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AMS 1991 subject classifications. Primary 62C15; secondary 62F11, 62H12,
62J05.

Key words and phrases: Elliptically contoured distribution, robustness of im-
provement, variance components model, mixed linear regression model, statistical
decision theory, point estimation.

1 Introduction

The estimation of variance components in univariate mixed linear models have been con-
sidered extensively in the literature and various results are available. For example, Rao
and Kleffe (1988) provide an exhaustive account of Rao’s MINQUE theory. Other impor-
tant contributions are due to Thompson (1962), Patterson and Thompson (1971,1975),
Searle (1971) and Harville (1977) who considered maximum likelihood and restricted max-
imum likelihood methods. However, since unbiased estimators of ‘between’ components
of variance take negative values with positive probability, considerable attention has also
been paid to provide positive estimators for ‘between’ components. Nonnegative estima-
tors improving upon the unbiased estimators have also been derived by Mathew, Sinha
and Sutradhar (1992), Kubokawa (1995) and Kubokawa, Saleh and Konno (1999) from
a frequentist-view point. Recently Srivastava and Kubokawa (1999) succeeded in extend-
ing the dominance results to estimation of covariance components in a multivariate mixed
linear model with equal replications.

The dominance results in estimation of the variance components are essentially equiva-
lent to those in estimation of ordered scale parameters and are related to the result of Stein
(1964), who constructed a truncated procedure improving upon an unbiased estimator for a



variance of a normal distribution with an unknown mean. These estimation issues are tech-
nically characterized to be resolved without employing the integration-by-parts methods,
namely, the Stein and Haff identities, which are heavily exploited to construct improved
procedures in estimation of a mean vector and a covariance matrix of a multivariate normal
distribution. Recently Kubokawa and Srivastava (1999a,b) extended these identities to an
elliptically contoured distribution model, and showed that almost all dominance results in
the normal model remain true in the elliptically contoured distribution model by utilizing
the extended identities. Then one will have the query of whether such robustness of im-
provement holds for the estimation of the variance components in which the identities are
of no use.

In this paper, we consider the problem of estimating the variance components o7, 0%
and their function ¢ = o + ro% and of estimating multivariate components of covari-
ance in elliptically contoured distribution models, hereafter referred to as ECD models, in
a decision-theoretic setup. Empirical Bayes or generalized Bayes estimators and several
other positive or nonnegative (definite) estimators improving upon usual unbiased esti-
mators of the variance components are obtained. These dominance results are discussed
here in the ECD models from two aspects of parametric and semiparametric situations,
which correspond to the cases where the function f(-) describing the ECD model is known
and unknown, respectively. In the parametric case, it is shown that the structure of the
dominance results still holds in the ECD models. In the semiparametric case, however,
the superiority of improved estimators in the normal distribution does not hold for every
unknown function f(-). When the ECD model are restricted to the class of multivariate
t-distributions, the dominance results in estimation of o} remain true, that is, the robust
improvements are guaranteed while the robustness of the dominance never holds for es-
timation of o2. This phenomenon demonstrates that two estimation issues of o} and 3
with 02 < o2 possess different stories from the respect of the robust improvement. It is of
quite interest to point out that there exists a class of distributions in which the dominance

results in the normal distribution remain true. Denote a class of the following distributions

by Co:
’/u/2+1 v
SR AR

which is slightly different from the multivariate ¢-distributions. Within this class, the
robustness of the superiority of all estimators given in the normal model is established.

(v + [[2[2)- I s o} ,

Section 2 deals with the estimation of the variance components in a one-way random
effects model, which is represented in the ECD model with covariance having the intraclass
correlation structure. In Subsection 2.2, broad classes of estimators improving on ANOVA
(unbiased) estimators of the variance components are derived. Out of these classes, em-
pirical Bayes and generalized Bayes rules are developed. These are extensions of results in
Kubokawa et al. (1999) to the ECD model. In Subsection 2.3, we discuss the robustness
of the dominance results given under the normality, and provide the class Co in which the
results of Kubokawa et al. (1999) hold still for any f(-) € Cp. An extension to general
mixed linear models with two variance components is shown in Subsection 2.4.

Section 3 is devoted to estimation of multivariate components of variance in an ECD
model which corresponds to a one-way multivariate mixed linear model with equal repli-
cations. This issue did not receive a much attention primarily due to technical difficulties
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encountered in obtaining dominance results. Amemiya (1985) proposed a restricted maxi-
mum likelihood (REML) estimator for the ‘between’ component but it is not known whether
it is better than the usual unbiased estimator. Also see Calvin and Dykstra (1991) and
Mathew, Niyogi and Sinha (1994). Recently Srivastava and Kubokawa (1999) succeeded
in establishing a truncation rule for improving up on non-truncated procedures. This rule
was applied to show the superiority of REML estimators to unbiased ones as well as to
derive truncated estimators dominating Stein type minimax estimators. In Section 3, we
extend these dominance results to the ECD model and investigate their robustness.

2 Estimation of Variance Components in a Random Effect Model

In this section, we treat an elliptically contoured distribution (ECD) model with covariance
having the intraclass correlation structure, which is interpreted as an extension of a one-way
random effect model in the normal distribution. In this model, we consider the problem of
estimating the variance components from two aspects of decision theory and robustness.

2.1 A Random Effect Model and Its Canonical Form

Let us consider the following model with a covariance structure of intraclass correlation:

y=pjy+u, (2.1)

where y is an N x 1 observed vector, p € R is an unknown common mean, jy =
(1,...,1) € R", and u is an N-variate error vector. Assume that the error has an
elliptical density

272 (w27 u) (2.2)

where §2 is a N x N matrix with the intraclass correlation structure
Q:UfIN-i-O'ZJr@Ik (23)

for J, = 3,3%, N = kr and ® designates the Kronecker product defined by A®@ B = (a;;B)
for A = (a;;). In the case of a normal distribution, this corresponds to the one-way mixed
linear model with two variance components:

u=3, Qa+e

where a and e are independent random variables with o ~ N3 (0,021;) and € ~ Ny(0,07In).
For providing a canonical form, consider N x N orthogonal matrix H = (H{, H})*
for 1 x N vector H; = N~Y23%; and (N — 1) x N matrix H; such that H,jy = 0 and
H,H' = In_,. Let 2o = H,y and z = H,y. The joint density of Hy = (2o, 2z")" is
written by
12172 (D(xo) + 2 (03I -y + 02 Ho{I, @ J }HS) '2)

where D(zo) = (zo—puvV/N)?/(02 +r0?). It can be easily seen that H,{I, @ J}H} = rE;
where E; is an (N — 1) x (N — 1) idempotent matrix with rank (E;) = k£ — 1. Letting
E, =Iy_, — FE, with rank (F) = N — k, we see that

o N1 + 02 Hy{I, ® J,}Hb = 01 Ey + (0} + 702) Es.



Then the density of z is expressed by
(02) /2 (o2) ™ g (0722 Byz + 05 22 Es2)

where ny = N —k, ng =k — 1, 02 = 67 + ro? and

g(a) = / o7 f(D(zo) + a)do. (2.4)

Here we can take variables z,...,z,, such that 2'E;z = Y4, 27 = |z|]* for & =

(21,...,2n,)". Let us define S; by S; = 2'E;z. We here make the transformation
(Z1,..yTpy) = (81,01,..., 0,,—1) such that

z1 cos 6,
T sin ; cos @,
= /S )
Ty —1 sinf;sinfy---cosb,, _;
T, sinf;sinfy ---sinf,,
where 0 < §; < mfori=1,...,n1 —2,and 0 < 0,,_; < 2x. Since the Jacobian is given by
8(:131,. .. ,Inl)

—_ n1—2}/2 . — . - .
=2 lsgl 2 ginm=2 g, sin™ 30y -sinf, _,

6(3,01, .. ,Hm_l)

the joint density of (Sy,01,...,0n,-1, E22) is expressed as

B0, Buyr) X (022022272 g (0775, + 0722 Baz), (25)
where , .
T /2 et 1 ny—2
o _ B(_, ) 2,
=T - PG >
and . .
17 sin™ ™' g;
R(Oy,...,0, 1) == —,
(01;- 0n 1) 2 I__Il B(1/2,(ny —1)/2)

which is a uniform distribution on the hypersphere. Hence the joint density of (S, E»2)
is given by
Cn, (Uf)_”l/2(05)_”2/23?1/2_1g (01_231 + 02_2ztE'2z) . (2.7)

Let S; = 2! E,z, and the same arguments provide the joint density of (.S1,.52) of the form
2\—n1/2( 2\—n2/2 n1/2—1 naf2-1 _9 _92 9.8
Cny Cny (07) (03) S1 89 gloy"s1+0;782). (2.8)

Here it is noted that S; and S; are represented by

Sl = ztElz:ytH;Eley

1
= v (- hed)y (2.9)
k r
= > > (v —¥:.)’
=1 j5=1



and

SQ = ztEgz =ytH§E2H2y

1 1
— il Jr__Jr) 2.10
y (r ¢ ®Jr = —Jo )y (2.10)
k
= ry (7 —7.)%
=1
for ;. = r 'Yy and §.. = (rk)7! F 13— vij- The estimation of the variance

components is discussed in the following subsections on the basis of the density (2.8).

