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1. Introduction

In the statistical time series analysis several nonlinear time series models have been
proposed in the past decade. In particular, considerable attention has been paid to the
class of threshold autoregressive (TAR) processes, which was systematically investigated
by Tong (1990) and some applications have been reported. The TAR processes have been
also investigated by Brockwell and Hyndman (1992) in the continuous time framework.
Unlike the linear autoregressive models, however, the statistical properties of the second
order TAR processes have not been fully investigated mainly due to technical problems
involved. The statistical properties of the first order TAR processes have been investigated
first by Petruccelli and Woolford (1984), and later by Chen and Tsay (1991) in more
details. However, it seems that the necessary and sufficient conditions for the ergodicity
have been known only for the first order TAR processes. The main purpose of this paper is

to investigate the basic properties of the second-order TAR processes and the second-order
SSAR processes.

Let {y:} be a sequence of scalar time series satisfying

Gyt ey 2t+ove i y_4>0
(1.1) Yy = ,
biyi—1 + by o +oovy if 3 4<0

where d is a positive integer parameter, and a;,b;,0; (> 0) (: = 1,2) are unknown
parameters, and {v;} are a sequence of independently and identically distributed (i.i.d.)
random variables having an absolutely continuous density with respect to the Lebesgue
measure and E[v,] = 0 . The second-order threshold autoregressive model given by (1.1)
will be denoted as TAR(2:d) in this paper and d is the interger-valued parameter, which
is often called the delayed parameter. We also use the notation as TAR(2) for the second
order TAR processes. Petrucelli and Woolford (1984) have considered the first-order TAR
process when a; = b, = 0 and d = 1, which is denoted as TAR(1:1). They have shown
that the necessary and sufficient conditions for the geometrical ergodicity are

(12) a < l,bl < 1,a1b1 <1.

Chen and Tsay (1991) have extended their results to the TAR(1:d) processes when d
is an arbitrary positive integer. The conditions they have obtained for the geometrical
ergodicity are more general than (1.2) because they have investigated the first order TAR
processes with the positive integer-valued parameter d.

On the other hand, Kunitomo and Sato (1996), and Sato and Kunitomo (1996) have
proposed the class of simultaneous switching autoregressive (SSAR) processes, which can
be regarded as a natural extension of the TAR processes for some econometric applica-
tions. The class of simultaneous switching autoregressive (SSAR) process introduced by
Kunitomo and Sato (1996) is slightly different from the threshold autoregressive models.
The second-order SSAR model can be written as

Y1+ ayr 2 +ove i Yy >y
(13) Yt )
biyi1+ by o+ oovy if y <y
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where a;,b;,0;(> 0) (¢ = 1,2) are unknown parameters, and {v;} are a sequence of
independently and identically distributed (i.i.d.) random variables having an absolutely
continuous density with respect to the Lebesgue measure and E[v;] = 0 . The discrete
time series model given by (1.3) will be denoted by SSAR(2) in this paper. By imposing
the restrictions on parameters given by

1-— 1-b
(1-4) a1: 1:7'1,2:%:7"2,
o0 02 01 02

this time series model can be written in a more meaningful way as

QY1+ Y2 oy i v 2Ty — Ty o
(15) Y — 3
biyi 1 +boyr 2 +oovy if v <Tig1 —ToY 2

where 7; (1 = 1,2) are unknown parameters.
Then it has the Markovian representation as

(1.6) YU = Y1+ [ d(ve >y —Toy2)
ool (v < Ty 1 — raye—a)|[ve — (Mye—1 — roays—2)| ,

where I(-) is the indicator function. When o} = 03 = o, then this SSAR process becomes
the standard AR(2) model by a re-parametrization. Kunitomo and Sato (1996) have
shown that even the simplest SSAR(1) process gives us some explanation and description
on an important aspect of the asymmetrical movement of time series in two different
(up-ward and down-ward) phases. The ergodicity condition for the SSAR(1) process is
the same as (1.2) except the coherency conditions of (1.4).

In Section 2, we give some definitions in the nonlinear time series analysis and a
useful lemma for our investigation. In Section 3, we shall give some conditions for the
geometrical ergodicity of the TAR(2:d) processes in the leading case. Then we shall discuss
some conditions for the geometrical ergodicity of the SSAR(2) and TAR(2:d) processes in

the general case in Section 4. Finally in Section 5, we shall give the derivations and the
proofs.

2. Some Preliminaries

The first important property of a statistical time series model is whether it is ergodic
or not. For the Markovian time series models, the geometrical ergodicity and the related
concepts have been developed in the nonlinear time series analysis. For the sake of
completeness, we mention to its definition and the drift criterion. For the more precise
definitions of related concepts including irreducibility, aperiodicity, and ergodicity of the

Markov chains with the general state space, see the Appendix of Tong (1990) or Nummelin
(1984).

Definition 1 (Geometrical Ergodicity) :
Let {y¢} be an m x 1 Markovian process with the state space of R™.
(i) {yt} is geometrically ergodic if there exists a probability measure = on (R™, B(R™)),
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a positive constant p < 1, and 7-integrable non-negative measurable function h(-) such
that

(2.1) I1P*(,-) —=()ll- < p"h(=) ,

where || - || denotes the total variation norm, = (z;) is an m x 1 vector, and P(zx,-) is
the transition probability.

(ii) {yt} is ¢-irreducible if for any z € R™, A € B(R™) with ¢(A) > 0 (¢(-) is a o-finite
measure), and

(2.2) f: Pz, A) > 0.

For the geometrical ergodicity of the Markov Chains with the general state, Tjostheim
(1990) has given a drift criterion, which will be useful for our purpose and thus reported
as Lemma 1. It is an extension of the well-known drift criterion on the Markov chain with
the general states. See the Appendix of Tong (1990), for instance.

Lemma 1 (Tjostheim (1990)) :

Assume that {y,} is an aperiodic p—irreducible Markov Chain with the state space of
R™ and g is a non-negative measurable function. Then {y,} is geometrically ergodic if
there exists a positive integer h, a compact set C satisfying (2.2) with ¢(C) > 0, positive
constants ¢ > 0, M < +o0, and r > 1 such that

(2.3) rElg(yyn)ly =yl < g(y) —€ if ye C°,
and
(2.4) Elg(y )y, =y <M ifyeC,

where C° is the complement of C.

