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Abstract

In Takemura and Kuriki (1999b) we have established that the tube formula and
the Euler characteristic method give identical and valid asymptotic expansion of tail
probability of the maximum of Gaussian random field when the random field has finite
Karhunen-Loéve expansion and the index set has positive critical radius. The purpose
of this paper is to show that the positiveness of the critical radius is an essential
condition. Namely, we prove that if the critical radius is zero, only the main term
is valid and other higher order terms are generally not valid in the formal asymptotic
expansion based on the tube formula or the Euler characteristic method. Our examples
show that index sets with zero critical radius are commonly used in statistics.

1 Introduction

Let M be a closed subset of the unit sphere S*~! in R™. We consider upper tail probability
of the maximum of a random field Z(u), u = (uy,...,u,) € M, defined by

Z(u)y=u'z = iu;zi, (1)

where z = (zy,...,2,)" is distributed according to n-dimensional standard multivariate
normal distribution N,(0,1,). This is the canonical form of Gaussian random field with
finite Karhunen-Loéve expansion and constant variance. Let y = (y1,...,¥n)" = 2/||2|| be
distributed according to the uniform distribution Unif(S™~!) on the unit sphere S*~'. We
also study upper tail probability of the maximum of

Y(u) = u'y. (2)

In Takemura and Kuriki (1999b) we considered index set M which is locally approximated
by convex cone. In this case M has positive critical radius and the tube method by

Sun (1993) and the Euler characteristic method by Adler (1981) and Worsley (1995a,b)

lead to identical valid asymptotic expansion of the upper tail probabilities. In a different



setting, Adler (1998) showed that the Euler characteristic method for isotropic Gaussian ran-
dom fields on piecewise smooth domain gives valid asymptotic expansion using the results
by Piterbarg (1996).

These results might give an impression that the formal asymptotic expansion based on
the Euler characteristic method or the tube formula is valid for practically all regular cases.
However this is not the case if the critical radius of M is zero. The main purpose of this
paper is to show that if the critical radius of M is zero, the asymptotic expansion based
on the tube formula or the Euler characteristic method is generally incorrect except for the
main term of the expansion. We also give some examples to demonstrate that index sets
with zero critical radius are commonly used in statistics.

One advantage of the Euler characteristic method over the tube formula is that it can be
applied to non-Gaussian fields, whereas the tube formula is essentially restricted to Gaussian
fields. See, e.g., Worsley (1994), Cao and Worsley (1998,99) for application of the Euler
characteristic method to various non-Gaussian fields. However the validity of the Euler
characteristic method for non-Gaussian fields has not been established in general. Indeed
our example in Section 3.2 suggests that the validity of the Euler characteristic method for
non-Gaussian fields is hard to prove in general. In Section 3.2 we first apply the tube formula
to a Gaussian field whose index set has zero critical radius. However this Gaussian field can
be transformed to equivalent x? field with very regular index set and we apply the Euler
characteristic method to the resulting x? field. It will be shown that the Euler characteristic
method for this x? field leads to an invalid asymptotic expansion, which is identical to the
asymptotic expansion obtained by the formal tube formula for the original Gaussian field.

The organization of this paper is as follows. In Section 2, after preliminary discussion
on the properties of index sets with zero critical radius, we give some theoretical results on
asymptotic expansion based on the formal tube formula. In Section 3 we study some relevant
examples in detail. Some proofs and mathematical details are given in Appendix.

2 General results

In this section we first define a class of index sets M for which the tube formula can be
defined. Then in Section 2.2 the difference between the formal tube formula and the exact
tube formula for these index sets is clarified. Invalidity of asymptotic expansion based on
the formal tube formula or the formal Euler characteristic methods is stated in Section 2.3.

2.1 A class of sets to be considered

We consider a class of index sets M with the following property. At each point z € M,
M can be locally approximated by a cone but the cone is not necessarily convex. We call
M with this property locally conic. This class contains boundary of a polyhedron and the
union of submanifolds of S™~! which intersect themselves on S™!. More complicated but
statistically natural example is treated in Section 3.2. Unfortunately the class of locally
conic sets can not be defined by standard terminology of manifolds because we allow self-
intersection of the index set. Precise definitions of this class and other notions of this
subsection are given in Appendix A.

The approximating cone of M at z € M is called support cone of M at x and is denoted
by S.(M). Let C(S.(M)) denote the convex hull of S;(M). The dual cone of C(S.(M))



in R* is called normal cone of M at z and is denoted by N.(M). As we shall show, the
critical radius of M is zero if S,(M) is non-convex at some x € M because of the singularity
of projection onto M around z.

We discuss several simple examples to illustrate the above notions. Note that in our
definition in Appendix A the support cone S,(M) and the normal cone N, (M) are defined
with their vertices located at the origin.

Example 2.1 On the sphere S* C R® consider the union of two great circles:
M = {(zy,z9,23) € 5% | 3 = 0} U {(2},29,23) € S* | 23 = 0}.

Except for two points (£1,0,0) M s a regular one-dimensional manifold. However at these
two points M can not be considered as a manifold in standard terminology because of the
self-intersection. At z = (£1,0,0), S,(M) = {(0,22,0) | z2 € R} U {(0,0,2z3) | 3 € R},
C(Sz(M)) = {(0,zq,23) | (z2,23) € R*} and N (M) = span{z}.

Example 2.2 On S? consider
M = {(z1,23,23) € S* | zy25 > 0}

whose boundary is M of Ezample 2.1. At x = (z1,2y,73) with zoz3 > 0, S, (M) =
C(S,(M)) is the tangent plane T,(S?) of S? at z and N, (M) = span{z}. At z = (z1,1,,0)
with |z1] < 1 and 2 > 0, S, (M) = C(S(M)) = To(S*) 0 {(y1,¥2,y3) | y3 = 0} and
N.(M) = span{z} & {(0,0,y3) | y3 < 0}, where “@” is the orthogonal direct sum. At
r = (il,0,0), SI(M) = {(0,1'2,373) I T3 > 0} C(S (M)) = {(0 1'2,5133) I ($2,$3) € R2},
and N (M) = span{z}.

