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1 Introduction

Consider the canonical form of the multivariate normal linear model in which the p x m
random matrix X and the px p random symmetric matrix S are independently distributed
as N(Z,X,1,,) and W,(X,n), respectively, where we follow the notation of Srivastava
and Khatri (1979, p.54, 76). We shall assume that the covariance matrix X' is positive
definite (p.d.) and that the sample size n > p, and thus S is positive definite with
probability one, see Stein (1969). In this paper, we consider the problem of estimating
the covariance matrix X and the generalized variance | ¥|, the determinant of the matrix
Y under the Stein loss function

L(EE)=tX2X ' - |Zx" Y —p, (1.1)

where ¥ is the estimator of X and every estimator is evaluated in terms of the risk
functions R(w, %) = E [L(X, X))}, w = (X, 5).

Beginning with the work of James and Stein (1961), where they showed that the
estimator s
Y =TDT, (1.2)
where § = T'T*, T is a lower triangular matrix with diagnal elements (and hence unique),
and

D =diag(dy,...,d,), di=(n+p+1-2)"" i=1,...,p. (1.3)

. . .. . . <UB _ .
dominates the uniformly minimum unbiased estimator X = = n~!S, many estimators

have been proposed in the literature dominating EUB, see Stein (1977) and Haff (1979),
among them, who developed what is now called Stein-Haff identity that led to a substantial
development in this area, see Kubokawa (1998) for an extensive review.

The estimators mentioned above did not use the information available in the observa-
tion matrix X while Stein (1964) has shown in the univariate case, p = 1, that a truncated
estimator that utilizes the information in the sample mean dominates the uniformly mini-
mum variance unbiased estimators of the variance o2. Attempts in this direction utilizing
the information contained in the sample mean were first made by Shorrock and Zidek
(1976) and Sinha (1976) who provided minimax estimators for the generalized variance
using the information available in the observation matrix X.

The mathematical tools used in the above two papers to obtain these minimax estima-
tors were, respectively, the use of zonal polynomials and Fubini-type theorem of Karlin
(1960). Sarkar (1989, 1991) and Iliopoulos and Kourouklis (1999) used the above two
mentioned approaches to obtain the confidence interval for the generalized variance | X|.
Sinha and Ghosh (1987) also provided a truncated estimator of the covariance matrix X
utilizing the information contained in the observation matrix X . This truncated estimator
is given by

556 { (n+m) S+ XX") if (n+m)(S+XX')<n'§

n~lS otherwise,

(1.4)



improving on the UMVU one =% = 118 under the Stein loss, where A > B means
that A — B is nonnegative definite. Based on the same technique, Hara (1999) recently

showed that :‘L\’SG is dominated by

= = §12Qdiag (¢4, .., 6,)Q'S"?

for

. { min {01, (n+ m)" (1 +5)} if % >0

n~t if v, =0,

where @ is an orthogonal matrix such that Q'SVPXX'Ss™VQ = diag (V1y-- s Vp)-
When the rank of X is one, namely m = 1, the risk functions can be easily handled
and several further observations have been given by Kubokawa et al. (1992, 93) and
Perron (1990). Especially, Kubokawa et al. (1992) derived an empirical Bayes estimator
. . . . S5G .

improving on the Sinha-Ghosh estimator ¥ . However, none of these estimators were
shown to dominate the initial James-Stein minimax estimator EJS. Thus, our aim is
to obtain an estimator that dominates EJS as well as in which, as suggested by the
above estimators 3 and /E\HR, the coefficients (n 4+ p +1 — 2¢)~! should be changed to
(n+m+p+1—2i)"! when we utilize both S and X in estimation of X. In Section
2, we develop a new type of estimator with such a natural analogy. For this purpose,
we introduce a new method for the improvement. This method can be also applied in
Section 3 not only to construct a new form of an improved estimator of |X| but also to
give another proof of the result of Shorrock and Zidek (1976) and Sinha (1976). When
X has full rank, namely, m > p, another type of minimax improved estimator motivated
by Srivastava and Kubokawa (1999) are provided in Section 2, and the improvements on
any scale equivariant estimator are shown. Monte Carlo simulations are carried out in
Section 4 to compare risk behaviors of the proposed estimators.

2 Estimation of the Covariance Matrix

2.1 Improvements on the James-Stein minimax estimator

Consider the problem of estimating the covariance matrix X based on (S, X) relative
to the Stein loss function Every estimator is evaluated in terms of the risk function
R(w,X) = E [L(X, X)), where w = (X, E).

