

B-5 : Estimation of Realized Volatility (Model-1)
(ap = 1,a1 = 0,a3 = 0;02 = 1.00E — 06,9 = 0.01)

n=20000 ok H-vol RK
true-val | 1.00E+00 1.00E+00 1.00E+00
mean 8.40E-01 2.51E-02  2.48E-01
SD 1.66E-01 5.41E-04  2.76E-02
MSE 5.31E-02 9.50E-01  5.66E-01

B-6 : Estimation of Realized Volatility (Model-2)
(ag = T,a1 = —12,a3 = 6;02 = 2.00E — 02,7 = 0.5)

2

n=20000 oo H-vol RK

true-val | 4.50E+01 4.50E+01 4.50E+01
mean 4.60E+01 1.37TE4+02 5.36E401
SD 1.05E401 6.19E400 3.65E4-00
MSE 1.11E4+02 8.46E+03 8.68E+01

B-T : Estimation of Realized Volatility (Model-3)
(ap = T,a; = —12,a = 6;02 = 1.00E — 02,1 = 0.5)

2

n=20000 as H-vol RK

true-val | 4.50E+01 4.50E+01 4.50E+01
mean 4.54E+01 3.95E4+02 6.19E4+01
SD 1.05E+01 6.69E+00 4.07E+400
MSE 1.1I0E4+02 1.22E405 3.02E+02
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B-8 : Estimation of Realized Volatility (Model-3)
(ao = 1,a; = 0,az = 0;02 = 1.00E + 00,7 = 0.005)

n=20000 a? H-vol RK

true-val | 1.00E+00 1.00E+00 1.00E+00
mean 1.00E+00 6.85E-01  9.97E-01
SD 1.94E-01 8.66E-03  6.21E-02
MSE 3.77TE-02  9.92E-02  3.87E-03

B-9 : Estimation of Realized Volatility (Model-4)
(ap =1,a; = 0,a2 = 0;02 = 1.00E + 00,91 = 0.2, 92 = 5)

n=20000 o2 H-vol RK
true-val | 1.00E4+00 1.00E400 1.00E400
mean 1.01E4-00 2.22E400 1.01E4-00
SD 1.93E-01 6.46E-02 6.25E-02

MSE 3.71E-02 1.49E400 3.93E-03

B-10 : Estimation of Realized Volatility (Model-4)
(ag =1,a1 =0,a3 = 0;02 = 1.00E — 03,91 = 0.2,g0 = 5)

n=20000 o2 H-vol RK
true-val | 1.00E+00 1.00E+00 1.00E+00
mean 1.02E+00 6.65E+01 1.11E+400
SD 1.94E-01 1.66E+00 7.46E-02

MSE 3.79E-02 4.30E+03 1.85E-02

B-11 : Estimation of Realized Volatility (Model-5)
(g =1,a1 = 0,a3 = 0;02 = 1.00E + 00,91 = 1.9, g2 = —1.7,v = 10000)

n=20000 a- H-vol RK

true-val | 1.00E400 1.00E400 1.00E4-00
mean 9.99E-01 6.39E+4+00 1.00E+00
SD 1.92E-01 3.66E-01  6.53E-02
MSE 3.68E-02 2.91E+01 4.26E-03
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B-12 : Estimation of Realized Volatility (Model-6)
(ap = 1,01 = 0,a9 = 0;02 = 1.00E + 00, sin(z * 0.1))

n=20000 o H-vol RK

T

true-val | 1.00E4+00 1.00E4+00 1.00E-+00
mean 1.00E+4-00 5.26E-02  8.32E-01
SD 2.14E-01  2.23E-03  6.79E-02
MSE 4.59E-02  8.97E-01  3.27E-02

B-13 : Estimation of Realized Volatility (Model-6)
(ag = 1,a; = 0,as = 0;02 = 1.00E + 00, 0.01 # sin(z % 100))

n=20000 o2 H-vol RK
true-val | 1.00E-+00 1.00E+00 1.00E+400
mean 7.67E-01 4.49E-01  7.75E-01
SD 1.79E-01  3.78E-03  6.05E-02
MSE 8.64E-02  3.03E-01  5.41E-02

B-14 : Estimation of Realized Volatility (Model-7)
(ap =1,a1 = 0,a9 = 0;02 = 1.00E — 04,91 = 0.2,92 = 5;9 = 0.01;n = 0.01)

n=20000 o2 H-vol RK
true-val | 1.00E+00 1.00E+00 1.00E+00
mean 1.18E+00 3.62E+00 1.81E+00
SD 2.30E-01 1.04E-01 1.16E-01

MSE 8.36E-02 6.85E4+00 6.69E-01

In Figures 3.1 and 3.2 P and @ stand for the price and the quantity, respectively. D and S
are the demand curve and supply curve, respectively. 7 in Table 3.2 denotes the minimum

tick size and Q* is the quantity traded in Figure 3.2.
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Bayesian Estimation of Probability of Information
based trading

Kosuke Oya’

Graduate School of Economics, Osaka University, Japan

Key words: PIN, adjusted PIN, PSOS, MCMC

1. Introduction

The analysis of microstructure of financial market has received a lot of at-
tention both from academic researchers and practitioners in recent years. In
particular, the key issue for the analysis is the asymmetric information among
the traders. Although typical analysis at an earlier stage such as Roll (1984)
accommodates the assumption of homogeneous information, that is, there is no
information asymmetry, it is become more important to figure out the degree
of information trading in the market. Easley and O’Hara (2004) investigate
the roles of public and private information in affecting a firm'’s cost of capital.
They argue that stocks with more information asymmetry have higher expected
returns through their rational expectations equilibrium model with asymmet-
ric information. This argument is confirmed in Easley, Hvidkjaer and O’Hara
(2002) empirically using a structural microstructure model to provide estimates
of information-based trading for a large cross section of stocks. The estimation
for the probability of informed trading (PIN) in the market on a particular day
is proposed by Easley, Kiefer, O'Hara and Paperman (1996). The model is
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problem of excess zero counts.
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based on the sequential trading model by Glosten and Milgrom (1985). Easley
and O’Hara {2004) provide the theoretical framework about PIN based on mi-
croeconomic theory and show that the information shift from public to private
increases the equilibrium required return. Easley, Hvidkjaer and O’Hara (2002)
conduct the empirical study and show that a proxy for information asymmetry
is positively and significantly related to average stock returns in U.S. market.
On the other hand, Duarte and Young (2009) argue that the PIN model can not
capture positive correlation between the numbers of buyer and seller-initiated
transactions even though we observe positive correlation for many stocks. They
propose the extended PIN model and two measures for information asymme-
try and illiquidity to remedy the correlation problem. The adjusted PIN is the
PIN component related to asymmetric information and PSOS (probability of
symmetric order flow shock) is the PIN component related to illiquidity. They
conclude that adjusted PIN is not priced and PSOS is priced. Although both
the original PIN and the extended PIN models provide the useful measures for
the information asymmetry and illiquidity, these two models can not handle
excess zero counts which are often observed in actual market. This excess zero
counts make estimation of the model more difficult. In this paper, we propose a
zero inflated Poisson mixture model to deal with the excess zero counts problem.

The remainder of the paper is as follows. In next section, we give an overview
of the extended PIN model by Duarte and Young (2009). Section 3 provides
an introduction of zero inflated Poisson mixture model and Bayesian inference
for the model is shown in Section 4. Section 5 presents an empirical illustration
that shows the importance of dealing with the excess zero counts. Section 6

concludes.

2. Probability of Information Trading

The original PIN model suffers from the inability to matching the sample
moments for the actual market data. Duarte and Young (2009) propose the

extended PIN model to remedy the deficit of the original PIN model through
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Arrival rate

buy sell
g (Eb + up + Ap) (es + As)
TP
1—~g (g0 + up) (Es)
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Vs (ep + Ap) (g5 + us + Ag)
b it
1 —~g (Eb) (Es =+ us)

1-y < (65 + Do) (65 +:45)
1-7s () (€s)

Figure 1: Trading process for Extended PIN model

the incorporation of symmetric order flow shock.

2.1. Extended PIN model

The PIN is the probability that there was informed trading in the market
on a particular day. At beginning of the day, a private information event will
occur with probability v7. The probability that the informed trader receives the
positive private signal is vp when the private information event occurs on the
day. The probabilities of symmetric order flow shock conditional on the absence
and the arrival of private information are defined as g and g, respectively.
Suppose that the traders arrive according to Poisson processes where the arrival
rates of uninformed buy and sell orders are ¢, and €, and those of informed buy
and sell orders are up and u,. The informed buy and sell orders are triggered
by the positive and negative private signals, respectively. Further we assume
that there are the additional arrival rate Ay of buy order and that of A, sell
order caused by the symmetric order flow shocks. Figure 1 depicts the trading
process. There are six states in the market. For example, the first state exhibits
that there is positive information with the symmetric order flow shock. Then

the expected order flows for buy and sell are (g, + up + Ap) and (g5 + A,),

-107-



respectively. In contrast, the case where there is only public information in the
market is defined by the last state.
We suppose that the order is executed immediately. So we refer the number
of order flows as the number of transactions hereafter if there is no confusion.
Let the numbers of buy and sell transactions are X; = (X3, Xst)'- We
assume that { X, }}_; is the independent random sequence. The joint distri-

bution of the numbers of buy and sell transactions on the day ¢ is given by a

Poisson mixture distribution
Pr(X; | 0,7) = ~rvevs PolZos,ep+up+ Ap) Po(Zsp g5 + Ag) (1)
+ v1vp(1 — vs) Po(@nt, 66 + up) PolTss,€s)
+ 7 (L = vp)vs Po(Tp,166 + Dp) Po(Ts€s +us + Ay)
+ (1 = vp)(1 —v5') Po(Zb,t,60) Po(Ts,t, 85 + s)
+ (1 — 71)7s Pol®b,tr6p + Ap) Pol@sp, €5 + As)
+ (L — 1) (1 —7vs) Polzss,€8) Pole,sr€s)

where 8 = (g, €5, Up, Us, Np, A)'s ¥ = (91, 7P, Vs, V57) and Py(z,c) = e™c* /!
is a probability mass function of Poisson random variable.

The covariance of X} ; and X ; implied by the Poisson mixture distribution
is not necessarily be always negative unlike the original PIN model. Duarte and
Young (2009) apply Maximum likelihood method to estimate unknown 6 and ~
and propose adjusted PIN as the probability of informed trade that is the ratio
of the expected informed order flow to the total expected order flow and PSOS
as the unconditional probability that a given trade will come from a shock to

both buy and sell order flows as

IN S0S
& PIN = PSOS —
oy INTS0Srata 18 PR0S =1p—spsrate

where IN = y7(ypup + (1 — yp)us) and SOS = (Ap + Ag)(yrys + (L —v1)vs).
Although they propose a likelihood ratio test statistic for testing the pa-

rameter restriction of the model, a model selection procedure based on the LR
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Table 1: Buy & sell order flows

Z; | buy order flow sell order flow Pr(Z; | )

1| es+up+ 4y es + A YIYPYs!

2 £ + up Es 1ye(l —vsr)

3 Ep + Ay Es +us + 4, Y1(1 = vp)vs

4 Eb Es +Us Hrfl = eIl —er)
5 ep+ Ay €s + A, (1 —v1)vs

6 € €s (d ~He (L~ ¥g)

statistic is not straightforward since the asymptotic distribution of test statis-
tic is not distributed as x? under some null hypothesis and the pairwise model

selection by testing hypotheses often leads ambiguous results.

2.2. State variable

We introduce a state variable Z; which enables to see whether the private
information arrives or not on the specific day, the information is positive or
negative and there is the symmetric order-flow shock or not. The state variable
Z; takes value 1 when there is positive private information with symmetric order
flow shock, 2 when there is positive private information without symmetric order
flow shock, 3 when there is negative private information with symmetric order
flow shock, 4 when there is negative private information without symmetric
order flow shock, 5 and 6 when there is no private information with and without
symimetric order flow shock, respectively. The buy and sell order flows arrive
according to Poisson distributions with intensities and their probabilities given
in Table 1.