Example 2.3 Again on S? let M be the union of two half circles M = {(z,z,,0) € 5? |
g > 0} U {(2,0,23) € S* | z3 > 0}. At ¢ = (£1,0,0), S,(M ) {(0, xg, ) | zo >
0} U{(0,0.25) | 25 > 0}, C(S.(M)) = {(O,an25) | 22 2 0, a5 > 0} and Na(M) —
{(0,z2,23) | 72 <0, 23 <0} G span{z}.

In the above three examples the points z = (%1, 0,0) exhibit certain singularity. However
from the viewpoint of spherical tube around M in S?, ¢ = (£1,0,0) in Example 2.3
contribute to the volume of the tube just as other points in the sense that the points in the
direction of N (M) from z are projected to = when projected onto M. On the other hand
in Examples 2.1 and 2.2, = (£1,0,0) do not contribute to the volume of the spherical tube
around M , because no point (other than z itself) is projected to @ when projected onto M.
In general consider a spherical tube around M in S™~'. z € M does not contribute to the
volume of the tube around M if the dimension of N,(M) and the dimension of M around z
do not add up to n. From this consideration we call € M proper d-dimensional boundary
point of M if S.(M) contains a linear subspace L of dimension d = n — dim N(M). We
define the dimension of M by the maximum value of d such that there exists a proper d-
dimensional boundary point of M. Note that we use the term “boundary” even if z belongs
to the relative interior of M.

Let OMy, d = 0,...,m = dim M, denote the set of proper d-dimensional boundary
points of M. We now make the following assumption on locally conic M.



Assumption 2.1 Ford =0,...,m, OMy is a relatively open d-dimensional C?-submanifold
of R*. Let I(M) denote the set of improper boundary points of M. The Lebesgue measure
of UuermyNu(M) is zero.

Here we are assuming that dM, is an open manifold embedded in R*. We call M satisfying
this assumption “set with piecewise smooth proper boundary”. In summary, we assume that
the index set M C S™ ! is locally conic closed set with piecewise smooth proper boundary.
We now consider spherical projection onto M. For z,y € S™! let
dist(z,y) = arccos(z'y) € [0, 7]
be the geodesic distance and define

dist(z, M) = dist(z, zpr) = min dist(z,y),
yeM

where z,; is the spherical projection of z onto M. Although z;s may not be unique,
dist(z, M) is uniquely determined because M is closed. We are interested in the geometry
of the set of points with unique projection onto M:

R(M) = {z | zm is unique}. (3)
Let
KM)=)eM

denote the smallest cone containing M and for u € M and v € N,(K(M)) N S™! let
l={ucosf+vsinh |0< 0 <7}

denote the half circle starting from u € M in the direction of v. In Appendix B it is shown
that [ is divided into two segments. The points on the first segment have u as the unique
projection and the points on the other interval do not. More precisely define

O(u,v) =sup{0 < 0 <7 |ucosf + vsinf € R(M), (ucosd + vsinb)y = u},

then v is not a unique projection of u cos§ + vsin 8 if and only if 6 > 6(u,v). Now we have
the following basic proposition concerning R(M) of (3).

Proposition 2.1 For 0 <6 < 7 let

{ucost+wvsint |0 <t <8}, if 6>0,

{u}, if 9=0,

denote the segment of great circle joining u and ucosf + vsinf, which includes u and
excludes wcos® + vsin . For a locally conic closed set M

R(M)=UJ U [, u cos B(u, v) + vsin O(u, v)). (4)
ueM veNu(K(M)),||v|l=1

[u,ucosf + vsinf) = {

From this basic proposition we can prove the following property of R(M).

Proposition 2.2 For locally conic closed M C S™ ' with piecewise smooth proper boundary,
almost all z € S™' have unique projection onto M, i.e., the complement of R(M) has zero
spherical volume.

Proofs of Propositions 2.1 and 2.2 are given in Appendix B.
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2.2 Exact tube formula and formal tube formula

The open spherical tube of radius # around a closed set M C S™! is defined by
My = {z | dist(z, M) < 6}.

Classifying the points of tube by the projection onto M and the direction of the projection,
M, can be written as

My = | U [u,ucos  + vsinf).

uEM vENL(M),||v]|=1

Note that here the cross section

Cu(8) = U [u, ucos @ + vsin )
vENU(K(M))[[v]|=1

may overlap for different u’s. If we only count points with unique projection onto M we
obtain
My= | U [u,ucos @' +vsind') C M,
uEM veENL(K(M)),||v||=1

where ¢ = min(6, 6(u,v)). Note that by Proposition 2.2 M, — My is a null set.

Writing the tube M, as above we see that R(M) of (4) is a generalization of of tube,
where the radius of the depends on v € M and on v € N, (K (M)). Define

O(u) =

O(u,v).

inf
vENL (K (M)),[lef|=1
The critical radius (or angle) of M C R™ is
0 = inf{f(u) | u € UIZ2OM,}.

In this definition we omit the interior OM,,_; of M C S®~! when M contains non-empty
interior in S™~!. In the case of positive critical radius # > 0, the constant radius tube
Uuenr Cu(#) was essential for obtaining asymptotic expansion of tail probability of maximum
of Z(u) of (1) and Y (u) of (2).

As mentioned already, we have the following simple lemma concerning the critical radius

6 of M.

Lemma 2.1 The critical radius of M is zero if for some z € M the support cone S,(M)
18 not convex.

Proof is given in Appendix B.

Now we study the volume of the tube My, when M is a locally conic closed set with
piecewise smooth proper boundary. From Lemma 2.2 of Takemura and Kuriki (1999b) the
volume element dy of S~ ! at y = zcosf +vsinf, z € IM,, v € N (K(M)), is written as

dy = det(I;cos 0 + H(z,v)sin 8)sin® "% 0d6 dz dv.



Note that for § < 8(z,v) the matrix (I;cosf + H(z,v)sin@) is positive definite. Therefore
by the standard derivation of the tube formula, the spherical volume of the tube Mj is
written as

V(M)
min(6,6(z,v)) . . 4o
= d:v/ v/ drdet(ljcos T + H(z,v)sinT)sin" " “" %7
M—1(M)  JveN,(K(M))nsn 0
min(8,6(z,v})
= Z/ d:z:/ dv Z tr; H / cos? ™ rsin" "2 rdr,
oMy JveN (K (M))nsn—1 0

where tr;H denotes the j-th elementary symmetric function of the characteristic roots of

H . Using the fact that for 0 < 8 < 7/2

6 a : QG-HH-? D
A COS Tslnb TdT = mBl(a_*_l) (b—l-l)(COS 0)

where By, denotes the upper probability function of beta distribution with parameter (k,[)

and
27Tc/2

['(c/2)

is the volume of S°~!, we have established the following theorem.

