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1 Introduction

Mixed linear models or variance components models have been effectively and extensively
employed in practical data-analysis when the response is univariate. For example, in
estimation of small area means, they have been used as a method of pooling or smoothing
data to strengthen the accuracy of the estimators of small area means. Mixed linear
models are related to empirical Bayes models. Practical and theoretical studies of using
these models have been given by Efron and Morris (1975), Fay and Herriot (1979), Casella
(1985), Battese, Harter and Fuller (1988), Prasad and Rao (1990), Ghosh and Rao (1994)
and others referred to in their papers.

In contrast to these activities in the univariate mixed linear models, the multivariate
mixed linear models have received little attention. Fuller and Harter (1987) proposed a
predictor of multivariate small area means and Amemiya (1994) extended the results to
more general models. In predicting such quantity in high dimension, it is plausible to
improve upon ordinary predictors through the Stein effects. However no exact results for
the improvement have been studied.

In this paper, we treat the multivariate mixed linear models with equal replications and
consider the problem of predicting multivariate small area means relative to a quadratic
loss function. When the parameters of the model is known, the best linear unbiased
predictor (BLUP) would be employed. The BLUP is interpreted as a Bayes rule. Since the
parameters are unknown in the model, their estimators are substituted in the BLUP, and
the substituted predictor is called the feasible BLUP or empirical Bayes predictor. The
empirical Bayes predictor lies in between the predictor associated with each small area and
the estimator pooling whole data. In the univariate case, the empirical Bayes predictor is
the James-Stein estimator of a mean vector of a multivariate normal distribution (Stein
(1956, 73, 81) and James and Stein (1961)). The relation between the predictor of random
components and the James-Stein estimator has been pointed out by Efron and Morris
(1972, 76), Peixoto and Harville (1986) and Sun (1996). For survey and account of the
Stein problem, see Berger (1985), Brandwein and Strawderman (1990), Lehmann and
Casella (1998) and Kubokawa (1998).

In Section 2, it is shown that the problem of predicting small area means is reduced to
that of estimating the ratio A of covariance matrices. This is an extension of the results
given by Efron and Morris (1976). The estimator of the ratio matrix A is important in the
empirical Bayes predictor as it determines the extent to which the estimator associated
with each small area should be shrunken towards the pooled estimator. The estimation of
A is related with the estimation of a scale matrix of a multivariate F -distribution, which
was studied by Konno (1992b), Bilodeau and Srivastava (1992) among others.

In estimation of covariance matrix and of ratio of covariance matrices, several types
of estimators improving upon usual estimators such as unbiased ones are available. One
of them is the James-Stein type estimator based on the Bartlett’s lower triangular de-
composition. It is known that the James-Stein type estimator depends on the coordinate



system. To eliminate this shortcoming, Stein (1977) and Dey and Srinivasan (1985) con-
sidered the Stein type orthogonally equivariant estimator and established its dominance
property over the James-Stein type estimator. Haff (1980) showed that the Efron-Morris
type orthogonally equivariant estimator dominates the usual one. Corresponding to a
series of these dominance results, for the ratio matrix A, we obtain two James-Stein type
estimators, three Stein type estimators and three Efron-Morris type estimators, given in
Sections 3, 4 and 5, respectively, and show their dominance properties over the usual
estimator including the unbiased one. It is noted in Section 4 that the estimation of A in
our setup has a story different from the estimation of the covariance matrix, that is, the
Stein type estimators do not always dominate the corresponding James-Stein estimators.

In Section 6, the problem of estimating a matrix mean is addressed in a fixed effects
linear regression model where the components for area effects are unknown parameters. In
this context, it is shown that procedures improving upon the crude Efron-Morris (1976)
estimator can be automatically produced by the empirical Bayes predictors that uses
improved estimators of A. In the proofs of these results, the unbiased estimators of the
risk functions are derived by using the same arguments as in Efron and Morris (1976)
concerning the completeness of the Wishart distribution. These unbiased estimators of
the risk functions are the same as given in Konno (1990, 92a). However, our derivation
using the Efron-Morris’ argument is much simpler in calculation. For other studies of
estimation of the matrix mean, see Zidek (1978), Zheng (1986), Bilodeau and Kariya
(1989), Konno (1991), Shieh (1993) and Kariya, Konno and Strawderman (1996, 99)
Finally, an extension of the model is given in Section 7.

2 A Mixed Linear Model and Specification of the Estimation
Problem

In this paper, we deal with the following multivariate mixed linear model with equal
replications:

yij:,Bbi-{—ai-{—eij, 1=1,...,k, j=1,...,r (21)

where y,,’s are p-variate observation vectors, 3 is a p x g common unknown regression
coefficient, b;’s are ¢ x 1 covariates, a;’s are px 1 random effects having a p-variate normal
distribution A, (0, ¥'4), and €;’s are p x 1 random error terms having Ny(0,%). Tt is
supposed that a;’s and €;;’s are mutually independent and that X 4 and X are unknown
positive-definite dispersion matrices.

Let 8; = Bb; + a; and @ = (6,,...,8;). Then the problem we consider in this paper
is to predict the p x k matrix @ where estimator @ of @ is evaluated in terms of the risk
function

Rn(@,w)=E, [tr (- @)' zl(e- @)] (2.2)

for w = (8, ¥, ¥'4), unknown parameters.



The multivariate mixed linear model is also interpreted as an empirical Bayes model:
Yy; ~ Np(6;, X) and 6; having prior distribution AV, (Bb;, £ 4). In this situation, the Bayes
estimator of 8, is given by

~B

0, = af(ﬁ, X, X,)
= @b+ (= 4z g, - Bb)
= ’!_jz - 2 (E + TSA)_l (yz — ﬁbi),

fory,.=r"1! >_7=1Yi;- This is the best linear unbiased predictor (BLUP) in our setup.