We assume that Z,’s are independent random sequence with probabilities
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Pr(Z; = k) where k =1,...,6. For each element of «, we have

4 2
L Pr(Z: =k
=) Pr(Z =k|7), yp= e A= 1Y)
k=1 >k Pr(Ze=k|~)
Pr(Z; =1 Pr(Z =5
e (& =1|7) - (Ze=517)

Yo Pr(Zi=kl|v) YosPr(Zi=k| )’
2.8. Likelihood conditional on state variable

Before defining the zero inflated PIN model, we show the distribution of
X, of the extended PIN model conditional on the state variable Z; which is

represented as the product of the two Poisson distributions with the intensities

6 and ~
Pz e+ up + Dp) Po(Tst,es +As) fork=1,
Py(xp .80 + up) Po(Ts 1, €s) fork =2,
Po(zpi,ep+ Ay) Polzst, 65 +us + A for k = 3,
Pr(X; | Z: =k, 0,7) = { (zv,2. €0 b) Po(Zs,ts€s s )
Po(@s,e,28) Polst €6 + ts) for k = 4,
Py(zp 1,60 + Dp) Pol@s s, 85 + Ay) for k = 5,
Polanires) Puloasses) or k6

The joint probability function of X; and Z; for PIN model is given as

6 1(Ze=k)
Pr(X., Z|6,7) = [[{Pr(X.16,2 =k Pr(Z =k|7) }
k=1

where 1(Z; = k) is the indicator function that takes unity when Z, = k and zero
otherwise. The likelihood function can be readily available from the definition

of the joint probability function of X, and Z;.

3. Zero inflated Poisson mixture model

We often face excess zero counts for the number of security trade in actual
financial market as compared to that through the Poisson distribution. There
are several ways to handle such excess zero counts, such as Zero Inflated Poisson
(ZIP) model and Hurdle Poisson model. The negative binomial distribution can
be adopted instead of Poisson distribution. See Mullahy (1986) and Winkelmann
(2008) for details.
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3.1. Model

We consider Zero Inflated PIN (ZI-PIN) model which is the extension of the
PIN model. Suppose that the excess zero counts occur in a state where there is
no private information, that is Z; = 6. Although we have assumed that there
exists some public information for the extended PIN model, we now suppose that
the excess zero counts arise when there is neither public nor private information
and when the severe order imbalance exists caused by public information. To
deal with such situation, we define a following joint distribution function of the

numbers of buy and sell transactions as

Pr(X: |w,0,7) = q17p7s PolTpt,en + ub + Ap) PolTsr, €5 + As) (2)
+ 71v7p(1 — v5') Pol®y,e, 60 + tp) Po(Zsyt,Es)
+ (1 = vp)vs Polwo,e,en + Ap) Po(Ts 2,65 + s + Ay)
+71(1 = 7p)(1 — vsr) Po(@b,¢,€b) Pol®s,ty€s + ts)
+ (1 = v )vs Po(@be, 66 + Ap) PolZap &5 + A,)

+ (1 - 71)(1 - 75) Q(mt I 'U.),Eb,E_g)
where
w+ (1 —w)Po(0,6p) Po(0,65) Xt =25:=0
Q(mt | w7€b153) =
(I —w)Py(zp s, 80) Pols1,2s), otherwise

where 0 < w < 1.

8.2. adjPIN and PSOS for ZI-PIN model

The expected order flow in state where there is no information is smaller
than that for the extended PIN model. The latter is (g; +&,) and the former is
{1 = (1 =~)(1 —vs)w}(ep +€5). Thus the adjPIN and the PSOS for ZI-PIN

model defined below.

IN
djPIN =
o IN+8S0S+{1- (1 -1 - s)w}s +£35)’
PSOS = ok

IN+80+{1-(1-v){1—-vs)wHep +es)
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4. Bayesian Inference

In this section, we utilize a model selection procedure which is not rely on the
asymptotic theory for non-regular case by use of marginal likelihood obtained

through Markov chain Monte Carlo method.

4.1. Likelihood Function
The distribution of X; of the ZI-PIN model which is represented as the

product of the two Poisson distributions conditional on the state variable Z;, w

and 6.

Py(zps, 0+ up + Ap) Polzss,es +4A,) fork=1,
Pa(mb,ta Ep + ub) Pa(ws,t: 53) for k = 2,

Polzpe 60+ Ap) Polzs s, s +tus+ Ay) fork=3,
Pr(X, | Z, = k,w,0) = < (@s,¢: €5 b) Pol@s,s s )

Polzy.ep) Po(Zss, €5 + Us) for k =4,
Po(Tv,t:80 + Ap) PolTs,1,85 + As) for k =5,
Q(mt | wJEh')ES) fOl‘ k =6

The joint probability function of X; and Z; for ZI-PIN model is given as

Pr(X;, Z; | w,8,7) = ﬁ{ Pr(X; | Z = k,w,0) Pr(Z: = k [ ) }uZFk)

k=1
where 1(Z; = k) is the indicator function that takes unity when Z; = k and
zero otherwise.

Denote the number of Z; = k among n trading days denoted as ni =
>i_11(Z; = k) and the numbers of buy and sell transactions for state k as
Mok = D peq Tol{ze = k) and mgx = 31, Ts:1(z = k) where k = 1,...,6.
Further we denote dy = 1(zps = 2,2 = 0) and D = 5.7, d;1(Z; = 6). Then
Q(z: | w,ep,£5) can be represented as

1-d;

Qx| w,ep,85) = {w—i— (1-— w)e_(f”ﬂi)}dt (1 —w) H Pz Er)

i=b,s
It is noted that the parameter w can take negative value with some lower bound.

In such case, we obtain a model with zero deflation.
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Define X = (X;,X,,...,X,) and Z = (Z;,Z5,...,2Z,). Then the likeli-
hood function of ZI-PIN model that is the joint probability function of (X, Z)
conditional on w, @ and - is given as follows.

n

Pr(X,Z |w,0,7) =[] H{ Pr(X, | Z, = k,w,0) Pr(Z; = k | )

t=1k=1

}I(Zt=k)- )

4.2. Prior distribution for Poisson intensity 0

We consider the prior distributions for the vector of the intensities 8 of
Poisson distributions whose element should be positive. Thus we adopt Gamma
distributions G(ag, Bk), g(dk,ﬁk) and g(ak,ék) for the prior distributions of
Ek, up and Ay for k =b, s

w(0) o H E%k_lugk—lagk—le_ﬁkfke—g,hu;ce—ékak (4)
k=b,s

4.8. Prior distribution for w and ~

We suppose that the prior distribution of w and v = (v7,vp,7vs,vs/) are
Beta distributions BE(d;, 7;) for i = w, I, P, S, 5"
O (RO L | (R S (B AL Q
i=I,P,8,8"
4.4. Posterior distribution of w, 8, v and Z
Posterior distribution of w, 8 and ~ conditional on X and Z is given using
the likelihood function (3) and the prior distributions of w, # and - as

Pr(X,Z | w,60,7) 7(8) n(w,7)
J[[P(X,Z | w,06,) n(8) 7(w,v) dw d8 d~v

7(w,8,v | X, Z)

x Pr(X,Z|w,8,) n(8) m(w,~). (6)

4.5. Conditional posterior distribution of ~y

Though the joint posterior distribution is complicated as see in (6), the

posterior distribution of the element of v conditional on w, 8, X and Z is given
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as following Gamma distributions

27§ I"‘{-],'LU,G,X,Z ~ Bg(nl+n2+n3+n4+6;,n5+n5+ﬁ), (7)

W | ¥opy,0,X, 2~ BE(ni+na+bpng+nate ), (8)
Y [’Y,Sr,w,B,X,Z ~~ Bg(m +ﬂ3+531,n2+ﬂ4+7‘5-'), (9)
s I’Y—S?w!XﬂZ B Bg(n5+535n6+1—s)' (10)

The sampling from the conditional distributions (7), (8), (9) and (10) is straight-

forward when the state variable Z is given.

4.6. Sampling for w and 6 with M-H algorithm

Since the conditional posterior distribution of w and 6 on «, X and Z is
still complicated to generate random sample, we adopt the Metropolis-Hastings

(M-H) algorithm as follows. Let g(w,8) = log{ n(w,0 | v, X, Z) } that is
g(w,8) = mplog(ep + up + Ap) — na(ep + up + Ayp)
+ mgalog (gs +us + Ag) —ngles +us + A)
+ (mapa + mis) log (ep + Ap) — (ng + 15 )(ep + Ab)
+ (ms1 + mes) log (g5 + As) — (n1 +ns)(es + As)
+ miz log (e + up) — nales + us)
+ mgalog (g5 + us) — nales + ug)
+ (myg + e + o — 1) log ey — (ng + 15 — D + By )ew
+ (Mg + e + s — 1) loges — (na +ng — D 4 Fs)es
+ (dp — 1) loguy — Byup + (65 — 1) logus — Byus
+ (65 — 1) log Ay — Bl + (&5 — 1)log Ay — BsAs
+ Dlog{ w+ (1 — w)e(EoFes) } + (ng — D) log (1 —w)

+ {6y — D logw + (1 — 1) log (1 — w). (1D
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For notational simplicity, we denote a parameter vector ¥ = (w, 8')" and define
the approximation of g(#) using the Taylor expansion around the mode 9 as

h(9)

99) ~ h(B)=g(d) +gy(® D)+ 59~ 9550 — )

where

o 02
g5 = %g('ﬁ) i and gg5 = Wg(ﬁ) o,

Since
h(9¥) = const. — %(19 - 19)19*1("9 - "9)1 0~ = ~G4is

then we provide the proposal distribution for the conditional posterior distri-
bution of ¥ as N(d,0). It is noted that the first and rest components of ¥
should be in (0, 1) and be non-negative value, respectively. Then we define the

proposal density for the candidate 9* as
q(9¢ 9%) o exp { -%(19* —-d)e (9 -§) } 1(8* > 0)-1(0 < w* < 1).

The acceptance probability of the candidate 9 is

n(:ﬂ(i-—l) 19*) - mm{ 1 ﬂ-(ﬁ* | 77X1 Z) Q(ﬂ*rﬁ(i_‘l)) }

(P61 | v, X, Z) q(96-1),9%)
M-H algorithm
1. Set the initial value 9% and other conditional variables.

2. Fori=1,...,N, we conduct following step.

(a) generate ¥* through the proposal density defined above and calculate
the acceptance probability of ¥*.

(b) Generate an uniform random number » and set 9 as follow

o _J B vEa@Eh e
90D > (G- 9%).

3. Go to the other sampling block.
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4.7. Conditional probability of Z;
The conditional probability of the state variable Z; is given as Pr(Zt(i) =k|
Xt: w(:) H 9(1) » 7(Zm1))

Pr(Xt | Zt = k,w, 9,7) PI‘(Zt =k | "f)

Pr(Z,;:k\Xt,w,B,‘y): B .
Yoo Pr(Xe | 2, =£,w,0,) Pr(Z, = £ | )

(12)

4.8. Sampling
The parameters and the state variables being sampled are w, 6, 4 and
Z = {Z:}i—;. The hyper-parameters that should be determined prior to the

random number generation are ay, ¢, &k, Bk, Bk, B for k = b, s, and (&g, 7e)
for £ =w,I,P,5".

(I) Set the initial values w(®, 8(® and (.

o oy = & X O and Bx = £x/varz where £ is a maximum likelihood
estimate of g and varz = & for k = b, s. Similarly, we set (dk,ﬁk)
and (g, Bx).

o (8g,7¢)=(1,1) for £ =w, I, P, S

e For (sgﬂ),sg‘))), (uéo),ugo)), (Ago),A_(go)), w® and 71(:)) fork=1IPJ5

are set to be the maximum likelihood estimates of them.

(II) Generate Z(®) = {Zt(o) }7, through the multinomial distribution with the
conditional probability Pr(Zt(G) =k | X;,w®,0©, ~() given in (12) and

set D@, n;o)’ mg) and mgg) using Z© for =1, ..., 6.

(II1) Generation of w®, 8 and Z® fori=1,2,... N+ M
(a) Generate w® and 8% using M-H algorithm which is described above.
(b) Generate Z() = {Zt(i) 17, through the multinomial distribution with
the conditional probability Pr(Zt(iJ =k | X, w®, 00 ~E-1) given in

(12)

(c) Update D', ngf), m,(jc) and mizk) using Z® for k=1,...,86.
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(d) Update v).

W x 20 ~ BE

A x,20 ~ B

(3

+(35—1‘n6 +‘Ts—l)

ﬂ/fqif)lJ(,Z(i) ~ Bé’(n(f)+ng’)+§5i—1ng)-i—nfl)-}-rs,—l)
N x, 20 ~ BS(

(e) Set i =i+ 1 and go to (a), until ¢ > N + M where N is the length of
burn in period and M is the number of samples to store.

(IV) Calculate adjPIN and PSOS fori=N+1,... , N+ M,

adjPIN® = U\i:) TN
ING + 806 + {1 - (1= %))(1 = 1§ Y} (eF +€§)
PSOSY = . : S(?:)i) Oy, o L @
ING + SO 4+ {1 — (1 = "Y1 — v&" ) wD} e +e5')

where

ING =5 {90 + (1 = 7f)us ¥,
500 = (A“J A { A + (1 - +E }.

4.9. Model comparison
The model we have considered includes more parameters than the original

PIN model. The ZI-PIN model implies the several model specification with a
variety of parameter restrictions. We consider the following six models. My is
the original and Ms5 is a full specification of ZI-PIN model.