2.2 Estimation of the Variance Components

Now we address the problems of estimating o2, 02 and (6%,02) based on the canonical form
(2.8) of the ECD model (2.1). For each estimation problem, we provide generalized Bayes
and empirical Bayes estimators improving upon ordinary procedures.

The estimation of the ‘within’ component of variance o7 is first discussed with respect
to the Stein loss L(6%,0%), where the function L(-,-) is defined by

L(a,b) = a/b—loga/b—1. (2.11)

It is noted that the loss L(6?,0?) can be derived from the Kullback-Leibler information
loss in the normal or chi-squared distributions. The unbiased estimator based on S is
given by

6175 (g) = ny'S1(n1 + n2) A1, (9), (2.12)

which is the best among multiples of S; where

_ Ly g(y)dy.
5 y*2g(y)dy

In fact, the coefficient of S in (2.12) is calculated from (2.8) as

Ax(g)

(2.13)

E[S:] = Uf//cmcnzs?l/zsgz/?_lg(sl-l—sz)dsldsz

1 0
= OyCn,Cny /0 (1~ 2)" Pz X /O y "t g (y)dy

1 1

ny +ng Anyin,(9)’

where the transformation (sq,s;) — (yz,y(1 — z)) is made in the second equality, and the
extreme equality follows from

1 oo
(cnlcm)—l — / Zn1/2—1(1 _ Z>n2/2—1dz % / y("1+”2)/2_lg(y)dy.
0 0

It is noted that the parameters o2 and o2 are restricted by the inequality of < o2, which
implies that S, contains the information up to o%. This information will be employed to
improve upon the unbiased estimator 62V8(g). For the purpose, more generally, we consider
the estimators of the form

51() = S19(S2/S1) (2.14)
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and obtain the condition on ¢(-) for 6?(3) dominating estimator a;S;, a multiple of Sj.

Proposition 2.1. Assume that
(a) ¥(w) is nondecreasing and limy o P(w) = ay,

(b) ¥(w) > ¢0(w)Am+n2(g) where

fgo xn2/2—1(1 + x)_("1+"2)/2dx
Po(w) = J gre/2=1(1 4 g)=(mtn2)/2-1dy"

(2.15)

Then Sy1(S3/51)) is better than ay Sy uniformly for every w relative to the loss L(6%,0%)
for L(-,-) given by (2.11).

The proof is deferred to Section 2.5. From Proposition 2.1, we can get some specific
improved estimators of o2, which will be given after stating the results corresponding to
Proposition 2.1 for ¢2. For the estimation of o3, the unbiased estimator is given by

a_;UB(g) = 77,2_152(711 + n2)An1+TL2 (9)7 (216)

for Ap, 4n,(g) defined by (2.13). For improving upon the unbiased estimator or the multiple
of S,, we consider estimators of the form

53(#) = S28(S1/S2)- (2.17)

Proposition 2.2. Assume that
(a) ¢(w) is nondecreasing and limy,_o ¢(w) = ay,

(b) d(w) < Go(w)An,+n,(9), where
fol/w $n2/2—1(1 _|__ x)—(nl+n2)/2d$
fol/w z72/2(1 4 x)—(n1+n2)/2—1d$'

Then Sy¢(S1/S2) is better than ayS, uniformly for every w relative to the loss L(63,03)
for L(-,-) given by (2.11).

¢o(w) = (2.18)

The proof is given in Section 2.5. In Propositions 2.1 and 2.2, the difference between
the normal and elliptically contoured distributions appears in Ap, 1n,(g). This means that
the same techniques as used in the case of the normal distribution are helpful for providing
specific forms of improved procedures. From Lemma 1 of Kubokawa et al. (1999), it follows
that

(i) wo(w) is increasing, limy—ye0 Yo(w) = (n1 + n2)/n1 and Yo(w) <1+ na(ns + 2) tw,

(ii) ¢o(w) is increasing, limy_o ¢o(w) = (n1 + ng)/n2 and do(w) > 1+ (ng + 2)ny ' w.
Letting ¥ (w) = min{(n; + na)ny, 1+ w}lAn 4n,(9) and ¥o(w) = min{(n, + na)ny', 1+
(ny + 2)n5 ' w} Ap, 4n,(g), we see that 1o(w), ¥1(w) and t,(w) satisfy the conditions (a)
and (b) of Proposition 2.1 for a; = ny*(ny + n3)An, 4n,(g). Then we obtain the improved
estimators

519P(9) = S1%0(S2/S1)An 4na(9),
a'fREML(g) = min {_5:'1- Sl - 52 } (nl + n2)An1+n2(g)a

ny’ ny+ng
S S 2)~18
57°%(g) = min {__1, 1+ nalne +2)7 5

ni ny + no

(n1 + n2)Any4n,(9)-
|
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Similarly, combining Proposition 2.2 and the above arguments provides the estimators

6§GB (9) = Sa2t0o(S1/52) Any4na(9),

) Sy S1+ S
52REML(g) — max {i, ni m nz } (n1 +n2)An +0,(9),

-1
51F8(g) = m{S_ (nz + 2ny 5 + 5

)
no ny + ng

b o ns) A1)

having uniformly smaller risks than the unbiased one (2.16). The generalized Bayesness of
5298 and 6268 and the empirical Bayesness of 6iREML 53EB  G2REML 44 52EB can be
demonstrated in the end of this subsection. It is noted that §2REML and §2REML can be
derived as the restricted maximum likelihood (REML) estimators in the case of the normal
distribution.
We deal with the third issue of estimating the variance components (o7, 02

ously relative to the intrinsic loss

) simultane-

L (037 AZao'fa Z) - nlL(alval) + nQL(O.l + 1"0'&,0'1 + ro ) (219)

where L(-,-) is defined in (2.11). The ANOVA (unbiased) estimator of (o},0?2) is given

by (0‘2UB, ~1(62UB — ‘ZUB)). This form suggests to consider the estimators of the form

(62(1), 62(¢, %)) where 67(¢)) = S19(S2/S1) and 62(¢, %) = r~" {926(51/52) — S19(52/51)}-
Then the risk function of this estimator relative to the loss (2.19) is written by

Ry(w,8%,62) = mE [L(S19(S2/ 1), 01)] + naB [L(S:6(5:/5), 53) (2.20)
which implies that Propositions 2.1 and 2.2 can be directly applied to get specific estimators
superior to (52UVB 52UB). Especially for o2, we obtain the improved estimators:

5298 (g9) = 7 {S9d0(51/52) — S1¢0(S2/ 1)} Anyana(9),
() = o max {22 = 20} (4 1) Ay (9),
Mo ny
BBy _ -1 n S 2_}
5:%%(g) = r max{m 3, 1 o
2)7L8.
X min { Sl Sl t n2(n2 + ) 2} (nl + n2)An1+n2(g).
ny’ ny + Ny

It is noted that 52REML(g) is nonnegative and that 298 (g) and 6255(g) are positive almost
everywhere. Although the unbiased estimator O'ZUB has a drawback of taking negative
values with positive probability, the above improved estimators resolve this undesirable
property.

We conclude this subsection with stating the Bayesian properties of the above given
estimators.

Let n = 1/0? and £ = 0?/(0? +r02) and note that ¢ is constrained by 0 < { < 1. When
prior distribution 7(n, £) of (1, £) is supposed, the Bayes estimators under the corresponding



loss functions are generally given by 628, 528 and (628, 62PB) where
1 » V2 1 y g

1
~2B
7 B E”[nISI,SQ]’
5'23 — 1
2 E”[’?ﬂSl,S?]’
2B _ 1 1 -
= rems )

where E7[-|S1,S,] stands for an expectation with respect to the posterior distribution

7"(777§|51a 52) of (7775) given Sl and 52'

For deriving the generalized Bayes estimators, suppose the improper prior distribution
m(n, §)dndé = n~ '€ dnd€1(0 < £ < 1)

for the indicator function I(-). Then the posterior density of (n,£) given S; and S is
proportional to

gra/2=1p(mitn2)/2=10 (G 4 £8,)n) dnd€1(0 < € < 1).
By using this posterior distribution, it can be easily verified that the estimators 1% (9),

5268 (g) and 629B(g) are generalized Bayes.