Now we introduce another concept on the stability of the solution, which is slightly
different from the geometrical ergodicity. Because its conditions are slightly weaker than
those in Lemma 1, we use the terminology of Near Geometrical Ergodicity. We shall use
this concept in this paper due to the technical reason, which will be explained in Section
5. However, the detail of its properties has not been fully exlored. Let Q be the state
space of the stochastic process {y,}. Then we partition the state space Q into a finite
number of subspaces Q' (i = 1,- - -, k) such that @ = U*_, Q* and for any ¢

k
(2.5) 1= "I(y, €Q",
i—1
where I(-) is the indicator function and k is a positive integer.
Definition 2 (Near Geometrical Ergodicity) :

Let {yt} be an m x 1 Markovian process with the state space of R™. Then {y,} is near
geometrically ergodic if



(i) for any 7 there exist positive constants r; (r; > 1) and positive integers h; (2 = 1,- - -, k)
such that

(2.6) riElg(Yyn,) (@i n) v = ] < gly) —€if y€ Qi NC”,

where 1(Q}) = I(y, € Q"), and C is a compact set satisfying ¢(C) > 0 in (2.2),
and (ii) there exist a positive integer h and positive constant M such that

(2.7) Elg(yun)ly. =y <MifyeC.

From this definition it is apparent that the near geometrical ergodicity we introduce in
this section coincides with the geometrical ergodicity in the nonlinear time series analysis
if we can take the common positive integer h = h; (1,---, k).

3. Conditions for TAR(2) in the leading case

In this section we consider the conditions for the ergodicity of the TAR(2) processes
in a special case. For this purpose we shall utilize the Markovian representation of the
TAR(2) processes. Let ¥, = (,7:1) be a 2 x 1 vector of the time series generated by
{y:}. The TAR(2) process we consider is represented by

Ayt—] + DO'l’Ut if e;cytﬁl 2 0
(3].) Yy, — ’
By, 1+ Doyv; if ey, ;<0

where e; = (1,0)',e; = (0,1)" (for e with k = 1,2) and D = (1,0)’ are 2 x 1 constant
vectors, and A , B are 2 x 2 coefficient matrices in the Markovian representation given
by

ay a bi b
(3.2) A-(l 0),3—(1 0)

In the rest of this section we consider the leading case for the TAR(2) processes and
assume by = 0 . This is simply because we can obtain general characterizations on the
geometrical ergodic regions in this case and the necessary and sufficient conditions for the
geometrical ergodicity can be obtainable in most cases. We have to stress that even in
this leading case our conditions sometimes become quite complicated and non-standard
in comparison with the results known for the TAR(1) processes.

In order to obtain the conditions for the geometrical ergodicity and state our results,
we partition the parameter space of (a1, az) into four different regions given by
Ci = {a1 > 0,a >0} ,C, = {a1 < 0,82 >0} ,C3 = {a; < 0,82 < 0} , and
Cy = {a1 > 0,a; < 0}, respectively.

Because we set by = 0, we need to consider two cases when b; < 0 and b; > 0. Then
it is intuitively obvious that in the latter case we have to restrict the conditions for the

geometrical ergodicity when 0 < b; < 1 in order to avoid the possible explosion of the
solutions.



3.1 TAR(2:1)

First, we consider the TAR(2:1) process when b, > 0 and by = 0 . This is the simplest

case in the TAR(2) process in terms of our conditions on the coefficients.
Let

(3:3) D(A) = % + 4as
which is the discriminant of the characteristic equation for the first phase in (3.1)
(3.4) aaA) =2 —aX—a;=0.

Then we present the necessary and sufficient conditions for the geometrical ergodicity.
All proofs and derivations of the propositions in this section are given in Section 5.

Condition I :
C’1:a1+a2<1,0<b1<1,
Cy : 0<bh <1,
Cs : 0<bh <1,
C4Z [eithera1+a2<1(0§a1<2,D(A)20)0rD(A)<0],O<b1<1.

Proposition 1 : For the TAR(2:1) process with by > 0 and by = 0 , the necessary and
sufficient conditions for the geometrical ergodicity of {y;} are given by Condition I.

Second, we consider the TAR(2:1) process when b; < 0 and b; = 0. The conditions
in this case become far more complicated than in the first case. In order to deal with
some complications involved, we define p(A* B) be the non-zero characteristic root of the
matrix A*B for any positive integer k. In the present case

p(A*B) = e, A*b ,

where b = (by,1) .

Then we give a set of conditions for the geometrical ergodicity and the near geomet-
rical ergodicity of the solution in the present case. The concept of the near geometrical
ergodicity of the solution has been given in Definition 2 in Section 2. We have introduced

it by a technical reason to which we shall mention in Section 5. We note that it is not
needed for the linear time series processes.

Condition I1I :
Cl tapta< 1
Cy : p(AB) < 1,
Cs : p(AB) < 1,p(A’B) <1,
Cy : either [a1+a2<1(0< a1 < 2, D(A) > 0)] or [there exists a non — negative
k (> 3)such that p(A* 'B) < 0and 0 < p(A’“B) <1].

Proposition 2 : For the TAR(2:1) process with by <0 and b, = 0, (i) the necessary
and sufficient conditions for the geometrical ergodicity of {y,;} are given by Condition I1
with Cy, Cy, and Cs, and (i) the sufficient conditions for the near geomatrical ergodicity
of the solution {y;} are given by Condition II with C,.
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For an illustration, we present two figures of the ergodic regions for the TAR(2:1)
processes in Figure 1 and Figure 2, which are based on the simulations of the stochastic
processes {y;:}. Contrary to the ergodic regions for the linear AR(2) models which have
been known in the statistical time series analysis (see Brockwell and Davis (1991) for
instance), they are often unbounded as we see in these figures. Some of the conditions
above can be written more explicitly by using

p(AB) = a1by + ag ,p(A2B) = al(albl + az) + aghy .

The most complicated region in the TAR(2:1) process is Cy in Condition II and we have
found some strange shapes as the non-explosive regions of the solutions depending upon
the parameter values of A and B. Although we can give only the partial proof for our
conditions due to the technical reason we shall mention in Section 5, we conjecture that
the conditions are necessary and sufficient for the geometrical ergodicity in all cases. As
an immediate corollary of the above two propositions, we can obtain the result originally
derived by Petruccelli and Woolford (1984) for the TAR(1:1) process.

Corollary 1 : For the TAR(1:1) model, the necessary and sufficient conditions for the
geometrical ergodicity of {y:} are given by

(35) a1<1,b1<1,a1b1<1.