Mo v =5 =0, up = us,

Ml : ’YS":O! Up = Ug, AIJ=AS:

M2 : ’YS' :01 ub:u.'h

MS - ASE = G!

Myt vs =15,

Ms . Unrestricted model.
The model selection is made on the marginal likelihood using the modified

harmonic mean estimator proposed by Geweke (1999).
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5. Empirical illustration

In this section, we provide some empirical illustration to make the point
considered in this paper clear. We use the intra day data of several stocks listed
on the first section of Tokyo Stock Exchange (TSE). The numbers of buyer and
seller initiated trades for the five minutes after market open from July 1, 2009
to December 30, 2009 which consists of 123 days are used to estimate the model
proposed in this paper.

Figure 2 is indicates the plot and histograms of the number of trade at
bid and ask for the security code 1332 (Nippon Suisan: fishery, agriculture &
forestry). We observe slight more large numbers at zero for both number of
trade at bid and ask as compare to a Poisson distribution. The percentages of
the former and the latter are 6.50% and 7.32%, respectively. The correlation

coefficient between the numbers of trade at bid and ask is 0.262.
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Figure 2: Number of trade at bid and ask for code 1332

To see the effect of the excess zero counts, we show the maximum likelihood
estimates for ZI-PIN (M;) and PIN (M3) models in Table 2. The estimates of

the parameter w for excess zero is small, but it is significance at 1% level. So
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Table 2: Maximum likelihood estimates for ZI-PIN and PIN models
ZI-PIN PIN
Estimate s.e. p-value | Estimate s.e.  p-value
G 19 0.353 0.116 0.001 0.321 0.078 0.000
7] 0.483 0.218 0.014 0.743 0.160 0.000
g 0.229 0.142  0.055 0.552 0.153  0.000
Ys 0.317 0.108 0.002 0.505 0.093 0.000
€b 3.851 0.447 0.000 2.913 0.416 0.000
Es 4,138 0.538 0.000 3.250 0.433 0.000
Up 7.338 2.426  0.002 8.641 1.173  0.000
Ug 7.311 1.613 0.000 8.317 3.124 0.004
Ay 7.256 2.250 0.001 4.058 0.891 0.000
Ay 5.135 0.915 0.000 5.587 0.602 0.000
w 0.055 0.032  0.044
adjPIN 0.186 0.036 0.000 0.197 0.034 0.000
PSOS 0.254 0.067 0.000 0.360 0.052 0.000

the estimated adjPIN and PSOS for PIN model take similar values as those
for ZI-PIN model.

For MCMC estimation, we draw 10,000 sample after the initial 10,000 sam-
ple are discarded through the sampling algorithm described in the previous sec-
tion. Table 3 reports the model selection result. The maximum log of marginal
likelihood is attained for Mj that is a model without parameter restriction.
The summary statistics of the posterior distributions for (8, w,~) by ZI-PIN
(M5) model is given in Table 4. Figures 3 and 4 are the sample auto correla-
tion function, the posterior density for the parameters of ZI-PIN (M35) model,
respectively. We have introduced the state variable Z; which indicates that
whether the information arrives or not, the information is positive and there is
the symmetric order flow shock.

The probability Pr(Z; = k | X;,w,6,~) is estimated as the sample mean
of {Z!9 = k}r_,, i =1,...,10,000 which is the sample generated by MCMC.
We denote this estimated probability as f’;(Zt = k). The probability v =
(v1,vp,vs’,vs) for each ¢ can be obtained from ﬁ(Zz = k). We classify a day
t as the day with information if the estimated ~; for day t is greater than 0.5.

The other categories are classified according to the similar way. The classified
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days are shown in Figure 5. We confirm that there is more buy transactions
when there is positive information and vice versa. Figure 6 shows the changes

of category depending the day of the week.

Table 3: Log likelihood and Log of marginal likelihood for code 1332

Log likelihood M-H Log of marginal L.  s.e.
Mo -748.258 0.851 -117.871 0.012
My -723.528 0.849 -117.517 0.014
M; -717.267 0.841 -118.278 0.016
Ms -716.341 0.832 -118.125 0.017
My -718.298 0.825 -117.853 0.060
M -712.837 0.834 -117.130 0.016

M-H is the acceptance ratio of M-H algorithm.
s.e. is the standard error of log of marginal likelihcod.
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Figure 3: Sample auto correlation function for M5
Next example illustrates the severe excess zero counts case. The security
code is 5201 (Asahi Glass Company Limited: Glass & ceramics products). The

sample correlation between the numbers of trade at bid and ask is 0.752. The

percentages of zero counts at bid and ask are 27.64%.
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Table 4: Summary statistic of posterior distribution of Ms for code 1332

mean s.d.  95%L median 95%U Geweke  Inef

Yr 0.463 0.112 0.261  0.459 0.696 0.036  18.028
Yp 0512 0.166 0.199  0.512 0.826 0.069  32.029
Ysr 0.329 0.151 0.094  0.309 0.661 0.125  36.287
¥s 0.345 0.123 0.108  0.344 0.593 0.152  24.202
Ep 3.579 0.522 2451  3.609 4.483 0.293  37.491
Eq 3.836 0536 2.794  3.835 4.865 0.117  30.110
Up 6.559 1.523 3.782  6.565 9.541 0.280  24.336
Usg 5.969 1.492 2811  6.041 8.822 0.007  27.838
Ay 6.658 1.856 3.356  6.770  10.054  0.151  42.604
Ay 5340 0.834 3.590  5.389 6.852 0.486  12.708

w 0.082 0.046 0.024 0.073 0.186 0.446  15.366
adjPIN | 0.199 0.033 0.134  0.199 0.264 0.031 9.864
PSOS | 0.282 0.058 0.175  0.281 0.402 0.953  27.145

Density Density 0.2 Density 0.75- Density
—d] S\ T —aB] e T A \
0.75[ =2 022 N\ =3 M\ =] [\
0,500 / \ 4 \ 0.50- \
T 01} \ O \ 5\
0.25¢ ’ \ / 025 \
[ i L . Ml . . ; | T P
0 2 4 0 5 10 15 0 5 10 15 2 .4 6
__ Density O Density 15- Density __ Density
o3 N U= b 3=} \
L \ 04r \ 10+ [} I [\
0.2+ \ \ {I \ 2 / \
i \\_ e \ y / I"\ I A
. = . w doa Do [ r ;
0 5 10 25 50 75 0 025 05 075 025 05 075 1
Density Density Density Density
i Sl M=y =
T \ [ X
2+ \ /oo
I \\ i / \\ B / \ L1 \\
_ . SO S L . i -
00 05 1.0 0.0 0.5 L0 0.0 0.5 1.0 0.1 02 03
75 Kl’;ﬁf"
5.0 b
A
25r \

Figure 4: Posterior density for Mp
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Table 5: Log likelihood and Log of marginal likelihood for code 5201

Log likelihood M-H Log of marginal L.  s.e.
Maq -678.913 0.965 -115.341 0.012
My -656.142 0.960 -115.084 0.014
M -654.596 0.952 -115.734 0.015
M3 -652.819 0.933 -116.073 0.017
My -646.523 0.820 -122.943 0.905
M -646.476 0.855 -120.401 0.323

Table 6: Summary statistic of posterior distribution of AM; for code 5201
mean  s.d.  95%L median 95%U Geweke  Inef

Y1 0.193 0.072 0.069 0.187 0.346 0.338  13.264
yp 0.523 0.203 0.147 0.516 0.929 0.947  14.198
¥s 0.249 0.068 0.121 0.246 0.388 0.312  11.329
£p 10.820 0.708 9.353  10.844 12.141 0.624  10.881
&y 11.671 0.768 10.049 11.713 13.093 0.692  10.546
u 10.406 1.736 7.280  10.311 14.137  0.462 9.448
A 10.056 1.073  8.147 9.983 12331  0.467 9.820
w 0.454 0.069 0.329 0.450 0.602 0.850 5.640
adjPIN | 0.087 0.028 0.036 0.086 0.144 0.138  10.923
PSOS | 0.179 0.046 0.092 0.178 0.271 0.207  10.792

The ML and MCMC estimations for the model without zero inflation do not
work due to the excess zero counts. The ZI-PIN model works well for both ML
and MCMC estimations. The result of ML estimation is omitted to save space.
For MCMC estimation, the log marginal likelihood for each model is reported
in Table 5. The selected ZI-PIN model is M;. The summary of the result is
given in Table 6. It is remarkable that the mean of the posterior distribution of
w is 0.454. This suggest that we would suffer severe bias if we ignore the data

with zero counts of the sample.

6. Conclusion

The excess zero counts we often face in empirical study make an inference
by the extended PIN model difficult. Although the one possible way to avoid

such difficulty is to discard the data with zero counts, it would incur some bias
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for the adjPIN and PSOS introduced in Duarte and Young (2009). On the
other hand, the Zero inflated PIN model proposed in this paper enables us to
deal with such extra zero counts case. In this paper, we also propose the model
selection procedure which does not rely on the asymptotic theory using the
marginal likelihood and it makes the model selection easier than the method

proposed in the previous study.
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IETHLL, WHEOMERR 7 74 F v AMESFI B TEB L ER ERVEEL T —<0—2TH b,
FORIBVT, BT —FDHREAVES 7 FLERIC L 35EH, HBICBIT 3 “F 7 US Itk 31F
DY —»2RB5HE, WbWD Y4 =7 - 73— L OWENEECET 2 EIREL ST TR
Twah,

90 FFAUHITLIRE, MBBELT — 5 22 Z EiCd o T, T A VIS ROMISESNIC N T 2 TS (FF) 2h=%
HICB T B EENE LT LN LI B> TETwE, EEOEMRIC Ldud, Zho kB0 RE VRIS
J2H2BEOFHEZREL22b, BEI2RA F2BET 2 LHEBHEZH T2018L W E L IKRD &
ITH D, AWARICEEET B ETHI & LT, ¥ 3 Papageorgiou (1997), Tanaka-Yamazaki (2003), Ohira
et al. (2002) 2FF 3. ZhoOXETHE, HEABL— DT 4 v 2 F— 92V, BEEHERTO L THO
RERFIICBE Y 2 b T SHROFMETo 7. EFESTOBR, BiHi2, 2RD2 a7, BEIZ4RD=
a7 RHL, CROMBEEZ BT 2) IEFRIORREE 2R L 2.

AL, SUIRAK (context tree) ZAWT, MHEE T — 7 IS FN 2L, F— Y OEEEL WIESLHS
SRL, ToiRENES—ARLATHAMEE L WIBADS, THOMES IO VLTEL L. BERICI, &5
WERRIT -7 ORMCZESBZ “PA7 7y b7 %, lRICESE (B L, BoniXRR2ME-
TRIZERETZTHAIXTE (LTH) 2FPRT 22 L2845 Ki2, H2BRIOTFIC BHEREL Y —y
BHEET D ETHIE, Z0O L) 20—V OREFENEGVEEEVWREIOFSTCRRELEAWIENTH 3.

* Very preliminary and incomplete. Comments and suggestions are welcome.

=125-



BETHE, LEOBRIF—FICEENZ Y — Vv OFER, TOTF—FBENRT “EM S ahziti
FTEILILL>TEORERZFARL ZLHITE L. AFTHWD £ 3, ¥— 7 0%V RER (IEM) &, FHl
2179 R, HHER, SIEEREE PLICHRDED &5 1T E % (H, Cover and Thomas (2006)). 5 H
FC, WA EEEF— ¥ oG LMz d 2 H 00iEo Thin, XRARICEWTE, FLr—=ov
FHNEF L BN LFEFIOAY — 203 “FEE” 12 IR & LTEBRIh, —ARICETFCERIN TV B
PRIz, 2hdt b L—o v ZAIICBN s T REBEOERIEHF I TR I LIRS, IDLHICLTHE
Shi-fHEzAuUE, BRINLROBEFEEREEI ZLICk>T, S F LB ST A MlRFEEIC
Ho LAHDELILINE> T, REBENLTHA I XFICH T2 FHZTHILBTES.

TARA I, RO E 23\ T Rissanen (1983) I k- TRANCRESI N TUUR, N4 F - A 747
F 492 A FEEEYSE BB OCAINTE R RARE, “AIER A2 7 (EH) €77 (Variable
Length/Order Markov, BAF “VOM € FL") L 4 WEEN, —FTREE, w27 0KFEZRT ATV D
REIMBEOXFINHEFET S LI >N a7BETHSE. ATV ELBEBRUTOAEATSI LT,
F—yOREOHHERZHRFL 22, TFALOBEME - G2 EBEL, Tho 2@z e T3l L0
EFADOBRHIOBERE IR TS, ZERFRICEEZE T, “Ev 77— 2HBBIIOERT 3 2 L2%R4
REYRADFIIELTRO SN T RS H, SURA/VOM I2fREI #15 KM T — & 2 IR LR ATE 2
M~ OHSHEFIZE .