For deriving the empirical Bayes estimators, let d be a given positive constant less than
or equal to one, and suppose the improper prior distribution 7(n,{) = n (€ = &) where
P(€ = &) = 1 and & is an unknown constant such that 0 < §, < d. Namely the supposed
prior information about £ is that ¢ is unknown and in the interval (0,d]. Then the posterior
density of i given S; and S;, and the marginal density of S; and S, are given by

(posterior density) oc 7("+72)/2=1g((S) + £S,)n),
(marginal density) o 5”2/ [Sy + §052]—(n1+nz)/25;n/2—1532/2—1

o0
x /0 Y2 /2=1 0 gy
Hence the Bayes estimators of o7, o2 and o2 are

518(&) = (S1+€0S2) Anina(9),

555 (60) = (€0)™" (St + €0S2) Anitma(9),
PP(6) = [o37(6) - 63(6)]

_ 1 ;5050 (1 + €052) Any 1 (9):

Since & is unknown, it should be estimated from the marginal density. Noting that 0 <
£ < d, it is seen that the maximum likelihood estimator of &, is written by § =
mln{ngsl/(nISQ) d}, which is substituted in the above Bayes estimators so as to obtain
the empirical Bayes rules:

6178 (d) = &tP(&™)

. {51 S, +dS,
= min _—

ny np+ ne

(n1 + n2) Ani 412 (9),
|
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BP(d) = GEB(ENT)

{52 Si/d+ S,
= maxq—,———————

Ny Ny + ng

}("1 + 12) Any 42, (9)

and
52EB(d) = 256
= lmax{ﬁlé—l,d_l—l}
r g D1

o[5S S1+dS
X min {—1, —Lt—Z} (ny + ng)Any+ns(9)-

ny Nyt ng
Especially putting d = 1 yields the estimators 62#FML(g), 62REML(g) and 62REML(g). Also
putting d = na/(na + 2) gives 62F8(g), 6288 (g) and 6255 (g).

2.3 Robustness of the Improvements

The results given in the previous subsection depend on the function g or f through
An 4n,(g). Especially for the normal distribution, the corresponding conclusions are pro-
vided by letting Ap,4n,(g) = (n1 + ny)~!. For instance, the unbiased estimators of o}, o3
and o? are given by 62V8 = n7'S,, 62VF = n;'S; and 62V8 = r=1(63V8 — 57UP), which
are improved by several truncated and smooth procedures.

The objective in this subsection is to investigate whether these improvements are robust
within a class of functions f. The conditions for the robust improvements on 62V = n{'S,
and 62VB = n;'S, can be derived based on Propositions 2.1 and 2.1. Let C' be a class of
functions on nonnegative real numbers.

Proposition 2.3. Assume that
(a) ¥(w) is nondecreasing and lim,, o Y(w) = ni’,
(b) K/J(U)) Z ¢0(w) SungC An1+n2 (g)

Then Syp(S3/S1)) is better than ny'S; uniformly for every w and every g € C.

Proposition 2.4. Assume that
(a) ¢(w) is nondecreasing and lim,, o p(w) = n3*,
(b) ¢(w) < QbO(w) inngC An1+n2(g)'
Then Sy$(S1/Ss) is better than ny 'Sy uniformly for every w and every g € C.

Propositions 2.3 and 2.4 imply that the robustness of improvement in estimation of o?
has a quite different story from the case of estimation of o3: the robust improvements for
o? hold in the case where sup co An,4n,(g9) < (1 + n2)~", while those for o7 hold when
inf,ec An,4ny(9) > (nq 4 n2)~'. This further means that the robustness of improvements
in estimation of (02, 0?) are guaranteed in the only case where A, 4n,(g9) = (ny +n2)7" for
all g in C.

The underlying distributions are hereafter focused on a class of normal-scale-mixtured
distributions:

Fallz|) = [ (2m) /ey 2e 0 a gy ) (2:21)



where ® € RY and H(-) is a probability measure on nonnegative real numbers. Then g
defined in (2.4) is expressed by

gn(y) = [ (@mntm g 2emlia g (), (222)

where N — 1 = ny + ny. Also A, 4n,(g) defined in (2.13) is written as

I y(n1+n2)/2—1 I n(n1+n2)/2e~7}y/2dH(n)dy
00 o (n14m2)/2 [ p(ni+n2)/2e~ny/2d F
fo ) fo n (77)
_ fooo dH(n)
Joon~tdH (n)

= (ny+ny)7"- [/000 W_ldH(??)] N )

Am +n2 (QH)

= (n1+ng)7!

which implies that
Apyny(g) < (resp. >)(ny + nz)~" if and only if [5°n~'dH(n) > (resp. <)1.
The normal distribution corresponds to taking the probability as H({n =1}) = 1.
Let us specify the density h(n) = dH(n)/dn as

a/2
1 b -1 -
h(n) = (5) n/* et [(n > 0) (2.23)

for a > 2 and b > 0. Then .

a—2

/OOO n~'dH(n) =

We thus consider the following three classes.
(i) Putting @ = v + 2 and b = v in (2.23) for v > 0 gives that f°n~'dH(n) = 1 and
produces a class of densities of the form

VIHID((N +v)/2 + 1)
N2l (v/2 4 1)

Co= {f : fllel?) = (v + || |?)" V2> 0}' (2.24)

This includes the normal distribution as a limit of v. Since A, 1n,(g9) = (n1 + ng)™! for
all f € Cy, all dominance results in the three estimation issues in the normal distribu-
tion remain true in Cy. Especially the robustness of improvements is guaranteed for the
simultaneous estimation of (o7, 02).

(ii) Putting a = b= v in (2.23) for v > 2 gives that [*n~'dH(n) =v/(r—2) > 1 and
produces a class of multivariate t-distributions, where the density is of the form

v/? v
ci={r: sl = A

(v 4+ ||e|)~ N2y > 0} : (2.25)

The robust improvements still hold for o2 while they are not guaranteed for 02. When we
can impose the restriction on v as v > vy for known value vy > 2, from Proposition 3.4, it
follows that 2UF is dominated by max{ni 'Sy, vy " (vo — 2)(n1 + n2)~1(S1 + S2)} uniformly
within the class C; with v > 1.
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(iii) In the case that @ = v+ 4 and b = v for v > 0, we observe that [7°n~'dH(n) =
v/(v +2) < 1, so that the robust improvements are guaranteed for o3 while they never
hold for o%.

As stated in (i), it is quite interesting to point out again that Propositions 2.1 and 2.2
with A, 1n,(9) = (ny +n2)~! remain still established for all f in Cp, that is, the robustness
of all dominance results in the normal distribution holds.

As one of other classes, we can consider contaminated normal distributions such that
the error term u in the model (2.1) has

(1 = VNN (0, £2) + ANN(0,782) (2.26)

where A and T are unknown parameters satisfying 0 < A < 1 and 7 > 1. This model means
some data with a larger variance can be taken with probability A. Since this distribution
is derived by putting H({n = 1}) = A and H({n =7}) =1 — A, we see that

/ n Y dH(n) = A+ (1= )) < L,
0
which implies the robustness of improvements in the estimation of o}.

2.4 An Extension to General Mixed Linear Models

We extend the results of the previous subsections to the following models with a more
general covariance structure:

y=XB+u (2.27)
where g is an N x 1 vector of observations, X is an N x p; known matrix with rank (X) = r,
B is a p; x 1 vector of parameters and u is an N-variate random error vector having the
elliptical density (2.2) with
N =0Ty +02AA (2.28)
for N x p, known matrix A. In the case of a normal distribution, this corresponds to the
general mixed linear model with two variance components:

u=Ax+e€

where a and € are independent random variables with a ~ N,,(0,02I,,) and € ~
Nn(0,021y). This includes a one-way random effects model with unbalanced replica-
tions and an error component model treated by in Fuller and Battese (1973), Battese et
al.(1988) and Rao et al.(1993).

For giving a canonical form, consider N x N orthogonal matrix H* = (H}', H3')" such
that H3;X = 0, HyH,xt = Iy_, and H} is an (N —r) X N matrix. Let @y = H]y and
z = Hjy. Define 2% by

27, 2]
o = 1“1 )
( 1250 8%
= oIy +0*H*AA'H™,
for r x r matrix §2,. Then the marginal density of z is written by |§25,|7'/2g(2'§25;"2)
where

9(a) = [ 191151721 (D(@o) + a)dwo (2:29)
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for QTI.Z = ‘QIl - ;2 ;;19;1 and
D(xo) = (w0 — HT X B — $23,825, ") 271 (w0 — H{ X B — $23,925;).

Here we consider the spectral decomposition H3AA'H3 = Y5, \;E;, where rank (E;) =
m; and Y0, m; = rank (H*UU'H™). Assume that N —r — 3¢ m; > 0, and let

¢ ¢
n=N-—7r— Z m; and n, = Zmi. (2.30)
=1

=1

Let Eg = In_, — Zf=1 E;, whose rank is n;. We thus get the quadratic statistics 57 =
2'Eyz and T; = 2'E;z for ¢ = 1,...,{. The same argument as used above (2.5) give a
joint density of (51,74, ...,T;) of the form

4
Cnl(O'?)“n1/25?1/2—1 H {Cmi(gf + /\io_g)—m,'/2tzni/2—1}

=1

¢
xg (01‘231 +> (o7 + )\iaz)‘lti) : (2.31)

=1

where the constant ¢,, is defined by (2.6) and ¢,,,’s are defined similarly.

Corresponding to the discussions in the previous subsections, we address three problems
of estimating the variance components o, o2 and (0y,0,) on the basis of (S1,T4,...,T})
where 03 = 01 + Ao, for

4 £ £
A= Z )\imi/z m; = Z)\imi/nz. (232)
=1 1=1 :

=1

Let S; = 3°¢_, T;. Then we can verify that all the results obtained in the previous subsec-
tions hold in the model (2.27) by replacing the ny, ny, S;, S; and 7 in Subsection 2.1 with
ni, ng, S1, S2 and A in this subsection, respectively. Especially, the results corresponding
to Propositions 2.1 and 2.2 are provided as follows:

Proposition 2.5. Under the same conditions as in Proposition 2.1, the estimator
S19(S2/S1) of the form (2.14) dominates a1Sy relative to the loss L(67,01) for L(a,b)
given by (2.11).