~B
Since the Bayes estimator 8; depends on the unknown parameters 3, X and X 4.
they should be estimated from the marginal distribution. Let

~

k k -
B = 7.4 (zbib;) |
=1 1=1

k r

S = lel (s =) (vs - 7:)
i=1j=
W = r) (3. - Bb) (7. - Bb:)

=1

where A™ denotes the generalized inverse of matrix A. Assume that the rank of Z L bib
is g; with ¢; < ¢ < p. Then it is seen that

S ~ W,(X, n), n=k(r-1),
W ~ Wp(227m)a m:k_QI
Yy = X +rX¥,,

and that S, W and ﬂ are mutually y independent. The parameters 3, X' and X4 (or Xy)
are estimated by B and estimators X and X 4 (or 2'2) based on ﬁ S and W. This result
in an empirical Bayes estimator (or feasible BLUP) of the form

0.7 = 8/(3.2,%)

= Y, — 2(2+T2A) Y(@,. — Bb;) (2.3)
— §.- 5, - Bb).

which means that the sample mean of the i-th small area is shrunk towards the common
value that uses all the data. It is known that 7. has an unstable variance because of
small data in the 4-th small area. But this undesirable property can be avoided by using

. ~EB . . .
the estimator 6, which borrows the data from the surrounding small area. The ratio



e , : . . -
3,3}, of the estimators of covariance matrices determines the extent to which g,. should
be shrunk. Since the parameter space is restricted as

NGO SENS SIS WEES LS S AR M (2.4)

~1/2~—1-~1/2 .
the ratio should be in 0 < 5 X, 5 < I, where A'? denotes the factorizable of
the symmetric matrix A and A < B means that B — A is non- -negative definite. Two
extreme cases of taking X237 1512 — 0 and = I, yield d g;. and Bb;, respectlvely,

both of which are inappropriate. It is reasonable to choose 222 such that Oi has a

uniformly smaller risk than existing estimators including ;..

Let @ = (8, ",...,8.7). Noting that

——— ’ —— —
E, [tr (@B - @) ! (@B - @)] = kir (rz' + 27) 7 5

k
= —tr (Z-Z(@Z+rzy)” )z
= 3_9@ - -]Etr rx
”
. . —~EB .
we see that the risk function of @ is written by

—~EB

Rn(®
- w[tr "_8"+8°-e)x (@EB~@B+§B—@)]

= B, lu( e’y @"-8"|+ ?

E, [tr ®° —eyz1@° - @)}

E, [ {(22 - 22 EWEE, - 257, - Bb) (7, - 3bi)'}]

I
M” e

i=1

u / Pk k -1
+> B, [tr Z71(B - B)bib)(B - 8]+ — - uXy, (2.5)
1=1
—1

1l

- B, [tr {(22;1 - EE Y eSS, 222‘1)WH
71 (pk — mtr 22;1) ,

. —~FEB . . . .
so that the risk of @  depends on the risk of the estimators of the ratio of covariance
matrices. We define this risk by

R(A,w)=E,[tr(A~ AYZ (A - A)W] (2.6)

for A = 2‘2 and its estimator A. We shall look for an estimator A that has a smaller
risk R(A, w).



The usual unbiased estimator of A is

A"’ = ntm—-p-1)SW!

with risk B
R(A " w) = {n_l(n—p-— Dim-p-1) +m}trA.
Since the crude estimator (y;.,. .., y;.) of @ corresponds to the the estimator A = 0, its

—~UB .
risk has R(0,w) = mtr A and this shows that A is better than the crude estimator
A =0form>p+1andn>p+1. More generally the estimator A(a) = aSW ™', a
multiple of SW ™!, has the risk

R(A(a),w) = {n(n +p+1)(m—p—1)"ta® - 2na+ m} tr A,
which can be minimized at a = (m —p —1)/(n + p + 1) with risk
R(Aq,w) = {—n(n +p+1) T m—-p—1)+ m} tr 4,

where

—

A = A((n+p+1)"(m-p-1))
= (n+p+1)'(m-p-1)SW (2.7)

In the following sections, we  shall obtain several types of estimators of A improving
upon A, relative to the risk R(A,w).

3 James-Stein Type Improved Estimators

We shall derive two types of James-Stein type estimators based on Bartlett’s decomposi-
tion, and show that they improve upon the estimator AO with the best multiplier.

Let G} denote the group of lower triangular matrices with positive diagonal elements.
Let T and U be matrices in G} such that § = UU’ and W = TT'. Then we can
consider two types of James-Stein estimators:

A = (m+p+1)'ST'CT, (3.1)
A, = (m-p-1)UDU'W, (3.2)
where C = diag (ci,...,¢,) and D = diag (dy, ... ,d,) for
¢ = m-i—1, i=1,...,p, (3.3)
d L 116 ! =2 (3.4)
FE—— — 1= ROy /N .
"7 Wt pr3-2ig ntp+3—2;)° p

and di = (n+ p+ 1)7'. For convenience, we use the notations A, and A, for the
estimators (3.1) and (3.2) with general constants ¢;’s and d,’s.

6



3.1 Dominance property of AJS

We first evaluate the risk function of ZJS relative to the risk (2.6). Let &; be the (i,4)

—r-1

element of Z where & = B XB for B € G} such that X, = BB'. Note that
tr & =tr A.

Proposition 1. For general constants c;’s, the risk function R(Zl,w) of A, is ex-
pressed as

{R(Zl,w) — mtr A} (n+p+1)/n

- i};lfu{z kz(mj =y 2ci} (3.5)
= Zp:ﬂ{c —2(m ~i—1)ci+2cz-+1}, (3.6)

—

.

where 7; = (1,21 + &) /(m —i— 1), 7 = 0 and cpy1 = 0. Also an unbiased estimator of
the risk R(A,w) is given by

R(A;,w) = (m—p—l) “ltr SW-1

+(n+p+1)" ZF{ —2(m — i — 1)ci + 26}, (3.7)

where F; is the (i,1) element of T™'ST' 1.

This expression means that we could not choose any optimal ¢;’s except for ¢;. The
optimal for ¢; is ¢; = m — 2. It is seen, however, that one reasonable choice for c; is
¢i =m—1i— 1, given in (3.3).

We now show that the James-Stein type estimator A for ¢; = m — i — 1 dominates
A,. From (3.7), it is sufficient to check that

¢ —2(m—i—1)¢; + 2¢im <& —-2m—i—-1c+2c, i=1,...,p—1 (3.8)

for ¢; = m — i — 1, since the risk of A, can be given by Proposition 1 with putting
¢1 = =¢,=m~—p— 1. The inequality (3.8) is equivalent to

(ci—c)ep—c+2)-2=-(p-i)(p~i—-2)—2<0, i=1,...,p—1

Y

which is easily checked, and we get

Corollary 1. The James-Stein type estimator A with ¢ =m—1— 1 dominates
A, relative to the risk (2.6).



Remark 1. Another choice for ¢;’s that may be suggested from an analogy of the
estimation of a covariance matrix (James and Stein(1961)) are given by

G=m+p-—-2i—1, for i=1,...,p.