VOM ®FL %, BHEET— 7 OFMICIGHE L 2 RBIHR RS OPFET 528, ZOFEN - BENFREC
b s TENRAVEEIRERTFICTLN TV S LESvEy. AR, BEAKRRO T 4 v 774
oxt LTRAAERZEA T 5 2 LT, BEERIRICE T 2 BT I T 2 R EIENAM A Z 1S 2 02
HEHETHS.

fRAIZ X o THitERI OELMEE (complexity) ZEHHIL, 22N L THBORERELEREL L5755
AHE LT, 248 (ER, T#) OHRT— 7120w THLFFHF)IC, Shmilovici et al. (2003), Giglio et al.
(2008) %53, 3 M8 ({ L5, T, % }) O&E#EE 7 — ¥ Tk Shmilovici et al. (2009) H0fId3H 5. £,
F 12 Shmilovici et al. (2009) D FERZEAT 2.

EEEF— Y OEHEEDBELERL T35 H, & HEEEER BT 3 ERESORRIFELZHE~2
DEMELHELTWwS, f21E, 2010F 1 BX D, KB LT arrowhead SEAZINT 545, ZDREL L
TOEHEEHEBICE T 27—V FEIC DL THIIICIAERE T2 Z L RERFRVEE RS,

2 T5E®
HEf

DT T, 312 Begleiter et al. (2004) #&:Eic L ads, [ 2HAL, MEREZTI. T2FR7L
77y FEELTS. A, = {a,bc}(LR, T% AE) 2L ThH5. ¥EH (learner) @ bL—=> 7
gt = quge- - gn B5ABNB, HL, ¢, €, qiq; R2D2OXF (TA7 7y b) OEZRT. ¥FED
HHE, ¥ BF—F F 2d i, BEDH LBREVEZ o W BIEBONROERICN T 2HE2 525 %
IREFLP#B2ILETHE. BEMICIE, EEOXRs c T EXF o e T KL T, EBHREMFELS
FERERAN (EEME)P(c|s) ZEREREASAR . IIT, 2= USXxEx---Z i, ETOHREDT L

I ——

k @
77y B OHBEINEEETH B,
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XA (AIZERTILATETI)

BERDO n ReNI7ETAR, FEORSI NOXRs e TN LXF o€ T RHNLT, HEDT P(o|s)
FHEL L9 2T 50 LR <L 37 %7 (Variabile Order Markov Model, VOM) (& wTld, bL —
v BRI G NS YFEURDFHEEE G T, HAOXIRDE X |s| BELT 5. (RTOAL27ET
MCHLT, F—y o2 ETHEEC T2 8iC ), HNCEV L —= v IV F— Y TRB LI %
TIZEMNTELZLILREND S,

A TlE, Begleiter et al. (2004) OFEIZHE-TEF, VOM 713V X ADOHFTH, K2, Prediction by
Partial Match (PPM) LMEIENR B 7L T ) X L0—fEZH VL Z LICT 5. PPM I3, AE—FILE2600,
HOEHEEE2FO7ALTV L TH S Z ML TS, LT TR, #¥1C, Shmilovici et al. (2009) T/
VHENTWEN=YavEEATEILLETS. UTTR, HARXIKHB->T7 LI ) XLAOBEZENT 2.

HE, VOM o FR 7TV XLi&, #7754~ 7 (counting), AL — % (smoothing), SCIRER
(context selection) @ 3 2D 7 = —APSHRENE. AV VT4 v 72=ABVT, BRES DD
IO IRADHE S 5. KOMBIT (root) 25, i (/ — F) FTHUBH (7$R) 22—>D XK (context) %
FY. IIT, BEEMELT/ —F2—2BNT5I L3 —2MOXFEE2MATIREZHIET Z EICHET 2

(XBRIE + V== ZFoFTRERNICE S ARICRNS). £/ — FREREX (S| HoF/ — F2Fo0, K
37 v AL TV 5 (balanced) LIRS W, Thbh, 2TORBELESITHS LR ZVL, 2T
J—FAUERDT/ —F2E2 L bR6 %,

B17x—=ATi}, FTXFH%E, —BlIC—XET MR (parse) T3, R—REN7XF o; LEE D
DI oi"h BT WORDSAERDB-b LEZNDBFEL TS o Il T 5. &/ —Ficig,
(2D —FILEZARA=XMEHE L L) & v FLOHBEAKEZRA S (S| MOA7 vy —hHisnT
Wi PAT) AL, IRERO L CEHT . IR ol-p ko TERIN B SAICH> TRERMIL,
BROLEW/ —F () ICHET2ET, 2T0/ —FRZHEXE g; DREBEMATHL. MUT, Pr—=v7
FIRDOICNR s DRI F o e THRENZEHE N,(s) EHLZLIZT 5.

B2 72—XTl, SR AY Y FEEOT, FH P(o|s) #ERT 3. PPMIcBVLTI, FL—=¥
FHIC—ELREN BRI -V IIRERB L2 L IME TN LT, AN 2= a VWHFET S0, 22T
1%, bR Shmilovici et al. (2009) lKDHELXZDEFEHAVEI LTS, Thbb,

1
p("'i 8) = o} +2£ Na(j\)f (s)
2 gl EL T
ik oTEHEST S,

B3 7x—ATIE, L=y PFlADFd —nN— 7 4 w54 v IRET, o AT VEROERN L FEY
i EDrkdlz, 72— 2 TCHROLENTEEUEETLVOREIOMNEES. WE, s = 0pop_1 01 BE/ —
FIZEREL TR, 208/ — Fid, s ORED “BRIE (suffix), s =op—1+ 01, THB. 2T, #H/—
FEHEgEL T, ROXF o OFHIICE LT, BMEFRROREZOETHEBML ZWEZEZAM DAL (prune). B
HENIC IR, BTORNEE (EHRE) 022 C(I8| + Dlog(N+ 1) LETH2OA, T/ —F s 2EKT 3
(Shmilovici et al. (2003)). {EL, C 1ZERTH 3.*1 HoUID#EE LI, XRAKRDOHF T, BRIVICETENT

*1 FA#C T, Rissanen (1983) #8#ic C =2 BV T3, —77, ¥ Shmilovici et al. (2009) 2BV Tk, C = 0.50 &
BESENTB. 8, ThoORICIRFAL BN 2 Hiiad 5.
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<.

B EMEFREHO 7 LTV XL TH B2, Thick hiEsini VOM £ 7L (XIRK) 2T, XD
FINTEFHETICENTES. Thbh, (FL—o¥ FHLIZFI0O) XFF s 335 2 S l-k, KD
XFEDTFHMEG 13, VOM EFNMICB T 2RERENBAL 25 L) B XF2ERTHIIR Y, Tabb,
& = argmaxys P (0] s) @& H BT L.

EfRE, FRBE

FL—z v 7Rz ENR T RSCEETELPEFM T 2R L LT, EME2AVS. L7 7y &
BELREOREY w OXFES 1¥ = 1170 - Ty, B, TR “FRTE (—HRER THOMIL) KA TV 3
DTHNIE, INE 0,1 TRATA2DICHELE Yy FUE, wlog, |E] TH2 (bEHA, XML Tr—2
BZORHFDOLYy FuE—2FETHITRY). —F, VOM i &> THEL (E#E) ShAF5OoRI A,
—logy P(a¥) = = ¥ logy P (x| 21+ - mem1) KTHER SN B. Lidio T, @HDHTS 5 EMTF

_ — log, p(fl”)
wlog, |Z|
FRAUL, PL—= v ZH0 T o5 A% - FEAIE (Z 05E, —BR» M) 2FHET 2 LMBTESIRTT
BB, T, MRAEMT VLA T7A—TFEYTAL -0 I alb—yaryTHEEBEIETREZ VOM
EFNCEFIESH I LT, ‘ENTE OT TOEMEDR ) SHMIEo N6, HiLT—F K hat
A NAEFRICHTLE LTI, 20 (B5)p EIEMESNS.

Iz, B QBB S O M & [k, €7 AFHM L RBHEOEEFR2FMT 5 L0 TES. Thabb,
SOHR s 1o at U CRER T P (o] s) #BAK T2 LI ANFOFRM s 2, ERMEG LHEL, BEX, #2%
g F— HEIcHE D IMET SR, JREFL—y ZF (RIEF—%), 7 A M (JHEF =) O F
LBV TLEHEITETSH D, A, FL7 7y FEEMW I XF B =3 THiuL, 9 x 9 D77
(“confusion matrix”) TRET 5 I L HTE 2. HESH, BEEESH TRV ZFMRETH 3, “F R
B “HBIE (recall)” % ERFELTHRL.

3 EEEAHT
F—4

LLIFTik, H#& NEEDS ## @A T4 v 7 - F—F AW OREREEN TS, EHALET 4 v
7 F— i3, B -SSR0 D CRMRESHEEOB I E L0 o R S 15 TOPIX a7 30 HEE#E
(2010 4F 10 AR S) OWET—F TH5. F—FH#HEIZ, HAEIC arrowhead DB A S 117z 2010 F£—4F
ML, MBEEHNC2T). SHARKBVT, FL—=v /%% “BiY” 124K (rolling window) L,
FEfEB L O 1 BEETRH 2T, Ihzr—BEd5F o LanoKEEzTRVEL, ZOHOAR 7+ —2 A
RHEIT B, O ICE BRI, BE OWEIEH (BRE) ciial, BB LICRENEL L EZLS ¢
L — FEfE” ©% % (cf. Griffin and Oomen (2008)). #F£2fTHI DI, EDT 4 v 7+ T—FE2RDEHIT
ML 7.

o F—¥%F 4y yEHZATHEE E (RIELEm =1,5,10,20,50) T3 (m=1k&F—FEH)."?

RIET A vV F— ARy F e TAZ - R YA EIRENS CvA I RRA LT IF /AR OFEMROIEBHONT
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o ifEELE, XFH2DTAL7 7y b, E={a,b} LEMT S (a 1T L, bIZTH). 28, F4v 7 -
F=F i, MEEBC 0BG OFENR LY, 0Lk “¥u - )y—2” hihoBalcik, —
DHIDEENE DA (B, TH) 232 Lic7 3,

o FL—=vIRIDHAL X (74 F7E) LLT, LEXMREZEEC, 4, L m ok, EHFO
LHS7 D DT 4 v 77— F ORI EFERIZAN, w=50(XH) LBET2.*

o XRADESDRAME LTk, PRYAXLIZEEI D=6 LtBET 2.

PTHER

=Y BoHE L, Topix 27 30 $EHED 5 b D—2, IMABERT (6301) DIEED A% 1-3 IR T,

BROED, —HRI BT 2 FHEEE SHETFH) W EYEHEOMARTH 2. £5d71 BIcHYT 2.
—75, BRI, FHEEXEZOHICET 2 (FHEWHAO) ERERKOHMEEORZII 7oy FThs. H
1, k=107 —A, K213 k=10,20, 03 k=50 Dr —ATH%. LREMOHEMNEE L2, RiceF
NG LIZORICERZFRILAEGOBERTHS. ML, FHEHENE VI PYEERLEY (EB.L
D) ZEDHLHTH S, £, FHIEERL MET2EH LRI LHELHIIZAZ YL, Zhe OfEIR
EREL o> TRI20, BRENATOE k=50 TERMERT 2 Lo9n 3,

K461, €7 v&TA - B—)ILTF 1 ¥ 7R (3382), REMMATHE (4502), # HARS (5401) DESE (0T
NY, k=1507—ADH) 24§, IREERT (6301) & AMFLERIES 0.

BRRE

HKOLID, SREMOT74 Y F 7B w =503 (7x—X 2 ItEWHEALEEKRED - DR
C=0005cNLT)+ARVEREZ R, — A, BRHIOFHASITCECT, COEE2VAVAEELT
FiR 2B THI L 25, TP (Shmilovici et al. (2009)) I2THE X 1172 C DEISHOF—FIcH L
TRRETEL LML D, WENTIZS 208 C = 0.005 #1BA (“RBEL" SH3ETRZV).
KD OHIC, 2 ORI (“AIER” 24 V) ZALEE (w=>50)T1 HRFEEXR, EX L7 PPM 7
NI X L2EHLTEMBOSHEAR LIS, C =0.005 DFED 10 % 5H0.5253, 90% &S 0.6312 T
Holz. —K, C =005 DRFIZIE, 0.6723, 0.866, C = 0.01 DEFITIE, 0.8262, 0.9896 TH-7=. O DA
SOLBRICRA—N=T 4 v T4 YT DS H M, KEL C OETIE, RERIBLTE, S22
BTl sBhdbs ErvyALuoHBRTIE C =02 BEOKRZ X0, TIRAD 7 — FEIZEE L
THIME (2FED, AEVZ2LAHV)ICETRE I LBERINL. #-T, LEOEROEEEF— ¥ %/
WSITIRE VT, BoNEMENEE T 0.4-0.6 DFHICNE > TWaH, Tz b THBIZF— o
(RFR) 7 VT LT —FTREVERU S Z ENTER G (THO RS 2RHTE L),

ZH2H, (MANKICEWT—2ICHLT) EMENE VI L5, EFFNIEL oT0EEOEDH, F—
N=T 49 T4 LTSGR0 IREZTOMBTEHNSETET, w & COEE LWEIZOVLTSHE
ORGTZET 5.

