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Abstract
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1. Introduction

In the past two decades, several non-linear time series models have been proposed and
investigated in the statistical time series analysis. The general class of non-linear times
series models is written as

(1.1) Y. = (Y1)

where f(-) is a measurable function, {y,;1 <t < T} are a sequence of m x 1 vectors of
observable time series, and {v;; 1 < t < T’} are a sequence of nx 1 vectors of independently
and identically distributed (i.i.d.) random variables. The initial value Y, is either a fixed
vector or a random vector in general. This class is called the Markovian time series model
and many existing time series models have the Markovian representations as (1.1). More
often in the statistical time series analysis, the sub-class of the Markovian models in the
form of (1.1) has been used. If we assume the additivity of the past information of time
series and the current disturbance term, the general form can be written as

(1.2) Y= (Y1) + o,

where we take m = n and f*(-) is a measurable function. Two important examples of this
type are the exponential autoregressive models and the threshold autoregressive models
in the nonlinear time series analysis, which have been systematically discussed by Tong
(1990).

On the other hand, Kunitomo and Sato (1996a) have introduced a simple stationary
simultaneous switching autoregressive (SSAR) time series model. For the expository
simplicity ', let {y:} be a sequence of scalar time series satisfying

a1 +ovy if y >y,
(13) Yt = )
biyi1+oov i g <y

where ay, b1, 0; (0; > 0;7 = 1,2) are unknown parameters, and {v;} are a sequence of i.i.d.
random variables with E(v) = 0 and E(v?) = 1. The initial value yq, is either a fixed
number or a random variable, but the latter is used for the stationary time series model.
By imposing the condition given by

(1.4) = =7,
(5] 09

this time series model can be rewritten in a more meaningful way as

Y1 +oyvy if v >y
Y = )
biye1+oou i v <1y,

and the Markovian representation in a compact form is given by

(1.5) Yo=Y+ (o1 I (v 2> rysq) + 00l (v < Y1) [—Ty—1 + v

!We have omitted the constant terms in (1.3) for instance. See (2.2) for the general p-th order SSAR
model.



where I(:) is the indicator function. When o7 = 03 = o, then the SSAR model becomes
the standard AR(1) model by re-parametrizing a; = b; = 1 — o7 . From this Markovian
representation we immediately know that the SSAR model given by (1.3) is well-defined
in the form of (1.1), but not in the form of (1.2). Also it is clear that given the past
information {y,; s < t—1} there is an uncertainty whether the next phaseis I(v; > ry, ;)
or I(vy < ryi_1).

As we have shown (Kunitomo and Sato (1996a)), even this simplest univariate SSAR
model defined by (1.3) (called SSAR(1)) gives us some explanations and descriptions on
an important aspect of the asymmetrical movement of time series in two different (up-
ward and down-ward) phases. For an illustration, we give some sample paths of the
stationary SSAR(1) process in Figure 1. Also some stationary distributions satisfying
the SSAR(1) model are shown in Figure 2. These figures suggest that we can produce
asymmetrical patterns of sample paths and skewed stationary distributions with flexible
moment properties even if the underlying disturbances follow the Gaussian distribution.

< Figures 1 and 2 >

The simple SSAR model has been introduced from an econometric application and
there are some intuitive reasons why the SSAR models are useful for econometric applica-
tions as we shall mention to in Section 2.2 and Section 5. Also it should be noted that the
SSAR time series models are different from the threshold autoregressive (TAR) models,
which have been extensively discussed in the non-linear time series analysis. Although
there are many variants of the TAR models, the simplest form (often denoted as TAR(1))
without constant terms can be written as

(1-6) Y =

]

Y1 +ovy if y 1 >r
biye1+ovy if y <7

where 7, a,, b;, 0 are unknown parameters and {v} are a sequence of i.i.d. random vari-
ables with E(v;) = 0 and E(v}) = 1. We notice that the TAR model given by (1.6) is
well-defined in the form of (1.2). Although there are two phases in the TAR(1) model,
given the past information {ys;s < ¢~ 1} there is no uncertainty on the next phase of y;,
because it is a function of the realized time series in the past.

In this paper we shall discuss some statistical properties of the SSAR models and their
estimation methods. In Section 2, we introduce the SSAR models in the general form
and discuss the relation between the SSAR models and some disequilicruim econometric
models. Then we give some statistical properties of the SSAR models in Section 3.
In Section 4, two estimation methods for the SSAR models will be discussed. Some
concluding remarks will be given in Section 5.