Proposition 2.6. Under the same conditions as in Proposition 2.2, the estimator
S18(S3/51) of the form (2.17) dominates a, Sy relative to the loss L(63,03).

The proofs are given in the next subsection. For the simultaneous estimation of (0%, ¢2),
combining Propositions 2.5 and 2.6 and the same arguments as used around (2.20) provides
a dominance result relative to the loss nyL(6%,0%) + nyL(6% + A62,07 + Ao?). Unbiased
estimators and the corresponding improved estimators of ¢}, o3 and o2 have the same

forms as given in Subsection 2.2 with replacing r with A.

Following the results in Subsection 2.3, we can get the robustness of the above domi-
nance results within the class of densities Cy. The class C; of multivariate ¢t-distributions
guarantees the robustness of the dominance results in estimation of o7.

12



2.5 Proofs

We here prove Propositions 2.5 and 2.6 in the general model (2.27) since Propositions 2.1
and 2.2 are included by Propositions 2.5 and 2.6.

The key tool for these proofs is the Integral-Expression-of-Risk-Difference (IERD)
method given by Takeuchi (1991) and Kubokawa (1994, 99) in estimation of a scale pa-
rameter. The IERD method is, through the fundamental theorem of calculus, to give an
integral-expression for a difference of risks of two estimators. For other instances in which
the IERD method was applied, see Kubokawa (1998, 99), Kubokawa and Srivastava (1996)
and Kubokawa et al. (1993a, 94).

Proof of Propositions 2.1 and 2.5. Since limy, ¥(w) = a4, from the IERD
method of Kubokawa (1994a,b), we have

Ry(w;a1S51) — Ry(w; S1¢ (Sz))

S1
) e ) e
— E [/lw;ﬁ{i—éw (%t) —logi—éz/) (g-j-t) - l}dt] .

Let v = Sy /02, u; = Ti/ (02 + X\;o?), and 0; = 1+ A;02/0?, and denote the density functions
of v and u; by f and g;, respectively. Carrying out the differentiation in (2.33) gives

E[/lw{%‘m}—‘b (50) ]
/ / / { TS /t)} (S0 /v) ¥ (S0t v) dt
x cp™ /21 (H,;uzni/2_1) g (v + ;u,) dvll;du;,

for ¢ = ¢n, IIf_,cm;- Making the transformations (¢/v)u; = w; and 1/t = z in order, we
observe that the r.h.s. of (2.33) is equal to

/ // { P (Z0:w l)}(zeiwi/t)%b'(zeiwit)

xc (n-w’.’“/2 1) p(mFn2)2=14=m2/2 0 (1 4 $ap; /t)v) didoll;dw,

=[] { s — )}(ZHiwi)gb’(EOiwi) (2.34)
1
xc(H wm'/2 1) (”1+n2)/2‘1/ 2”2/2_15;((1+Eiwiz)v)dzdvﬂ,-dwi.
0

Since ¢'(w) > 0, it is concluded that the r.h.s. of (2.34) is non-negative if
e p(nitn2)/2-1 fl n2/2-1 g (1 + Zyw;z)v) dzdv
oo pmtn2)/2 [l 2m2/2-1g ((1 4 Ew;z)v) dzdv
JEwe gna/2=1(1 4 @)= (mAn)/2dy [0 y(mtna)2-1g(y)dy
W gna/2-1(1 4 o)~ (mAn)/2-1dg [5° y(mtn2)/2g(y)dy
= to(Biwi) Any+n,(9)- (2.35)

P(Lbw;) >

13



Since §; > 1 and ¥/(w) > 0, it follows that ¥ (X;0;w;) > ¥ (X;w;), which, from (2.35), gives
the sufficient condition that 1(Xw;) is greater than or equal to the r.h.s. of (2.35). This is
guaranteed by the condition (b) of Propositions 2.1 and 2.5, which are established. 0O

Proof of Propositions 2.2 and 2.6. Since lim,,_,o #(w) = a,, observe that

Ra(w; 4253) — Ra(w: Sggb( 2)) (2.36)
= F [/adz{%¢ (g—lt) ~ log z:‘:sv¢ (%Q }‘“]

_ / // Y0;u; v ¢,< vt )dt
N vt/EH u;) Y Y0;u; Y0 u;

wep™ /21 (Hiu:-n'/? 1) g (v + Z;u;) dvll;du;

for 7 = 02/0?. Making the transformations (t/X6;u;)v = w and w(1/t) = z in order, we
can rewrite (2.36) as

/ / /0 ' {d)(lw) _ lzﬁ";‘; }gb’(w)wEQiui/tQ

Xc (Ei«%uiwt_l)mﬂ_l (Hiu?‘/2_l) g (EiHiuiwt_l + Eiui) dtHiduidw

/ .. //woo {gb(lw) — 124?”;17-} ¢ (w)Zbu; (2.37)

xc (Eieiuiz)nlﬂ—l (Hiu;n"/?_l) g (Zi0;u;z + Eu;) dzlldu;dw

so that since ¢'(w) > 0, the Lh.s. of (2.36) is nonnegative if

[ f 200 (S0;u:2)™ 21 (T2 g (D0iuiz + Suy)d2Tlidvy;

[ L 208002/ (1 + AT)(S0auz)™ /21 (TIul™ ) g(Sbiuiz + Sus)dzTlidu;

(2.38)
Let s = ©¢_,u; and ¢; = w;/s for 1 = 1,...,{. The numerator of the r.h.s. of (2.38) is
written as

P(w) <

/// (S0;u;)™ /22 21 (TN g (20,2 + Su;)dzTldu;

'm,/2 1

=[] [ ogriam st e g (i 4 1)s s)dzds ———TI{Z}dt
=1
m./2 1

_ / // oP1/2-1 g(nitn2)/2-1 ((1+x)s)d:l:d8 Hf 1dt;
Yotw

/2-1 +n2)/2 10 e/t -1 +n2)/2-1
= ™ 1 (n1+n2)/2 4 IT;Z dt/ T2 dy.
/ //zgttw (1+2)” RETI y 9(y)dy

Similarly, we have that
/'//oo(Eaiui)nl/sznl/?_l(Hu:m/z—l)g(zaiuiz + Yu;)dzIldy;
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oo e/
- / : / / (SO:t;)2a™ /27N (1 4+ )~/ 0 qpt-lyy,
Yhitiw t1---te_g
x /y("‘+"2’/29(y)dy.
Let Q = X,0;t;, and the r.h.s. of (2.38) is expressed by
E® Jow M2 1(1 4 z)~(mFn2)/2dy
[ L e @39)

E? [Q(l + AT S, e/ (1 x)—(n1+n2)/2—ldx]

Since @ and fg,, ™21 4 )~ (m+m2)/2-1dy are monotone in the opposite directions, we
can show the following inequality for the denominator of the r.h.s. of (2.39):

Q © ni/2-1 —(n1+n2)/2-1
[1+/\T/ww (1+2) d:(:]
Q o0 _ _ _
< EQ [___] EQ [/ ny/2—1 1 (n1+n2)/2-1 ] ) 4
< o w:c (14 2) dz (2.40)
Here observe that
1 1 ¢
EQ[ © ] = MNTE|z 2.41
e Bl e e ey e DR S (2.41)
1 1 E)\,-'rmz-

14+ A7 + 14+ AT ny ’
since A = 3 A\im;/n,. Combining (2.38), (2.39), (2.40) and (2.41) gives a suflicient condi-

tion as

EQU"oow $n1/2—1(1 + x)—(n1+n2)/2d$]
QS(U)) = o? ny /2—1 —(n1+n)/2—1 An1+n2(g)'
EQ[wi xrt/ (1 + ;()) (n1+n2)/ dx]

(2.42)

For the r.h.s. of (2.42), we can easily check that
EOlfg, am A (4 2) e
EQ[[5, a1 (1 + z)- (w42 1dg] = o Joo, 2 A1 (1 4 )+ 21y
= inf {6o(Qu)},

S5, am AL 4 z)m(mAn) 2 }

which is equal to ¢o(w) since ¢o(-) is nondecreasing. Hence we get the sufficient condition
that ¢(w) < do(w)An, +n,(g), which is just the condition (b), and the proof of Propositions
2.2 and 2.6 are complete. oo

3 Estimation of Covariance Components in a Multivariate Ran-
dom Effect Model

In this section, we provide a multivariate extension of some results of Section 2. An ellip-
tically contoured distribution model which corresponds to a one-way multivariate random
effects model is given and its canonical form is derived in Subsection 3.1. Dominance
results for estimation of ‘within’ component of variance ¥'; are developed in Subsections
3.2 and 3.3, and their robustness is discussed in Subsection 3.4. Estimation of ‘between’
component of variance X 4 and function ¥, = Xy + rX 4 is studied in Subsection 3.5.
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3.1 A Multivariate Random Effect Model and Its Canonical Form