In the risk function of A, for ¢i = m+p—2i—1, the coefficient of §,_; ,_1 in the expression
(3.5) is

(m—p+1)*  _ (m-p-1)

-2m—-p+1)+m=p+1, (3.9)
m=p Gm-pmop-1 TP
while the corresponding coefficient in Z‘ljs forc;=m—4i—11in (3.5) is

(m —p)® (m—p—1)? N 1
m—p | (m-pm-p-1 2mTPEm=ptl-o

which is smaller than (3.9). This means that A, for ¢; = m + p — 2i — 1 is not better
than Z;}S. Moreover, the coefficient of &,_5,_» in the risk expression (3.5) of A, for
G=m+p—2i—1is

5—(m—p)

m—-p+1"’

which is greater than p + 1 if 7o — p < 5. In this case, the risk goes beyond the risk of
A,. Hence these choices are not recommended.

p+1+

3.2 Dominance property of AJS

We next evaluate the risk function of Z;S and verify the dominance result of Z; * over
Ap. Let X; be the (4,7) element of A where A = ZIEQIA for A € G7 such that
X = AA" Note that tr A = tr A.

Proposition 2. For general constants d;’s, the risk function R(Zz,w) 1S expressed
as

{R(Z%w) — mitr A} (m -—p- 1)—1

- zp:Ti*{(n+p+3—2i)d?—2(1—5@) di}, (3.10)

i=1

where 7 = A\ij(n — 1+ 1) + > iv1 Ajj. Also an unbiased estimator of the risk R(Zg, w)
s given by

R(Ayw) = m(m—p—1)n " HrSW-!

+faii{(n+p+3—2i)d§—2(1—3_:1(1,-) di}, (3.11)

i=1

8



where G; is the (i,1) element of UW 'U.

From Proposition 2, it is seen that the optimal d; is not obtainable except for d;, the
best d; being di = (n + p + 1)~!. One reasonable choice for d; is

1 i—1
d; = 1-— d;
n+p+3—%( Z:J

J=1

1 1 1 1
= 1-— [ I - .
n—%—p+3—2i( n+p+1>( n+p—1) ( n+p+5—2i>

—~ —~JS
As indicated in (3.2), the estimator A, with these d;’s is denoted by AQJ . These d;’s
have the order relations

n+p+4-2

d.
’ n+p+3—2

di-—l X
di—1

> di=(n4p+1)

vV 1V

. . I8 < . . o .
To establish the dominance result of A~ over Ay, the following Inequality is essential:

(1- 23;1 dj)2 > 1
n+p+3—-2i " n4+p+1’

1=2,...,p, (3.12)
which is equivalent to

(n+p)’ (n+p-2? (n+p+4-2)n+p+3-2
(n+p+1)2(n+p—-12° (n+p+5-2)% n+p+1 '

ﬁ{( (n+p+4-25)2 }21’

iz L (n+p+5-25)(n+p+3—2j)

or

Here it is easily checked that for j =2,...,i

(M+p+4-25°> (n+p+5-25)(n+p+3-2j),

so that we get the inequality (3.12).

" . <JS .
From Proposition 2, the risk of A" is evaluated as

{R(Z;S,w) — mtr A} (m-—p-1)"
= —(Au?’l*’r*tl‘/lgz) d1
- ()\22(77, — 1) +tI‘A33) (1 Bt d1)2/(n—|—p— 1) —

9



— (Apm1p-1(n—p+2) +>\,,p( Zd) /(n+p+3-2(p-1))

p—1

~App(n—p+1) (1—Zd1> /(n+p+3—2p)

j=1
S — ()\un +tr A22) d1 — (/\QQ(TL — 1) + tr A33) d1 —
= (Ap-1p-1(n —p+2) + App) dy
_)‘Pp(n —p+ 1)d17

(3.13)

where we have used (3.12) for the 1nequahty in (3.13). On the other hand, the risk of
Ao corresponds to the case d; = =d, = (n+p+1)"" in Proposition 2, and then we

observe that

{(n+p+ 3 — 2Z)d1 — ; (1 - (Z — 1)d1)}d1
—d.

i—1
(n+p+3—2i)d? -2 (I—Zdj)d

This implies that {R(Ay, w) —mtr A} (m—p— 1)~! is given by the r.h.s. in the inequality

(3.13), and we get
Corollary 2. The James-Stein type estimator A,~ dominates A, relative to the risk

(2.6).

3.3 Proofs
We here prove Propositions 1 and 2. For the convenience’s sake, we define R*(Z, w) by

R*(A,w) = R(A,w) — mtr A
- E, [tr (2;?::—152;%) ~ 9tr (Efglwzglﬂ . (3.14)

Proof of Proposition 1. Since X = (n+p+1)718, we first observe that

. x n S " -1 _

R(Anw) = ——Fy, [nzZ w3, 'S s, W2212]
n 1o =1 -1

= P [trSZ, W3, E -3, W.:}. (3.15)
Let

thn O a 0 — &1 Er
T= , C= d E={ 2 2
<t21 T ) ( 0 Co o En B

10



for scalar 11, ¢; and &;. Note that ¢, t2; and T’y are mutually independent and 2~ x2,
and t21 NN_. (0 Ip 1) Then

Ei [tr ='W, 15]

= B [nT"'C*'T 5]

sl () (5 ) (L, &) (8
I 0 Ty, 0 C; —t1' Totn Ts Ey

= E [t} (c% + tnggglch;;tm) + tr Th3' C2T5} sz]

[ 511
m—2

m
—

= F

This argument can be repeated to have that
E; [T C°T ' E]
§ 1 _
- E [m“Q{ i+ — 3(62+trT 102T33)}

622 —1 —
+—=2 (& + tr T3 C3T3) ) + 11 T4 C2T 5 B

- (3.16)

- Zéu{ﬂ G }

kz( —k_]')

where T'33, C3 and E33 denote (p — 2) x (p — 2) right lower corners of T, C and A.
Similarly, we observe that

E; [rTCT' 5]
Al )5 ), £)(5 )
tor Ty 0 C, —tin Tootny Ty Ea1 B
= E; [01511 + 157 (01512t21 - :12T2202T2—21t21) +tr T2202T521522]
= alu+ Er [tr T22C2T2_21A22] (3.17)

P
= Z i€
i=1

Combining (3.16) and (3.17) gives the risk expression (3.5) of Proposition 1.
The expression (3.6) can be easily derived by letting 7; = (r,_, +&;)/(m — i — 1). For
the unbiased estimator (3.7), note that

Ez[T7'ST' ' = nE;[TT'ET"Y]