VB, ARE TR, () R T O AR OSSR HNTH 2 2 Ed s, MATIAFIH LI MBIEHEE 2w b L
7%

*3 Shmilovici et al. (2009) ¢, w = 50, 75,100 # il LT3, 7z—Z 218112 C OB L & LI, HE L wDREXIR
SEDBGTIETH B,

*4 ZRTIZ, D < log(N + 1)/ log S| 4R S NTVE L5 TH B,
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—%, LR & D, EiED ) £ fTbh sk, EEEN LR 2BMSHAECRn S, EMBEHICL->TE
588 il L HSEHEEL - PPM 2ER] 50 O TF— Ty —v 2 ) E(FBL, —2KE2 ) (T
HLTWw3ZERRLTWE. FHF— ORI BEMNIC L > TELR 38, fl2E, MABERT (6301) DHS,
2010 F—HH 7 h P 52490 DL 2 —FHdh, Tk HE¥EE - FHl2—HE%D (rolling window % 1 A
Fo7TOF—n"—35y FELVNEk =1 D7 —ATiE 5200 BEREF>Tw 5. >, RiCMEEED LT
DEREE L 5 A LRFITHENL, IO YHE FROFHEERIINT 3EERZE (] 0.007) DRESITH
L, FRIOFHEEE (£ FAFHMERO LRER) 0Z»HMEOHTERL 2SI L3HLHTH S (FHE
RonBEICIE 2 HAOEERERE SN (R 2O THED “HIRME" BEHSNB!T). LHrLad
5, BRI SR 23 (K PEBAE(R2) KEVZD L) ZINEESRHEBL T . Be L (RiED)
Ey b 7R7 N ABEEREEZ SN D0, 2ALUAOEROTEE b F0SROFM L oTBE
THa. kB, R o EEN BEELALE L TH 2R ERICHA L GEEFIREET s ukiTiud
WD R THBHEREARVORYATH I (MAEE Y F - 7TRAY - N7 v ARREDRFLTF
D77 I 6EEE B 5 0RBEMCiEEW), ITENSTSEFCwBLTERL, any—ray - ¥—-8
AR EMNERMEIND L IR T ESH, SERAEINZBREMCHEATLE 5 “JEE B, ELHE
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CHHEREAFLINL, MBIV ECRET2ERCHEERE C L > TOE S ICNBFELO2 S Likw.

4 X&EH

BRI — o RKRMWEFEEERIC2\»T, 206 OMEET OfEE, PR >WGHEL . 20itlft e
flEE R L T2 XRAD, £ 7T — %, BDAT{BEET - ~OILAMAR IhETEBAE, @A
Eawk AV HEERORMIESEREVWEEL NS

SEIZ, FHEOEV I ETHSNTWS PPM 743 ) X A0—f%H s, I 03 XRAE 7 L
TVAEDFa—ov ¥ R A—F K 72—X 2B 3@BHCOREIICREEKETS. L=
Y FOBERY A X wDELEC, FOLICIhsZBERTRIERVLD L VI EERSBOBFESLET
H5. £f2, VOM 7 AT Xk & LT3, PPM LAtz b, CTW(Willems et al. (1995, 1996, 1998)) % £
FhHbOBHsNTWE, Ihz&d o7 d) XAMT FRIEEICET 2 RS L FEETH 5 (f,
Giglio et al. (2008)).
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WA, D WM ORERZHIE T 22010, RN OBEHRAREEC>WT, Tl 7 Fric
ES(EEREREICL > THARD 2 L BLETH 5. BERE (BIA1E, £ Shmilovic et al. (2009)) 12
BT, RICFECETIHBEOPHAZR > ET VBN TS, WME 2R 2B T 5 LARLN
BHESNRWE LSO, BEEZINIEETHS. 20X H)LEEI2 A+ 2HEL 2 LT OFHE
RBiHO (FOERTO) BERELZTE S 2 L TEETH 3.

BHEEF—SIE, EOLls, 20OV VY FHEEIL LT, BRABENSELMT 2 2 LBEREATY
% (212, Mandelbrot 5D 7V —7DIRET 2 “wAF7 77 ¥ 1" #2 E; Calvet and Fisher (2008)).
VOM B F—# 0 »E GHEENEVEEINEIETALTIHS S, 202 (2R i) bEREDOH
V) BREOeLa7ETS, SRITHRICE T 3EEET -5 208 T 3 BT TR WTEENS S, e
7578 NER EOFIREE 2 ERIC AN S, FIZIERY ZHEIC X - TR & - ks R o ik
&, S X DEFMARE BAEEZEL T, VOM EF L OBEAELEIIOWTEEZED ZLENH S ).

BEH 3 IMARDBRARP SELYZ L DE— 2B L I RAERRMES, B L, CHEL b REEL
7—=2T% 5 (Garivier and Leonardi (2011)). “FHIF” OFEWT7ALT Y A LOFE L L b2, REIFD» DR
ERREETH B,

AW, CBAEER NSNS (BBE (A) 7 74+ AFABOHOHER L &R, (FEE
5 21243019), IAEARERE: EEAZEREAERE) & LU, BAREHFELHAMEHATIR S & DEREY

-132-

—EEE



3382 (k=1, ¢=0.005, w=50) 3382(k=1, c¢=0.005, w=50)

0.85 - 0.85
08
08¢ e @
| 0.5
a.7s * . 0.7
s 065
W o7 ;
06
H 055
065 * - ;
05
i 4 T —— s
cd
. TTgIaaTIIR RS
oa oas o 0ss 0k 328835z 288835838¢%
; i ) g i a5
523288883885353
EN% SRERIIJIRBARRIRER
3382(k=5, ¢=0.005, w=50)
0.7%
07
0.65
06
5 0.55
] 08 ; — E¥E
i
0.45 upe
o P T S S
0.35 - - - o - -
Bﬁﬂﬁﬂﬂig ghann
EEEEREEREEEEE
OO0 QQC OO0 000 C o Oa
PN AN N AN NN ™N NN NN N

Ik hfFbhTwas, FFEETICHED, 2TEE—7 1 F vy T2 /0y —BFEMK LD, EBED
LEDaAyFEREGE JlHERERT S,

B

Begleiter, Ron, Ran El-Yaniv, and Golan Yona (2004) “On Prediction Using Variable Order Markov
Models,” J. Artificial Intelligence Res., Vol. 22, pp. 385-421.

Calvet, Laurent E. and Adlai J. Fisher (2008) Mulitifractal Volatility: Theory, Forecasting, and Pricing,
Burlington: Academic Press.

Cover, Thomas M. and Joy A. Thomas (2006) Elements of Information Theory, New York: Wiley.

Garivier, Aurélien and Florencia Leonardi (2011) “Context Tree Selection: A Unifying View,” Stoc. Proc.
Appl., Vol. (in press).

Giglio, Ricardo, Raul Matsushita, Figueiredo Annibal, Gleria Iram, and Da Silva Sergio (2008) “Algo-
rithmic Complexity Theory and the Relative Efficiency of Financial Markets,” Europhysics Let., Vol.

g 2 g



4502 (k=1, ¢=0.005, w=50) 4502 (k=1, c=0.005, w=50)

085 g o8 5
' 0B |
0.7 i
; 06 |
C] os | —ERE
! updE
0.4
i
0.3
055 ¢ SO D ANT O RS R AT
0.4 0.45 05 0.55 o]:] gdm;gﬁmgzggg,ég%a
E8E8E8EEBS88E85558
Ens 2888288 gpeoogg
4502 (k=5, ¢=0.005, w=50) 4502 (k=5, ¢=0.005, w=50)
P R — e 0
N 0.75 i
07 | ¥ g N S— -
a0 | 06s |
" i a6 ¢ 1
W oes - - 055 | R
[} ; T e Tt AR 73
0.6 ‘ R T AT e Das = g Al e
i 04 . e upde
0.85 H 035 - R R R ¥ R
;] 03 L A R T D U A S
0. e i ooy Ll | - o
8 e g e e e 8 o
04 0.85 0.5 055 0.5 0.65 asa8 5 ERS é R
EBEESELEREREEEES
Eigs SERRRRRRERIIRRRE

84, No. 4, p. 48005.

Griffin, Jim E. and Roel C. Oomen (2008) “Sampling Returns for Realized Variance Calculations: Tick
Time or Transaction Time,” FEconomet. Rev., Vol. 27, pp. 230-253.

Ohira, Toru, Naoya Sazuka, Kouhei Marumo, Tokiko Shimizu, Misako Takayasu, and Hideki Takayasu
(2002) “Probability of Currency Market Exchange,” Physica A, Vol. 308, pp. 368-374.

Papageorgiou, Constantine P. (1997) “High Frequency Time Series Analysis and Prediction Using
Markov Models,” Computational Intelligence for Financial Engineering (CIFET), Proceedings of the
IEEE/IAFE 1997, pp. 182-188.

Rissanen, Jorma (1983) “A Universal Data Compression System,” IEEE Trans. Inform. Theory, Vol. 29,
No. 5, pp. 656-664. )

Shmilovici, Armin, Yael Alon-Brimer, and Shmuel Hauser (2003) “Using a Stochastic Complexity Mea-
sure to Check the Efficient Market Hypothesis,” Comput. Econ., Vol. 22, pp. 273-284.

Shmilovici, Armin, Yoav Kahiri, Irad Ben-Gal, and Shmuel Hauser (2009) “Measuring the Efficiency of
the Intrady Forex Market with a Universal Data Compression Algorithm,” Comput. Econ., Vol. 33,

—-134-



5401 (k=1, ¢=0.005, w=50) 5401 (k=1, c=0.005, w=50)

cg & & D85 -
&‘0 ®
_r 'Y LEEN
065 [
W o7 i
o 0585 |
M oges - — EEE
- . 0.45 ¢
*@ e fesmsme up®
e e e SRR ), ks josmedi 0.35
*e
s D35 Lo eee o e e e
oo | Er e TR
0.4 0.45 0.5 0.55 06 §§88§38§8 §§6‘6‘3§
EME $88g22gg88888¢e¢e8sd
5401 (k=5, ¢=0.005, w=50) 5401 (k=5, c=0.005, w=50)
o8 - o s .
0.5 ,4.,-“...,,“%‘!..‘,! ol p T
'y [ ]
; 085 * *
W oos ol - e —— ERE
L f - - i 1
5 “‘ L TR U ————— upi
08 oo e t_!‘: — i
i 025
15 rmemsemmeem ey e zn E E - E = E g an *E 3 53
0.4 0.45 0.5 055 06 0.65 §§§§§§§§§ﬁ§§§§§§
EME LRRARAEIRIRRI/IIRRE
pp. 131-154.

Tanaka-Yamazaki, Mieko (2003) “Stability of Markovian Structure Observed in High Frequency Foreign
Exchange Data,” Ann. Inst. Statist. Math., Vol. 55, No. 2, pp. 437-446.

Willems, Frans, Yuri Shtarkov, and Tjalling Tjalkens (1995) “Context Tree Weighting: Basic Properties,”
IEEFE Trans. Inform. Theory, Vol. 41, pp. 653-664.

Willems, Frans, Yuri Shtarkov, and Tjalling Tjalkens (1996) “Context Tree Weighting for General Finite-
Context Sources,” IEEE Trans. Inform. Theory, Vol. 42, pp. 1514-1520.

Willems, Frans, Yuri Shtarkov, and Tjalling Tjalkens (1998) “The Context-Tree Weighting Method:
Extensions,” IEEE Trans. Inform. Theory, Vol. 44, pp. 792-798.

—-135~






Estimation of Distortion Risk Measures
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The concept of coherent risk measure was introduced in Artzner et al. (1999). They
listed some properties, called axioms of ‘coherence’, that any good risk measure should
possess, and studied the (non-)coherence of widely-used risk measure such as Value-at-
Risk (VaR) and expected shortfall (also known as tail conditional expectation or tail VaR).
Kusuoka (2001) introduced two additional axioms called law invariance and comonotonic
additivity, and proved that the class of coherent risk measures satisfying these two axioms
coincides with the class of distortion risk measures with convex distortions.