Let y,;'s be p-variate random variables for ¢ = l,...,kand j = 1,...,r, and let y =

(yt,...,yL) for y;, = (yl,...,¥%)". Suppose that y has the following model with a covari-
ance structure of the multivariate intraclass correlation:

y:jN®”+’u’7 (31)

where N = kr, p € R? is an unknown vector and u is a pN-variate error vector. Assume
that the error has an elliptical density

12712f (w27 u)
where §2 is a (pN) x (pN) matrix with the multivariate intraclass correlation structure
\Q:IN®21+IJ¢®J7'®2&

for p x p positive definite matrices ¥y and ¥,. This structure corresponds to the one-way
multivariate mixed linear model under the normality:

u=(I,®j, @I, a+te,

where « and € are independent random variables with a ~ N(0,I; @ ¥,) and € ~
Non(0, Iy ® X1). Namely, y;; = p+ a; +¢€; fori =1,...,k and j = 1,...,r, where
o, ~ Np(O, Sa) and €; ~ N,,(O, 21)

The N x N matrix H defined in Section 2.1 is employed to get a canonical form. Letting
Y = (y117 oYy Yk - - ’ykr)a we see that

(Hel,)y = vec (YHt)
= vec (\/Nﬁ, YH;)
_ ( VNy ) .
vec (Y H)
Also we observe that
(H@ L)y ® ) =(VN,0,....00 @ p,
and that

(HoI,)R(H'®I,)
= IN®X1+H(I,®J,)H'® X,

21+T2a 0
0 Ina @3+ {H(I:;®J,)H,} @ X,

_ 21+7‘2a 0
B 0 Ei@ X +E, (X +rX,) )’
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where F; and F, are idempotent matrices defined in Section 2.1 such that E1+FE; = In_;.
We thus write the quadratic form w27 u as

(y—dn@u)' 27 (y-Jy@n)
_ (VNg-VNp\ [ Zi+r5, 0 -
- vec (Y H}) 0 E. X, +E,@(Y+rX,)
y ( VNy — VN )
vec (Y HY)
= N-p)(Z1+rZ) (T p)+
{vec (Y HY)} {El QX'+ E, @ (X + rEa)_l}vec(Yth).

By integrating out with respect to VN, the density of Y H, can be written by
|2, |72 32,2 2 (tr Y'YH.E\H,Y' + tr Z;IYH;EZHQW) :

whereny =N —k,np=k—1, ¥y =X, +rX,, and
g(a) = [ 15172 f (N(@ - 0)' 55 (@ — ) + a) d(VNG).

Let S, = YHtQEleYt. Since E,; is an idempotent matrix with rank n;, we can take
p X ny matrix @ such that S; = @a’. The matrix & can be written as € = TK where T'
is a p X p low-triangular matrix with positive diagonal elements and K is a p x n; matrix
with KK*' = I,. The usual technique used in the theory of multivariate analysis gives
that

dat = 277|8,|(m P~ V/2(dS ) Kd(K")
and

Kd(K*) = 2?7P"/2 T (n,/2),

Vo,
where I',(a) = 7PP~V/AT[P_ T(a — 27'(1 — 1)) for @ > (p — 1)/2, and V},,, designates the
Stiefel manifold of n, x p matrix with orthonormal columns (see Srivastava and Khatri
(1979)). Hence the joint density of (S1,Y H4E,) is expressed by
Cps | B4 |7 2| o7/ S| (M0 2g (40 BT1S) + tr XY HYE, Ho YY)

where
Cpmy = T2 T y(n1/2). (3.2)

Also let S; = YH,E,H,Y". Then the same arguments can be used to provide the joint
density of (S1,S3) as

Cp,nlcp,m|21‘—m/2l22|——n2/2|51|(n1—p—l)/2|52|(n2—p—1)/2g (tl‘ 211—151 +tr 22—152) ) (33)

Similar to (2.9) and (2.10), S; and S, are represented by

1
S, = Y (Ikr _L® Jr) y!
r

17



k r
= ZZ(%J ?i‘)(yij _gi')ta
1=17=1

1 1

J
S, = Y< Ik®J,——Jrk>Yt
r rk

= r

-

1}
-

(- —9..)F:- —7..),

13

where 7. =71 Y y;; and §.. = (rk) ™' T, Y, ¥y5. It is noted that X < X5 where
X, < ¥, denotes that Xy, — X is nonnegative definite. Based on S;, S; and their joint
density (3.3), we shall address the problems of estimating X, ¥, and ¥, in the next
section.

3.2 Improvement on an Unbiased Estimator of ‘Within > Component of Vari-
ance

We now consider th problem of estimating X', relative to the Stein (or entropy) loss function
L(Z, ) =tr 2,27 —log |2, 27" - p, (3.4)

where every estimator 3, is evaluated by the risk function Ry (w; /S\l) = EW[L(Sl, )
forwe N={(X¥X,%,) | X <X}

We begin with deriving an unbiased estimator of X; based on S; only.
Proposition 3.1. For Ai(g) defined in (2.13), let

A; - p(nl + nQ)Ap(nH-nz)(g)' (35)

The an unbiased estimator of X is given by

<UB 1 .
X (9)=—S1" 4, (3.6)
ny
which has the risk function
—~UB .
Ri(w; X, (9))=F [plog ny — log |51Ag|] . (3.7

Proof. Let T) = (¢;;) be a lower triangular matrix with positive diagonal elements
such that X728, X% = T\ T:. Since dS, = 2°[[’_, 5774 dT, for ¢ = cpp,Cpmy, WE
have

//c51|51|("1_”_1)/2|Sz|("2’p_1)/2g(trSl ttr ;) dS,dS; (3.8)
p
— 20//T1T§tﬁ 1tn1 -2, .t;;—z’152|(n2—p-—1)/2g (Z(tfl + .o+ tlzl) 4+ tr 52) dT,dS,
i=1
J-J diag (@1, 2p) ey /1S3 70/2g (22, w4 11 S) T, didS
[T a8, ”2—p_1)/2g( j=1Ti T tr S2> [1; dz:dS-

b
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where the transformation x; = t% + - - - + t% are made. The same arguments are applied to
the random matrix S;, and the r.h.s. of (3.8) is rewritten by

S-S diag (21, 2p) [Ty 2727 yrm/270g (S0 @i+ y) [T dady
ST x?l/%lym?/z—lg( ?:1 zi + y) [1; dz:dy .

For 7 = 1,...,p, making the transformation z = ¥, z; + y again gives
J s P g 1#] Yy ag g

S Sy Ty @37 el 2= (20 i+ y) 1 daady
IR 55?1/2_19”"2/2_19 ( P Tt y) [1; dz;dy
f- fw?lnz{(”‘l)m*”"?}ﬂ_lg (z; + 2)[1; dz;dz
[ f &P A Dmtpn 21 (5 4 2) T, de;dz

(3.9)

Making the transformations v = z; + z and w = z/(z; + z) with J((z;,2) = (v,w)) = v,
the r.h.s. of (3.9) is expressed by

[ fwtl=Omtena}/2=1(] _ gy )m/2yp(mitn2)/2g () [T; dwdz

f . fw{(p—l)n1+pn2}/2—l(1 _ w)n1/2—l,vgo(n1+n2)/2—lg (U) Hi dwdz
-1

=ny {p(nl + n2)Ap(n1+n2)(g)} 5

which yields the unbiased estimator (3.6). The risk function (3.7) can be easily derived.
aa

We now provide a general truncation rule for improving upon estimators based on S,

—~UB . . .
like X, (g) by employing the information on the order restriction that ¥y < X5. The
estimators which we treat are of the general form

3,(¥,9) = S,"PU(A)P'S)* A (3.10)

for

EP(A) = dla'g (¢1(A)? tee 711)20(/1))7

where S;/z is a symmetric matrix such that S, = (55/2)2 and P is an orthogonal p x p
matrix such that

P'S;'?8,87*P = A = diag (\y,...,\,)
with Ay > Ay > ... > ), and ¥;(A)’s are non-negative functions of A. For given estimator

3.(®, g), we define a truncation rule [&(A)]TF by

(AN = diog (WTR(A), .., 6T (A)), (311)
JTR(A) = m{wA),jj;} =1

which gives the corresponding truncated estimator of the form

——

3[R, g) = 85/ Pdiag (1™ (A),...,oTF(A)) P'S,/* 45, (3.12)
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Then we get the following general dominance result.

Theorem 3.1. The estimator X,([®]TR, g) dominates 31(W, g) relative to the Stein
loss (3.4) if P [[W(A)]TR #+ 'I/(A)} > 0 at some w € (2.

Proof. Without any loss of generality, let 3, = I and ¥, = @ = diag(6,,...,0,)
with 6; > 1,...,0, > 1. The joint density of §; and S, is

const.|S,|(Mm—P=1/2| g, |(ne-p=1)/2| @| /2 (tr (S, + @—152)) .