3.2 TAR(2:2)

Next, we consider the TAR(2:2) process when b; < 0 and b, = 0 . Contrary to the
TAR(2:1) process, this is simpler than the case when by > 0 in the TAR(2:2) process. In
the present case we can give the necessary and sufficient conditions.

Condition I11I :
Cl tapta <1 ,p(AB2) < 1,
Cy : p(AB)< 1,
Cs : p(AB) <1,p(AB* <1,
Cy : leither ay+ a2 <1 (0<a; <2,D(A)>0) or D(A) <0],p(AB*) < 1.

Proposition 3 : For the TAR(2:2) process with by < 0 and by = 0, the necessary and
sufficient conditions for the geometrical ergodicity of {y:} are given by Condition III.

Second, we consider the TAR(2:2) process when b; > 0 and by = 0 . It is far more
complicated than in the previous case as for the TAR(2:1) process when b; < 0 and
b, = 0 . In this case we give a set of conditions for the geometrical ergodicity and the
non-explosiveness of the solution.

Condition VI :
C] : a1+a2<1,0<b1<1,
Cy : a1+ ay < 1, [there exists a non — negative k(> 2) such that p (A* ' B) <0
0< p(A*B) <land p(A’B) > 1 for1<j<k—1],and0<b <1,
Cs : p(A’B) <1,0<b; <1,
Cy : |either a1 +a2<1(0<a;<2,D(A)>0)or D(A)<0],0<b < 1.



Proposition 4 : For the TAR(2:2) process with by > 0 and by = 0, (i) the necessary
and sufficient conditions for the geometrical ergodicity of {y.} are given by Condition VI
with Cy,Cs, and Cy, and (ii) the sufficient conditions for the near geometrical ergodicity
of the solution {y,;} are given by Condition VI with Cs.

For an illustration, we present two figures of the ergodic and the non-explosive regions
for the TAR(2:2) processes in Figure 3 and Figure 4, which are based on the simulations.
Some of the conditions above can be written more explicitly by using

p(AB2) — b](albl + 0.2) .

We note that some of the conditions for the TAR(2:2) process in the leading case when
D(A) < 0 have been partially discussed by Tong (1990) without the disturbance terms.
From Page 70 of Tong (1990) we set by = —0.9,a; = 1.8,a2 = —0.9 as Example 1 and
by = —1.1,a; = 0.6,a; = —0.1 as Example 2. By using Proposition 3, we can conclude
that Example 1 is not geometrically ergodic while Example 2 is geometrically ergodic.

Contrary to the ergodic regions for the linear AR(2) processes, some of them are un-
bounded as we see in these figures. The most complicated region in the TAR(2:2) process
is C in Condition VI although it may be difficult to judge this finding directly from Figure
4. We have found some strange shapes as the non-explosiveness regions in C; depending
upon the parameter values of A and B. It seems that the complications involved in this
case is different from the corresponding one in the region Cy for the TAR(2:1) process
when b; < 0. However, we have not succeeded in the more detailed characterizations of
this situation except the present conditions we have obtained. Although we can give only
the partial proof for our conditions due to the technical reason we shall mention to in Sec-
tion 5, we conjecture that they are necessary and sufficient for the geometrical ergodicity
in all cases.

As an immediate corollary of the above two propositions, we have the result obtained
by Chen and Tsay (1991) for the first-order threshold model TAR(1:d) when d = 2.

Corollary 2 : For the TAR(1:2) process, the necessary and sufficient conditions for
the geometrical ergodicity of {y;} are given by

(3.6) a; <1,by<1,a1b; <1,a2b; <1,a.0% < 1.
We should mention that Chen and Tsay (1991) have given the necessary and sufficient

conditions for the TAR(1:d) processes with any positive integer-valued parameter d.

4. Some Extensions and Remarks

In this section we consider some conditions for the geometical ergodicity of the SSAR(2)
processes and the general TAR(2) processes. Also we shall give some remarks on our re-
sults for the related statistical problems.

4.1 SSAR(2)



We shall utilize the Markovian representation of the SSAR(2) process, which is similar

to (3.1) for the TAR(2) processes. Let ¥, = (¥, %:—1) be a 2 x 1 vector of time series.
Then the SSAR(2)process we consider is represented by

Ay, ,+ Doy if e'yt >0
(41) yt - , )
By, + Doy, if ey, <0

where e = (1,—1)’, D = (1,0)’, and the coefficient matrices A and B in this representa-
tion are given by (3.2).
We give the following conditions :

Condition V :

(42) ar+ay <1 ,b1+b2< 1 ,(al_a2)(b1_b2) <1 7Inin{|a2l 7|b2l}< 1.

By using the coherency conditions (1.4) on a;,b; (Z = 1,2), the above conditions can be
rewritten in the parameter space of o; (: = 1,2) and r; (i = 1,2) as

Condition V' :

11 11
(4.3) r>72,m1+ 1 < —+ —,|rz| <min{—,—}.
gy 0y 01 O3

We expect that these conditions are sufficient for the geometrical ergodicity of {y} in
the SSAR(2) process. They are slightly weaker than the sufficient conditions

(4.4) p = min{|a| + |az|, [ba] + B2} < 1.

This type of conditions for the TAR(p:1) processes (p > 1) has been obtained by Chan
and Tong (1985). However, they are not necessary even for the TAR(2:1) processes as we
have shown in Section 3. As an illustration, we present one figure of the geometrically
ergodic regions for the SSAR(2) process in Figure 5, which is based on the simulations
and drawn in the (rq,72) phase. The geometrically ergodic regions in this case seem to
be different from the corresponding ones in the TAR(2) processes and the ergodic region
is bounded in the (ry,r2)—space due to the coherency conditions given by (1.4). The
conditions for the geometrically ergodicity are considerably complicated than the results
for the SSAR(1) process which can be summarized as the next proposition.

Proposition 5 : For the SSAR(1) process, the necessary and sufficient conditions for
the geometrical ergodicity of {y:} are given by

(45) a1<1,b1<1,a1b1<1.

These conditions can be re-written as

1 1
(46) oO<mm<—+4+—.
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From this representation it is clear that (4.2) and (4.3) are natural generalizations of (4.5)
and (4.6), respectively.