11



b3
§11 ~1 /-1 -1 — /—1 )
T Ty +T5 ExnTy,

Il

3
VRS
x T

[\

= n (’m1—12 + 522) m_1—§
* (32 + 2) 75T Ty + T STl
Repeating these arguments, we see that for F;; = (T7'ST' ™),
E[F;] =n{E[Fi_1;1]+ &} /(m—i—1) =nm,

which gives the unbiased estimator (3.7), and the proof is complete. m[w

Proof of Proposition 2. Noting that /2\2—1 =(m—p—1)W™! from (3.14), we see
that

R*(Ayw) = (m—p- 1)Eyx [tr 55 St 55 ya g 15 /2\’22_1]
= (m—p—1)Es, {tr A~ 2tr E'AJ . (3.18)

Uil o'
U=
( uz Upy >

for scalar u;;. The same arguments as in Proposition 1 gives that

Let

E [tr 22/1} = E/[tUDU'UDU'A]
= E; [)\11 (dfu‘li1 + dfu%lu'zluﬂ)
~+tr {d%u%fltzlu’m + (dl‘ll,z]'ulz] + U22D2UI22)2}]
+2d1tr U DyUpy Ay + tr (Ups DoUl,)” A

where Usy, Dy, and Ay, denote (p— 1) x (p — 1) right lower corners of U,Dand A. On
the other hand, we have that

E/ [rZA] = E;[wUDU'A]
Ey [diudy Ay + tr (dyugytsh, + Uy DolUl,) As)] (3.20)
= dinAn + ditr Agy + Ej [tr Use DoU, Agy] .
Combining (3.18), (3.19) and (3.20), we get that
R'(Ayw) = (m-p-1) {an + tr Ag) [(n+p+1)d - 24 | (3.21)
+E; [tr (UpeDoUl,)° Agy — 2(1 — dy)tr Uz DyUjy Az}

12



Next, the same argument can be applied to the second term in the bracket {-} of (3.21),
and we have

(the second term)
= Ap(m+p-1)(n-1)d+dj(n+p—1)trAs
+E; [2dptr Uss D3U'; Ags + tr (Ugs D3U',)? Ags
—2(1 — d1) {(n — 1)daAg2 + datr Ass + E; [tr Us3 D3U'%; Ag3)}
= (e(n—1) + tr Ag) {(n+p— 1)} — 2(1 — dh)d,}
+E; [tr (UssDsUs)” Asy — 2(1 = di = dy)tr Uss Dy U'yy Ay

where Usz, D33 and Ajz denote (p — 2) x (p — 2) right lower corners of U, D and A.
Repeating these arguments, we can see that the risk function of A, is expressed by (3.10)
of Proposition 2.

For the unbiased estimator (3.11), note that

EA[U’ —lU (m —p - 1)" B, [U’ AU
. /\un + tr A22 *
T m-p—-1 UyA2U o
1 )\UTL + tr A22 *
— )\QQ(TL - 1) + tr A33
m—p-1 Ui A353U 33
Hence, we see that for G; = (U'W'U),;,

E[G”] = (m — P 1)_1 {)\u(n —1 + 1) + trAi+1,i+1} = (m —D— 1)_1

which gives the unbiased estimator (3.11), and the proof is complete. oa

4 Stein Type Orthogonally Equivariant Estimators

) : —~JS —~JS

The James-Stein type estimators A]  and A, treated in Section 3 has a shortcoming
in that they depend on the coordlnate systems To overcome this undesirable property,
we need to consider orthogonally equivariant estimators.

In contrast with the results in estimation of covariance matrix, we could not provide
any orthogonally equivariant estimators supenor to the James—Steln type estimators in

terms of risk. The reason is that the risks of A and A are not constants, but depend
on the coordinate systems as seen from Proposmons 1 and 2. Instead of this, we here

show that the Stein type orthogonally equivariant estimators associated with A and
A have uniformly smaller risks than A,.

13



4.1 Stein type orthogonally equivariant estimator associated with A/S

Let O(p) be the group of p x p orthogonal matrices. Let z1,.. Ty, Ty > ... > Iy, be
cigenvalues of W such that W = HX H' for H € O(p) and X = diag (21,...,2,). The

. . R L
Stein type estimator associated with A, is given by
— 1

c
:———SHda =V H 4.1
Yon4p+1 1g( T x,,) (4.1)

[

. . . . -5 oy
for ¢, = m — i — 1, and our purpose is to establish the dominance of A, over A,.
More generally, we consider estimators of the form

A@) = (n+p+1)'SHY(z)H, (4.2)
U(x) = diag (vi(x),...,%(x))
for positive functions ¢;(z)’s of ¢ = (z, ... yIp)-

Proposition 3. The risk function of Zl(!l') is given by
R(A(®),w) = (n+p+ 1) E[tr SHE* (z)H']| + mtr A, (4.3)

where W™ (z) = diag (Y5 (x), ..., ¥;(x)) for

Y (@) =z:¢] —2(m—p—1)¢s -2 i = @Yy 9Y) (4.4)

i T T 0x;

. . . =5 .
From Proposition 3, the 1} (z) for the Stein type estimator A) is

2
C;
2 m—p-1) ———2
Z; J%;IBZ*.’L’]'
n(m—i—l)(m+z—2p—1)

j—i
Z; _22

i T

while for the estimator Ao, the corresponding quantity is —(m — p — 1)2/z;. Hence the
risk difference can be written as

{R(Zo, w) — R(AS, w)} (n+p+1)

E zpja{— +2Z J=t }] (4.5)

g Ti T Ly
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where a; = (H'SH),;. Here note that

) j=i _ Z i=J j—i
j¢i$i_37j jzlxj—zi j:i+1xi—f£j
2 _
> 1 + .. p—t
Ti — Ti+1 T; — Tit2 I — Ty
s Xisd _(p—dp-i+])
- i — Tp 2(1’,‘—.’Ep) ’
which is used to show that
—4)® — —4)? —p—i+1
_(p—19) Loy S > _p=i)t -9 )
Z; j;éixi_xj Z; Ty — Tp
pP—1 .
= =T+ P— )Ty,
xi(xi—:cp){ ! ( ) p}

which is nonnegative, and we get

Corollary 3. The Stein type orthogonally equivariant estimator A dominates AO
relative to the risk (2.6).