Qc = V(SC_I) =

Theorem 2.1 For locally conic closed set M C S™ 1 with piecewise smooth proper boundary
the spherical volume of the tube My, 6 < /2, is given by

V (My) :QZ/

dz / dv
aMy VENL(K(M))nSn—1

4 tr; H(z,v)

j=0 Qd—J’+IQn—d+J'—1

B%(d—j+l),%(n-—d+]’—l)(COS2 min(9, 6(z,v))). (5)

Theorem 2.1 can be generalized to the case min(#,8(x,v)) > /2 as in Proposition 2.1 of
Takemura and Kuriki (1999b). The formal tube formula for § < 7/2 is obtained by setting
0(z,v) = m/2:

00 = 08 [
V(Mo) Z oMy ! vEN (K (M))nsn—! v

i tr; H(z,v)

j=0 Qd—j+IQn—d+j 1

Bl(d —j+1),k(n— oH-j—l)(C052 0). (6)

Exact and formal tube formulas for the tube of M in R"™ are given in Appendix C.
Since V(M;)/Q, gives the exact tail probability of max,enr Y (u) we have the following.

Corollary 2.1 Fort >0

P Y (u / d / d
({%&JL\}( Z Mg vEN, (K (M))nSn—1 v

¢ tr; H(z,v)

=0 Qaejt1Qn—dsj-1

By (a-js1) (nmiti—n) (max(t?, 1z, v)%)), (7)

where t(z,v) = cos §(x,v).



We can also derive exact tail probability for the maximum of Z(u) in (1). Let gx and
Gy denote the density and the cumulative distribution function of x? distribution with k
degrees of freedom and write

Qry(a,b) = /oo gr(z)G(bx)dx.

a

Theorem 2.2 Let M C S™ ! be a locally conic closed set with piecewise smooth proper
boundary. For t > 0

P(maxZ(u) > 1) = / d / d
(2%6}\31( (u) - ) d%% aMy v N (K(M))nsn—1 v

4 tr; H(z,v)
=0 Qajr1Qn—dij

Qd—j+1,n—d+j—1(t2vtan2 g(a:,v)) (8)

Proof. Since for z ~ N,(0,1,) y = z/||z|]| and ||z|| are independent, P(maxuepr Z(u) >
t) = P(max,epr u'z > t) is calculated by substituting ¢ := t/||z|| in (7) and taking expecta-
tion with respect to ||z||* ~ x%(n). Let B be a random variable distributed as B(a,b), the
beta distribution with parameter (a,b). Then for a + b=n

E[Bay(max(®/||2|%,8)] = P(|=|°B > t*, B>t
= P(||z*B = £, |lz|IPB(1 - £)/# > ||z|I*(1 — B))
= Qa,b(t2v(1 - P)/P)a

since ||z[|?B and ||z||*(1 — B) are independently distributed according to x*(a) and x?*(b),
respectively. |

The formal asymptotic expansion by tube formula is obtained by letting 8(z,v) = /2.
In this case

Qajtin—dtijo1(t2,00) = Ga_j1(t?) = 1 = Ga_jpa (£?)

and the formal expansion is given by

- i 4 tr; H(z,v) A 5
Ploar 0029 =2 [, Lo © 2 Gomsnl®): )

=0 Qd—j+IQn—d+j—l

where G denotes the upper probability function of x? distribution with k degrees of free-
dom.

So far we have discussed asymptotic expansion based on the formal tube formula. Here
we briefly discuss its relation to the Euler characteristic method. Suppose that z € M is a
point of self-intersection, such as * = (+1,0,0) in Example 2.1. The difficulty concerning
the Euler characteristic method arises when z is contained in an excursion set of the random
field. In this case usual form of Morse’s theorem can not be used for justifying the Euler
characteristic method. However we could formally apply Morse’s theorem and ignore the
points of self-intersection. This type of formal Euler characteristic method and the formal
tube formula give identical asymptotic expansion as shown in Takemura and Kuriki (1999b).



2.3 Invalidity of formal expansion

In this subsection we show that when the critical radius # is zero, formal tube formula
only gives valid main term and other higher order expansion terms are not valid in general.
Concerning tail probability of max,cp Y (u) we let 6 | 0 and compare Taylor expansion of
(5) and (6). Similarly we let ¢ — oo and compare (8) and (9).

First we consider the main terms of the expansions. In (5) the main term is given by
d =m,j = 0. The case m = n — 1 is trivial, because in this case (5) and (6) converge to

V(M) =V(0M,-1) > 0. Therefore let m <n —1. Then

Q, _
My) ~ / d / dv——" B, 2 min(8, 6(z, v))).
V( 9) oM., z vEN, (K(M))nsn—1 va+IQn o IB (m+1),1{n— m_l)(COS mln( (l‘ U)))

Write 6/ = min(0,8(z,v)), a = (m+1)/2, b= (n —m —1)/2. Ignoring the constant, which
is common for (5) and (6), consider

1
d / d ] a-1 1 _ b_ld
»/<9Mm * »(K(M))nsn—1 v 00529,6 ( f) f
1
~ d / d / 1 — b—ld
oM ’ =(K(M))nSn—1 v cos2 9:( f) é.

1

= - d:v/ dv sin® ¢’
b Jam,, (K (M))nsn=1

_ (9_% dm/ do sin? min(, 8(z, v))
b Jom,, H(K(M))nsn—1 §2 ’

Now for each fixed (z,v), é(ar,v) > 0, because M is locally conic and N (K(M)) # {0}.
Therefore _
sin?® min (0, §(z, v))
925

and by dominated convergence theorem we have

. 2b . a
/ d:c/ v sin®’ min(6, §(z,v)) _}/ dx/ dv.
OMpm (K (M))nsn—1 62t M Na (K (M))nSn—1

Writing the constant again we obtain

—1 (6 —0),

Hn—m——l

V(M) ~ ——— d:r/ dv (8 0).
n—m—1Jam, N (K (M))nsn—1

However this is the main term of V(My) as well. Therefore we have shown that (5) and (6)
have the same main term.
Proving that (8) and (9) have the same main term

I'((n—m-1)/2) ., e—t2/2
P(inea}\ff Z(u) 2 t) ~ 9(m+3)/2 gnf2 t /<9Mm dx/z(K(M nsn—1 dv (t - OO)

is entirely similar, by noting that for each (z,v)

Qan—a(t?, tan?0(z,v))
G.(t?)