4.2 Some Concluding Remarks

In principle it would be possible to dvelop the conditions for the geometrical ergodicity
and the near geometrical ergodicity for the general case of the TAR(2) processes. However,
they become more complicated than in the leading case we have discussed in Section 3. In
particular, it is quite tedious to write down the explicit expressions for the conditions of
the geometrical ergodicity and the near geometrical ergodicity. Thus for the illustrative
purpose we have simulated some figures of the geometrically ergodic regions and the non-
explosive regions in the general case. Among many simulations we only present Figure 6
and Figure 7, which have complex shapes. However, they are essentially similar to those
in the leading cases when the TAR(2:1) process with b; < 0 and the TAR(2:2) process

Since the conditions for the geometrical ergodicity are the basic property of the Marko-
vian stochastic processes, they have some implications for statistical inferences and the
modelling procedure of the TAR(2) processes. In general, from our findings in this paper
we expect that the higher order TAR(p) processes with an arbitrary delayed parameter d
have quite complicated ergodic conditions. Although it is possible to use the least squares
estimation method for the consistent estimation of the unknown parameters in the TAR
processes, we need a more careful investigation on the properties of the estimation results
in empirical studies. Because of our results reported in the previous sections, however, it
is far beyond the scope of this paper to have a complete characterization of the stochastic
processes of the TAR(p) and the SSAR(p) processes for practical usages and there still
remains many statistical problems to be solved.

5. Proofs

5.1 The Method of Proofs

In this section, we give some details of the derivations and proofs of our results in
Section 3. The method of proofs is basically similar to the one developed by Chen and
Tsay (1991) for the TAR(1) processes. For the theoretical results on Markov chain with
the general state space, see Tweedie (1975), Nummelin (1984), or Tjostheim (1990).

We shall use Lemma 1 for the Markovian representation of the TAR(2) processes of
Yy, = (yt,ypl)' . The criterion function g(-) we shall use is

llyell = max(fye], [l -

Now we prepare some notations used in this section. Let F; be the o—field generated by
a sequence of random variables {y, ,s < t}. Also define a sequence of time dependent
phases for the stochastic processes : @} = {y: > 0,41 > 0}, @* = {y: < 0,41 > 0},
QF = {y: < 0,411 <0}, and Qf = {y: > 0,31 <0} .

10



By using the indicator function /(-), we can decompose 1 into the indicator functions with
four different phases as

1= 1(Q;) + 1(Q7) + 1(@) + 1(QY) -

Then we can further decompose I(Q}) into

1(Q) = 1(QiQiy) + 1(@1QF 1) + 1@ Q7 ) + 1(Q: Q% 1)

for instance.
The most important technical finding in our derivations and proofs of our resutls lies in

the fact that we can ignore many terms when we evaluate the growth condition (2.3) for
each case.

5.2 TAR(2:1) when b, >0

[1] First, we consider the TAR(2:1) process when b; > 0. We shall give a relatively
detailed proof of our result for this particular case because the arguments in other cases
have many similarities.

In this stochastic process we notice that for Q;‘Jrh (h > 2) we have ¥4 1 < 0 and
Yerh = biliyn—1+viqn > 0. It implies that Eyyp 1[|yenl(Qf14)] and |ys1n—_1] are bounded
because we have by > 0, vyyn > —biyein-1 > 0, and 2|vg | > |yeyn| - Here we have used
the notation for the conditional expectation E,[ - | = E[ - |F;] and the relation

1

5 Eiina[lvesnl] > lysen—1] > 0.
1

We notice that the boundedness of the conditional expectations of y;.5_1 and y; 5 imply
the boundedness of the conditional expectation of 43 ,1,1. Then sequentially we can show
that Ei[[yeinik|I(Q¢,4)] are bounded for any integer k > 1. Hence we can find a positive
constant c;; such that for any (positive) integers h > 1 and k£ > 1

Elllyyn i ll1(@QF0)] < 11

By using this boundedness relation, we have several consequences. For instance, since
I (Qt1+h) =1 (Qt1+th1+h71)+I (Qt1+hQ§+h71) and 1 (Q3+h) =1 (Qt2+thl+h71)+I (Qf+hQ§+h—1),
the conditional expectations of E[||y,,,[[1(Q1Qtn 1)) and Eyf|ly, nll1(QF 2 Q% n_1)]
are bounded for any integer h > 2. Hence in the present case we only need to evaluate
the conditional expectation terms associated with the four phases on the process:

I (Qt1+hQ3+h—1)a 1 (Q%+hQ}+h—l)7 I (Q:ta+hQ%+h—lQi}+h—2)7 and / (Q?Jth?JrhA) .
Then we shall consider the ergodic conditions for four regions of the parameter values
C1,C4,Cs, and Cy, separately.

[2] C1 : In this case we first notice that 0 < e]Al < 1 and 0 < e A%l < 1, where
!l = (1,1). Then there exists a positive c¢;2 such that

(5.1) Ellye 2]l (1(Q142Q0,1) + 1(Q%.QL))
< E(ey ALY + et AUD) |1yl (1(QF2Q1 1) + I(Q22QL1)) + ez
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where the indicator functions I,(Jlr)z = I(yty2 > y41) and Iﬁ)g = I(ys12 < Yr11)-
Then we can take positive constants ¢; 3 and 8,1 (0 < 813 < 1) such that

(5.2) Ey[ly, 2l (1(Q142Q141) + 1(QF 12Q1,1)]
< buallyll B (Qf12Q0 1) + 1(Q72Q01)] + cus -

For the phase Q3,,Q%,,, we substitute (3.1) for ||y,,,| = —yt+2It(i)2 — yt+1It(i)2 and we
take positive constants ¢;.4 and 812 (0 < ;2 < 1) such that
(5.3) Et[”yt+2”I(Q?+2Q?+1)]
7 l i
= E(bile, Ay, L} + ey Ay I, + vz + broea | 3 + o D) T(QF,Q241)]
< 61-2”yt”Et[I(waQfﬂ)] +cia,

where we have taken 612 = max{bi(a; + a2),a; + as}.
Similarly, for the phase Q7 ,Q3,,, we can find a positive constant c; 5 such that

(5.4) Eyllye 2l 1(Q12Q41)] < max{bl , b1} (—ye) Ex[I(QF2Q%11)] + s -

By summarizing the above inequalities on four phases, we can find positive constants c; g
and 61‘3 (0 < 61,3 < 1) such that

(5.5) Eifllysi2lll < Suallyell + cis

which leads to (2.3) in Lemma 1. This is because we can find a sufficiently large M and a
compact set C(M) depending on M such that C = (C(M) =){||y|| < M} and the growth
condition (2.3) in Lemma 1 can be satisfied. In the following derivations we need to use

this type of arguments repeatedly in each case. Because the arguments are quite similar,
however, we shall not repeat them.