Let G% be the triangular group consisting of p x p lower triangular matrices with
positive diagonal elements. Let T = (¢;;) € G such that § = TT*. For constructing an

estimator improving on the James-Stein minimax estimator (1.2), define m x p matrix Y’
by

Y =(y) = (T7'X)

3



(yh' . 7yp)
= (yla' . . 7yj—1?Yj)7

for Y; = (y;,...,9,) and j = 2,...,p. Also for j = 1,...,p, define m x m matrix C;
inductively by

Cj = Cj(yla ce 7yj—1)

= Cj.1— (1+ y;_1Cj—lyj—1)‘lcj—ly]‘-1y;‘—1cj—1 (2.1)
where C| = I,,. Then we can see that
1+y1y yiY,
I,+YY| = 171 1
| P + I ’ Yt2y1 Ip—l + Y;Yz
= (1+y19) ’Ip—l + YtzczYzi

L+y;Coy, 43C:Y
Yéng2 Ip_z + YgCQY:;

= (1+ i)+ 45Cay,) [I2 + YiC:Y|

= ﬁ(l +v:Ciy,). (2.2)

=1

= (I+ ytlyl)

Using the statistics ¥:C;y,’s, we want to propose a new estimator given by

" - rer, (2.3)
where G = diag (g1,...,g,) for
. 1 1+ yiCiy,
gi = min n+p+1-2" n+m+p+1-2f"

—~TR . .
Theclx\'em 1. The truncated estimator X dominates the James-Stein minimaz es-
timator X relative to the Stein loss (1.1).

Proof. For sake of convenience, let

tij-1 = (tij=1y-+estpj-1)’
tii 0

Lirni tinie
T;; = : :

tpi tpi+1 tr lpp



for j =2,...,p. Ty, corresponds to T'. By making the transformation, it is supposed that
XY = I, without loss of generality. The risk difference of the two estimators is expressed
as

Rw;S7°) - Rw; B
= E[tr(D - G)T'T —log|DG™|

p
= 2.4,
=1

where
A; = B [{(di — diai) (£ + £y i) — logdi/(dfai) } I(di > ai)],  (24)

for

a; = l+yiCiy,,
df = (n+m+p+1-2)""

We shall show that A; > 0 forz = 1,...,p. For this purpose, we write the joint density
function of (T,Y) as

P
co(Z) [T tirmetr [-27H{T(I, + Y'Y)T* - 2TY'Z*}| (2.5)

i=1

which is given by making the transformations § — TT* and X — Y"' = T 'X with
the Jacobians 27 [Tr_, t%**! and |T|™, where ¢o(Z) is a normalizing function. Let us
decompose I, + Y'Y and Y*'Z® as

I,+Y'Y = I,,+(§’,1t )(yl,Yg)
2

t
_ @11 Ay
- b
a; Ay

_ 01 012
0 Oy )’
where ay; = 1 + yiyu az; = Ytzyn Ayp =1, + Ytgyz, 0 = ytIEU 0., = ’yt152,

0, = Yi€&, and @y, = YL Z, for €, being the first column vector of Z°. Then we have
281 2 1

tr {T(I, + Y'Y)T' - 2TY'E"}

— tr tll 0 aiy a,t21 tll t%l
tyy Ty az; Ay 0 ng



_of tu O 011 612
ta T 031 Oy
= (autﬁl - 2911%1) + (autéltél + 2t (Trpan — 312))

+ (tI‘ T22A22Tt22 — 2tr T22@22>

= (autfl - 29111511) an ||tz + e (Tazaq — 05| — a7} 61265,
+tr ng(Agg — al_llaglaél)Ttn — 2tr T22(@22 — an 021012) (26)
= (011?5?1 — 29117511) + an|ltar + z1])* + hi(y, Y2, Ta2),

where C, is defined in (2.1), ||u||> = u'u for suitable column vector u

z1 = af (TnY; - E)y,,
hl(y11 Y2,T22) = ftr T22(Ip 1 + Yt(:’ng)T;? — 2trT22Yt2CZE'2

=1, t =~ ==t

—a1; Y1=2=2Y,.

We are now ready to prove that A; > 0. Combining (2.4), (2.5) and (2.6) gives that

/"'/{(dl — djan)(8 + thitn) — log di/(djan) } I(d > djay,)
P

XC()(S) H t:-li+m_i

=1

1
Xexp [—5 {autfl - 2911t11 + a11||t21 + 21H2 + hl(yl, Y2,T22)}] (27)
thlldtzldT22dy1dY2.

Noting that
/|It21“2e—a11[|t21+Z1||2/2dt21
= /(“21“2 + ||:13||2)e—au||:t:||2/2da3 8
—_ 1 _
= <1|Z1|I2 + p_,> (27may)P~072,
an

we can demonstrate that
-1
> [ f { — day, (tfl + Ea-——) — log d, /(d’{au)} I(dy > diayy) (2.9
11

1
xc1(E,a11) H tn+m ‘exp [—5 {auifl — 2001t + hi(y,, Yo, T22)}]
thlldngd’yldYQ,



where ¢,(Z,a11) = co(E)(2may;)P~V/2. Note that hy(y,, Y2, Ta2) = hi(=y;, Y2, Ta2),

a;; = 1 + yly, and 6;; = yt€&,. When we denote the integrand of the r.h.s. of (2.9) by