Making the transformation F = 551/2515;1/2 with J(S; — F) = |S,|P+1/2 gives the
joint density of F' and Ss:

fF,SQ(F7 52) _ CO?’LSt.|F|(m_p_1)/2|Sz|(nl+n2_p_1)/2|@|_n2/2g( (tr (F + @——1)52) ] (3.13>

Making the transformation FF = PAP*, we see that the joint density of (A, P,S;) is
written by

FAps,(A, P, 83) = const.f,(P)h(A)|S,|1+727~0/2|@| /2 (PAP' + ©71)8,)

where f,(P) = J(P'dP — dP) and h(A) is a function of A (see Srivastava and Khatri
(1979, p.31-32)). Hence the conditional expectation of S, given (A, P) is written by

(PAP'+ ©7")'/?E[S,|A, PY(PAP' + ©7')'/?

_ [ 8a|S,|mArer U 2g(tr S,)dS, (3.14)
= f |S2|(n1+n2—p—1)/29(tr S2)d52 . .

From the same arguments as in the proof of Proposition 3.1, we see that the r.h.s. of (3.14)
is equal to

-1
I, {pAp(n1+n2)(g)} )
so that

E[S:]A,P] = (PAP'+07) {pAyminy(9)}

1

z (PAPt+Ip)_1{PAp(nl+m)(g)}_ : (3.15)

The difference of the risk functions of X (%) and X ([®]TR) is written as

Rl(wa /Z\I(EP, g)) - Rl(w7 El([W]TRag))
= E[tr(PW(A)P' — P[W(A)"FP")S, A7 — log [@(A){[@(A)]"F}] (3.16)
— EAF [tr (®(A) — [@(A)]"F)P'E[S,|A, PIPA; — log [#(A){[®(4)""} 7|}

From (3.15) and the fact that W(A) > [@(A)]TE, it follows that the r.h.s. in (3.16) is
greater than or equal to

E [tr{@(A) — [@(A)]""}(n1 + n2)(A + I)7" = log [@(A){[@(A)]F} ]

20



N (e reE——Es

i=1 ny+ n A+ 1
A+ 1
I (A) > 3.17
(54> 2L ) (317
ny + no ny + no A+ 1
= F { i i 1}[ zA >
S [ s S 1 (wi > 29)
> 0,
which proves Theorem 3.1. oo

Since §, = SY/2851/25,8;281/% — §Y*PAP'SL?, the unbiased estimator 5. (g)
given by (3.6) can be expressed in the same manner as (3.10) by

—~UB —
21 (g) = ZI(WUBuQ)’

where
PUB = diag (n7'A1,...,nTtA,).
The truncation rule (3.11) produces the estimator

=M (g) = TR, g), (3.18)

M oA +1 Ap A
[@YB)TE = diag (mln{ s } y- -, 0N {—p, p—+1—~}> .
ny’ ni+ no ny np+ ne

From Theorem 3.1, we get

where

~REML
Corollary 3.1. The estimator X, (g) dominates the unbiased estimator XY5(g)

relative to the Stein loss (3.4).

~REML
The estimator X} (g) is known to be the restricted (or residual) maximum likelihood

(REML) estimator of 3y under the constraint 3; < 3.

: ) . ~REML ,
It is interesting to note that the REML estimator X', (g) can also be derived as

an empirical Bayes rule. Let n = X35! and £ = 21/22;125/2. Suppose that 1 has
non-informative prior distribution |n|~ ”+1)/2d1/( ) for some measure v(-) and that § is
unknown. The joint density of (5,.S;,.55) has the form

const || 4P N2 5, (o VIR a0zl (i (€25,6Y% + Sa) )

so that the posterior density given S; and S, and the marginal density of §; and S, are
given by

(posterior) o< |n|("1+"2_p_1)/2g (tr (51/25151/2 + Sz) 17) ,
(marginal) oc [€|"/?|€1/28,€1% + S| (mHm)2| 5, |(mmpm 2|, (nampm /2,
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From (3.15), we thus get the Bayes estimator of X; under the Stein loss (3.4)

—~B _
3\ (&9) = €V(El|Sy,S) e
= (1 +n2)” 6“”2(6”25161/2+52)§-1/2A;
= (n1+n2) 7 (S1+€728,67) A7

Since € is unknown, £ needs to be estimated from the marginal density. Putting 8 =
5_1/25 g, ¢~ 1/25_1/2 the maximum likelihood estimator of 3 can be derived by max-

imising |B|2/*|I + B|~ (r1-+m2)/2 subject to the order restriction g < S7128,87? since
& > I. The resulting MLE of 3 is

3 1
8 = Qdiag (mm{n2 /\} i=1,. )Qf
ny
where Q is an orthogonal p x p matrix such that
Q'S7*8,871°Q = diag (\71,..., 1Y)

. -~ . . =B . .. .
Putting 3 or £ into the Bayes Estimator X', (€, g), we obtain the empirical Bayes estimator

M
ny + ng ny A

1 i
= Siﬂleag [mln{n1 (nl/\_i_—t:);‘—}] Q51/2A*

5P &9 = 1 HLe) {diag [min{"i lHJrI} Q'si2A;

where diag [¢;]; = diag (ay,...,a,). Here note that orthogonal matrices P and @Q satisfy

52—1/25 5—1/2 _ (S~1/251/2)(s-1/2 1/2)t PAP
{ 5—1/2525—1/2 (51—1/251/2)(51—1/2 1/2) QA'Q'.
Then we have that

52-1/251/2 _ PAI/ZQt or S;”ZP _ S}MQA'I/Q.

~B ~ )
Hence X', (&, g) is rewritten as

(¢ A
2119(57 g) = 5;/2Pd1ag [mm{/\ +1 }]APtS;MA;,

ny ny + Ny

which is identical to the REML estimator /Z\?EML(g). Hence the REML estimator can be

interpreted as the empirical Bayes rule.

3.3 An Extension of Stein’s Dominance Results

In estimation of a covariance matrix of a multivariate normal distribution, James and
Stein (1961) established a surprising decision-theoretical result that the unbiased estimator
ny'S, is not admissible nor minimax. Let GF be the triangular group consisting of lower
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triangular matrices with positive diagonal elements. Let T'; be a matrix in G5 with T, T =
S,. Then their minimax estimator dominating n7'S; is written in our setup as

3/%(g) = T\D,, T' A, (3.19)

where A7 is given by (3.5) and D, is the diagonal matrix given by D,, = diag (dy, ..., d,)
for

d;i=k'=(m +p+1-20)"", i=1,...,p (3.20)
This dominance result is verified to remain true in the ECD model.

" . 75 . , , <UB
Proposition 3.2. The estimator X| (g) dominates the unbiased estimator X, (g)

relative to the Stein loss (3.4) and the risk function of /Z'\IJS(g) is given by

—~JS
Ri(w, %) (9)) = E [~ log|D.| —log|S1 43| (3.21)

Proof. After making the transformations, we can set X, = ¥; = I, and write the
~JS
risk function of 3, (g) as

R 3@ = B[L(Z 05

= B[t D,TiT\A} —log|D,| —log|S:14;| —p|.  (3.22)
Note that Y-0_, Y0 t2 = Y0, Y_s % for Ty = (t;;). Let v; = ¥ t%. Then the same
arguments as used in the proof of Proposition 3.1 can show that
E[T\T)]
p
= 20//T§T1t?11_1 °t 't;;_p|52‘(n2_p—l)/2g (Zzt?] +t1’ Sg) dT1d52 (323)
i=1j5=1
[ di IT?_, 05278, | (2= D/2g (SF_ v, + tr S,) Tl;dv;dS
— S+ [ diag (v1, ..., vp)I_ v S| 9 (=1 v £ 11 52) l;dv;dS,

Y

[ S Moy f/z 1|8, |(remp-1)/2g (3’:1 v; + tr 52) ;dv;dS;
for k; defined by (3.20). It can be also shown that forz =1,...,p,

[-[o 11 k /2—1|S2|(n2—p—1)/2g (22]?:1 v; + tr 52) de’l)deg

5=1Y;

S ST w27 8,02 (T2 v; + tr §,) Tdv;dSy

= (ny +p+ 1= 20) {p(n1 +12) Apny ) (9) }
= k(A" (3.24)

-1

Combining (3.22), (3.23) and (3.24) gives the risk function (3.21). Comparing the risk
functions (3.7) and (3.21), we can get Proposition 3.2 by noting the inequality that
P log(ny +p+1— 2i) < plogn,, which can be easily checked. oo
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. SYS . .
It is known that the estimator | (g) has a drawback that it depends on the coordinate
system. Thus it will be desirable to construct orthogonally invariant estimators improving

~JS ) . . .
upon X (g). Stein (1977) and Dey and Srinivasan (1985) obtained an orthogonally in-
variant and improved estimator in a multivariate normal distribution. Their estimator is
written in our situation as

3 (g) = 5,(P5,g) = SV PUS(A)P'SY A7 (3.25)

where

T3 (A) = diag (di )y, - -, dp)y)-

On the other hand, Stein (1956), Eaton (1970) and Takemura (1984) gave an orthogonally
invariant and improved estimator, which is written in our problem as

(g = 1’2{/0( ruvpb, Urrfdr} sy Az, (3.26)

where O(p) is the group of px p orthogonal matrices and U p € GF with UI‘UF rrr
for F' = 5_1/25 5_1/2 = PAP'. Takemura (1984) provided another expression of the form

=1 (g) = SY*PWT(A)PSL A (3.27)
where

wT(A) = diag (¥7(A),...,¥7(A),
(WT(A),. . ¥ (A = diag (Arve. o, A) WAy, .. ),

for p x p doubly stochastic matrix W (A). In fact this dominance result still holds in the
ECD model.