[3] Cs : By repeating the procedure we have used in [2] and taking the conditional
expectations, there exists a positive integer h (> 2) and a positive constant ¢, 7 such that

5:6) Eilllyenl]l < Ei [lyeenll (1@La@Qha 1@t in-2) + Q4 Qhn1Qbin2)
A} hQF 1 Qbna) +1 (Q?+hQ?+h~1Q?+h—2))] +cur.

Since c1.7 is bounded, we need to evaluate the first four terms of (5.6). Let A; (1 = 1,2) be
the characteristic roots of g4a(A) = 0 in (3.4). Because a; < 0 and az > 0 in C3, we have
the relation that A; > 0 > Az and |A2| > |A1| . Then there exists a positive integer h; such
that e]A™My, < 0 given y, € QL. This is because each component of €A™ eventually
negative for a sufficiently large h,. Here we write

hy )
(5.7) Yern, = €AY, + (Z e, A" levy) -

i=1

If we denote the second term of (5.7) as wyp,, then we have the condition :
Wy p, > —e’lAh1 y; > 0. Then there exists a positive constant c¢; g such that

Eyllyeqn, |l (H?;OQtl-H)] <cas.
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For the last term, we can use the relation that y, n, = b1Yeih,—1+Viin, Wheny, ., € Q?-le
for a positive integer hy and we can take a positive ¢y ¢ such that

(5-8) Ex[l| Yy ng 1T (o @311, )] < Ea[(0821" + b2 D) (—y) 111220 Q2, .. )] + cro-

We repeat the substitution of each phases on the right hand side of (5.6). If we take a
sufficiently large h (> hy + he + 2), we can reduce the second and the third terms to the
first and last terms. By using the condition 0 < b; < 1 we can find positive constants
C1.10 and 61_4 (0 S 51.4 < 1) such that

(5.9) Eilllyealll < brally:ll + 110 -

[4] C5 : When y,,3 € Q},3 and y,,, € Q},,, the equation ys3 = a1ysi2+ a2yei1+ V13
implies that v;,3 > (—a1)yi2 + (—a2)yi;1 > 0. Then by applying the same argument to
Yiy1, We have that Fy||y,, 5| 7/(Qf,3Q¢,2Q4,1)] is bounded. By using the fact that

I (Q?+3Q:+2Qtl+1) =1 (Qf+3Q:+2Qzl+1Q:l ) +1 (Qf+3Qtl+2Qtl+1Qf) ’

and the conditional expectations y,,, and y,,, are bounded for the phase Q} ,Q}, we
find that Ei[lys2|1(Q32Q441)] is bounded and hence Ei||ys 45l 1(QF,3Q412Q141)] 1s also
bounded.

By using that 0 < y;41 = a1y + a1 + Vi1 < viqq for the phase Q2 ,Q,,Q1,,Q),
we have that F[y, 2] is bounded. Also by using the fact that Ei[||y, .|l (Q}2Q1,1)] is
bounded, we have that Euf||y, s||7(Q3, 3Q%,,Q4,1Q¢)] is bounded.

For the last term, there exists a positive constant ¢; 17 such that

(5.10)  Eilllyes 1@} 5@2,2)] < BB + 01 IP) (—ue) I(Q25Q%,5)] + c1a1 -

Hence we can find positive constants ¢;.12 and 815 (0 < 615 < 1) such that

(5.11) Eilllyeysll] < busllygll + craz -

[5] Cy : We consider the terms involving the phases Q},, Q%1 , and Q7 , QL.  (h >
2) . Since a3 < 0 < a; in C4, we need to consider two cases depending on whether the
characteristic roots of g4(A) = 0 in (3.4) are real or complex, separately.
When D(A) > 0 and 0 < a; + a3 < 1, the characteristic roots are real and their absolute
values are less than one. In this case we immediately see the conditions that 0 < e; Al < 1
and e; A%l < 1. Then we have the same inequality as (5.1). When D(A) < 0, on the
other hand, there exists a positive integer h such that (5.8) holds. Hence we can find a
positive constant 6,6 (0 < 616 < 1) and ¢, ;3 such that the inequality (5.9) holds instead
of 414 and ¢y 10.

For the remaining term involving the phase @}, ,Q3,, ;, we can use the same argument
as Cy because of the condition 0 < b; < 1.

[6] Necessity : For proving the necessity of our conditions, we use the similar argu-
ments used by Petruccelli and Woolford (1984). As an illustration, consider the case when
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a; >0 (2= 1,2) and a1 + a2 > 1. Then we have two real characteristic roots A; ( = 1,2),
which satisfy the condition A; > 1 > 0 > A, . Then we have two cases depending on the
relative magnitudes of two roots, that is, (i) |A1] > |A2| and (ii) |A\1] < |A2| . By defining
a nonsingular 2 X 2 matrix

(5.12) A= (ﬁl ’\12 ) ,

and tranforming the original system by 2 x 1 vector
Ty = (T, 72) = A7y,

where U; = (uw, u2:) = A '(v:,0) . Then we have a new representation of the process
Ty — A,-xit_l + Uy (Z - 1, 2) .

For the case of (i), we consider {1} and it is not difficult to show that its solution explodes
with a positive probability by the same method used of Petruccelli and Woodford (1984).

For the case of (ii), we consider {z} and it is also not difficult to show that its solution
explodes with a positive probability.

5.3 TAR(2:1) when b, <0

[1] Next, we consider the TAR(2:1) process when b < 0. For the phase @}, in this
process we have y;11 < 0 and ys12 = biyss1 + vei2 < 0. When b; < 0, by using the fact
that vy2 < —biyiy1 < 0, we notice that Eyi1]||y,,2||/(Q3F,2)] is bounded. When b; = 0,
we need a separate consideration and decompose

I (Qf+2) =1 (Q?+2Q:t3+1) +1 (Q?+2Q§+1Q?) +1 (Q?+2Q§+1Q?) .