Gi(yy, Yo, t11T0), the rhus. of (2.9) is rewritten by
/"'fG1(y17Y2,t11T22)d’!!1dY2dt11dT22

1
= 5 / o / {Gl(yl’ Y2’t11T22) + Gl(_yla Y23t11T22)} dyldY2dt11dT22
-1 d
- / /{ ~ djay) (31 + 2 ) — log -2t }I(d1 > diay) (2.10)
a11 diay;

1 _
Xcl(‘—’7a11 th+m i (911t11 +e 911t11)

1=1 2
1 2
Xexp {“'2" (alltu + iy, Yz,Tzz))} dt1dT32dy,dY »,
where
B _ J"O tn+m+1 ( B11t11 + 6—91]t11) e—aut%l/Zdtll
1 —

fo tn+m 1 (eenin + e—elltll)e_a“t%l/zdtll '

Making the Taylor expansions for €111t and e=%1%1 we see that

f()oo tn+m+1 Ee 0{92%%/(2()!}6'“1“%1”dt11

Jo© Bt TiZo {03ttt/ (20)!Yemon i 2y,
n+m 73 e~

N ffO t +m+1+2 llt 1/2dt11

= ] fo tn-{—-m 1422 -autu/Zdtll

1 fO (n+m+2+20)/2-1 —a:/2d$
ll’lf{a11 f pntm+26)/2-1—2/2 ] 1 }

B1:

(2.11)

. {n+m+2€}
= nf{ ——
I3 aiy
_ n+m
an '

Hence the non-negativeness of A; can be established since

+ -1 d
(dy — diay1) (n Ay )-—Iog !

a a1 dfa11

= — log
> 0.

Next we shall prove that A; > 0 for : = 2,...,p. To employ the same arguments as
in the above proof, we need to verify that for: =2,...,p—1,

tr {T(I, + Y'Y)T' - 2TY*'E"} (2.12)



: - — —t
Z {ajjt — 2y; Ci€;ti; + ajilltipn; + 251 ° — aj;:lyzcj"-"j+1'=’j+1cjyj}
J=1
+tr Tz’+1,i+1 (Ip i+ Yz+1Ci+1Yi+1) T§+1,i+1 — 2tr Ti+1,i+1Yf+1Ci+15i+1a
where a;; = 1 + nyiyz-,

Z;=4a

-1 (=i
it (Tz+1 1+1Y1+1 i+1) Ciy;

and E° = (£,,...,¢&;,Z:11) for column vactors €,’s. The same arguments as in (2.6) are
used to check the expression (2.12). In fact, we can observe that

tI‘Tii I —z 1-|-}/t(:'21/z Tt--—QtI‘T.,','Y?CiS
p—i+ i i 1

t t
= tr tii 0 ai; @i ti iy
—_ 14
tivri Tiy1im Qir1;i Aitiit 0 Tiiim

_of i 0 0 041
tivii Tiyrin Oiv1,; Oit1i41

= (an’t?i - 291‘1'151’1') + aiilltigrs + a7 (Tipri41@igri — 05 )P — 057105,:410% 4
T Tigript (Aiprivn — 05 Qig1i@iy )Ty g
=2tr Tiy1,i401(@it1,it1 — a5 @i1,05541)
= (am —2yiCi¢; tn) + aiil|tigri + zil | - 0 'yiCiE i1 ELL Chy;
Htr T 641 (Ip i+ Yz+1 (Ci IC iY:Y; Hop ) Yi+1) Tf+1,i+1
—2tr T4, 1+1Y1+1 (C’i 1CyyiC; ) =i,
which proves the expression (2.12), where Qit1; = Yz+IC Y, Aipriv1 = I 1+YZ+1C’ Y.,
bi = yiCi&;, 0iir1 = yiC:Z;y; and Oiy1,ip1 = Y1+1Cz'—'z+l Integrating out with re-

spect to o, 33,...,¢;41; and using the expression (2.12) and the same arguments as in
(2.7), we see that

/ /[ - diay) (t2 + —~—> log d ] I(d; > dfay;)
a dra;;

it
p

= . n+m—1
XCj(;_.,CLu, e ,a“) H t”
=1

xexp { { (aj;82; — 20;5t55) +he‘(’yl,---,y;,Yi+1,Ti+1,z‘+1)H
7

—1

X H (dt]'jd’yj)dyi+1Ti+1,

i=1



where
hi(yy,- . Yo Yirt, Tivriv1)
= —Z{aﬂ ¥,C;Z;1 55, Cy; ) (2.13)
ttr Tiprips (Dpmi + Vi Cin1Yipr) Thyy gy — 260 Tigr i1 Y Cipn S,

Similarly to (2.10), the non-negativeness of A; can be verified if we can show that

{(d, - d;‘ai,-) <B, 4+ P~ > —lo dd—} I(d,, Z d’[aii) Z 0, (214)

1

where . ,
fooo t;_’l;+m—1+2 (eeiitii + e—e;ﬂ,',') e—aggtﬂ/thii

— — e\ —aiitl ’
fooo t::l,i+m 1 (69,,1,‘,, + e—entu) e a"tze/2dtiz‘

From (2.11), we have that B; > (n + m — ¢ + 1)/a;;, so that the inequality (2.14) is
guaranteed. Therefore the proof of Theorem 1 is complete. oo

‘i=

2.2 Improvements on scale equivariant minimax estimators

It is known that the James-Stein minimax estimator treated in the previous subsection
has a drawback that it depends on the coordinate system. We here try to construct
truncated procedures improving on minimax estimators not depending on the coordinate
system when m > p or X X' is full rank.