4.2 Stein type orthogonally equivariant estimator associated with AJS
Let 4y,...,£,, £y > --- > £, be eigenvalues of S such that S = KLK' for K € O(p) and
L = diag (41, ...,%,). The Stein type estimator associated with Z; s is given by

A, = (m - p—1)Kdiag (dify, ..., dyt,) K'W", (4.6)

—~8 —~
for d;’s defined by (3.4), and we shall verify the superiority of A, over A,.
We first provide the risk function for estimators of the general form

A, (W) = (m—p-1)KTE)K'W, (4.7)
w(€) = diag (¥1(8),...,9(8)),

for positive functions ;(€)’s of £= (¢y,...,£,).

Proposition 4. The risk function of ZQ(!P) 15 given by

R(A,(¥),w) = (m —p - 1)*E, [t K& (O)K'W™'] + mtr 4, (4.8)
where $*(£) = diag (v;(#),..., ¥, (£)) for
2
i) =(n—-p- 1)¢ -2y +2) ’”’S”’_ e%) + 49 81/“ (4.9)
J#i ? J
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From Proposition 4, the 7 (£) for the Stein type estimator A, is given by

dil; (dil; — d;¢;)

(n~p—1)dit; — 2dil; + 2

i

+ 4d?¢;,

while the corresponding quantity for ZO is —(n + p+ 1)"1¥4;. Here it is noted that

Zdiei(dziei—.djﬁj) _ Sdi&(dj:éi —_die,.) . Zp: diei(dz:ei—.djej)
s 0 — 4, 2y)

J# j=1 j=i+1

_ {(z~1d2£+zd(d di)gié]'}
¢

71=1

P di(d; — d;)6:8;
+{(p—i)d?€i+ Z (—g%—]}
i J

J=i+1

i—1

< (p-Ddig+ Y di(d; — i)t (4.10)
j 1

= (p—1i)d% +(Zd

i=1

where the extreme inequality in (4.10) follows from the inequalities that ; il (i — £} >0
and

Zd d;)eil;] (8 — £;) < 0,

j=i+1
since d; < dy < -+ < d,. Hence

dili(dil; — d;t;)

(n—p—=1)dt; —2dil; + 2 + 4d2¢;
T
J# J
i—1
S (n—p—1+2(p—z)+4)d12€,—2 (I—Zdj) d,él
J=1

i—1
= S(n+p+3-20d2-2(1-S"d; | d ¢
1 7
Jj=1

(1_21 1d)2
n+p+3 2

from the definition of d;. From the inequality (3.12), it follows that

i—1 .
JG-zher, 6
n+p+3—2z T n+p+1
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which proves the dominance property of A, over A,.

—~8 ) o~
Corollary 4. The Stein type orthogonally equivariant estimator A, dominates A,
relative to the risk (2.6).

4.3 Stein type scale-equivariant estimators
Let A be a p X p nonsingular matrix such that

S=AA and W =AFA' for F=diag(fi,....f,). >fr>...>f,

Then we consider estimators of the form

Ay(#) = AP(f)ATY, (4.11)
for positive functions v;(f)’s of f = (fi,..., f,). This estimator is equivariant under the

group of scale transformations
(S,W)— (BSB',BWB')
for p x p nonsingular matrix B.
Proposition 5. The risk function of Zg('I/) is given by

R(ZB(W)M) =k, [7"3(23(5?))] + mtr A,

where
rs(Ay(® Z{ n+p =9t —afru g o S LGy
i=1 i 3> j
—2(m — p+ 1) — 4fzg‘;: 1z Ji JE% } |
Let us consider a scale-equivariant Stein type estimator of the form
A3 = Adiag (% j)cp) A~ (4.13)

for b; = (m+p—2i—1)/(n—p+2i+1). These constants b;’s were suggested by Konno
(1992a) in estimation of a matrix mean, and have the order relatlon that by > b, > ... >

by,. Using Proposition 5, we shall show that the estimator A dominates Ao relatlve to
the risk (2.6).
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From (4.12), the risk function of the estimator A, is given by

R(A;(®),w) — mtr A (4.14)
P b2 _ b2
ZEw n+p+1——22 I —2(m—-p- ——42
i=1 t ]>z fJ fl j>i l fJ

Konno (1992) has demonstrated that for k = 1,2 and b; > b; for i < j,

/4 D bk _ bk » 1 p f
= — d bf — bk
;J;ﬁ-l fz f] ;fzjzz;.lfz f]( J>
P 1 P k A
> Z-j-_ > (b - k) (4.15)
i=1Ji j=it1
L]
= S p-pd- 3 ¥
i=1 fl J=i+1
On the other hand, the risk of the estimator A, is derived by putting b = --- = b, =

(m—p—1)/(n+p+1) in (4.14), and we observe that

— (m-p-12&1
R(A —-mtrd = ———— 2y " 4.16
@)= e

Combining (4.14), (4.15) and (4.16), we see that the risk difference of ng and A, is
evaluated as

R(A;,w) ~ R(Ag,w ZE [£72h(0)],
where

h(@) = (n—p+2i+1)02 = 2(m +p— 2i — 1)b; + 2 i bj(bj+2)+(i”—L_1)2
o n+p+1

bl

so that it is sufficient to show that
h(i) <0 (4.17)
fori=1,...,p—1.
To verify that (4.17), we note that h(i — 1) is rewritten as

, (m+p—2i+1)2 P (m-—p—1)2?
hi—1) = — 25 bi(b; +2) + —— L)
(t=1) n—pt2i—-1 Z::i’(”L )+ ntp+l
! ) 2 ! 12
_ h(i)_ﬁmwgﬂhi
a; — 2 a; a;
¥4 I+22 12 I 12
= Z{—@“—)+2——+4 4 (4.18)
st ar — 2 ak ag



where a; = m +p — 2i and a; = n — p+ 2i + 1. It can be easily checked that for each £,

al 2 2 a/2 al a/2
U S PL ST N
ax — 2 ay ax Gk

which shows the inequality (4.17).

. . . . =S . < .
Corollary 5. The scale-equivariant Stein type estimator A, dominates Aq relative
to the risk (2.6).

4.4 Proofs

We here derive the exact expressions of the risk functions given in Propositions 3, 4 and
5. An essential tool for their derivations is the Wishart identity obtained by Stein (1977)
and Haff (1979).

Let G(S) be a p x p matrix such that the (4, j) element g;;(S) is a function of § = (si5)
and define the differential operator Dg by

{DSG(S)}” = i diagaj(s)a

where

1 0

with &, = 1 for ¢ = a and &;, = 0 for i # a. When S is distributed as W,(X,n), the
following identity holds:

Es[tr {G(S)Z7'}] = Ex[(n-p-1x {G(5)s7} +2tr {DsG(S)}].