Then the term associated with the first phase is immediately bounded, the terms with
other phases can be shown to be bounded in [2]-[5] below, and hence E;[|y:41]1(Q3,5)] is

bounded. Thus E;1[||y;,2||7(Q3,2)] is bounded when b; < 0, and consequently we can
take a positive constant ¢y, such that

Et[||yt+h+k||I(Qf+h)] < ca

for k>1and h > 1.
Also by decomposing

I (Q;{yh) =1 (Q§+hQ%+h~1) +1 (Q:+hQ?+h—1) 3

we have that Ey||yeyn|1(Q1Q5n 1)) and Ei[lyesrn—1|1(Q 4 Q3 1_1)] are bounded. Thus
for this stochastic process the remaining phases we need to consider are I(Q}, ,Q%,,_1),

H(Qtyn) = HQinQbin—1) + LH(QLaQlin 1), 1(QF14) = 1(@QF 4 Qbn1) + (@} aQ%n1) -
As we have done for the TAR(2:1) process when b; > 0, we shall check the ergodic
conditions for each phase of the parameter space C; (i = 1, - - - ,4) separately.

[2] C1 : Because a; > 0 (2 = 1,2) and a; + a; < 1, we can find positive constants c; 5
and 831 (0 < 821 < 1) such that for Qf,,

(5.13) Eillysnll (Qt1+thl+h—l)] < Gaaly| Ex[1 (Qtl+th1+h—~l)] +C2 .

14



For the phase Q},,Q},_1, We have y4 1 n_1 = b1ysih2 +vipn1 > 0and yyp2 < 0. Then
by using a similar argument as before Ej||yeyn1|1(Q},,Q¢ 1 1)] is bounded. Thus there
exist positive constants c;3 and 825 (0 < 622 < 1) such that

(5.14) Elllyeall1 Q)] < S22lly | EI(Qria)] + cas -

Next, we utilize the decomposition

HQ5nQen 1) = 1QEp Qe 1 Qbn o) +1 (Q1h Q2 h 1 Qi n2) -

When yi1n-2 > 0,Y140-3 > 0, and ¢ n1 = @1¥e1n—2 + G2Ye1h3+ Vi1 < 0, we have the
condition that vy 1 < —(@1Ys1n_2 + G2yen 3) <0 and |yiin_1| < 2|vipn_1| - By using

the same argument as before on .4, consequently, Eyf||y, n||1(Q} nQF 1 1Qtin_2)] is
bounded.

The remaining phase which we need to consider is I(IT}_o(Qf,5_2:Q%,1_1_2:))- By the
repeated substitution of yy1n = b1y n_1 + veisn , for instance, we have

(5.15)  0<yuun = bilaryern2+ G2thin—3+ Vipn—1] + vy

< (0183) (~Yern-5) + [[vesn| + bilvesna] + [razvesn-sl] -
By using the same substitution, we have the corresponding inequality for y;,5 1 . Because
a; > 0 (¢ = 1,2) and a; + a2 < 1, we can take a positive integer h (h > 2) such

that 0 < (—b1)a? < 1 and 0 < @ < 1 . Then we can find positive constants c; 4 and
023 (0 < 633 < 1) such that

h
(5.16) Et—h[||'.'!t+h“I (H(Q§+h—2iQf+h—1—2i))]
i=0

h
< baslyn|Ex[1 (H(QltiJrhfZiQfH‘:vl—Zi))] +Cy -
i=0

For the phase Q7 ,Q}, ,_,, we immediately obtain that E; [|ye4n|[(Q?,, Q¢ 1_1)] is bounded.
Also by using the same argument to Ey[|ysn—1|1(Q?,,QF,s_1)] as before, we can find pos-
itive constants ¢, 5 and 654 (0 < 624 < 1) such that

(5.17) Ei[lysn |I(Q§+th1+h—1)]
= Euflyenl(Z (Qg+thl+h—1Qtl )+1 (Qf+thl+h—1Q‘t‘+h—2))]
< 62.4|yt|Et [I (Qt2+thl+h—1Qtl+h—2) +1 (Q?+thl+h~1Qf+hﬁ2)] +c25 .
For the phase Q},,Q%,, 1, We need to consider the phases I(II?(Q%,; 2,Q% 1 _1_2:))

except several conditional expectations terms being finite. But then we can modify our
arguments for the phases

I(IT:, (Q§+h~2iQf+h—1—2i))
and we can find positive constants c; and 655 (0 < 8,5 < 1) such that

(5.18) Ee nlllysnll (_]_:%(Q?+h—2iQ‘ti+h—l—2i))]

h
< 52.5(—yt—h)Et—h [I (H(Qf+h—2iQ‘t1+h—l—2i))] + C26 -
i=0
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Hence together with (5.15)-(5.18) we can find positive constants c; 7, o6 (0 < 26 < 1),
and a common positive integer h such that

(5.19) Exfllyesnlll < Gasllyell + oz -

[3] Cs : First, we use the decomposition

I Q4 nQFn 1) = 1QEp Q7 h 1Qtn o) + 1(QFh Q2% 1 1Qn2) -

For the first phase, we have Yy p 1 = 1% -2 + G2¥sin-3 + Vepn 1 and Ypyp = biyein1 +
Uiy n - Then there exists a constant cy g such that

(5.20) Eiih s [”yt+h 1 I(Q€+hQ:tl+h—1Qf+h—2)]
< max|aiby + az, (=b1)(arbs + a2)|(—yern-3) 1 (Q4n Q% n1Qtin-2)] + 28 -
By repeating this procedure, we can find a positive integer h (> 2) such that |(—b;)(a1b; +

as)"| < 1 because of the condition 0 < a1b;+ay < 1 . Hence we can take positive constants
c29 and 627 (0 < 627 < 1) such that

h
(5.21) Etfh[”ywh ”I(H(Qt4+h—2i ?+h—1—2i))]
i=0

h
< Srlyn|Enll (H(Qf+h~2iQf+h~1~2i))] +Cyg .
=0

This type of argument can be also applicable to the terms involving I (Q7,  _2:Qf h_1-2:) -
Since

I Qbin) = 1(Q2 1 Q0 h 1@ ha) +1 (@ h Qi n 1@ h2)

and Ei[|lyernl1(Q2 1 Q% h_1Q3 n_2)] is bounded, we can also find positive constants cz 19
and 62_8 (0 < 62.8 < 1) such that

h
(5.22) AR (( ) (2N
=0

h
< Gaslyt-nlEinll (H(Q§+h—2intl+hflﬁ2i))] + C210 -
i=0

Next, we consider the phase Q},, (h > 2) and use the decomposition

I (Qt1+h) =1 (Qt1+hQ;1+hm1) +1 (Q}+hQ:+h_1) )

whose first term can be further decomposed as

I(QinQtin1) = 1(QLnQtn 1@ na) +1 (QihQin 1@ 2) -

For the phase Qf, Q¢ 1Q3, 1 o, the conditional expectations of all terms involving