2. The SSAR Models

2.1 A Class of the SSAR Models



Let y, be an m x 1 vector of the endogenous variables. The SSAR model we consider
in this paper is represented by

u+ Ay, +Dvy if ey, > ey,
(21) y, = P ?
M+ By, |+ Dyv, if ey, <ely, ,

where €] = (1,0,---,0) and g} (i =1,2) are 1 x m vectors of constants, and A, B and
D; (i = 1,2) are m x m matrices. The initial value y, is either a fixed vector or a random
vector, but the latter should be used for the stationary SSAR models. The SSAR model
given by (2.1) is denoted by SSAR,,(1).
We note that the condition e}y, > €}y, , in (2.1) has been used instead of the condition
eny: > €.y, ; with e/, = (0,0,---,1) in Kunitomo and Sato (19962), for instance. This
change in our formulation does not harm any essential argument below.
The disturbance terms in (2.1) satisfy E(v;) = 0 and the variance-covariance matrix of
D;v; is denoted by £2; (= D; D\, ;i =1,2).

We assume either
(i) {v:} are absolutely continuous (mutually) independent random variables with the
density function g(v) which is continuous and everywhere positive in R™,
or
(i) Djv; = oie;v; and {v;} are absolutely continuous (mutually) independent scalor
random variables with the density function g(v), which is continuous and everywhere
positive in R.

In the first case the disturbance terms {v,} are distributed with E(vwv) = I, and
we assume that £2; (i = 1,2) are positive definite matrices. In the second case the
disturbance terms {v;} are distributed with E(v;) = 0 and E(v?) = 1. This corresponds
to the Markovian representation of the univariate SSAR model given by

.

P
at+y oy j+ow i oy >y
=1

(22) Y = 4
4

bo + Z biyi—j+oovy iy <y

\ 7=1

where {a;;5 = 0,---,p}, {b;;5 = 0,---,p}, and {oi;5 = 1,2} are unknown parameters
with the condition o; > 0 ( = 1,2). The initial conditions Y—p+1,Y—pt2,° -+, Yo are fixed
numbers or random variables, but the latter should be used for the stationary SSAR
models. The univariate SSAR model given by (2.2) is denoted by SSAR(p).

If we define p x 1 vectors y, and p, (i = 1,2) by

W ) bo
Yi-1 0 0

(23) yt = : ] ”’1 - . 2 ”2 = . )
Ye—p+1 0 A0



and p X p matrices

ay ap b] bp
1 0 1 0
0 1 0 0 1 0

then the resulting model can be regarded as a special case of (2.1) if we set D;v, = 0;eqv;
and m = p. The SSAR model in (1.3) is a special case of (2.2) when ay = b, = 0 and
p=1.

We note that in (2.1) there are two phases (or regimes) at time ¢ given F,_;, where
Fi-1 is the o-field generated by {y,;s < ¢t — 1}. Then there is a basic question that
the simultaneity among two phases and the values of the endogenous variables do not
cause any logical inconsistency as a statistical model. This problem has been called
the coherency problem in some econometric literature and the condition for the logical
consistency has been called the coherency condition in the context of the disequilibrium
econometric models (see Quandt (1988) for instance), which will be illustrated by an
example in Section 2.2. The conditions of e}y, > €\y;_; and ejy, < e}y, ; can be
rewritten as

(2.5) erDiv, > €y (In — A)y, ; — ey,
and
(2.6) €1D2v; < €,(In — B)y, , — €ju, ,

respectively. A set of the coherency conditions for (2.1) can be summarized by a1x(m+1)
vector of unknown parameters

1 1
(2.7) —[eIm— A), —e1p;] = —[€}(Im — B), —€})]
o1 02
= [1", TO] )

where 1’ = (r;) is a 1 X m vector, 7y is a scalar, and the scale parameters o; (7 = 1,2)
satisfy 0% = €| $2;e, = e'leD'jel. For the normalizaion of the scale parameters, we may
use a 1 X m vector ) ;

2.8 —e!Di=—€e\D,=d
(2.8) 0’161 1 0231 2

where we take d'd = 1. It is apparent from our formulation that the condition given by
(2.8) is automatically satisfied for the p—th order univariate SSAR model.

2.2 The SSAR models and a Disequilibrium Econometric Model

In order to explain the motivation of introducing the SSAR models, we shall give
a simple econometric example, which is a modified version of the disequilibrium econo-
metric model originally investigated by Laffont and Garcia (1977). The disequilibrium
econometric model of our concern here was first developed by Fair and Jaffee (1972), but
since then a number of different econometric models have been proposed.