Assume that m > p in this subsection. We consider the following equivariant estima-
tors under a scale transformation:

S(H'ASAH H'AXO) = H'AY(S, X)AH, (2.15)

for any H € O(p), any O € O(m) and any p x p symmetric matrix A, where O(p) is the
group of p x p orthogonal matrices. Then it can be seen that (2.15) is equivalent to

(S, X)=(XX"YHOH'FH)H (X X")"?, (2.16)

for any H € O(p), where F = (X X'")"1/2§(X X*)~'/2  and (X X*)}/? is a symmetric
matrix such that (X X)) = ((X X*)'/2)2. Let P be an orthogonal p x p matrix such that

PH(X XY V2S(XXH)™V2P = A = diag (Ay,..., \,)
with A; > Ay > ... > A,. Then the estimator (2.16) can expressed by
(W) = (XX PW(A)PHX X)/? (2.17)

9



for
W(A) = diag (¥1(4),. .., ¥p(4)),

where 1;(A)’s are non-negative functions of A. The diagonalization of ¥(A) follows from
the requirement that eW(eAe€)e for any € = diag (£1,...,41). This type of estimators
is motivated by Srivastava and Kubokawa (1999). We call them scale equivariant in this
paper.

For given estimator 3 (%), we define a truncation rule [@(A)]TE by

(@A) = diag (¥{(A),..., v *(A)), (2.18)
wiTR(A) = min {¢i(A), 22_:‘"11} , 1=1,...,p,

which gives the corresponding truncated estimator of the form
S([@)™F) = (X X"/ Pdiag (¥TR(A), ..., TR(A)) PX X )/, (2.19)
- Then we get the following general dominance result which will be proved later.

Theorem 2. The truncated estimator X([W]TR) dominates the scale equivariant es-
timator X (W) relative to the Stein loss (1.1) if P {[!I/(A)]TR # Q(A)] > 0 at some w.

It is interesting to show that /Z\'(!P) is minimax under the same conditions on ¥ for
the minimaxity of an orthogonally equivariant estimators based on S only, given by

(@) = RY(L")R!, (2.20)

where R is an orthogonal matrix such that § = RL*R’ and L* = diag(/],... ,£3) for
eigen values 7 > ... > 2.

Proposition 1.

(1) If the orthogonally equivariant estimator X (W) is minimaz, then for the same
function @, S’(W) is minimaz and scale equivariant one improving on EJS relative to the
Stein loss (1.1).

(2) If P[i(A) < ;(A)] > 0 for some i < j, then X(¥°) dominates E‘(&P), where
&DO(A) = diag (¢ (A),... ,z/)pO(A)) majorizes (¥1(A),...,¥,(A)), that is, TI_ 9 >
Vi1 for1<j<p—1 and =1 1/’10 = i1 Yi-

Proof. Recall that F = (X X")"1/28(X X*)~/2 = PAP" and that § ~ W,(n, I
Then it is seen that the conditional distribution of F' given X has W,(n, X.) for X.
(X X*)™'. Then the risk function of X (%) is represented by

p):

—

R(w, Z(®)) = EX [EFX [tr PO(A)P' 57! — log|PE(A)P' S| - p|X|], (2.21)

10



so that given X, conditionally PW P' corresponds to the orthogonally invariant estimator
(@) of X, with S ~ W(n, £*). Hence the minimaxity of ¥(¥) implies the minimaxity
of X'(¥), which proves the part (1). The part (2) follows from (2.21) and the results of

Sheena and Takemura (1992). oo

From Proposition 1, we can obtain some scale equivariant and minimax estimators by
using the results derived previously for the estimation of X.

[1] Stein type estimator. Let 3= (@) for
TS (A) = diag (dy Ay, ..., d,A,). (2.22)

—~S
The minimaxity of X follows from the result of Dey and Srinivasan (1985), who also
another orthogonally equivariant estimator beating ES for p > 3.