—1 (t— o0).



We proceed to show that in general higher order terms of (5) and (6) or (8) and (9) are
not equal. The arguments for these two cases are entirely similar. Here we discuss only the
difference between (8) and (9). In order to show the discrepancy we only consider expansion
terms arising from the term d = m, j = 0, in the summation of (8) and (9). Ignoring
1/(Q 41— m—1) the difference of these two terms is written as

Jona ® s @0 J2 9006 Gomnes(Ctan b (10
Define
A(t) = {(z,v) |z € OM,,, v € No(K(M))N S™ !, tanf(z,v) < 1/t}.

Now assume that there exists some k > 0 such that
dzdv = O t=F). 11
/ “ v ( ) ( )

Fix ¢ > 1. Then (10) is bounded below as

ct?
> g 29
10) > [ drf o[ gn() Gaea(Eten® Bz v)) de

ct? _ B
e fA( ) dzdv | gmy1(€) Grom-1(Etan® 6(z,v)) d€
t 2 ,

2 Gn-m-1(0)/A(t) dzdv /: gmr1(€) d€
= Ot Gmp1(t?) = O(Grms1-(t?))-

However the term of order O(G,,11-x(t?)) is not distinguishable from higher order expansion
terms of (8) or (9). Therefore we have shown that higher order terms of (8) and (9) are not
equal in general when (11) holds.

It may be the case that &k in (11) is large and many terms of formal asymptotic expansion
are correct. In this case we may want to approximate the tail probability using only the
correct terms of the asymptotic expansion. Therefore it is important to determine the value
of k in (11) for a given problem. In Appendix D we argue that in certain regular cases k is
simply the difference of m = dim M and the dimension of the set of points with non-convex
support cone.

3 Examples

The formulas for exact tail probabilities in Section 2.2 are of theoretical importance. However
they may be difficult to explicitly evaluate for a given problem. Therefore in this section we
investigate some simple examples in detail, where the exact tail probability as well as the
formal expansion by the tube formula and the Euler characteristic method can be explicitly
evaluated and the discrepancy between them can be clearly understood.



3.1 Boundary of polyhedral cone

Here we consider a simple example of the tail probability of the maximum of Y (u) in (2).
Consider the uniform distribution Unif(S%) on the sphere S% in R3. For simplicity of
notation we avoid subscripts and let (z,y,2) denote a vector on R® or on S%. Note that
Q3 =4nm, Qy =27, O = 2.
Let
KM)={z=0}U{y=0}U{z=0}
be the union of 3 coordinate planes and M = K(M)N S?. Then

Zréa]m\;[(Y(u) = max(y/y? + 22, Va? + 22,/z? + y?)
= max(Vv1—a2%4/1—y? V1~ 22)

and
) _ V(M)
4

Y (u) corresponds to the maximum of 3 correlated beta variables. This type of statistics
is commonly used in change point analysis or multiple comparisons. M consists of 12 arcs
of length 7/2 and 6 points of crossings. The 6 points are improper points and do not
contribute to the volume of the tube. 12 arcs form one-dimensional proper boundary of M.
Without loss of generality consider points on the arc v = (cos7,sin7,0), 0 < 7 < 7/2.

N, (K(M))n 5% =(0,0,£1) and the cross section at u is the arc
Cu(6) = cos&(cos 7,sin 7,0) + sin (0,0,1), [¢] < 6.

P ( max Y (u) > cosd

ueM

u is the unique projection of points in C,(8) if and only if
| sin €| < min(cos £ cos T, cos £ sin 7).

Therefore for v = (0,0, +£1)

f(u,v) = min(arctan(cos ), arctan(sin )).
Now in (5) and (6) m=d =1, [y, (xmyns2dv =2, H =0, troH =1, tr; H =0, and

Bl’%(ﬁ) _ %/t:(l 3 6)-1/2d§ =(1- fz)l/z.

The largest angle from M is achieved by (1,1,1)/v/3 with the angle arcsin(1/+/3) from M.

We first consider the formal tube formula, because it is simpler.

V(M) = 293/ du BI’%(COS29)
12 arcs

1

00,
/2

- 24sin0/ dr = 127 sin 6.
4]

We now consider the true volume V(My). We only consider § < arcsin(1/v/3). Even in
this rather simple example the exact integration in (5) is somewhat complicated. Write
§ = arctan(sin 7o) or 7o = arcsin(tan8). Then

) arctan(sint), if 0 <71 < 7,
min(6, §(u,v)) =< 0, if p<7<7/2 -1,
arctan(cos7), if 7/2— 719 <7 <7/2.
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The contribution of the middle case to the volume is
24sin 8 (m/2 — 279) = 127 sin @ — 48 sin § arcsin(tan 6).
The contribution from the region where 8(u,v) < 6 is

sinT

T0 70
48/ sin(arctan(sin 7)) dr = 48/ —drT.
o SnlarctanlsmT =

2

Let w = sin® 7, with dw = 2sin 7 cosTdr. Then

0 sin T sin? 7o 1
48 / ST g = 24 / dw
0 V1 +sin®7 0 V14 wyl—w
tan? 6 1
24 / —dw
o Viow

= 24 arcsin(tan’f).
Therefore we obtain
V(M) = 127 sin § — 48 sin f arcsin(tan §) + 24 arcsin(tan? 6).
Note that both V/(Mj;) and V(M) are O(8) and they differ in the term of order O(6?):

V(M) = V(My) — 246° + o(6?).

O(u,v) tends to zero around the 6 crossing points of M. Note that in this example the
conditions of Appendix D are satisfied with ¢ =1 in (26). The volume (actually the length
in this example) of points u € dM; with 6(u) < 1/t is O(1/t). Therefore k = 1 in (11).
This corresponds to the difference of dim M = 1 and 0, which is the dimension of these 6
points.