The standard econometric model consists of the demand and supply functions in a
small market. Let D, and S; be the demand and supply of a commodity at time ¢. By
assuming that they are linear, these two equations are written as

D; = pfip+ ’7'121: + Uy
(2.9

St = ,szt + '712z2t + up; ’

where p, is the price level, z;; and z,, are the predetermined variables appearing in the
demand and supply equations, respectively. The demand shocks and the supply shocks
are described by the disturbance terms u;; and Upt, respectively. The coefficients 8y, 5,
71, and 7y, are unknown parameters. For the expository simplicity, we set the number of
predetermined variables is 2, v, ¥, being scalors, and we take zy; = p;_; and zo; = Pt_o
as an example.

The equilibrium condition explained by economics is given by ¢, = D, = §;, where ¢, is
the quantity of the commodity traded in the market at time ¢. Instead of the equilibrium
condition, however, Fair and Jaffee (1972) introduced the short-side condition

(2.10) @ = min(D;, S;)

We note that when we substitute (2.10) for the equilibrium condition, the econometric
model consisting of (2.9) and (2.10) is not complete in the proper statistical sense. The
quantity variable g; is determined by (2.9) and (2.10) once the price variable p: is given.
There should be some dynamic process for the price level (or the quantity traded) and
there have been several formulations to make the disequilibrium econometric model com-
plete. In this section we shall adopt one simple formulation by Laffont and Garcia (1977).
If D, > S; at t in the market, there is an excess demand, which raises the price variable
Pt - On the other hand, if S; > D, at t in the market, there is an excess supply, causing
Pt to go down. This consideration leads to the linearized price adjustment process 2

_ 51(D¢—St) if Dy > 5,
(2.11) Ap, = { &(D:—S) ifDy<S,,

where Ap, = p, —p,_;. Since the coefficients &; and &, represent the adjustment speeds in
the up-ward phase (or regime) and in the down-ward phase (or regime), we assume that
6; > 0 (1 = 1,2) and they do not necessarily take the same value. Possibly there could
be some economic justifications for these differences including the market behaviors of
economic agents and the market microstructures.
We now consider the disequilibrium econometric model consisting of (2.9), (2.10), and
(2.11). Our investigation aims to shed some new light on the time series aspects of this
type of disequilibrium model, as this is an area that has largely been ignored in the
econormetric literature.

Let the 1 x 2 vector of endogenous variables ¥, = (p;, ) and the 1 x 2 vector of
predetermined variables 2, = (p;_1,p;—2). If the price variable p; is in the up-ward phase,
then we have the condition that Ap, >0, ¢, = S, and

Di=q+ (D,—S) =q+ (1/6)Ap, ,

2 Alternatively, we can use the condition for Apy4, instead of (2.11) as discussed in Kunitomo and
Sato (1996a). Then we have a slightly different SSAR model as the result.
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provided that 6; > 0. Hence the system of demand and supply functions can be rewritten
as

-G+ 61 1 (&0 m 0
(212) ( _;32 1 Y = 0 0 yt—1+ 0 Yo Zt+ut )

where u; = (w41, us2) is a 1 x 2 vector of the disturbance terms, and 7; (2 = 1,2) are scalor
coefficients in this example. If we assume 6; > 0, we can solve (2.12) with respect to ;.
The reduced form equations for (2.12) becomes

1 —5_1 O 1 -—'Yl ’72 (1)
2.13 = — 1 ot = _ + ,
@) dl<—ﬂzaﬂ o)’” dl(—ﬂm (Br—6)m )57

where the disturbance vector of the reduced form equation is given by

m_1[-1 1
(214) V= dl < —,BZ ﬁl_al_l )u't ’

and d; = f; — o — 67" In this phase the first component of y,, the price level p; at t,
follows

(2.15) D= [i___'hﬁ

2
45, Jpe1 + [dl Ipt2 + orus
where we take o7 = (1/d})(—1,1)2(~1,1) and v = [~uy + ug]/o .
Similarly, if the price variable p, is in the down-ward phase, we have the condition

that Apt < 0, Q= D, and

1
St = Qt—gAPt )

provided that 8, > 0. Hence the system of the demand and supply functions in this phase
can be written as

—B 1 _ 0 o 1 O
(2.16) (*,32'—52_1 1 %= 51 0 Y+ 0 2z + wy
By the same arguments to (2.12) and (2.13), the reduced form equations in the second
phase are given by

1/ =& 0 1 " 72 ()
2.1 = — 2_ —1 -5 — )
@0 w=g ( pi 0 )u A (e T PR

where the disturbance vector of the reduced form in this case is given by

1 -1 1
2.18 v = — _ ,
(2.18) ' dz(‘(ﬂz+521) ,Bl)ut
and dy = 1 — % — 65 In the second phase the price level p; at t follows
—1—bm 72
2.19 = [—p 1 + [Blpes + 021
(2.19) P = 5 P [dzlpt2 pL

where we take 03 = (1/d2)(—1,1) X (-1,1)" .