16



Yerni (i = 0,1,---,h — 2) are bounded. For the phase Q},, Q¢ »_1Q?,, 5, the condi-
tional expectations of all terms can be reduced to that with 1(Q},,_,Q%,,_,)-
Now we consider the decomposition of

I Q4 r@ 1) = 1 QL aQhh1Qbn 2) +1 (QinQiin 198 n2) -

By using the argument as in [1], for I(Q},,Q}4_1Q4,n_) We can find positive constants
C2.11 and 62‘9 (0 < 62_9 < 1) such that

(5.23) Ein o [“yt+h 11 (Qt1+th1+h—1Qtl+hA2)]
< Sollyrh—2||Erin 2l (Q:+th1+h—1Qtl+h~2)] +cn

simply because of the condition 0 <ay < 1.

For the phase Q},,Q}, ) 1Q¢, »_2, We can ignore the conditional expectation terms except
that with I(Qf,,Q4, n_1Q}1h_2Q%1_3), Which is eventually reduced to the term with the
phase I (Qg+h—2Q?+h—3) .

Finally, we consider the phase Q?,, . We need to evaluate

1 (Q$+thl+h—l) =1 (Q%+th]+h~1Qtl+h~2) +1 (Qt2+thl+h»1Qf+h—2) .
But then we can use the same argument as for the phases Q},,Q},,_; and Q},, Q% ,_1 -

[4] C5 : Because many arguments in [4] are similar to [3], we only present the important
differences. As we have considered in [3], for the phase Qf we only need to investigate
the decomposition

I(Q?+th+h—l) = I(Q:—I—th—i—h-1Q?+h—2Qf—l—h—S)+I(Q:+th+h—1Q:+h—2Q;1+h—3Qf+h—4)+' T

where we have ignored other terms. For the first term of I(Q},,Q%,, ), we can use the

same argument as [3]. For the second term, we can find a positive constant c;.12 and an
integer h such that

(5-24) Et+h—4[ma'x[yt+ha _yt+h71]I (Q‘t1+hQ?+h—1Qt1+h~2Q‘t1+h—3Q?+h—4)]

< ma.x[—blellA2b, ellAzb](_yt+h—4)Et+h—4 [1 (Q§+hQ?+h—1Q:+h—2Qg+h—3Qf+h—4)]
+c2.12.

Then we can find an integer h, and positive constants ¢;13 and 8519 (0 < 8330 < 1) such
that

(5.25) Eilllye w1 Q31 1)] < S210llw: | E[T(QF )] + €213
provided that e]Ab < 1 and €, A%b < 1.

[5] C4 : There are some complications involved in this case and the ergodic region

becomes quite complex. We have two situations whether the characteristic roots of the
coefficient matrix A ( ga(A) = 0) are real or complex.
When D(A) >0 (0 < a1 <2) and a1 + az < 1, two roots A; (z = 1,2) are real and we
have a simple relation that 0 < A3 < A\; < 1. Then as before in Sections 5.2 and 5.3 we
can find a positive integer h such that e’ A"l < 0 . Thus we can find positive constants
C2.14 and (52_11 (0 < 62_11 < ].) such that

(5.26) Eillyynlll < Senillyell + c2aa
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When D(A) < 0, there are two complex roots and the conditions become complicated.
For the phase Qf, we decompose

1 (Qngh) =1 (Q§+th+h—thl+h—2Q§+h—3) +1 (Q:+hQ%+h71Qtl+h—2Qtl+h—3) +-ee,

where there are some other terms. But the conditional expectations with those terms
are bounded by using our previous arguments, and can be ignored. However, we need to
consider the transitions from phases Q},, , and Q?,,_; to the phase Q,,, which may
have many periodicities. For instance, as we have given in [4], we can find an integer h,
and a positive constant ¢y 15 such that

(527) Et+h1 “4[I|yt+h1 ”I(Q;i—i-hl Q?«Fhl—thl—{—hl —2Q'i4+h173)]
< max[—by, 1)e; A’b(—yiihy—a) Briny-a[H(QF 1, Qi 1@ h, 2@t in,_3)] + C215-

By the same token, we can find an integer h, and a positive constant c; 15 such that

(5:28)  Epiho—s Y, |1 1(Qt1n, QF 1 ny— 1@t hy—2@t 1y 3Q% 11y —a)]
< max[—bi, 1)e; A*b(—ys1h, 5) Erpny—s[l (Qg+h2Qf+hg~thl+h2 —2Qt1+h2—3Q§+hz—4)]
+Ca.16-
For these cases, we can take positive integers hy (> 2) and hy (> 2) such that
max[(—b1) (e; A’D)™, (€ A%D)™]| < 1,
and
max[(—b1)(e; A°b)", (€,4°)"?] < 1.

Then we can deal with other cases as well in the same ways provided that we have finite

positive integers h; (¢ > 1) . Hence we have proved that the solutions are non-explosive if
the conditions in this case were met.

[6] Necessity : In order to prove the necessity of our conditions for Cy,C,, and Cs
cases, we use the similar arguments used for the TAR(2:1) model when b; > 0, which
is in turn based on the method used by Petruccelli and Woolford (1984). Since it is
straightforward to do it, we omit the details.

5.4 TAR(2:2) when b, <0

[1] In this subsection we shall consider the TAR(2:2) process when b; < 0. For this

stochastic process we notice that F[||y,]|1(Q1Q%_1)] and Ei|||ly,||[1(Q3Q3_,)] are bounded.
Then except several (finite) conditional expectations we only need to investigate the phase

Q1Q:_1Q;_, for the phase @},
H(QiQ; 1Q:) + 1(@Q% 1)
for the phase @2, and
HQIQi1Q1 2Q1s) + 1(Q}Q7 1Q1»)
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for the phase @7, respectively. Also for the phase Qf, we only need to investigate

I(@Q1Qi ) + 1(QiQ7y) -

As for the TAR(2:1) process, we need to consider the ergodic conditions for Cy, Cy, Cs,
and Cy, separately.