3.2 Sum of several roots of Wishart matrix

In the example of the last subsection, K (M) was a union of planes and there were no
curvature involved in the example. Here we consider an example involving nonzero curvature.
The statistic we consider is sum of several largest roots of Wishart matrix. Let Z be an
n X p (n > p) random matrix consisting of i.i.d. standard normal variables. Then W = Z'Z
is a p x p Wishart random matrix with n degrees of freedom. We consider the distribution
of

T? =X+ -+, l1<qg<p,

where A\; > --- > A, are characteristic roots of W. In Kuriki and Takemura (1998) we
obtain a valid asymptotic expansion of tail probability for 72 when g = 1. In this subsection
we consider formal asymptotic expansion of the upper tail probability of 72 when ¢ > 2.
There are two approaches we can take: One is the formal tube formula to the Gaussian
random field based Z. The other is the Euler characteristic method to the x? field based
on W. We begin by showing that these two methods lead to identical asymptotic expansion
of tail probability of T'. Then we demonstrate the discrepancy between correct asymptotic
expansion and the formal asymptotic expansion of the upper tail probability of T' for the
simple case of p=3, ¢ =2 and n = 4.

11



Let R"*? denote the set of n x p real matrices endowed with the inner product tr(u'v),
u,v € R**P. Let
M = {u € R**? | rank(u) < ¢, tr(u'u) =1}
and consider the Gaussian field Z(u) = tr(v'Z), u € M. It is well known that max,epr Z(u) =
T'. The properties of projection onto K(M) were studied in Takemura and Kuriki (1999a},
from which we summarize some results below. Let + € M be a matrix having a singu-
lar value decomposition z = G1L1H{ = lygih) + --- + l,g,h;, where L, = diag(ly,...,l,),

G, = (¢1,---,9,) and H; = (hy,...,h,;). Note that 7 4 --- + 53 = 1 since tr(z’z) = 1.
Let M(k) denote the set of matrices M € R"*? of rank k, k = 1,...,q. At z =
llglhl1 + -t lngh; € M(Q)’

S:(K(M)) = S:(M)® span{z} = span{gih; [ min(i, ) < ¢},

N(K(M)) = N (M)nspan{z}* = span{g:h; | min(s,5) > ¢},
and in(l L)

~ mintéq, ... .,

O(x,v :arctan( 9 ), v € N,(K(M)), tr(v'v) =1, 12

(20) (N (K(M)), tx(v'v) (12)
where ¢y41,...,9, and hgiq,...,h, are chosen so that (g1,...,9,) and (hy,...,h,) are
orthogonal matrices and /,,4,...,{, are singular values of v. Note that 13+1 +-4+2=1

because of tr(v'v) = 1. We see that M(q) is the proper boundary (actually the relative
interior) of M, since N,(M) = S+H(M) =T} M).

If ¢ =1 then by (12) §(z) = inf, 8(z,v) = inf, arctan(1/ max(ly,...,[,)) = arctan(1) =
7/4. Hence the critical radius is § = 7/4, as obtained in Kuriki and Takemura (1998). On
the other hand, for ¢ > 2 by considering the case I, = 0, we see that 8(z,v) can be arbitrarily
close to zero on M(q). Therefore the critical radius § of M is zero. This property =0
can be clarified by studying the structure of M (k) for k < q. Let =z = lyg1h} + - - - + lkgrh}, €
M(k). It is easy to show that at z

Se(K(M)) = {cks1Grs1hipr + - + cegehy | chtr, .. c; € R,
9195 = hith; =0, 1 <k < j < q} ® To(M(k)),
C(S=(K(M))) = R™*, N (K(M)) = {0},

where T.(M(k)) = span{g;h} | min(z,5) < k}. We see that z is an improper boundary
point of M. It is somewhat difficult to imagine the geometry of M at = € M(k), k < q.
One possible explanation of the fact C(S,(K(M))) = R**? is as follows. Since gi41,.-.,9,
and hjyq,...,h, can have arbitrary direction in M(q) around z € M(k), K (M) intersects
itself at z from sufficiently many directions along S.(K(M)), such that the convex hull of
S:(K(M)) is the whole space R™*?. In any case it is again proved that the critical radius
of M is zero by Lemma 2.1.

In the following let {;,...,l, (> 0) be unordered singular values of the random matrix
Z, corresponding to any of (f;) ways of choosing g out of p unordered singular values of Z.
Put L, = diag(ly,...,l,) as before. Similarly let Gy = (¢g1,...,9,) and Hy = (hy,...,hq) be
the n x ¢ and p X ¢ matrices where g; and h; are the right and left singular vectors of Z with
respect to the singular value ;. Gy = (g441,...,9n) and Hy = (hg41,...,hp) are suitably
defined matrices such that G = (G,,G;) and H = (H,, H;) are orthogonal matrices.

Write Z; = G L, H| and define a matrix 7= (3;;) € Rin=9x(p=0) hy

12



Then 7, € K(M) and Z — Z; = GQZHQ € Nz (K(M)). Z; is a critical point of the height
function fz(u) = —tr(v'Z), u € M. Note that the projection of Z onto M, that is, the
point © € M which maximizes tr(u’Z), corresponds to L; consisting of ¢ largest singular
values. However in the formal tube formula not only the projection but all critical points
are counted. The volume element dZ = [T}, [T/, dz;; at Z = (z;;) is decomposed as

dZ = dZ,dZ | det(Iyp_g) — L1772 @ Z' 7)), (13)

where dZ = [T} [1521 dz;; is the volume element of the orthogonal complement Tz (K(M))
of Tz (K(M)) at Z—Z;, and “®” denotes Kronecker’s product. dZ; is the volume element
of K(M) at Z; defined by

dZ, = H (l12 — ljz) det(Ll)n+p_2qu1 dGy dHq,

1<i<j<q

where dL, = [T}_, dl;, dGy = N2y Nl—iyq 9idgi, and dHy = N2y Niziyy RYdh;.