[2] Takemura type estimator. Stein (1956), Eaton (1970) and Takemura (1984)
gave an orthogonally equivariant and improved estimator, which can be represented in
our problem as

—

o (xxH)? {/O( )rUpoU§rtdu(r)} (X XH)V2, (2.23)
P

where Up € GF with UpUL = I''FT for F = (X X')"1/28(X X*)~Y/? = PAP". Take-
mura (1984) provided another expression as > = E(!I/T) for WT(A) = diag (¥7,. .. ,@ZJZ;),
where

(%1 ,..., 1) =diag (A1, ..., Ap) W(A)(dy,. .., dy)", (2.24)
for p x p doubly stochastic matrix W(A). Also Takemura (1984) gave exact expressions
for T (A) for p = 2 and 3. For instance,

1/)T )\1 ( \//\_1 \/E

= ety 4 e E—d, |,
1 m+¢zl+m+m2>

oT = X ( V2 VAL d2)

—d] F ————
2 Y TERY, ARV, v v
for p = 2. However, the explicit calculation of W(A) for p > 3 remains an intractable
problem.

__[3] Perron type estimator. Perron (1992) gave an approximation to W (A), say
W (A), with a doubly stochatic property, and showed the minimaxity of the approximated
estimator. Let

_ trj_l(A,‘) trj(Ai)

w;(A) = — ,
J( ) tl‘j_l(A) tI‘]‘(A)
for
1 _ if 7 =0,
tr;j(A) = lei1<"'<ijsp izt Ay ifg=1,...,p,
0 ‘otherwise,

11



and

Ai = dxag ()\1, ceny )\2‘_1,0, )\,’+1, ce ,)\p).
Let W(A) = (dy;) and put

(WF,. .. ¢F) = diag (M, .., M) W(A)(dy, ..., dy ). (2.25)

For p = 2, they are given by

)\ A

A A
P~ ) 2 _d L 4.
V2 VT W W W

Then the result of Perron (1992) implies the minimaxity of the scale equivariant estimator

—_—

3 = S(&P) for ¥P = diag (wF,...,4F).
[4] Haff type estimator. Let

—~H 1 a
5 =~ (54 = X X)) (2.26)

<H . .
From the result of Haff (1980), it can be verified that & dominates the unbiased esti-
~UB —~H ~H = )
mator X when 0 < a9 < 2(p —1)/n. X" is expressed as X = X(¥) by letting
TH = n=1A 4 ag(tr A7H)71L.
Yang and Berger (1994) derived an orthogonally invariant estimator as a Bayes rule
against the reference prior distribution, and we can construct a scale equivariant one

corresponding to it. Since it is difficult to express the estimator in an explicit form, we

shall not consider this estimator in this paper. However, for some numerical investigations,
see Sugiura and Ishibayashi (1997).

Now, applying the truncation rule (2.18) to the above estimators yields the improved
estimators.

Corollary 1. ForW = W% 0T and O, the estimator g([W]TR) is scale-equivariant,
minimaz and improving on the corresponding estimator X (W) relative to the Stein loss

(1.1). Also Z([@H|TR) dominates X (PH).

__ It should be noted that Corollary 1 does not imply the dominance of E‘([!I/]TR) over
(%), but states the dominance of 3 ([@]TR) over E(!IQ Although X(W¥) is not identical
to (W), if X(¥) is a superior minimax estimator, X (%) inherits the same good risk
properties with minimaxity and improvement. Corollary 1 states that these minimax
estimators can be further improved on by /Z\‘([!P]TR) by employing the information in X.

12



Proof of Theorem 2. Without any loss of generality, let X = I,. We first consider

the expectation of the general function A(F, X X*) of F and X X*. The expectation is
evaluated as

E[h(F,XX")|
_ cO(E)//h(F,XXt)|S|(”"’“1)/2
exp {—tr (S + X X' - 2X 5%)/2} dX dS (2.27)
- co(E)//h(F,XX*)|S|(”""1)/2
exp {—tr (S + X X*)/2} / exp {tr X HE*/2} u(dH)dXdS,

where p(dH) denotes an invariant probability measure on the group of orthogonal ma-
trices. Here the second equality in (2.27) follows from the fact that F and X X' are
invariant under the transformation X — X H for m x m orthogonal matrix H. One of
the essential properties of zonal polynomials gives

/exp {tr XHEt/2},u(dH) = Za,(:")C,c (SEtXXt) ;

where o{™) is given in James (1964) and C,(Z) denotes the normalized zonal polynomials
of the positive definite matrix Z of order p corresponding to partitions k = {k1,...,kp}
so that for all k =0,1,2,...,

(tr Z)F = > C(2).

{k:ik1+-+rp=k}

Let W = X X', and the r.h.s. of (2.27) is written by
a(Z) [ [ h(F, W)|s[0=r=0rw|(ner-n

exp {—tr (S + W)/2}> " a™C(EE'W)dSIW,

for the normalizing function ¢;(Z). Making the transformation F = W~Y2SW~1/2 with
J(S — F) = |W|+D/2 gives that

E[nF,XX")] = cl(s)//h(F,W)|jz’«‘|(ﬂ-f>-1>/2|W|(n+m~f’—1)/2 (2.28)

xexp {—tr (F + )W /2} > oW C(EE'W)dFdW .