[2] : First, we consider C;. Because a; > 0 (i = 1,2) and a; + ay < 1, we have the
condition that €] Al < 1 and 0 < e; A%l < 1. Then there exist an integer h and positive
constants ¢z and 631 (0 < 837 < 1) such that

(5-29) Et+h—2[”yt+h” (I(Qtl+th1+h—1) + I(Q§+th1+h—1Qtl+h—2))]
< 63.1”yt+h—2”Et+h72 [I(Qerthl—H;A) + I(Q?+th1+h_1)] +caa -

For the phase Q?, ,Qf,,_1, by using the similar arguments in Sections 5.2 and 5.3, we
only need to investigate the conditional expectations with the phases

HQ 1 Qtn 1@ n 2@ in—sQiin—s) + 1@ 4 Q8 11 Q1 —2Qt1n—s)

For the second term, we have

(5‘30) Et+h1—3 [”yt+h1 ” I(Q?+h1 Qg+h1—le+hl 72Qt4+h1—3)]
S 63-2”yt—|—h173”Et+h1*3 [I(Qg—{-hlQ§+h17]Qt2+h1—2Q;1+h1—3)] + C32,

where h; is a positive integer, ¢35 is a positive constant, and 833 = max[—b;, 1]e; Ab .
If elAb < 0 and b, < 0, then we have a representation

0> yein, = bi(arbr + a2)yeyn, -3 + Weyn,
with ysin, 3 € Qfyp,_3 and yun, € QF,, where wys, is a linear combination of

Vtthy—i (7’ = 07 11 2)
Then we have that

Ef+h—3[|yt+h1 |I(Q’%+h1Q§+h1—lQ%+h1—2Q‘tt+h1 —3)]
is bounded. By using this fact, we also have
Eyin-allyern 1| 1(QF 0, @t iy 1QF 15y 2@t y—3)]
t+h—3[|Yt+h1—1 t+hy Yt+hy - 1¥t+h —2Wt+h, -3

is bounded. We note that we need a separate consideration when b; = 0, but the result
is the same by using a tedious but similar argument as we have used in Section 5.3.
For the first term, we have

(531) Et+h2 4[|Iyt+h2”I(Qt2+h2Q§+h2 1Qf+hn~2Q§+h2—3Qg+h2—4)]
< 633||yt+h2 4||Et+hz 4[1 (Qt+h2Qt+h2 th+h2~2Q?+h2—3Q§+hz—4)] +c33,

where h; is a positive integer, ¢33 is a positive constant, and 833 = max|—b;, l]elAB2e1
If e; AB?e, < 0, then we have the similar argument as for e, Ab < 0 and we only need to
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consider the case when e; AB2e, > 0. Under the conditions we have stated in this case,
we can find positive integers h; and hy such that

max|—by, 1](e;ABe; )" < 1

and
max[—by,1](e; AB%e;)" < 1.
Actually, because we have a; > 0 (2 = 1,2) and a; + a; < 1 for C}, the first condition is

automatically satisfied while we need the same condition explicitly for Cs and Cj .

Hence we can find an integer h and positive constants ¢34 and 834 (0 < 834 < 1) such
that

(5.32) Et[“yt+h”I(Q$+hQ§+h—l)] < 63'4”yt"E[I(QnghQ§+h—l)] + 34 -

The rest of our arguments are quite similar to those appeared in the previous subsections.
Also it is straightforward to treat the phases for C; (i = 2, 3,4) . The proof of the necessity

of our conditions is also quite similar to the one for the TAR(2:1) when b; > 0 and so we
omit its details.

5.5 TAR(2:2) when b, >0

[1] The proof for the TAR(2:2) process when b, > 0 is quite similar to the ones for the
TAR(2:1) process when b, < 0. We notice that E,[||y,||1(Q?Q¢_,)] and E:[||v. || [(Q{Q3 ;)]
are bounded. Then for the phases @? and Q¢, we only need to investigate the conditional
expectations with the phases Q?Q} , and Q#Q? , .

For the phases )} and @2, we can utilize the decomposition

Q) = 1(QiQ; 1) + [(QQF 1)
and

I(Q?) = I(Q?Q:t{l) + I(QfQ%—l) .

[2] : The arguments for C; (i = 1, 3,4) are quite similar to the cases already appeared
in the previous subsections and we briefly discuss only the case for C; .
The derivations for C; are quite similar to the case of Cy for the TAR(2:1) process when
by < 0. In the present case, by using successive substitutions, we use the decomposition

(5.33) 1(QiQ:-1) + 1(Q:Qi1) = I(QQ1 1Q12Q1_5) + 1(Q1Qi_1Q1_2Qi 5)

H(Q Qi 1@t 2Q75) + 1(Q1Q11Q72Q13) + - -
As we have discussed in [1], we can ignore other phases because the associated conditional
expectations are bounded and they can be negligible.

In the present situation we have to only take account of the sequences of the phases

@' — @ — @Y, [@' — Q! — @* — @], and so on. For the first case, we can take a
positive integer h; such that

(534) Et+h-1 —4 [“yt-l—hl ”I(Qtl+h1 Q§+h1A]Q%+h1—2Q:+h1—3)]
S 64.1(yt+h1—4)Et+h1—4[I(Q;;l—i—hlQ?+h1—lQ%—l—h1—2Qtl+h1—3)] + C41 5
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where we have taken c,; is a positive constant.
In this case we can find a sufficiently large integer hy (> 2) such that

841 = max|by, 1](e; A%D)™ < 1.

The rest of our arguments are quite similar to the case of C; for the TAR(2:1) process
when b; < 0. We have proven that the solutions are non-explosive if the conditions in
this case were met.

The proof of the necessity of our conditions for Cy, Cs, and Cy is also quite similar to
those in other cases.
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Appendix : Some Figures

In this appendix, we give several figures. All figures reported here are the results of
the simulations on the sets of 10,000 realizations of {y;} based on the TAR(2) processes
and the SSAR(2) processes without any disturbance terms. We have checked the ergodic
regions and basically confirmed the adequacy of the same regions by the corresponding
simulations for the TAR(2) and SSAR(2) processes with disturbances. It was all we could
do because the criteria of convergence in simulations are more difficult and subtle when
there are noise terms.

All figures for the TAR(2:d) processes are denoted by TAR(2) with the delayed pa-
rameter d and drawn in the (a;,a;) space while the figure for the SSAR(2) process are

drawn in the (r1,72)—space. The shaded areas in figures are the geometrically ergodic
regions.
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Some Figures (Continued)
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Appendix : Some Figures (Continued)
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