Proposition 3.3. The estimator /Z\‘fs(g) is further dominated by f’f(g) and Ef(g),
which has the risk functions given by

=S

Ri(w,X,(g9)) = E 22 - /\j Ai —log | D,,| — log |S, A (3.28)
1>7
T
Ri(w,¥,(9)) = E |- Zlog (Z wl-j(A)d]-) — log |51 A} (3.29)
L =1 j=1

where W (A) = (w;;(A)).

Proof. We first treat estimators of the general form X,(®, g) = S$/2¢(F)S;/2A; for
p X p positive definite matrix @(F). Let X; = I and X3 = A™" without loss of generality.
The risk function of Z‘I(@,g) is expressed as

Ry(w, (@, 9))
= E [tr (F)E[S,|F]A; - log |&(F)| — log |S;A;| - p| (3.30)
= E|tr®(F)(F + A)™'(n1 + ny) — log |®(F)| - log|S2 A} | — p|,
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where the second equality follows from (3.15). From (3.13), it is seen that F' has a multi-
variate F-distribution with the density

(const.)|F|(m=P=D/2[|F 4 A|(mtn2)/2 (3.31)

which does not depend on ¢. For evaluating the term E[tr @(F)(F + A)™'], we employ
the F-identity of Muirhead and Verathaworn(1985):

E[tr(F+A)7'V] = (0 +n2) ' E 260 (DV) 4 (m —p— Dir (FT'V)],  (3.32)

where V' = (v;;(F")) is a p X p matrix and D = (d;;) is a p x p matrix of partial derivative
operators with d;; = 27(1 + §;;)0/0fi; for F = (fi;) and the Kronecker delta d;;.

When we consider the special form @(F) = PW(A)P" for W(A) = diag (¥1(A),...,¥,(A)),
it follows from Stein(1975) and Bilodeau and Srivastava(1992) that

D (P@(A)P') = PPV (A)P, (3.33)
in which

v(A) = diag (W1(A),...,9(4)),

(1) 1 & il(A) —9i(A) | Ovi(4)

Hence from (3.32) and (3.33), we get that

EhuF+¢n*Pw%)P1my+m)

—d;A; P
= E2§j A_A Lt (m—pt1)3 di
L 1>7 =1
d 14
= E 22 )\¢+Z(n1+p+l—2i)di
L ‘l>j J =1
= E 22/\_/\/\—{-}3} (3.34)
L >3 J

where the second equality can be verified by the equations

dhi—d),  di—d,
_ c+d
Ay &—MA+J

and Y ;5;d; = Z’ 1 = Y v di = Yi_i(p — j)d;. Combining (3.30) and
(3.34) gives the I‘lSk functlon (3 28), which can be easily checked to be smaller than the

risk of /S\fs(g) given by (3.21), and the first part of Proposition 3.3 is proved.

—~JS
For the second part, we first verify that the risk of X, (g) is equal to that of the
estimator

¥ (g) = S¥*UD,U'sY* 4, (3.35)
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where U € G% with UU* = F. In fact, from (3.30), the risk of ElJS(g) is written by
—=JS
Ri(w, %) (9) = E4 [tr DuU'(F + A)™'U (ny + ny) — log | Dyn| — log |S143] - p] .
From Lemma 2 of Bilodeau and Srivastava (1992), we observe that

Ep[r D, UYF + A)7'U| = Ep[teD,U'(F+1)7'U]
= p(ni +n2)7", (3.36)

which implies that R;(w, /Z\]'fs(g)) = Ri(w, Efs(g)) Hence from the convexity of the loss

—

(3.4), it follows that /Z\'T(g) dominates X¥'| (g). This dominance result is also verified by
using the risk expression (3.29), which is derived as follows: From (3.36), we observe that

E [tr z;lif(g)] = ELu [tr(F +A)! j( )FUpoUtFFtdF] (n1 + na)
O(p

- /0( Ea [t (F + A" 'UD,.U"] dI (ny + o)
p
= p,

where A* = I AT'. From this equation, we get the risk expression (3.29). Since W (A)
is doubly stochastic, the concavity of log(-) implies that

j=11i=1

P p P P
— 2 _log (sz‘j(/l)dj) < =20 wii(A)logd;
=1 =1
= _longmla

o~ =JS
proving that X, (g) dominates X', (g). Therefore the proof of Proposition 3.3 is complete.
0o

Takemura (1984) gave exact expressions for 7 (A) for p = 2 and 3. However, the
explicit calculation of W (A) for p > 3 remains an intractable problem. Perron (1992) gave
an approximation to W (A), say W(A), with a doubly stochastic property, and showed the
minimaxity of the approximated estimator in the normal distribution. In the multivariate
F-distribution, a similar dominance result was obtained by Bilodeau and Srivastava (1992),
where the matrix W(A) is given componentwise by

_ tI‘j_l(A,') tI'j(A,')

By (A) = - :
D= T T )
for
1 ‘ if 7=0,
tl’j(A) = Z1gi1<~-<i,§p Hi:l Aip ifg=1,...,p,
0 otherwise,
and

Ai = dlag (/\1, N ,/\,’_1,0, Ai+1,' .o 7/\17)'
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=JS
The same arguments as in Bilodeau and Srivastava (1992) demonstrates that X, (g) is

improved on by
T\ (9) = Si*PUT(A)P'S;/ 1,

where
WP(A) = diag (v](A),.... 00 (A)),
(WF(A),..,E(A)) = diag (i, AW (A)(dy, .., dy).

~5
Now, applying the truncation rule (3.11) to the estimator X', (g) yields the estimator

5 (g) = By (W5)TR, g), (3.37)

where

(T35 (A)]TR = diag (min{dlx\1, A+ 1 },...,min {dpxp, Ay 11 })

ny + no ny + ng

Similarly we obtain the truncated estimators %,([®7]7%, ¢) and X;([®"]"R,g). From
Theorem 2.1 , we can get

Corollary 3.2. The estimators /Z\fTR(g), T U[PTITR, g) and Z1([®7)TR, g) dominate
Z’f(g), /Z\'?(g)and /Z\f(g), respectively, relative to the Stein loss (3.4).

<STR
We conclude this subsection with demonstrating further improvement on X, (g).

When we consider estimators of the general form
(@) = S)PPU(A)P'SY? AL, W(A) = diag (¥i(A), ..., ¢,(A)),
it is quite natural to satisfy the condition

P1(A) > a(A) > ... > ¢, (A) for any A,

—~STR
which is called order-preserving in Sheena and Takemura (1992). The estimator X,  do
not satisfy the order-preserving condition.

We here demonstrate that non-order-preserving estimators can be improved upon by
the order-preserving estimators. Let X;(¥,g) be a non-order-preserving estimator. Let

¥2(A) be the i-th largest element in (¢1(A),...,%,(A)), so that ¢0(A) > ... > ¥2(A).
Note that (¥,...,%7) majorizes (¢1,...,%,), that is,

J J P P
Sy >3 ¢ for 1<j<p-1 and ST? =" (3.38)
=1 =1 =1

=1

Let 32,(W°, g) = Sy/* PWO(A)P'S,/* A% for W°(A) = diag (v (A), ..., ¥0(A)). Then we
get
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Proposition 3.4. If P, [¥(A) # lI/O(A/Z] > 0 for some w € {2, then X,(¥,gq) is
dominated by the order-preserving estimator X1(W°, g) relative to the Stein loss (3.4).

Proof. From (3.30), the risk difference can be written as

Rl(wv ;\":1(1/0,9)) - RI(W,/Z\I(!I',Q))
= (n1 +ng) Etr (#°(A) — ¥(A)) B
= (n1+n)EA [Z(MQ(A) - d)i(A))E[BiiM]] ; (3.39)

=1

where B = A + P'@~'P, B" denotes the (i,4)-diagonal element of B™' and E[‘A] is
a conditional expectation with respect to P given A. Following Sheena and Takemura
(1992), we use the Abel’s identity to get the equation

P

S (Y — i) E[B”

=1

Al

(9 — 1) (E[B"|A] - E[B*|A])

+(? + 4 — 91 — ) (E[B*|A] — E[B®|A])
FO7 4y =t = = ) (E[BPT7HA] - E[BP|4A)).

From Lemma 1 of Srivastava and Kubokawa(1999), we have the inequality
E[B"|A] < E[B”|4]

for ¢ < j. This implies that the r.h.s. of (3.39) is negative, and Proposition 3.4 is proved.
oo

—~STR
Applying Proposition 3.4 to &, (g), we obtain the following order-preserving estima-
tor improving on it, given by

27" g) = SY*PIRSTP PSY A,

where [[@®)TR]0 = diag (T8O, ... ¢STRO) and TR is the i-th largest in the diagonal
elements min{d;\;, (n1 + n2)"'(N; + D)}, i =1,...,p.