To be more specific, let X be a random variable representing a loss of some financial
position, and let F(z) := P(X < z) be the distribution function (df) of X. We denote
its quantile function by F~!(u) := inf{z € R: Fx(z) > u}, 0 < u < 1. A distortion risk
measure is then of the following form

gp(X)i= FY(u)dD(u) = / zdD o F(z), (1)
[0,1] R

where D is a distortion function, which is simply a df D on [0, 1]; i.e., a right-continuous,
increasing function on [0, 1] satisfying D(0) = 0 and D(1) = 1. For p,(X) to be coherent,
D must be convex, which we assume throughout this paper. The celebrated VaR can be
written of the form (1), but with non-convex D; this implies that the VaR is not coherent.
Also note that different authors use different names spectral risk measure or weighted V@R
for a distortion risk measure.

The most well-known example of coherent risk measure is the above-mentioned ex-
pected shortfall. Taking distortion of the form DES(u) = a~! [u -(1- a)]_f, 0<a<l
yields the expected shortfall as a distortion risk measure:

1 1
ESa(X) 1= — F~1(u)du.
& J1—a
The following one-parameter families of distortion vields several classes of coherent risk
measures:

e Proportional hazards (PH) distortion: DY (u) =1 — (1 — u)?,

e Proportional odds (PO) distortion: D§O(u) = fu/[l — (1 — 6)u]

e Gaussian distortion: Dy (u) = ®(®1(u) + log0)

To implement the risk management/regulatory procedure using risk measures, it is
necessary to statistically estimate their values based on data. For a distortion risk measure,
its form (1) suggests a natural estimator which is a simple form of an L-statistic. The main
theme of this paper is to derive the asymptotic statistical properties of simple estimators of

those risk measures based on strictly stationary sequences, and to compare some distortion
risk measures and VaR.
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Let (X,)nen be a strictly stationary process with a stationary distribution F’, and
denote by F, the empirical df based on the sample Xi,...,X,. A natural estimator of
p(X) is given by

ﬁn_ﬁ )dD(U) Zcm nis (2)

where c,; ;= D(i/n) — D(({ —1)/n) and Xnq £ Xpg < -+ < Xpp are the order statistics
based on the sample X3,...,X,.

In what follows, instead of restricting ourselves to the particular form (2) of L-statistic,
we consider a general L-statistic of the following form:

1 n
= Z anh(an), (3)
7 4
i=1
where c,;’s are constants. Define for 0 < u < 1,
Jn(u) : chml((z V/nyi/m] (W) +en1liy(u), ¥n(u) = ” Jn(v) dv
=1

Then we have

7= | hER ) du= [ AEF () dTa(a).
0 [0,1]

Let g :== ho F~!, and define the centering constants

e = /D g g = f[o 90 4@

Consistency is a basic desirable property of statistical estimators. The following result
was proved in van Zwet (1980) for the i.i.d. case, but his proof remains to be valid for the
ergodic case.

Proposition 1 Suppose that X1, Xs, ... forms an ergodic stationary sequence. Let 1 <
p < oo, 1/p+1/q =1, and assume that J, € LP(0,1) forn=1,2,..., and g € L(0,1). If
either

(i) 1 < p < oo and sup, E(|J»|P) < oo, or
(ii) p=1 and {J,, n =1,2,...} is uniformly integrable,

then we have T, — up, — 0, a.s..

Further, if there exists a function J € L, such that lim, . fot g)ds = f; J(s) ds for
every t € (0,1), then T, — f[o 1)/ (5)dg(s), a.s. By this result, in partlcular our estimator
Pn in (2) of distortion risk measure proves to possess strong consistency under the very
general conditions stated above.

For the asymptotic normality, we basically draw upon Shorack and Wellner (1986),
Chapter 19, for the form of assumptions and the line of argument. First we set out the
following assumption on (X,).
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(A.1) (X,)nen is strongly mixing: Setting 9’3 = o(Xj,...,X;), the strong mixing coeffi-
cient

a(n) = sup {|P(An B)— P(A)P(B)|: Ac ¥ Be &, k> 1}
converges to 0 in such a way that

a(n) = 0(n™%™) for some § > 1+ V2, >0

Note that strong mixing assumption is the weakest requirement among various mixing
concepts. Next we assume the bounded growth of g and J,, and smoothness of J,,.

(A.2) h is a function of bounded variation: h = h; — ha, where h; and hg are increasing,
left-continuous, and satisfy

|hi(F~Y(u))| < H(u), forall0<wu <1,
where H(u) := Mu~% (1 — u)~%,

For g = ho F71, let J dg be the integral with respect to the Lebesgue-Stieltjes signed
measure associated with g, and [ d|g| be the integral with respect to the total variation
measure associated with g.

(A.3) There exists a function J which is |g|-a.e. continuous such that J, converges to J
locally uniformly |g|-a.e.

(A.4) For B(u) := Mu=b (1 — )2, |Ju(u)| < B(w), |J(u)| < B(u) for all 0 < u < 1 with
by Vb < 1.

We note that under (A.2) and (A.4),

1
|ttt =)y Bw) diglw < o0 @)
when 7 > (b1 +d1) V (b2 + d2) (see Shorack and Wellner (1986), Lemma 19.1.1).

Before we state and prove the asymptotic normality of the estimator (2), let us note
that it is possible to reduce the argument to the uniform case, as in the i.i.d. case. Namely,
there exists a strictly stationary sequence (&,)new with the same mixing rate as (X,) such
that X, = F~1(&,) and &, ~ U(0, 1) (on a possibly extended probability space; see Lemma
4.2 in Dehling and Philipp (2002)). Let G,, be the empirical df based on &1,...,&,. Then

é"" (7 w)) — u)l.
n—M--Aﬁuﬂ%man T, (1) (5)

Here X £ Y means that the random variables X and Y have the same distribution.
Let Cg(u,v) :=P(& < u, & < v) and put

oo o0
o(u,v) :=uAv—uv+ Z[Ck(u,v) — uv] + Z[Ck(v, u) — uv). (6)
k=2 k=2
When (&,) satisfies the same mixing rate as in (A.1), it follows from the covariance inequal-
ity (see Dehling and Philipp (2002), Lemma 3.9) that the two series on the right-hand side
of (6) are absolutely convergent. We define the empirical process Uy (u) := /n(Gp(u) — u)
as usual.
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Theorem 2 Let (X, ey be a strictly stationary sequence satifying (A.1)—(A.4) with

2;+1 1
B bl T

Y 5, 2:1,2 (7)

Then we have
V(Tn — ) 55 N(0,0%),

where

1 rl
o2 :—/O /0 o(u,v)J(u)J(v) dg(u)dg(v) < oo (8)

Returning to the problem of estimating distortion risk measures, we should set cp; =
n[D(i/n) — D({t — 1)/n)] and h(z) = z. Then in most cases, the limit of J, will be d, so
applying Theorem 2 we have the following corollary.

Corollary 3 Assume (A.1), (A.2) with h(z) =z, (A.3) with J = d, and (A.4). Then, for
the estimator py,, of (2), we have

Vi(fn — p(X)) = N(0,0%),

where

o? = fﬁ 1 /0 ' o, 0)d(w)d(v) dF-L(w)dF (o).

When we try to construct approximate confidence intervals for risk measures, we need
to estimate the asymptotic variance (8). Let

Yo i= /[Xﬂ’oo) J(F(z))dh(z), neZ.

It is then easy to see that ¢2 is written as the double-sided infinite sum of autocovariance
v(n) of the stationary sequence (¥). It is well known that

cQ

> () =27f(0),

n=—eco

where f is the spectral density of v. Thus our problem is to estimate f(0), and we would
use a consistent estimator of f(0) as given in Brockwell and Davis (1991). But F in the
expression of ¥}, is unknown, so we must replace it with the empirical distribution function.
That is, we use

Yin = / J(Fp(z))dh(z), i=1,...,n
[X,00)
in estimating f(0). This should give a consistent estimator of the asymptotic variance (8).

Example 4 (Inverse-gamma autoregressive stochastic volatility) In order for us
to be able to compute the true values of various risk measures with adequate accuracy
so that we can evaluate the estimation bias and root mean squared error (RMSE), we
introduce the following simple stochastic volatility model. Let X; = :4; and suppose
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that V; := 1/0? follows the first-order autoregressive gamma process introduced in Gaver
and Lewis (1980):
Vi=pVio1 +ey,

where V; has a gamma distribution with shape parameter o and inverse-scale parameter
(3 for each t, () is a sequence of i.i.d. random variables, and 0 < p < 1. It is known that
the distribution of &; is compound Poisson.

Let (Z;) be a sequence of independent random variables with standard normal distri-
bution, which are also independent of (;). Then it is well known, especially in Bayesian
analysis, that X; has a scaled t-distribution with 2« degrees of freedom and scale papram-
eter 0 = 3/ this allows us to calculate the true values of VaR, expected shortfall, and
proportional odds risk measure. Also (V;) can be shown to be geometrically ergodic, so
the resulting (X;) is also geometrically ergodic, and hence exponentially strong mixing.
Thus our assumption (A.1) is satisfied in this model.

To make use of the setting in Example 2.21 of McNeil et al. (2005), we chose a = 2,
B = 16000, p = 0.5, so that X; has a scaled t-distribution with four degrees of freedom,
and its standard deviation is equal to 2000/v/250 ~ 126.5. For this case, the true values
of VaR, expected shortfall, and proportional odds risk measures are given in Table 4.1 of
Tsukahara (2009). For @ = 0.1, 0.05, 0.01, we generated 1000 samples of size 500 and
computed the estimates, the estimated biases, and the RMSEs for our estimator. For the
purpose of comparison, we also perform the same procedure with i.i.d. observations from a
scaled ¢-distribution with four degrees of freedom. The results are summarized in Table 1.

Table 1: Simulation results for estimating VaR, ES and PO risk measures with inverse-
gamma autoregressive SV observations with ¢(4) marginal and with i.i.d. £(4) observations
(n = 500, # of replication = 1000)

VaR ES PO

f=a bias RMSE bias RMSE bias RMSE

0.1 0.0692 10.9303 —2.2629 22.1361 —1.7739 17.5522

SV 0.05 2.5666 17.6755 —1.2168  37.2719  —2.0200 28.5053
0.01 14.9577 61.2290 —11.9600 103.9269 —15.7888 73.7147

0.1 0.7976 10.5893 —1.2914 19.5756 —1.3574 15.3271

iid.  0.05 0.7974 16.1815 —2.6346 31.3166 —2.8342 23.9933
0.01 10.6838 53.2567 —12.9355 95.9070 —15.8086 69.5425

They show clearly that both biases and RMSEs increase for all three risk measures as
6 gets smaller; this is expected from the asymptotic results. Hence estimation with small
¢ is a difficult task even with moderate sample size of n = 500. Maybe this shows the
limitation of purely statistical methods for estimating the values of risk measures.

The estimated RMSEs are large probably reflecting the heavy tail of the ¢-distribution
with four degrees of freedom. Although RMSE is slightly smaller for every risk measure in
the i.i.d. case, there does not seem to be a big difference in the behavior of the estimates
between in the stochastic volatility case and i.i.d. case, reflecting perhaps the quite weak
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dependence in this stochastic volatility model.

Note that systematic negative biases are observed for our L-statistics type estimators in
cases of expected shortfall and proportional odds risk measures. Examining the histograms
(not shown here) shows that the distribution of the estimator is right-skewed with this
sample size. We suggest that some kind of bias reduction method be applied in practice.
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2.1 FBEMKRBEOEA

PRI B 816 N HREER L AVEE, FROMMEHOKE &AM X > THZ ATV HE
AT ST 2IED, HREEEOE/NGHEICDAEND. ZFT T, HIBMENZIFIUEEBILETH 2 S HiEx
{BTERRME X, & LTE#RL, REOTHETHIFONHE P, E XT3,

B 3%, #ffi P & ITERM X, OBRICDWTRLTWS.