It is noted that this identity can be extended to elliptically contoured distributions as

shown by Kubokawa and Srivastava (1999). Also note that a similar identity is given for
W having W(X5, m).

Applying the Stein-Haff identity, we observe that
R*(A,w) = R(A,w) — mtr A
= E,[r (Awad'z1) - 2ur (Aaw ;)] (4.19)
= E,[(n-p-1)tr AWA'S™' + 2t Ds(AWA)
—2(m—p—1)tr A — 4tr Dw (AW)]

which is the basis of the next derivation.
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Proof of Proposition 3. Since A;(¥) = aSHW (x)H' for a = (n+p+1)71 we
have that

R*(Ay(@),w)
E, [(n—p-1)a*tr SH{®(z)}>X H' + 24°tr D {SH{#(x)}’XH'S)}
~2(m —p—1)atr SHY (x)H' — 4tr Dy, {H¥ (z) X H'S}]. (4.20)
Here for B = H{%(x)}*X H', from Haff (1981) and Konno (1991), it is observed that
tr Ds(SBS) = tr (DsS)BS + tr (SDs) BS. (4.21)
Since (DsS)ij = ¥, diaSaj = 27 (p + 1)4;;, the first term is evaluated as

p+1

tr (DgS)BS = tr BS.

Similarly, the second term is

p+1

tr (SDs)'BS = tr BS.
Hence the first two terms in (4.20) is equal to
(n+p+1)d*tr SH{®(x)}) X H'. (4.22)

Concerning the fourth term in (4.20), Stein (1977) showed that for &(x) = diag (¢: (),
tety (bp(m))a

Dy (H®(z)H') = H® (2)H', (4.23)
where & (z) = diag (¢ (z), . . ., oM ()) for
(1 ¢z QS (:B) a¢z( )
2 g x; — ’Lj Ox;

This calculation is used to get that

tr Dw(HY(x)XH'S) = trDw(H®(z)XH')S
= trH® (2)H'S, (4.24)

where &*(z) = diag (¢7(), ..., ¢3(x)) for

* _ 1 xiwz $]¢J 6";[)1
¢z(m)_2§ Ti — I +¢z+ zaxz

Combining (4.20), (4.22) and (4.24) provides the expression of the risk (4.3) in Proposition
3. oo
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Proof of Proposition 4. Since Ag( ) = aKP(L)K'W™' fora = m —p — 1,
R*(A,(¥),w) is rewritten by

R*(A;(¥),w) = a’E,[(n—p-1)tr K{¥(O)} L K'W™ (4.25)
+2tr Ds(KP () K'W ' KW (£)K') - 2tr K& () K'W ]
Using the calculations (4.21) and (4.23), we see that

tr Ds(BW™'B) = tr(DsB)W™'B +tr(BDs)W™'B
= 2ArKP*()K'W™'B, (4.26)
where B = KW(£)K' and ¥ = diag (471, ..., 93" for

iy _ L Vi — Y Oy
O =32 90 T e

J#i

Therefore the expression (4.8) in Proposition 4 is obtained by combining (4.25) and (4.26).
ao

Proof of Proposition 5. Since A; = A¥(f)A™! with S = AA' and W = AF A’
R*(A;(¥),w) is rewritten by

3

R'(A3(®),w) = E,[(n—p— 1)t WFW + 2tr D3(ADFW A')

=2(m —p—1)tr ¥ — 4tr Dy (AP F A')]. (4.27)
Here the following calculations due to Loh (1988) and Konno (1992a) are useful:
! P a (2 Y
tr Ds(AB(F)A") = 3 {qu)l , a? -y f‘fc = j}% } , (4.28)
i=1 i g JiT Uy
p . L
tr Dy (AS(F)A") = Y 01 +) b= 0, : (4.29)
i=1 afz >4 fi_fj

where ®(€) = diag (¢1(£), ..., ¢,(£)). Combining (4.27), (4.28) and (4.29) provides that

- P
i=1 ‘
PR Vi il i/ SPTINY R )
2; fl f] 2(m Y4 1)'{% 4 (7/}: + fz afz)
fibi — fis
R el

which leads to the expression (4.12) of Proposition 5. oa
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5 Other Improved Procedures

5.1 Efron-Morris type improved estimators
As another type of orthogonally equivariant estimators, we here consider the Efron-Morris
type estimators and show their superiority to Ay.

Corresponding to three kinds of estimators in Section 3, we treat the following orthog-
onally equivariant estimators

—~EM 1

A _ 1 - 1
- o s o
—~EM

A (m—p—1){a25+ﬂ2 (5.2)
— 1

A3EM = 0435‘}‘/—1 + ﬁg IWIp, (53)

where

al=m_p—1’ /61 = P_L

_ 1 _ p—1
a2_n+p+1’ fr = (n+p+1)(n—p+3)
=Pl o p=DEt)mtm)

n+p+1 (n+p+1)(n—p+3)

The risk function of ZfM can be provided by Proposition 3 where ¥ (z) in (4.4) is
calculated as

YEEM (@) = of —2(m—p—-1m _ 2(m —p-1-a)Bi+(p+1)5 " (8% + 461)z;

' Z; 2% (2 35)?
< Oz%—2(m—p—1)a1+ﬂ12~2(p—1),81—2(m-p-—l—a1)ﬁ1
- Z; E]’ZE]'
(m-p—-12 (p-1)?
= - — . 5.4
z >z, (5.4)

Since the corresponding quantity in the risk of A, is —(m — p — 1)%/z;, the inequality
EM
(5.4) demonstrates that A" dominates A,.

For the risk of A2 , the 17(€) in (4.9) of Proposition 4 is evaluated as

* 2 -*1

wz-EM(f) — {(n+p+1)a§—2a2}€i+-(n§:2j—zj_l)ﬁ—2
__1— o 2 _4_ﬁ22._
T I e+
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(n—p+3)8 —2(1 - (n+2)ay) b,
G )2
¢ (p—1)? 1
n4p+1 (n+p+1)2n—p+3)6(3,; 612

< {(n+p+ 1)ag—2a2}€i+

which is smaller than —/;/(n +p+ 1), the corresponding quantity in the risk of A,. This
~EM —
shows the dominance property of A, over A,.