J J
By (13) the upper tail probability of T" based on the formal tube formula is given by
1

BT < 2\ —
P(T*>¢) = CORE

o T ety 1 @ Z'7)d210d2, (14)
where S? = tr(Z'Z).
We now consider x? field based on the Wishart matrix W = Z'Z. Let Sym(p) denote the

set of p x p real symmetric matrices, endowed with the inner project tr(uv), u,v € Sym(p).
Let M denote the set of p x p orthogonal projectors of rank ¢:

M = {u € Sym(p) | u? = u, rank(u) = g},

and consider a x? field defined by tr(uW), v € M. The index set M is the Grassmann
manifold, which is a regular smooth submanifold without boundary. The sum of ¢ largest
roots of W can be written as the maximum of the x* field 77 = max, ¢y tr(uW).
Let Dy = L} = diag(l},...,12) be the ¢ x ¢ diagonal matrix consisting of (unordered) ¢
eigenvalues of W. Then
Wk = dH\H;, d=tr(D1)/q,

is the orthogonal projection of W onto the cone K(M).
Let Wy = Hy D, H| and define a matrix W € Sym(p — ¢) by

W =W, + H,WH,.
The Jacobian of this decomposition is given by Kuriki and Takemura (1999) as
dW = dW, dW | det(I,(,_q) — D1 ™" @ W), (15)

where dW = 2r(p—1)/4 [li<; dw;; and dW = 2(-a9)p-9=1)/4 [1;<; di;; are the volume elements

of Sym(p) and Sym(p — q) at W = (w;;) and W = (w;;), respectively, and

dWy = 20 D/4ae=0/2 TT (12 — 12) det(D,)"~dD, dH, (16)

1<i<j<q

with dD; = [T%, d(2).
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For a parameter ¢t > 0 let

W(t) = Wi +tW - Wg)
H\Dy(t)H; + Hy(tW) H,,

where

Note that W(1) = W. For ¢t > 0, W(¢) has the identical projection point Wx on K(M).
Since d(tW) = t(P=)(=a+0)/2gW and dD;(t) (= [, d(d+(I? — d))) = t"'d D, the volume
element of Sym(p) at W (¢) is shown to be

dW(t) x dW dH, H(lf _ 1]2) dD, t(P=a)(p—9+1)/2+4(g-1)/2+4-1
1<J
x| det(‘z[q(p—q) +4((Dy — J[q) Ol =1, ® W))‘ (17)

On the other hand, by the general theory by Weyl (1939), the volume element has the
form of

dW(t) = (volume element of K(M) at W)
xtdim K (yolume element of TVLV]\,(K(]\;[ )) at W — Wk)
x|det(! +tH Wk, W — Wk))|, (18)

where H(Wg, W — W) denotes the second fundamental form of K'(M) at Wx with respect
to the normal direction W — Wk . (See also Lemma 2.1 of Kuriki and Takemura (1997).)
By comparing (17) and (18), we have that under an appropriate coordinate system

H(Wg, W — Wx) = (1/d)((Dy — dI) @ I, — I, @ W).
Therefore
Lip-q) + HWk, W — Wk) = (1/J) (D1 @ Lpeg — 1, ® W)
= (1/3) (Dl & Ip—q) ([q(p—q) - Dl—l & W)

These relations can also be derived directly from the definition of the second fundamental
form by introducing local coordinates on the Grassmann manifold.

By taking the height function fw(u) = —tr(uW) as a Morse function, by virtue of
Morse’s theorem we get the Euler characteristic of the excursion set

AW, ¢) = {u € M | tr(uW) > ¢}
VAW = S I((W) > o) sandetUyp + H(Wic, W — W)
= > I(tr(W)) > ¢)sgndet(l g — D17 @ W), (19)

where I denotes indicator function, and the summation is over (f; ) ways of choosing ¢ out

of p characteristic roots of W. Note that density of the Wishart distribution is given by

1
- det(W)(”"’”l)/z e~ /2 gy, (20)

Cnp
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where )
Cnp = op(p—1)/4+np/2 _p(p—1)/4 H T'((n—1+1)/2).
=1

Combining (15), (19) and (20), we see that

E[x(A(W, )] = det(Iyp_qy — Dy~ © W)

Cn,p Jtr(W1)>c
« det(Dy)"=P=D/2 =5 WD/ gy det(W)(n=r=D/2 = N/2 gy (21)

Now in the right hand side of (14) consider the singular value decomposition Z = G5 L, H}
with L, = diag(l,41,-..,0,). Then it is straightforward to show that (14) is equivalent to
(21) by integrating (14) out with respect to Gy and G,. This proves the equivalence of the
formal tube method based on the normal matrix Z and the (apparently very regular) Euler
characteristic method based on the Wishart matrix W.

We now show that the formal tube method and the Euler characteristic method lead to
incorrect asymptotic expansion in general by studying the simple case of p =3, ¢ = 2 and
n =4 in detail.

The joint density of X;, 1 = 1,2,3, is given by

FaAs A2, As) = (1/d,) eGP t22 (3 23 ) (=72 (0] — A) (A1 — As) (X2 = As),
)\1 > )\2 > )\3 > 0,
where n is the degrees of freedom and

23n/2

= — -2
N L(n/2)T((n — 1)/2)T((n - 2)/2)
(e.g., Chapter 13 of Anderson (1984)). For n = 4 the density is
(1/16) e~ P22 272N A )(A) — As)( A2 — A3).

dx

Let T? = A\; + A;. The exact tail probability in (8) simply leads to the following integration

P(T* > t?) = F(A1; Az, Az) dArdrzdAs, (22)

A+ 2y >1t2
A1 >A2>A3>0

whereas (9) is obtained by ignoring the range of A3 as

P(T? > 1?) = d\d)s /0 T s FAs A, Aa)- (23)

AL+ g >t2
A1 >A5>0

Using Mathematica the integration in (22) is evaluated as

8 % 9t 1542
PT2>t2:(——— 2
(T"21) 128 16 + 8 2
where the main term is t8¢™*°/? corresponding to Gm1(t?) = G1o(#?). On the other hand
(23) is evaluated as

+ 33) e~ 1/2 3973/

- 1
BT > 1% = TR0 )20 — 40 + Aa) + 16)

16 AL+ >t2
16 A1 >22>0

18 6 4 2 2
= (s syt
(128 16+8+2+>e
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Note that P(T > t) and P(T > t) differ in the term of order O(t%e~%/2). This corre-
sponds to the case £k =4 in (11). This value of k = 4 can be confirmed by the argument of
Appendix D. In our example

dimM =dimM(q) =q(n+p—q) — 1.
The main singularity comes from M (g — 1) with the dimension

dmM(g—1)=(¢g—1l)(n+p—q+1)—1.