() Ml & BETERRAE O HeRS (b) #KATH DR H 2 & EERKT T H 2 DO HER
Xa . = X E AXz
. 1) R O\ f
) B e Ay ‘ AP,
s e E E SR R : E ’ ¢
? 5 ‘ i | }j Ax,

t=1 t—2 £e=3

B 3: #Al & PETERRAE O£

X 3-(a) (&, Kl &EBERMOHBICOWTHEMICRL TVS. t = 1 AT, EUMKBEDFTWEN,
t =2 TIBTERNEHRIENR LA LT VS, CoLE, FREEEZBAB XSG LETH 8, ¥l Py 1t
AbwTEEias. t =3REATIE, REREOERNRDIDICETERE L L TONEE TIFTHEH, HiH
Wt=28RTALy THEADMBN LMD E5EA s efehic, PRERLFTVS. ®3-(b) Tid, HED
BiHZ AP(:= P, — P,_y) EIBEMREOMEZE AX, (= X, - X; 1) OBBEERLTWVWA. t =2BSTIE, AX,
TIIFIREEEZRKEHEASEDERZRLTVAN, AP, TIEA LY TE k> 7= EIFREIE & B CER 5=
LT3, t=3R[RTIEAX; BEDEEDFI TVAN AP TEEDEZDIFITWS. Thit, (HESEOL &
Tt t = 2R R TERMICKBR L ENED > I EREHOREN t =3 ICE-TWBEEI BN, D%, &%k
Thhud t =2 A THRO LRERSHERL LickdIic t =3 TR FFICEL 3 L3 5IBETH->T L, [Higs
RDFHIC AP, APy LR L TIEDER & B RHHFEZ OIS,

COXSIC, RBUCEENT ZAREMZE T AEBERMICR LT, {EEHEDOHIEIZHERZ D20 IcETH Y
BRNEEERZLSTVWAHEEALNS. NMAT, 2WAMREHNMNEC 2N TIE, FALFEOEIES &3k
EHAMNENS Z EAERHIENS. bbb, EEHIRICK > TEDHCHEEEESMINENSaEEENS 2 2 W
A&,

Bald, MRTHRAS NS ZBERMICELT, UTFOX3HTEFIERITS. B ¢ I1CB1) 2HE% P,
BEKMZ X, FIRERE L, B, TOEE, FhEhoBEEE

Po= Xt X Iyx,—Pi_y)<L:3 () + (Pec1 + Le) % Iix,—p>r,3(8) + (Po1 — Ly) X Itx,—p,_<—1,3(t)

P q -
AXt = Z{;ﬁkAXt_k + Z gkut_k + Uy, Ut l.kd- N(O 0'2}
k=1 k=1

LERT D, CCT, Ia(t) BIETEHETHY, tc ADHAIE1IZLD, ZNLUHNDHET R LS.
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2.2 (it EZEDEE(L

AL TORIBERIE —EDEDOTIZAEL, AiHOBREREZEEL U THAELT 2T 8EN D 2.

M1, K2IRENTWAED, 2011 FE3 1 H,S 5 A 31 AT, HENTFELTHEIZDICHIEE
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FEAA T L T LIS L - THIEREEAVNE (o TV E, 4 AL TR 500 FEATHE L TWVWA b,
HIFRMEIEIX 80 & 100 HEITERLTWVWS. Z0ikH, 1 HOMEEFHORE LTI, 3 AFEaTIE £400 HD
@Bz, 4 AL T 80 HEEZ THIAL TV ALY, BEASEDIEONTEREF ORETINEL
ToTW{HRADHS. §hbb, RITA VT4 HRRIKEDEFHLTWARZ AHSL LD > TS
b, HREDMERTEZEICH LEREDBDS—ETH2 ARMAETNVELTRHETLRBTEHETHS.

HAag, MEOHEZFIRERCTER(LTSC LT, COMBERERT 5.

T T T T T T
301 ERES 401 415 501 515 501

X 4: HEEIC BT B HIPRENE THAE(L U 72 R E D ORRME O/ H 22 OH#ER

B 4 Tid, ¥RMEOFTHZEZHREE TR LUZEDOHEBERLTWVWS. K2 LARIAMy TEEE BRI
A, AbyTRICESTEREBRVER L TWS. FREIC &> TEHOAREZ THE(EL T #(HaT B 2% HIFRE
ETHREL LzC ik, [-1,1]) DEEEEDRINCERTE .

LBETIE, B UZBRMRIEHER AR, EE0BL, SHONRET S,

3 HEELEZINVIAUIL

HENFREZBRMINT AR (o6}, {01, o2 IR, BEITE R RS OBERESG #HENS L
T3, kB HETALIUVZALICE<IVA7EREYTHLTE (MCMCHE) ZHVWS. #HEEEIEROERSIZLIT
DEBITHB.

1. F— &k

(a) (EMEFEEEICIEARL 72558, $bh, AR =+1 DESIC AX, 23E4E
(b) MEEFIRICEMLEVES, T4b5, |AP| <1 DS, UTOBEGRRLS AX, ZEHK

t t—-1
AX,=P,— X 1= AP - AX;
j=1 i=1

2. KHIZAZDHE
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(a) IRE L7 ARMA(p,q) ETIMTIGUT, o2, {05}y, {04}, ZHEE.

LIgETIE, Hi&fle LT ARMA(2,2) ETVERE LI E0HEHEE 7L T XLICDWTHBERT L.
HE, RRFIETIVICNT B0 ZHEE & MCMC 7))L TV X LOFEKIZDWTIE Chib, S. and E. Greenberg,
(1994), {REEMH (2001), FOIE (2005), H13F (2007), BRI (2010) Z#BBE 0.

3.1 NAIHE
ARMA(2,2) ETIVORRIST A ZZHEET H7HICE, RO 2DDEFIVAERNS.

AXy = ¢ AX 1 + 22 AX 9 + Onus g + Ooous—o + uy, uy ~ N (0,0%) (1)

AXy = 011 AX 1+ 0111 + Oapue_p + uy, up ~ N (01 052) (2)

L"i, AX}_, AXQ %Fﬁ’%—'a L/. Ug =U_1 = 0 & LTCE%@, %ﬁ:ﬁjﬁlﬁ@g&&i,

a _ 1
I (2no2) % exp {_F (AX: — ¢21AX;1 — ¢p22AX; 2 — Onus 1 — 322%2)2} (3)
t=3 22
EERES.
CTCTT, o ORFINMELTEAYINA, ThDBE 0 ~ IG (ap, By) ZBINT S, THEE, AX =

{AX 1) & ¢o1, Pon, b1, 000 MEZ SNT & ED 03, ORMATEELDHII,

9 (033|AX, pa1, D22, b1, 022)

n

X (‘732)_(1+uu) exp _5_20 x (271"7%2)—(“—2)/2 exXp *Lz Z (AX; — ¢a1AX;—1 — ¢22AX1:—2)2
T22 203 =3

_ 1
= (03y) " exp (;‘2—“;31)

22
THALNS. 2L,
-2 1+
B 5 Br=0o+ 3 Z (AX) — $218X,_1 — p22AXe 2 — G111 — foousn)’
t=3

THa. Thbb, o OFRMENEEIMARIINTAZ o, fL ZEDWH M TREINS.
DEIL, oo DY TNV FIKDVTIRRDG, WE, ¢o ODERIDHEE DT, THDB, ¢ ~U(-1,1) &
T35 Ok, FMEFEHESMI

Q] = ag +

1

2
2J¢'22

9 (¢22|AX, $a1,621, 022, 05,) o exp {— (¢22 — Ju‘qbzz)z} x I(_1,1)(d22)
TEZLNSG. EIEL,
Jiu = 052 ZAXE—-?
=3

ko3 n n n
Z AXAX: 2 — ¢ Z AX 1AX g — 0y Z w1 AX 5 — ba Zut—QAXt—Q
=3

t=3 t=3 t=3 =

S axi,
t=3

Heaz

==



TBB. TEDS, on ORIEMFEATE, TI 4y, H oD OUNERHETHS
¥ENT, B DT FCDNTHRE, WE, 6 OFFiSHE—HESH, 37D, a2 ~U(-1,1) &

T5H CDOLE, FETEERDFEE,

A
202

22

9 (022|AX, da1, b2, 021, 035) o< exp {— (fa2 — #622)2} x Ii_1.1)(622)

TEx26N5. 7ZIEL,

n
2 _ 2 2
06,y — U22 E Aug_,
t=3

T T n n
Z AXiup_g — ¢o3 Z AXy w2 — Pag Z AXy oup_g — 01 Z Up_ 12
=3 =3

t=3 t=3
T
2
E U2
t=3

THB. T4bB, Oy ORMNERDMIE, T pg,, Pl ol OUMIERNFTHS.

'u'ﬂzz

3.2 LEXYVHA—EITILIY XEEDWNT
EUHIC, ETARK(2) BRELZEED ¢, DY TV FRITS. WE, ¢ OFRiDFEZ—BESE, Tk

bbb, ¢n~U(-1,1) T3 CDLE, ZEFEERSAEIZ

1

2
20‘¢11

g (611|AX, 031,020, 0%5) BXP{— (11 — M¢11)2} x I_1,1y(#11)

THEALNS. 2L,

n
2 _ 2 2
O = Oia E AX]
t=3

Z AXAX  — b0 ZutflﬂXt_l — 022 Z w2 AXy

t=3 t=3 =3
n
2
> AXE,
t=3

TH5B. $&bb5, ¢ OFMFNEERTTIE, T pg,,, D o, DYMERDTTH 5.
WE, TV TICE>TEBLNZ ¢ & ¢ ZFIAL, UTOLE YV Y - H—E 2 7)LT) XL (Brockwell
and Davis(1991), Jt/II (2005)) DOBIFIEE LI ¢y R B.

Hary

G21 = 11 — da2d11 (4)

3.3 AINIVAIGEBEHROFA

CNETOERND, LUTO/NTAZITCILBONTWBEERETS. HARBRITIE, Ga1, daz, b2z, oo WG
BNTVBEE, LITDA 27UV AREREE (61 (2005)) ZFIHELBGRREZL LIC 6, 2R S,

C1 = ¢21C0 — $22C1 — Oozpa102,

(1 +922)O’%2 (5)

a1 =

—148-



7212, Cylid ko eHSEERTHS.

3.4 FT—AREIOWVT

BRI, AX, DT — 2DV TIENS.
fEfERIPRICHR A L /e R T, BERMEICY TRDIEFMICE EDWeT— 2 fMdEfT5 T
Elah o IBTERMOEZHEE T 5.

&T, BN T

LUFTIE, #ERMEOFHZCH LT ARMA(2,2) ZRE LIZREICEIT 5, BIARRET — 2RI DV TEHMA

T35 FtHETE, UTD3IDDHFEICTIIENS.

L:

2.

3.

Abw 7y (atEHIR O ERICEM) Oa.
A by 7% (EEFIEO TIRICEMH) Di5a.
L

FNFNCHEIC BT, AREEFINEL FO®ED TH3. 58, FWistep lCBI BT TU V5% AX, ] &
ARTB. COEE, (i 1)-step ETOHYTU L FELTHENATVIENET 3.

1

AP, =1: 2 bv 78 (EEHIEO FEICESE) OESOEEELTOY T ek ->TiIT.

AX[i] ~ TN 00 (ele], 073 = 1])
&0 AX ] BRETE. REL,

e [4]

{d21i — 1] (AXe—1[1] + AXes1[i — 1)) + da2li — 1] (AX¢—2[i] + AXyiali — 1)
—ali — 1aafi — 1] (AXy—1[i] + AXspa]i — 1]) + Oa1[i — Lus1[i] + Oasli — 1us—alil
—021[i = 1] (@i — Lue[t — 1] + go2[i — Luea [i — 1])
—02ai — 1] (P21 [i — Lue—1[d] + dozli — ueli — 1)} /(1 + @31 [i — 1] + @351 — 1]) ,
t=3,4,---,n—2
=9 {¢2li — J(AXe1[i] + AXera [t — 1]) + gooi — 1JAX,_a[i] — P21[i — Uoai — AKX, [3]
+001[i — g1 [i] + Baali — Lus—ali] — fa1[i — Lbaa[i — Luei — 1]
—0ai — o[t — Nus—1[3]} /(1 + 03, [i - 1]) ,
t=n-1
a1t — LAX 1 [d] + daafi — JAX: _o[f] + 021t — Lup—1[i — 1] + Oaafi — L]ue_soft — 2],
t=mn

Al /() t=n-1
o2,[i] t=n

o] /(1+ 03, + ¢3y) t=3,4,-,n-2
ofli] = 1/

Ths.
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2. AP, =-1!AbFv7& (EEFED FIRICEAM) DEGOBMEZUTOY YT Y FIci>TTS.

AXy ~ TN o1y (peli], o2[i — 1])
0 AX) BRETB. 1L, wli], o2i — 1] & (6), (7) BBEOT L.
3. |AP| < 1{EMEHBEICIEAE LW EE 0 H.
£ t—1
AXi] = ; AP;[i] - ; AX i)

PLEIC & D F— 2l T NI-BERBORTZ AX [i] = {AX,[i]}, £BL.