Finally for the risk of Z3EM, it follows from Proposition 5 that

ra(A; ) = St p+ Do = 26m - p - ag) + 45 é]{;
+Ej i{(n—p—1)6?3‘2[(17—1)(p+2)+p(m—p—1)—(np-|-2)a3]}
< Zi:fz_l{(n+P+1)a§—2(m—p-1)a3}
+g—j‘;{(”—P+3)ﬁ§—2[(p—1)(p+2)+p(m—p—1)—(np+2)a3]}

= -3 (";;ZI?Q + iji {(n=p+3)8 =20 - )(p+2)(1 +a3)},

where the last equality is derived by substituting a3 = (m—p—1)/(n+p+1). Since
Bs=m—-1)(p+ 2)(1+ az)/(n—p+ 3), we get that

—EM am=p-1 1 1 [p-Dp+Dn+m))
rs( A )S—;fi n+p+1 _Eifin—p+3{ n+p+1 }’

which is smaller than r3(4y) = — ¥, filfm—p=12/(n+p+1).
In the sequel, the above three dominance results are summarized by the following
corollary.

—~EM —EM —~EM —~
Corollary 6. The Efron-Morris type estimators A, A, and A; " dominate A,

relative to the risk (2.6).

5.2 Improvements by use of order restriction

Recalling that X, = X + rX4, we notice that there is the order restriction Xy > X
between X and X,. The estimators treated in the previous sections can be shown to be

further improved upon by using this knowledge. The resulting estimators of @ correspond
to the positive-part Stein estimator for m = 1.

—~ ~—~—1 —~ —~
Let us denote any estimator of A = ¥X5! by A = ¥, . For the X let A be a
o~ ]
P X p nonsingular matrix such that ¥ = AA . Let I" be a p X p orthogonal matrix and
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G =diag(g1,--.,9p), g1 > ... > gp, such that
AZ,'A=rar'. (5.5)

We thus employ the notation

—

A=AG)=Arcra’

For improving upon Z(G), we consider truncating G as

I if G>1I
TR _ P Z 4y
G "= { G otherwise, (5.6)
yielding the estimator
TR _ — g I, if G>1I,
= = —~ .7
4 AGT) { A(G)  otherwise. (57)

For verlfylng this dominance property, let W A 'wa” 2—1 = A X4 and

-A 35VA. The risk difference of A and A~ ©
R(A,w) - R(A T w)
= E, [trrGr'WrGF'E‘l - PGI'W S, 1}
_E, [trFGTRF'WFGTRF’E‘—l — 2r TGTRI'W' S, 1}
- E, [tr r(G-G")r'wr(G+G™)r's” -wur(e- 6™ rws, 1J .

Noting that G — GT® > 0 and that E—l > 52—1, we evaluate the risk difference as

R(A,w) - RA™ w)
> E, [tr I (G-G™)Ir'Wr (G +G™ -a1,) 1“’33'1} (5.8)
- E, {tr rG-I)I'Wr G-I, I'S '1(G > I,,)]
> 0,

where I(-) is the indicator function. Hence we get

__ Proposition 6. The truncated estimator A= Z(GTR) given by (5.7) dominates
A = A(G) relative to the risk (2.6).
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The truncated rule G given by (5.6) takes the truncated value I, when g, > 1
since g1 > ... > g,. Instead of this, it seems desirable to consider a rule that truncates
componentwise. We thus deal with the truncation rule

G* = diag (min(gy, 1), ..., min(g,, 1)).
Then from (5.8), the risk difference is evaluated as
R(A,w) — R(A(G*),w)

¥4 _ —
> > E, {tr ( G"O I, 8>r’wr
r=1

GT - IT 0 ,A—l
G >
" ( 0  2(Gp,-1I,.,) ) 'y, I'i(g->12 gr1)

where G, = diag (g1, ..., 9,) and G,—, = diag (gr41, - - -, g,). Noting that G,_.—1,,<0,

o~

we see that R(A,w) > R(A(G*),w) if 'WT is a diagonal matrix.

Proposition 7. Ifﬂ‘;l/'“_1 =AW A an(é\zlﬁ;;{ are simultaneously diagonalizable,
then the componentwise truncated estimator A(G*) dominates A = A(G) relative to the
risk (2.6).

. IS =5 -1 _ . " .

Since ¥, and X, take X, = (m —p — 1)W™', the condition of Proposition 7 is

satisfied, and they are improved upon by the corresponding componentwise truncated
estimators.

The same arguments can be applied to the scale-equivariant estimators of the form

—

A3(F) = A¥(f)A7,
T(f) = diag (¥i(f),. .-, %(F)).

As a componentwise truncated estimator, we consider the form of the form

A" = 5,@"%) = ABTR(f) A,

PTE(f) = diag (min{py(£),1}, ..., min{es,(F),1}),

and we can get

__ Corollary 7. The componentwise truncated estimator Z:TR = 23(!PTR) dominates
A3(P) relative to the risk (2.6).
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6 Estimation of a Matrix Mean in a Fixed Effects Model

In the previous sections, several types of estimators dominating Zo have been proposed,
and from (2.3) and (2.5), it is seen that the resulting estimators of @ are better than the
estimator

@0 = (yl'a LR ’gk') - Z0?7
where
Y = (yl'—abla"')yk‘hﬁbk)

n+p+1

In this section, we demonstrates that these dominance results hold still in the fixed effects
models.

Consider the fixed effects model (2.1) where au, .. ., o, are p X 1 unknown fixed effects
such that 3°F_; ;b = 0. Let B = (by,...,b;) and assume that rank (B)=q¢ <q<k.
Letting P = B'(BB')~ B, we observe that

@ —6,,... 7~ 0) P = (B-B)B,
(:le'_gl:“-a—gk-‘0k>(Ip_P) - Y_&,

where & = (@, ..., o). When we look into estimators of the general form
for p x p matrix A = Z(S, W), the difference @(Z) — O is written by

—

O(A)-0 = (F.—0,....7. — 0;) (P +1,- P) - AY
= (B—ﬂ)B+{17—a—Zl7}.