By taking 1 x 2 vector €] = (1,0), the condition that the market is in the excess demand
(Ap, > 0) is equivalent to

(2.20) ey, > ey, ,
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The coherency conditions given by (2.7) are automatically satisfied in this example be-
cause there are two phases and the structural equations in each phase are well defined.
Hence by noting that

1 1
Z =eey,  +eey 5,

we have the 2-dimensional 2nd order SSAR model (denoted as SSAR,(2)) without con-
stant terms as the solution of the disequilibrium econometric model given by (2.9), (2.10),
and (2.11). It has also a Markovian representation as the SSAR,(1) model without con-
stant terms in the form of (2.1) by defining a 4 x 1 state vector Y; = (y;,y;_,)’ and using
the corresponding matrix representations of parameters which are similar to the scalor
case as (2.3) and (2.4). The price level p; follows the univariate SSAR(2) model without
constant terms in this case. We further note that when 6, = &, the vector y, follows
the SSAR,(2) model while the price level p; follows the standard AR(2) model. It is
evident that if there were more exogenous variables in (2.9) such as the constant terms,
the time trends, and the lagged endogenous variables, for instance, the resulting reduced
form would have been in the form of a more complicated SSAR model.

"The most important feature of this representation is that the endogenous variables may
take quite different values in two different phases or regimes. This type of statistical time
series model could be regarded as threshold model in the nonlinear time series literature.
However, we should note that there is no simultaneity in the standard threshold models in
the non-linear time analysis. Since in the time series model given by (2.1) the endogenous
variables and two phases at time ¢ are determined simultaneously in a particular way, we
have called it a simultaneous switching time series model. This simultaneity has not only
an important economic interpretation, but also a new aspect in the non-linear time series
modelling.

3. Some Statistical Properties

3.1 The SSAR Models and Ergodicity

The first important property of a statistical time series model is whether it is ergodic
or not. For the Markovian time series models, the geometrical ergodicity and the related
concepts have been developed in the nonlinear time series analysis. For the sake of
completeness, we mention to its definition and the drift criterion. For the more precise
definitions of related concepts including irreducibility, aperiodicity, and ergodicity of the
Markov chains with the general state space, see Tong (1990), or Nummelin (1984). Lemma
1 was taken from Appendix 1.3 of Tong (1990).

Definition 1 : (i) {yt} is geometrically ergodic if there exists a probability measure =
on (R™,B(R™)), a positive constant p < 1, and 7-integrable non-negative measurable
function A(-) such that

(3.1) [P™(z,-) = ()]l < p"h(z),

where || - || denotes the total variation norm, = = (z;) is an m x 1 vector, and P(x,-) is
the transition probability.



(ii) {yt} is ¢-irreducible if for any z € R™ and A € B(R™) with d(A) > 0 (¢(-) is a
o-finite measure),

(3.2) fj P™(z,4) > 0.

Lemma 1 : Let {y,} be ¢-irreducible and aperiodic Markov chain. Suppose that there
exists a compact set C, a non-negative measurable function G(-), and constantsr > 1,y >
0, and K > 0 such that fory € R™

(3.3) ElrG(y)ly:1 =yl <Gly) —y (y¢C),
and
(3.4) ElGy)ly:1 =y <K (yeC).

Then {y,} is geometrically ergodic.

A probability measure 7(-) in (3.1) satisfies the stationarity condition
(3.5) n(A) = L P(z, A)r(dz)

for any A € B(R™). Then if we take the initial distribution as the same as m(-), the
process {vy,} is strictly stationary.

Now we consider the SSAR,,(1) model given by (2.1). When m = 1, we have the
necessary and sufficient condition on the geometric erogodicity for the SSAR model. It
is also a sufficient condition on the existence of moments if we assume the existence of
moments for the disturbance terms. For the sake of completeness and an illustration, we
state this result and its proof in a formal way.