Again making the transformations FF = PAP* and W = PV P! in order, we see that
(2.28) is represented as

E [h(F, X X")]

13



= 62(5)///h(PAPt,W)h(A)|WI(n+m—p—1)/2
X exp {—tr (A + I)PtWP/Q}Za,(cm)cn(gstw)u(dP)dAdW

_ cz(s)///h(PAPf, PV PYA(A)|V [(rm=p=1)/2 (2.29)
xexp {—tr (A + 1)V /2} Y o™C(EE'PV PYu(dP)dAdV,
where h(A) is a function of A (see Srivastava and Khatri (1979)).

Based on the expression (2.29), we can evaluate the risk difference of the two estima-
tors, which is given by

R(w, Z()) - R(w, Z([#]™)
= E[tr {PZ(A)P' - P[Z(A)TRP} W — log [@(A){[®(A)]TR}Y]  (2.30)
= EMtr {@(A) - [#(A)]""} E[V|A] - log [@(A){[@(4)]7F} 7]
By the basic property of zonal polynomials,
/ CUEE'PVPYu(dP) = C.(EEY)C.(V)/Cu(L,). (2.31)
For simplicity, let us put

A = diag(ay,...,a,)
= {@(A) - @)} (a+ D7,
B = (A+I)™.

Then from (2.31), it can be seen that

tr {&(A) — [@(A))"} E[VC.(V)|A]/E[C.(V)|A] (2.32)
> iﬁf{ﬁcﬁa‘% / CIAZ:3 CR(V)|V1("+’“‘?"1)/26‘“VB~1/2dV},

where c3(B) ia a normalizing function in W,(n + m, B). If we can show that for any «,
E[tr AVB™IC(V)|4]
= «(B) [ (rAVB) O (V)|V|rtmriize e VB gy
> (n+m)(tr A)E [C.(V)]|A], (2.33)

where conditionally, V|A ~ W,(n + m, B), then the r.h.s. of the extreme equation in
(2.30) is evaluated as

(the r.h.s. of (2.30))

14



> B [tr {@(4) - (AT} (0 + m)(A+ D) = log (AN[B(A}]

- YE {5 - 1= tog ()b 1 (w4 2 1))

> 0.

Hence we complete the proof of Theorem 2 with verifying the inequality (2.33).
We shall use the Stein-Haff identity due to Stein (1977) and Haff (1979) to prove the
inequality (2.33). For the Kronecker’s delta 4;; and V = (v;;), let
0
(14 6:5) oy’

and denote D = (d;;). For p x p matrix G(V) = (g:;(V')), define DG(V') by

d,‘j =

N | =

P
[DG(V)]ij = 3 disgsi(V)-
s=1
Then the Stein-Haff identity is given by
E[trG(V)BA] = E2tr[DG(V)] + (n+ m —p— Dr G(V)V'[A].  (2.34)
This identity is applied to the conditional expectation (2.33), which is rewritten as

E[tr AVB™'C,(V)|A]
= ERtr[D{AVC(V)}+(n+m—p—1)tr AC(V)|A]. (2.35)

For evaluating the first term in the r.h.s. of (2.35), we observe that

DIAVCVIs = L (52 5560 + Dot OV,

which yields that

e [DAVEV)) = B )0(V) + X N awadds GV (236

1=1 s=1

Here we need to evaluate the second term in the r.h.s. of (2.36). Since zonal poly-
nomials C,(V) are polynomials of the eigen values ¢;,...,¢, ({; > ---{,) of V with
nonnegative coefficients, we can put

f(L) = Ck(V)
for L = diag (¢4, ...,%,), and note that
9 f(L)= £(L) 20
0t; - =

15



Since V.= HLH' for pxp orthogonal matrix H = (h;;), we obtain by taking differentials,
as in Srivastava and Khatri (1979, p.31),

dV = (dH)LH'+ H(dL)H' + HL(dH"),
so that
H'(dV)H = H(dH)L + dL + L(dH"H. (2.37)
Since H'H = I, we have the relation that (dH')H + H'(dH) = 0, or
(dH')H = —H'(dH) = —((dE)HY,
which means that (dH®)H is a skew symmetric matrix. This fact implies that the diagonal

elements of the first and the second terms in the r.h.s. of (2.37) are zero. Letting
d = 0/0v;; especially and considering the diagonal elements in (2.37), we can see that

1 ol
5 (1+65) =— Bv;

1
= -2-[Ht(E”+E31)H]SS
= hishjsa (238)

where E;; is a p x p matrix such that the (4, j)-th element is one and others are zero.
Using the equation (2.38), we get that

di;f(L) = Eijl(dijér)a%fr(ll)

di]'fs =

V4
= Z frhirhjra
r=1

which is substituted in the second term in the r.h.s. of (2.36) to get that
P

Z i asvSi{diSCN(V)} = Z Z AsVsg Z frhzrhsr

i=1s=1 i=1

= izas{VH}sr{diag (firo s fo)H' Yy (2.39)

tr AV Hdiag (fi,..., f,) H®
= tr (H'AH) diag (41 fy,.. ., £, ;)
> 0.
Combining (2.35), (2.36) and (2.39) gives that
E [tr AVB™'C(V)|A]
> Bl(p+1)(tr ACL(V) + (n+m — p — 1)(tr A)Co(V)|A]
= (n+m)(tr A)E[C.(V)|A],
which proves (2.33) and the proof of Theorem 2 is complete. oo
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3 Estimation of the Generalized Variance