3.5 7ILdUXL
ChETICRRE#EE L 7T— 2 HEEEASDER C LICk Y, UTo7 /NI X L2155,
1. F—&§EM . AX[E] BY TV
2. INT A HEE

ofyi] DFE

b11[i) DFE

02,[i] DFRE

(a)
)
(c)
(d) @ofi] DRE
)
)
)

(b

C

bo1[i] DEFH  LEY VY« A= U7 ILFU XLOF|H
Oaai] DFEHE
fo1 [3) DEHT © 1 7V ALSEEBOF A

(e
(f
(g

PRIV RLD 1. HE 2-(a)~(g) &, FEWICKEZER M ETHRIIET. +HREIHBMNN < M) I2Ht
LT M- N {foEsfiEiteEe UTEHRHAT 5. Bfanaid,

1 M " M . M
~2 2 1 2 2 1 72 2 1
T8 T iz%f’zz[z]: oy = mi:§1¢21{?’]! P30 = mh;l $32(d],
M M M
~ 1 ; - 1 ; - 1 2
o= 2 Bl Gh=g—x > %l AX(M)=g—x D AXO]
=Nl i=N+1 i=N+1

EHEEE LTRAT 3.
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4 BEEER
4.1 HEEEOEE IERSIBRA S % 58

TTTIE, 011 E3IH1ANMS 531 BETO 37 AMICHBI 2R ETENOMWRMICH LT, ARTHRRT S
F— R e 7V T XL LSRR RS, WA LT TV, AR EFVEL, AR(1), AR(2),
MA(1), MA(2), ARMA(1,1), ARMA(L,2), ARMA(2,1), ARMA(2,2) D 9N THB. Fiz, TET/VEROD
IC DIC #E18 L. 735, DIC OFMICOWTIE, FBH (2010), K& - 0 (2008) ZE&BE Nz,

(TR G PR DRI B OAEIC 5 & B EHERT Bcic, LITFO 210 OEEICDOWTEIHRBZITo .
F— A L AR ST A RBERTo B, T AREEITOTIMROITEY D ZEELETIT/T AR
HERToHEETHS. FMBOERZR2IC, BEDERERIIC, TAThELHTVS.

7 2: HECASR 1.7 — 2R & MBI RI ST A Z 2 HEG U TCRER

EFI DIC a? &1 o2 o 6y RERE
ARMA E7/L7& L 117.825 0.419

AR(1) 116.671 0.419 0.298 0.082
AR(2) 118.537 0.439 0.322 —0.088 0.093
MA(1) 121.901 0.466 0.263 0.069
MA(2) 118.805 0.447 0.344 0.001 0.057
ARMA(1,1) 119.187 0.430 0.179 0.120 0.082
ARMA(1,2) 118.578 0.446 0.173 0.111  0.027 0.080
ARMA(2,1) 122.210 0.460 0.062 0.028 0.247 0.074
ARMA(2,2) 132.160 0.532 0.067 -0.285 0.217 0.204 0.082

F— REEETDEVESTIE, EESRIC X > THADMEREFHOREIMMASNTLE I I, BE
S8 0?2 OREEMEIZ/NE V. @EEEY A7 EZFHIT ABEICE o OKETERVS Y, BYAT— 2%
ToEWEEIKE, VAZERNMELTLES BTNHHS.

(EIEHIIE B LT OREIC S X DEECOVWTERLS. T—2MlRT > RBETR/D DIC ZRAET IV
13 AR(1) T, TOMIE 116671 THA. KPS WVERLBOE, ECARETVEGELNLDTHD, £
Ol 117.825 TH D, MEDEIINEW. Fie, 2T ARMA EFVOREFBZRELTE 0.057~0.093 &

RS HEHREL T 2BHMERTOTICRAVIZ A ZZHE LA

=5 DIC o2 b1 b2 0, Oy  TRAEFREL
ARMA TF/NEL  89.309 0.273

AR(1) 79.637 0.236 0.418 0.145
AR(2) 81.418 0.244 0438 —0.044 0.148
MA(1) 81.209 0.244 0.424 0.133
MA(2) 87.045 0.246 0.454 —0.029 0.131
ARMA(1,1) 81.986 0.240 0.361 0.073 0.147
ARMA(1,2) 80.550 0.243 0.308 0.105  0.064 0.151
ARMA(2,1) 83.019 0.250 0.115  0.112  0.366 0.141
ARMA(2,2) 85.853 0.258 0457  0.113 —0.033 -0.113 0.122

=151~



EAVNEL, BHIAIDMENC RSN S. ThabE, 35 CTARQ) ETILVOHTHEHEDANRNEOD, Th
FEREZHCEREEEZEL TRV ENWEEZ ONS.

—HT, TZEEETDLT, MO BYDEZERLEZVIEETE AR(1) A8/ DIC DOfE 79.637 #E 5.
BUENZETNVET—2HAET /B E LE L AR(1) THBH, TOHERIRDOETEZ>TWVWS. ARMA T
TIVEFRELZEWE DD DIC 1 89.309 £, 9 DDFEOHRTRLAZVEZN>THEYD, [AS5HhD ARMA €7
WERELIZIZESBDETIVE LTOBRYEERF > TVWAT EHRENS. E5IC, AR(1) ZiZUHE LT ARMA
ETNEYTEDHEEOREFRIT 0.122 ~ 0.151 LN AZ LfiEL>TWAZ A s, HEAHFMEERS
LTWBEEZBTEHRZYTHS.

LiE& Y, MBOFTEH0EZELEZVESICEECHFFEEEL TR EEZILNS, TTT, AR OB
WKEHT A, £3 &0, AROFREREDEEL > TVWAZ e S, 2.1 HiTl~ MEEHIEE WS HlEIC X -
THIEEIENSECHOEWEE] PN EEZ NS,

COX3IC, MEDOITHYIDICK > TMEREEOREN L LT 2SN H BT, ETILDHTIEHEIN
FAZHER, TRAEMERARICTI RENDS. BRI, T 2FMICK > THE I NZBERGORIHZ
EEAKINTRES. ®5 TiE, 7 2#METo THE LEBROHF T DIC HRNERBZEFINTHS AR(1) I
Ko THEINBERMOMBEE AX, &, HMO¥HZE AP, ZRLTA.

T T T T T T T
301 315 401 415 S 01 515 601

B 5. 7— 2l AR(1) ETNTT—2HZ{To72 AX, & AP,

M5 Tid, ZHH AP, B AX, ZRL, GESERLERN->RAICORN LTS, [EEFFEZEL
R TRE, TOBROBETEMENENEZ-TWAT EICEERMITS. HIc3HI1THE3E 31 H
OEATI, AP, BEICHLT AX, AEDEER-TEY, ¥ 3-(b) TOME LM WIHEMNEC -7 C & 2R
T&E5.

4.2 (HBZEEN) X7 O

it R 7 25HAT 5168 & LT VaR &, cVaR(conditional Value at Risk) #H 9 %. VaR &k, FRET3
BEICBNT, —EDBETRELBIRKERSEOCLTHS. —HTcVaR &id, HBIK¥E VaRyi00n %
TEIZEVIEMFDE L TORFEMNEARES LTEREINS.

BEZ) AVEREORHFIRIELTOEY THS. FHL1ETERINGE AR(L) ETINENRT A ZDERH
WT, 5 HEOBTERE®R 10,000 £RET 5. TNETNORINCH LT, £ 1 OFIEEEOEE AL TEEOK
fiOKEECE R ZT D, 5, EEFIEOREEEZ S8, 2 D0BEFT AT/ 1 DI, EROHIE

=15 %



ICTEVWEERIBRIC & - THAE DI BYID Z{To B8 TH 5. &5 — A%, [EEHIERZEALFICRIBEN TS
&, DFED, BLOMEMEHMOBZERVETHBICEDIAEZNZBEETHS. FEPRICLZEVWEEZ BT-HIC,
1HM, 3HM, 5 HEHEE LIRETORBSHEZNFTNOBESICDWTERL, 220U Z7IEEL &bt
TRHL.

URATHEEOMRERAICE LY, ThEFNOEEDTAEDOLA LTS LEHGIGRLE. 1| HEOGRETE, &

F 4 REWBICIS C MR EE Y 27 OfF

RAE AR VaR Tl 1%(M9) ¢VaR1% (M)
1 5 {ER R L —125.00 —137.99
ETERIEES D —80.00 —80.00
3 04 {ERGIBEZE L —224.00 —243.93
fElEHIBE D b —207.00 —209.67
5 HiH {EMEHIRR R L —259.00 —274.84
{EfEHIFRSH D —249.00 —261.39

IEHRDZNFEE L HZBFETRIARELREVDELCTVS. COETIRHIFREIRE 80 ATH A7, (HIEEIE
DNHBHATIE, VaR, cVaR DAL LICLUHDORATEETH S —80.00 HERLTWAS. 3 HEDEE T,
ZTOHHTH S 2 HEHOKMDIREIC K > THIFEEENER S /28, 2TORVIT—EDOTENB 5D T
V. VaR T, HIERRZEXZVESICIE —224.00 HTH D, EREFEREZE X BEICIE —207.00 HTh 3.
HEEBBELE 10% BEOTENELTVS. cVaRICDWVTE, EEGEFEEZZZ HTWLESICIE —243.93 0TS
H, {EEFRRZEAHBEICIE —200.67TTHD, MERBELT 15% BEORENHS. H\T 5 ABOES
Tld, VaR T, {EIEFIFRZZZZWVEEICIE —259.00 HTH D, (HEFEEEZE X 1B AT —249.00 I TH 5.
MEIBBEZ 4% EEOTHICNE D, cVaRICDWTE, HIBHEEZEZ Z TWVESICIE —274.84 9 TH D, @
IEHIPRZE X B EICIE —261.30 FTH YD, HEREBBLZ % BEORBICL LT3, Thbb, §5
HZEL LRI DN TEEHFENY) A VIEEICE X 288 NE <D, 1AM 6 B¥H) ORETEHREED
ERFEALRLNEI LS.

TOT LlE, HeICRLIERIAOBRNIS DD S. LB, HEEFHEEZER LI, BRSOV, £
M5 1HMHE, 38, 5 HAOREZT BRI 2ERENHEERLTVS. TR, HEIEFEEERL-E
BIKDWT, TNTNOEBDHEETRLTVS. BUBIC, 1 BEOREBICEIT 2ME0ERSESARLETS. &
fEFIfRZZ M LB E T, BIE0MO Like THMAMERFIED 80 MO & A THBYIONT VWA T LARE
NTHYL, EEGEEOHMENENT 2N 5. 3 BEOEE TR, HEFEOEENHED, EEOBEIHEO
R NTNEI e S, LELENS, [HIERBZZE LGS 0HES4TIE, Ltk TiEsiT s
TI5NTVABRFIHGEETE, HIEFIEOEENLENSTHOTWA T LATH S, 5 QEDEMICES &, #
BAMOBRIC DO THENZECIZE A CHETES, MIEFEOEESHZ L Aol LGN 5.

PLEL D, {EEfIFRAMEMEZESR Y X 71IC 52 5B RIHNOHEICKE L, FENMEZERE LTV R T
SSHMEN TV T EATREEND. RS, 1HEMOREZEATLGEICREEAEHENE{E>TaET LN
ah .
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EramlREL

g _
g+ 5
g 5
g 8
g 8 -
g+ 8 -
L= . = » ; > ; : (=R f ; ; ; 3 v ; = n = :
-18¢  -100 -50 Q 0 100 150 -300 -200  -100 L] 160 200 200 400 -200 0 200 200 800
1 BRRH sEM&E 5 BMIRHE
ErEHIRHY

0 200 400 600 800 1000 1200
t L i x 1 i )

f T T T T T 1 T T T T T T 1 o T T T T
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1 BRRE SEMRH 5amIEH
X 6: HHENOHEZRE LI IR OBRBIN

5 &b

HEFIC HRE ncERIC OV T, [ERFFRIC X B MEOIT BT £Z 5k LIRRIIETY T RIiTo7. (HIEH]
R b IEERLETH S S RROKMICOWVT, BEKREL VI RIIEFHZICEA LK. FIETOH
FEMEIEIY, AEORMEICE > TEET BBl —EDETE AV, ET5IC, FRICEK > TR MERETDORE EH
BB, HREFOELE—EE LERRFIETI ALY TRDSEC EORYENED. ZO7D, HEOH]
HE% 4 OHIREEZAVTEELTAC LT, MRORBER [-1,1] OXKME{ERKE T2RICERL, &
RYETNVOZEERM L EET.

(L LEBEREOMAZ2RARTIE TV ONGE Uz, Bk, TOERL, —HERAFAIEERYIT
B3, FTORED, KHISTAXOHEEICIBHIATETS > HREOTF— 2 BEEZRBTIHET VIV XL
EFRELE., £, ARMA ETLVDIT A REFEICDNT, ARSEZICOVWTRLEY VY « Z—E 7T
Z L%, MA BT OWTIERA 2 UV ZREEREFIA L RBOEH 2TV, Y27V FEGRNICIT k.

{EIEHIREE Z5E L2V HREE U X7 Z28/NTHET 380, [ERFEOCHIEICLZEEMI0ED
EREESEN SRS S B2, REVST A ZOHETIET— 2 HHZFAERICITS T EOEERNREN
f=. FO—AT, HEREIMEEEHY R 7IC5A 388, FEPREZETT ELLICENTOE, 1ERER
DHEETRIZLACEEPRINANT LERENE.
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