Note that bbeh, S and Y (or W) are mutually independent and that

B ~ Nxe(B,r7'Z,(BB)),
Y ~ Ny (&, rol3 I, — P) ,
S ~ W,(X,n),
where rank BB’ = ¢; < ¢ and rank (I, — P) =m =k — q;. Then the risk function of @
in terms of (2.2) is
Rn(@(4),w) = E,[tr='(B-8)BB'(B - B)
+E,[tr Z7N(Y - & - AY)(Y - & - ayy|.
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Since I, — P is idempotent, there exists a k x m matrix Q, such that Q|Q, = I, and
I, — P = Q,Q)]. Define p x m matrices Z and p by

Z = \/;?Qla
p = VraQ,.
Then Z ~ Npym(pt, X, I,,) and W = ZZ', so that Rm(@(Z),w) is expressed as

R.(O(4),w) =

T

+}.Ew [tr (Z - pu— Z(S’, ZZ')Z)l“:'_1 (Z il 2(57 ZZ,)Z)
r

When the prior distribution of u is supposed as 7 : pp ~ N5, (0, 7% 4), the Bayes risk of
O(4) is

E" [Rn(@(A)w)| = P‘h_j@_ ?trZ’(E-FTZA)_I

+1E, (- 4) 5 (A~ a) WJ
T
L (B, [tr A2 AW - 2 A' s AW
ror
If there exists an unbiased estimator R*(S, ZZ') such that
E" B, [R(S,22)))] = E" [E,[w A = AW - 2tr A'zaw]],
the Bayes risk can be represented by

1

E" [Rn(6(4), w)| = E" [EE,W' [p~;k - ;R*(s, zz’)H .

It is here noted that Es,.[R*(S, ZZ")] is a function of X and pu’, and that pp’ has
W, (r X 4,m). Since the Wishart distribution is complete, the same arguments as used in
Efron and Morris (1996) shows that

~ k N
Ru(B(A),w) = Ex [1’7 + %R*(S, zz')} .

Hence the risk function of @(Z) in the fixed effects model can be derived automatically
from the risk of A in the mixed linear model.

Proposition 8. In the fized effects model, consider the problem of estimating the

—

unknown matriz of parameters @ = B(by, ..., by) + (a1, ..., o) by the estimator O(A)
given by (6.1) relative to the risk (2.2).
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(1) For the estimator Zl(W) given by (4.2), the unbiased estimator of the risk of
O(A(P)) is
pk 1
T r(n+p+1)
where W*(x) is given by (4.4).
__ (2) For the estimator Zg(!II) given by (4.7), the unbiased estimator of the risk of
O(Ay(W)) is

tr SHY* (z)H',

. _ 2
Pk tm=p=1], K& (OK'W,
T

r
where W™ (£) is given by (4.9).

(3) For the scale-equivariant estimator A5(¥) given by (4.11), the unbiased estimator
of the risk of ©(A3(®)) is

pk 1
T ors(As(P),
where 7*3(23(![/)) is given by (4.12).

Corollary 8. In the fized effects model, the estimators @(Zf ) and ©(A ) for
it =1,2,3 dominate the estimator @y = @(A,) for the risk (2.2).

For th ecase of by = -+ = by = 0, results (1) and (3) of Proposition 8 were given by
Konno(1990a,b). However, by using the arguments of Efron and Morris’ (1976) approach,
we obtain simpler proofs even in the general case.

For the James-Stein type estimators A and Z;S, unbiased estimators of the risk
functions of @(A{ ) and G)(A S) can be prowded by combmmg (2.5) and Propositions

1 and 2, so that it can be shown that @(A ) and @(A2 ) dominate ©(A,) in the fixed
effects model.

7 An Extension of the Model and Remarks

We here consider an extension of the model (2.1) and investigate whether the series of
dominance results in the previous sections hold in the extended model.

A simple extension of the model is given by
yzjzﬁbij+ai+e,-j, izl,...,k, jzl,...,T‘, (71)

where b;;’s are ¢ x 1 known vectors and the other parameters and constants are the same
as defined in (2.1). Then the exponent in the joint distribution of Y;;’s is written by

Z (yij — ﬁbm - ai)’ -1 (yij — ﬁb” — az) -+ Zang—llai

i,j
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= Z (yij - Y — ,B(bij - Ez*))l > (yij - Y- — ﬁ(bij - Ez))

0]

+> (0,- - éf)' (r="+ 23 (9i - af)
+r3 (?i- - IBEi-)I ! (E'- - Bb;.),

?

where 8; = 8b;. + a; for b;. = r~1 225 bi; and

Let U = (ull,...,ulr;--

~B _ _ —
6, =7,.- £5;" (g, - 6b:.). (7.2)
';'U'kla-'-:ukr) and C = (clla""clr;'";ckla"'ackr) for Ui; =

yij — yz and Cij; = bij - —b_l Then

i?j

where

Also letting Y = (7,.,...

> (yij — Ui — B(by - Ei')>, = Z (yij — ;- — B(by; -
i.j

b))

tr X-Y(U - BC)(U — BC)'
tr XIS + tr Z7HB, — B)CC'(B, ~ B,

B,
S

uc'(cc’y,
(U - B,C)(U - B,C).

,TJi.) and B = (by.,...,by.), we see that

r Z(@' - Bb,.)' X5 (g;. — 8b;.)
= rtr ;' (Y — BB)(Y — 8B)
tr X5 'W +rtr 238, - B)BB'(B, - B),

where

Bs
W

Assuming that rank (CC') = ¢; < ¢q and rank (BB') = ¢, < ¢, we observe that S, w,
B, and 3, are mutually independent and that

S ~ W,

w
B
B,

~v

2

~

W
No
No

p

X

,n), n=k(r—1)—q,

(X
(Zg,m), m=k—q2,
x(B, ¥, (CC")7),

ol

Ba T—122) (EP’)_)’
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where Bi has the degenerated normal distribution in the case that ¢; < ¢ for i = 1,2.
As an empirical Bayes procedure suggested from (7.2), we consider the estimator

0. (B,) = 7. - A®:. — Boby.), (7.3)

where the estimator A = /2\'2; ' based on S and W is constructed. The risk of the
estimator © (B,) = (éfB (By), ..., éfB(Bg)) is given by
Rn(®"(B,),w) =rE, [tr (A - Ay (A - )W +r\(pk — mtr A),
so that all the dominance results in the previous sections can be applied to the model
(7.1).
It is noted that the regression coefficients B has two independent estimators B1 and

BQ with different covariance matrices. Hence it is natural to consider random weighted
combined estimator 8 of the form

vec(B) = [{(CC) 0=} +{(BB) @r'5,)7]
x[{(CC)” @ By vec(B,) +{(BB) ®r ' B} vec (B,)],

where vec (U) = (u), ..., u}) for U = (uy,...,u,) and ® denotes the Kronecker product.
However it is difficult to study any exact dominance property for the combined estimator

3.

A practically appealing model may be the case with unequal replications:
Y =Bbjj+a;+¢€5, i=1,...,k, i=1,...,n, (7.4)

which was discussed by Fuller and Harter (1987) for estimation of small area. It seems,
however, intractable to establish exact dominance results in the model (7.4). The works

of deriving efficient estimators by using approximation (asymptotic) theories rests in the
future.
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