Now
dimM(g) —dimM(g—1)=n+p—2¢+1=4+3-2x2+1=4,

which coincides with the value of £ = 4. Note that the conditions of Appendix D is satisfied
with ¢ = \/p— ¢ in (26), because tr(v'v) =1 in (12) is equivalent to [2,, +---+ 2 =1 and
hence max(ly41,...,0,) > 1/\/p—q.

A Definition of locally conic set and related notions

Here we give precise definitions of various notions in Section 2.1. Throughout Section 2 we
considered spherical tubes around M C S™'. In Appendix we prefer to consider M C R"
and the volume of tubes in R™ for simplicity. Once the idea of a proof is clarified for the
tubes in R™, it is straightforward to adapt it to the spherical tube.

Let M be a closed subset of R". For each x € M we assume that M is locally approxi-
mated by a cone in the following definition.

Definition A.1 A closed subset M of R™ is locally conic (of class r = 2) if for each z € M
there exist an open neighborhood U(z) C R™ of z, € > 0, closed cone K of R", and a C?-
diffeomorphism ¢, : (—e,€)" — U(z) with ¢.(0) = z such that M N U(z) is the image of
KN(—€€e)" by ¢, :

MnU(z) = ¢(K N (—¢€)").

Furthermore if V. =U(z)NU(z') £ 0 for z,2' € M, then ¢! 0 ¢, : ¢ (V) — o7 (V) is a
C? -diffeomorphism.

In Definition A.1 we are following the standard definition of differentiable manifold.
However M may not be a standard manifold because we allow self-intersections in M.
Definition of the locally conic set is the same for M which is a subset of S™7!.

For locally conic M we define the supporting cone and the normal cone at each € M
as follows. The support cone (or the tangent cone) of M at x € M is the image of K by
the differential d¢ at the origin:

S:(M) +z = doyo,.0)K. (24)
Note that “+” on the left hand side of (24) is the vector sum and hence S,(M) is defined
with its vertex located at the origin. Let C(S.(M)) be the convex hull of S,(M). The
normal cone N (M) of M at z is the dual cone of C(S,(M)) in R*:
N(M) ={y |y'v <0, Yo € S:(M)} = {y |y'v <0, Vv € C(5:(M))}.
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For z € M let
d=n—dim N,_.(M)

be the codimension of N (M). Note that d is the dimension of the largest linear subspace
contained in C(S,(M)):
L = C(S:(M)) N (=C(S(M))).

If L is contained in S,(M), then clearly L is the unique largest linear subspace contained
in S;(M) and in this sense L is the tangent space T,(M) of M at z. On the other hand,
if L is not contained in S,(M), then there are two non-nested linear subspaces contained in
S:(M) and M does not possess a tangent space at z. In the tube formula the n-dimensional
volume of the tube is obtained by integrating the product of the volume element of N,(M),
the volume element of the tangent space T,(M) and the Jacobian containing the second
fundamental form at z. This implies that if L is not contained in S,(M), then there should
be no contribution to the volume of tube from z. This is the motivation for the definition of
proper boundary in Section 2.1. For convenience we here give a formal definition of proper
boundary.

Definition A.2 Let M be locally conic and for x € M let d = n — dim N,(M). z is
a proper d-dimensional boundary point if L = C(S,(M)) N (=C(Sz(M))) is contained in
Se(M).

B Proofs of Propositions 2.1, 2.2 and Lemma 2.1

Here we give proofs for some results in Sections 2.1 and 2.2. Again we mainly consider
versions of these results for tubes in R". For z € R", let zps denote the projection onto M
with respect to the Euclidean distance and let R(M) be defined by (3). For € R(M) with
zp # x consider the line segment joining zar and z and let u = azpr+(1—a)z, 0 <a <1,
be an interior point of this line segment. We claim that v € B(M) and the projection of u
coincides with zjs. Assume the contrary. Then there exists § # zpr, § € M, such that

lu =gl < flu — zall.
By the triangular inequality

< lz =l + [le = gl
<z —ull + [lu = 2umll

= e~z

Iz — gl

However this contradicts the assumption that xps is the unique projection of z onto M.
Therefore u has unique projection zps onto M.

Let ||v|| =1 and let { = {y + rv | r > 0} be the half line starting from y € M in the
direction v. Then the above argument shows that [ is divided into two intervals. The points
on the first interval have unique projection y and the points on the other interval do not.
More precisely define

7(y,v) =sup{r 20 |y +rv e R(M), (y+rv)u =y}
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then y is not a unique projection of y+rv for r > r(y,v). Note that #(y,v) = 0 corresponds
to the case where no point other than y itself has y as the unique projection. 7(y,v) = oo
corresponds to the case where all the points on the half line [ has y as the unique projection,
which is equivalent to

v'(z —y) <0, Ve € M. (25)

Namely, M is entirely contained in one side of the hyperplane defined by the normal v.
For the case 0 < 7(y,v) < oo, we claim that y + 7#(y,v)v ¢ R(M), hence the two

intervals are [0,7(y,v)), [F(y,v),00). This can be shown by proving the continuity of the

map z ~> zp on the domain R(M). Consider z € R(M) with zp € M. We show that

Ve>0, 36>0, ||z2—z||<d=>7 € RM), ||lZm —zm| <e

Otherwise, there exists € > 0 and sequence of points {z,} such that z, = « (n = o0) and
for each z, one of its projections y, = (z,)a satisfies

lyn — M| =€, n=1,2,...

By considering a large enough closed ball centered at z, we can without loss of generality
assume that {y,} lie in a compact region and have an accumulation point yo with ||yo —
zpm|| > €. Then ||z — yo|| < |jz — zm]| and this contradicts the uniqueness of zps. This
argument proves that = — ) is a continuous map and also shows that R(M) is an open
set. From the openness of R(M), it trivially follows that y + 7(y,v)v € R(M). This proves
the above claim. Recall that M is assumed to be locally conic. Therefore y is a projection
of © = y+ rv for sufficiently small » > 0 if and only if v € N, (K(M)). Combining this
observation with the above argument we have proved the following proposition.