3.4 Robustness of the dominance results

We discuss here the robustness of the dominance results given in Subsections 3.2 and 3.3.
The results of Theorem 3.1 and Corollaries 3.1 and 3.2 employ the truncation rule (3.11), so
that the same arguments as in Subsection 2.3 can be applied to establish their robustness
within the classes Cy and C) given by (2.24) and (2.25), where N in (2.24) is replaced with
pkr.

The other type of the improvements includes Propositions 3.2, 3.3 and 3.4, which do

not use the truncation rule. Since A; = 1 in the multivariate normal distribution, we

denote the estimators S'IIJB (9), /Z\fs(g), /Z’\f(g) and Ef(g) with A7 =1 by /Z\'IIJB, /2\175’ Ef
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and /)j'f, respectively. From Propositions 3.1, 3.2 and 3.3, their risk functions in the ECD
model are provided by

—~UB
Ri(w.Z ) = E[p{(A)™ =1} +plogn; —log|Sy]|,
—~JS r N
Ri(w, X)) = E[p{(A)™ =1} —log |Dy| —log|Sul],
N 2 di—d;
Ri(w,X) = E P{(Ag) -1}+A;gr/\j)\i_logll)ml_loglsll )

Ry(w,X") = E p{<A;>-1—1}—§1og (iw,-,-(mj)—logisn

These expressions imply that the ordering in domination of the estimators is preserved in
the ECD model, that is, the robust improvements hold for every f(-). This is related to
the results of Kubokawa and Srivastava (1999) who established the robustness through the
extended Stein-Haff identity. Instead of the extended Stein-Haff identity, we utilized the
multivariate F-identity in Proposition 3.3 since the two statistics §; and S, are available.
Also it is seen that the improvement by the order-preserving rule is robust since Proposition
3.4 was shown based on the multivariate F-distribution.

3.5 Estimation of the ‘Between’ Multivariate Component of Variance

We here address the problem of estimating ¥y = X' + X4 and the ‘between’ component
X’ 4 based on the canonical form (3.3) of the ECD model along the same line as in Subsection
2.2.

For the estimation of X5, similar results as in the previous subsections can be derived
by exchanging the indices 1 and 2. Let 51/2 be a symmetric matrix such that S; =
(.S'i/z)2 and let @ be an orthogonal p x p matrix such that Qt5f1/25251_1/2Q = A"l =
diag (AT',..., A1), where A7t < ... < A1 The diagonal matrix A is also defined in
Subsection 3.2 as PtSZ_I/leS;l/?P = A, so that we note that the following relation
holds:

SiPp = S12QA-1/2, (3.40)
D(A) = diag (¢1(A),...,¢,(A)) and consider estimators of the form
Zy®,9) = S1°Q(4)Q'S* 43, (3.41)

which is, from (3.40), represented as

—~

TP, 9) = SyPPAV S(A) AV PSS A (3.42)

When estimator %, of X is evaluated in terms of the risk Ry (w, /2\'2) = E[L(/ZJ\Q, 35))
for the function L(:,-) given by (3.4), we can suppose that Xy = I and 3| = e =
diag (67", ...,0; ) for 071 < 1,...,6," < 1. Therefore we can apply the results directly to

get the improvements on /Z\Q(Q, g). The corresponding truncation rule is described as

{B(A)TF = diag (¢]7(A),...,407(4)), (3.43)
STR(A) = max{¢,-(/1),i":+—+7;}, i=1,....p
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which yields the corresponding truncated estimator
2,({8}™,9) = 817 Qdiag (¢]"(4),...,4;7(4)) Q'S 4;, (3.44)
Similar to Theorem 2.1, we can verify that X,({®}7%, ¢) dominates X,(®,g) in terms of

the risk Ry(w; /}__72)

Using this truncation rule, we can get several truncated estimators being better than
unbiased or Stein type improved estimators. For instance, applying the truncation rule
{®}TE to the unbiased estimator

—~UB

3, (9) =n;'S, = 57°QeVPQ's A

for #YF = diag ((n2A1)™', ..., (n2),)7}), we obtain the REML estimator

SEEME () = B,({8VEYIR, g), (3.45)

~UB
improving upon ¥, (g), where

AT+ AN AT+
{®YBYTR = diag (max{)‘—l— i}..‘.,max{L Q})

b 7
ng np+ng ng Ny + No

Also the Stein type improved estimator corresponded to (3.25) for X5 is given by

=S o~
3, (9) = T5(8°,9) = S1°Q2°(4)Q'S1 " 4;,

where
S(A) = ding (&2 &
¢ (A)_dla’g (Ali“’)Ap)’

for ¢; = (ny + p+ 1 —2i)~'. It should be noted that the order of e;,...,¢, in !PS(A) is
reversed to the case of ¥¥(A) in (3.25) because N> > Ar!'. Applying the truncation

rule yields
=~STR —
22 (g) = 22({¢S}TRag)a (346)

improving on X, (g), where

Art AT+
{@%(A)}TE = diag (max{fﬂ 1 +1}....,rnax{2 p t })

’ )
/\1 n1+n2 Ap TL1+TL2

We next consider the problem of estimating X4 through simultaneous estimation of
(X, X 4) simultaneously relative to the loss

Ls(/S\la /EA; Y, ¥4 = n1L(/2\1, )+ n2L(/21 + TZA; i+ rXy) (3.47)

for L(-,-) given by (3.4). When ¥, and ¥; = X +rX, are estimated by ¥, and 22,
it is quite natural to take the form ¥4 = r~!(X, — X)) as an estimator of X4. As

30



long as such types of estimators are treated, the risk function of (/Z\l, /Z\'A) relative to the

Kullback-Leibler loss (3.47) is written as
Rs(w; /2\1, SA) = Ew [Ls(/z\lv EA; 217 SA)]
= niRi(w; /2\'1) + no R (w; /2\'2)7
where w = (¥, ¥, +r¥,) € 2 and

—~

Ri(w;3)) = BE,[tr T3] —log |2, 27| - p]
Rg(w;/Z\’Q) = E, [tr /2\’222_1 — log |/2\222_1| — p} .

Hence we can obtain improved estimators of {3}, 3 4) by combining dominance results in
estimation of 3, and X 4.

Combining X1 ([W]TR, g) given by (3.12) and 3,({®}7R, g) given by (3.44), and noting
the expression (3.42), we get the estimator of X4 of the form

T @) g) = o (B g) — Bh((8)7, )
— r—IS;/ZP {A1/2{¢(A)}TRA1/2 _ [!I/(A)]TR} P’S;/zA;,

where
A1/2{¢(A)}TRA1/2 _ [W(A)]TR
Ai+1 ) A+l
= diag [max{@(A))\i, i }—mln{gbi(A), s }] . (3.48)
n, + no ny+ng )|,
In the case of combining the REML estimators /Z\'fEML and /Z\SEML, the i-th diagonal

element in (3.48) is

1 AN+l A A+ 1 A
max { —, — min§ —, =max{ —— —, 0,
Ny N1+ N ny Nyt Ny ny  my

which gives the estimator

—~REML 1, ~REML —~REML
Xy (g = rHYE,T (-2 (9)

| ¥
= r_15§/2Pdiag [max {— — ——,OH .PtS;/QA;,

no ny

which is n.n.d. This REML estimator of X4 is similar to the one proposed by Amemiya
~REML, . -~REML —~UB, . ~UB
(1985). We thus get n.n.d. estimators (X, (9), ¥,  (g))improvingon (¥, (¢),X, (9))

relative to the loss (3.47).

—~STR ~STR
In the case of combining Stein type improved estimators X, (g) and X, (g), the
i-th diagonal element in (3.48) is

Ai+1 . Ai+1
max - €p—i+1, ——— ( — N didi, ——
ny + nNo ny + Ny
1 A 0
= m —
Ve —(p+1-2) mitp+rl—2i |’
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which gives the estimator

—~STR _ —~STR -~STR

=0 = (B0 - 2 )
= r18Y2Pdiag |max L - As o\ ptsi?ax
B ? & ng—(p+1-2i) ni+p+1-2" ||, 2 e

X =STR STR . :
which is also n.n.d. In the sequel we get n.n.d. estimators (¥, (g),%, (g)) improving

on (Els(g), /Ei(g)) in terms of the risk R,(w; 31, % 4) where Ej(g) = r”l(/Z\'f(g)—/Z\'f(g)).
Comparing two n.n.d. estimators EI:EML(g) and X57%(g), we can note that for i > (<

)p+1)/2,
1 Ai 1A

N - > (< )
ng—(p+1—-2) ni+p+1-—21 ne N
which implies that

1 A;
~ = T >
ng—(p+1-2i) ni+p+1-—21

) 31

O] > (<)P

1\ ]
— —=>0].

Hence we cannot compare them in the sense of maximizing the probability that they are
positive-definite.

For the robustness of the improvements, we can get similar conclusions by combining
Subsections 2.3 and 3.4. In particular, we recall that A7 = 1 for every f(-) in Co, and see
that the dominance results given in this subsection are robust in Cj.
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