In this section, we treat the problem of estimating the generalized variance | X} which has
been studied as one of the multivariate extensions of the Stein result. The method used in
Section 2.1 will be applied in Section 3 not only to construct a new improved estimator of
| X| but also to give another proof of the conventional result given by Shorrock and Zidek
(1976) and Sinha (1976). It is supposed that every estimator § = §(S, X) is evaluated
in terms of the risk function R(w,d) = E,[L(4,|X|)] for w = (X, Z) relative to the Stein
(or enpropy) loss function

L(5,|Z)) = 6/|Z| - log§/| 3| — 1. (3.1)

Shorrock and Zidek (1976) and Sinha and Ghosh (1987) showed that the best affine

equivariant estimator of |X¥| is given by

_ (n—-p)
8 = —T|S| (3.2)
and that it is improved upon by the truncated estimator
sz_ . J(n—p)l o (ntm-—p) '
= S . .
) mln{ o S|, ) S + X X (3.3)

Shorrock and Zidek (1976) established this result on the basis of expressing the risk
function with the zonal polynomials. Since their approach was somewhat complicated,
Sinha (1976) gave another method base on the Fubini-type theorem of Karlin (1960)
which derives the distribution of a square root matrix of § with respect to the Lebesgue
measure. Using (2.2) and T = (t;;) € G¥ such that S = TT"®, we see that the estimator
857 is rewritten by

p

p
(SSZ = H(n -1 + 1)_1t?i X min {1, H G,} , (34)

=1 =1

where . ‘o
: +y,Ciy,;
Gi=(n—i+1)—diZidi .
(n—1i+ )n+m—z+1 (3.5)
Also we can consider another type of estimators which are sequentially defined by
P k
G =TI(n—i+1)""; xmin {1, Gy, G1Ga,...,[[ G; ¢, (3.6)
=1 i=1

for K = 1,...,p. Then the method used in Section 2.1 can be applied to establish that
552 dominates & and that §7F beats 67 F for k = 1,...,p. The two improved estimators

652 and 5;{ R are possible choice though the preference between them cannot be compared
analytically.
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Theorem 3.
(1) The estimators 65% dominates the & relative to the loss (3.1).
2) Fork=1,...,p, the truncated estimator 61T dominates §fX relative to the loss
k-1
(3.1), where §TF denotes &.

Proof. We first prove the part (1). Consider an estimator of the general form

Y4
5¢ = (H eit?i)¢(a'11’ e ’aPP)7
—

where ¢; = (n—i+ 1)  and a;; = 1 + y!C,y, for i = 1,...,p. Since it is supposed that
Y = I, without loss of generality, the risk function of &4 is written as

P
R(w,éy) = lH eitip —log [ eitio — 1] i

=1

From (2.12), it is noted that

tr {T(I, + Y'Y)T' - 2TY'="} (3.7)
p
Z{aiit?i_Qaz '—k y1a }+Zazzlltz+lz+zz]|
=1

where

ki(yh “ee ayj) = ai_ilyECiEi+lsf+ICiyi7
b = yfcifi-

Hence, integrating out the density with respect to ty,...,¢,,_,, we rewrite the risk as
P
w 5¢, / / (H e; t lOg H eit?i¢ - 1) (38)
1=1
. P
x H tnrm=iexp {— Z {aiz’t?i — 20t — ki(yq, .-, Y;) } /2}
i=1 =1
P
XC2(E, A11y. .- ,G,pp) H dt“dY
1=1
Note that forz=1,...,pand 7 =1,...,1,

eii(y17""yj7"'ayi) = (—1)5ij9ii(y17--'7_yj7"-7yz')7
ki(yla"")yja"‘ayi) = ki(yla""—yjr",yi)’
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where §;; is the Krpnecker’s delta. Then the risk can be further rewritten as

R(w,85) / / (H eit’é — log geit?i¢— 1) (3.9)

g Bt a2
X H {5 (eentn + e autn) tz+m 36 a“t“/2dtii}
=1

P
Xca(E, 11y .- App)EXP {Zki(yl,. .. ,yi)/fZ} dY

i=1

which is minimized at ¢ = ¢ where

P ftn+m ] ( Giitii + 6—9,','t,‘,') e—a,’,'t?'-/Zdtii
oz = 1

e ft”+m+2 2 (eeiet;‘i + e—0istu) e“aiit?;/zdtii'

From (2.11), we get the inequality

so that

in the case that ¢j < 1. Therefore the convexity of the loss (3.1) completes the proof of
the first part of Proposition 1.