Proposition B.1 For r > 0, let

[y,y+rv>:{g}+,tv|03t<r}, >0

For a locally conic closed set M

R(M)= U vy +vi(y,v).

YyEM weN,(M),[lo]I=1

The proof of Proposition 2.1 is entirely the same as long as the geodesic distance is restricted
to be less than 7.

We proceed to prove a version of Proposition 2.2 for R™. Let z ¢ R(M). Then there
are at least two projections y;,y, of z onto M. By Assumption 2.1 it suffices to consider
the case where both y; and y, are proper boundary points of M. We need to distinguish
two cases of non-uniqueness of projection. One case is that y is the “focal point” of y, or
y, in the sense of p.33 of Milnor (1963). Corollary 6.2 of Milnor (1963) shows that the set
of focal points is of Lebesgue measure zero. In the other case there exists neighborhoods
V(y1), V(yz2) of y1 and ya, respectively, such that y; is the locally unique projection of
on V(y;). We can now repeat the same argument as above that there exists a neighborhood
U(z) of z such that projections =; : U(z) — V/(y;) are continuous maps. Furthermore by
introducing local coordinates it is easily shown that m;, ¢ = 1,2, are of class C?. Let

E(z) ={z € U(z) | ||z = m(2)l| = ]z = m(2)|I}
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then E(z) is the set of points in U(z) which is equidistant from V(y,) and V(y;). Let
9(2) = ||z = m(2)|I* = ||z — m2(2)||*. Then

gradg = 2(z — m1(2)) — 2(z — ma(2)) = 2(ma(z) — m(2)) # 0.

Therefore by implicit function theorem E(z) is a n—1 dimensional submanifold of class C?
in U(z) and hence has Lebesgue measure zero. We have now shown that the set of z with

two equidistant local unique projections y;,y, € M has Lebesgue measure zero. We have
proved a version of Proposition 2.2:

Proposition B.2 For locally conic closed M C R™ with piecewise smooth proper bound-
ary, almost all x € R™ have unique projection onto M, i.e., the Lebesque measure of the
complement of R(M) is zero.

The proof of Proposition 2.2 is the same and omitted.

Finally we give an outline of proof of a version of Lemma 2.1 for R”. Suppose that z € M
has a non-convex support cone S;(M). It suffices to show that inf,cy(s) 7(y) = 0, where
U(z) is a neighborhood of z and #(y) = infyen, (my,ofj=1 7(¥, ). By taking U(z) sufficiently
small, the essential point of the proof is to show Lemma 2.1 for M = K = S;(M), which is
a non-convex cone in R®. Consider y € K N S*!. Using (25) it can be easily shown that

yeKmsn—l,521{@(1\4),“1;“:1 ry,v) = oo
if and only if K is a convex cone. Since K is assumed to be non-convex, there exists
y € KNS"! and v € N, (M) such that #(y,v) < co. By the proof of Proposition B.1
z = y+ 7(y,v)v has at least two equidistant projection onto M. Because of the scale
invariance of the geometry of the cone, ez = ey + e7(y,v)v = ey + r(ey, v)v has the same

property for every ¢ > 0. Therefore lim.o7(ey,v) = 0 and this proves that the critical
radius of M is zero.

C Exact and formal tube formula in R”

Let M be a compact locally conic set with piecewise smooth proper boundary. We derive
the exact and formal tube formula for the tube

M, = {z | dist(z, M) < r}, dist(z, M) = n&r} llz — yl|,
Y

around M. Let £ € M be a proper boundary point and let H(z,v) denote the second
fundamental form at z with respect to the direction v € N, (M), |lv|| = 1. Note that
I+ rH(z,v) is positive definite for r < 7(z,v). By the standard derivation of tube formula
for compact M, the exact volume of the tube M, is given as

V(IM,) = V ( U U [z, + min(r, 7(z, v))v))

z€M—I(M) veNs(M),jv]|=1

i
NE
Qj\

min(r,7(z,v))
e / / dt det(I + tH(z,v))
vENz (M)nSn—1 0
min(r,(z,v)) |
dvy tr;H(x,0) | ¥ dt
:C/’UENz M)ngn—1t UZ r] 0

d tr; H(z,v ;
da:/ Z%—lmin(r, F(z,v)) .

Mynsn—t 5 g+ 1

o a.
I i
=] =

I
NE
Q,\
a.

a
I
o

Il
NE
S\
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The formal tube formula is obtained by putting 7(z,v) = co:

m d . .
vy =3 [ do f avy S
=0’ M veNz(M)ns»—1 T )+ 1

D Characterization of £ of (11)

Here we present an argument that in certain regular cases k of (11) is simply the difference
of m = dim M and the dimension of the set of points with non-convex support cone.
As the first technical assumption we require that there exists ¢ > 1 such that on M,

lim inf inf

I / ) dv > 0. (26)
=0 z:tanf(x)<1/(ct) JvENL(K(M))NSn—!, tanf(z,vj<1/t

This condition implies that for sufficiently small ¢ the angle of N,(K(M)) N {v | f(z,v) <
1/t} is bounded away from 0 for all z € dM,, with §(z) < 1/(ct). The constant ¢ is needed
for the example of Section 3.2. Now for ¢ > 1

[ o | ) o< [ dedv<Qu [ d,
z:tan 8(z)<1/(ct) vENZ (K (M))NS™—1, tanb(z,v)<1/t A(t) z:tan 8(z)<1/t

Therefore under the assumption (26)

/ dzdv =0(t™") & dr = O(t™%)
A(t)

z: tan §(z) <1/t

and k can be evaluated from the volume of the set {z € dM,, | tanf(z) < 1/t}.

Let M denote that the set of points on the relative boundary of dM,, with non-convex
support cone. We now make the second assumption that M forms a C?-submanifold of
R"™ of dimension /. Finally we assume that for x € dM,,, 8(z) = O(1/t) if and only if
dist(z, M) = O(1/t). Under these assumptions the set {z € IM,, | 6(z) < 1/t} is basically
a tube around M in OM of radius O(1/t). Therefore the m-dimensional volume of this
tube is proportional to O(t7%) with

k=m—1I1=dimM — dim M.
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