Next we demonstrate the part (2). Let us define F by

Fp =

min (1, Gy,. .., J152} G‘,-)
?:1 Gi

From (2.10) and (2.12), it can be seen that

p

R(w,&k_l)—-R(w,cSk) = E[{ Fk-—l ﬁ Hez long}[(FkZI)

k
= EI:{ Fk—-l H Bk Y- 1yk)_10ng}[(Fk21) )

where

BZ(ylv'- . >yk) = BZ
f‘ " fo:l eit;i-fl(tu, .-

vtirs Therprt, Yigr) [T, dtiidTigq p41dY kpy
[ filta, ...

ks That kit Y k) [Thny @idT i1 51 dY gy ’
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for

- 9:, —8;;t —ait2 /2
filtins otk Tharhet, Yig1) = H{fﬂ+m i(elitii 4 g biiti)gmas "/}

XeXp{—hk(Tk+1,k+laYk+l)/2}v
hZ(Tk+1,k+17 Yk+1) = h’}; = tr {Tk+1,k+1(1p—k + Y§c+lck+1yk+1)T§c+l,k+1

t —
‘2Tk+1,k+1Yk+1Ck+1'=k+1} :

By the same arguments as in (2.11), we observe that

IO R B ety e M 2dT 1 1 dY ki

B - 3.10
k= Hf:l Gi f"'fnfzkﬂ t?i+m temh /2di+1,k+1dYk+1 ( )

By making the transformation Thy141Y iy = Xk+1, the r.hus. of (3.10) is expressed by

1 [ S Mo @t fo(Tegr rt, X ka1 AT kg1 5414 X ki
0 Gi [ T 85 Fo(Thgr ket Xkp1) T kg pp1dX gr

which can be easily seen to be 1/ [T%, Gy, where

Jo(Tryr,401, Xii1)
1
= exp [—5131‘ (Tk+1,k+1T;c+1,k+1 + Xit1Cr1 Xy — 2Xk+1ck+15k+1)] :

Therefore we get that R(w,dx—1) > R(w,d;) for any w, and the proof of Theorem 3 is
complete. oo

4 Simulation Studies

It is of interest to investigate the risk behaviors of several estimators given in the previous
sections. We provide the results of Monte Carlo simulation for the risks of the estimators
where the values of the risks are given by average values of the loss functions based
on 50,000 replications. These are done in the cases where p = 2, n = 4, m = 1,10,
Y =diag(1,1), & =a/3 and & =a for 2 = (§;)and 0 < a < 8.

The risk performances of estlmators of X' are first investigated. For the sake of simplic-
ity, we denote 3 *, °¢, 7% 3™ (@), B@S|TR), S(@TITR) and S([@H)TR)
with ap = (p — 1)/n by UB SG, JS, TR, S*, STR, TTR and HTR, respectively.

Table 1 reports the va,lues of the risks of the estimators UB, SG, JS and TR for m =1,
p=2 and a=20,0.5,1,2,3,4,5,6,7,8. In this case, SG, JS and TR are possible candldates
since 3 glven in Section 1 is identical to SG.

For m = 10 and p = 2, the scale equivariant minimax estimators proposed in Section
2.2 are added to candidates, and the risk behaviors of the estimators UB, JS, TR, S~,
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Table 1. Risks of the Estimators UB, SG, JS and TR in Estimation of X
form=1and p=2

a 0 0.5 1 2 3 4 5 6 7 8

UB 925 .925 925 .925 .925 .925 .925 .925 .925 .925
SG 922 922 923 .924 925 .925 925 .925 .925 .925
JS .861 .861 .861 .861 .861 .861 .861 .861 .861 .861
TR .839 .839 .840 .844 .850 .853 .855 .856 .857 .858

STR, TTR and HTR are given in Figure 1 for 0 < a < 8 where the risk of Z([@F]TR) is
not given there since it behaves similarly to TTR.

Table 1 and Figure 1 reveal that

(1) in the case that m = 1 < p = 2, the estimator TR is much better than UB, SG
and JS,

(2) in the case that m = 10 > p = 2, the estimator HTR is the best of the seven,

(3) STR beats TTR for 0 < a < 2 while the reverse hods for a > 3,

(4) the risk gain of TR is not so much as the scale equivariant minimax estimators for
m = 10.

The truncated minimax estimator TR is thus recommended when m < p. When
m > p, the estimators HTR, STR and TTR are recommendable for the practical use.

The risk performances in estimation of the generalized variance |¥'| are investigated
in Figure 2, where 6V, §5Z and §7F are denoted by UB, SZ and TR, respectively. Figure
2 reveals that TR has a smaller risk on a larg parameter space while the risk gain of SZ
is significant at & = 0.
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Figure 1. Risks of the Estimator UB, JS, TR, S*, STR,
TTR and HTR in Estimation of X for m = 10 and p = 2
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