Proposition 1 : In the SSAR model (2.1) when m = 1, assume (i) the coherency
conditions given by

To = —ﬂ=—&,
a1 (0]

(36) _— 1-A21-B’
0 02

where D; = 0; (1 = 1,2).
Then the necessary and sufficient conditions for the geometric ergodicity are given by

(3.7) A<1,B<1,AB<1.

(i) In addition to the above conditions, assume that E[|v,|*] < +co for any positive integer
k > 1 and El|yo|*] < +oo for any positive integer k > 1.
Then

(3.8) Elly|"] < +c0..



Proof :  [1] We first prove the second part. When m = 1, we can take the criterion
function

69) Gla) = { Arta =20

a K|zl + ¢ <0’

where k is any positive integer and ¢, is a positive constant, and positive constants ky, ky
are defined shortly.
We first consider the case when y;_; =z > M > 0. Then

?

k-1
(3.10) EG)ly1=12] < > Gz + ki A*2* P{v, > ro + rz}
=0

1
+ kfB*2FP{ro+ (ry — O_—):L‘ < <719+ 11T}
2
1
+ kgBkIIZkP{vt <r+ (T] - ;—)2:} ,
2

where ¢} (i = 0,---,k — 1) are positive constants. Because A < 1,B < 1, and AB < 1,
we can take ky > 0 and k;, > 0 such that 1 > A > —ky/k; and 1 > B > —k1/k; and then
k5 > (—A)*k¥ for A< 0 and k¥ > (~B)*k: for B< 0 for k> 1.

We note that the conditions B < 0 and 0 < B < 1 correspond to the cases when 1 Jog <
1 < 1/oa +1/01 and 0 < r; < 1/0y, respectively. When 0 < r; < 1/02 (0 < B < 1),
the coefficients of second and fourth terms on the right-hand side of (3.10) can be small.
Then by taking a sufficiently large M, we have

(3.11) E[G(y)lye—1 = 2] < oo(M) + 1K1z

where 0 < 6; < 1 and (M) is a positive constant depending M. When 1/0; < 1 <
1/02+4-1/01 (B < 0), the coefficients of the second and third terms on the right-hand side
of (3.10) can be small. Because k§|B|* < k¥ in this case, we can take a sufficiently large
M and we also have '

EIG (0 lyer = 2] < cs(M) + 5k5z*,

where 0 < & < 1 and c3(M) depending on M is a positive constant. By taking
max{6;,8} < 83 < 1, we have

E[G(y)lys-1 = 7] < ca(M) + 865G (z),

where c4(M) is a positive constant. We can also use the similar arguments for the case
when y;_1 = £ < —M < 0. Then we can take positive constants 0 < § < 1 and cs(M)
depending on M for any y;_; = z such that

(3.12) ElGy)|yr—1 = 7] < c5(M) + 6G(z) .
Because

ElG(y)lyo =z] = E{E[G(y:)|ye-1]lyo}
< s(M)1+6+---+ 87+ 6G(yo) ,
(3.13)
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is bounded, we have the desired result for any positive integer k. :

[2] (Sufficiency) Next we consider the assertion (i) on the geometrical ergodicity. When
m = 1, we immediately know that {y;} is ¢-irreducible and aperiodic Markov chain. As
in [1} we take k = 1, M* (> M > 0), and a compact set C = [-M*, M*], where M has
been taken to satisfy (3.12). Then by taking a sufficiently large M* and using Lemma 1,
we obtain that {y:} is geometrically ergodic under the conditions given by (3.7).
(Necessity) The necessity for the geometrical ergodic conditions (3.7) is based on the ar-
guments which are similar to the proof of Theorem 2.1 of Chan et. al. (1985). However,
there is one important difference. Because of the coherency conditions given by (3.6),
we can easily lead to the contradictions to the geometrical ergodicity when we have the

boundary conditions A = 1,B = 1, or AB = 1. They are straightforward, but quite
tedious and we omit the details. (Q.E.D.)

We give some sufficient conditions for the existence of higher order moments and their
boundedness when m > 1. All of them are sufficient, but they are often too strong and
we do not necessarily need those conditions. (See the conditions in Proposition 1.) The
proofs of the following two propositions are straightforward and so brief.

Proposition 2 In the SSAR model when m > 1, assume (i) the coherency conditions
given by (2.7), (i) a sufficient condition for the geometric ergodicity 0 < p1 < 1, where

pr = max{)‘max(AlA)a/\max(B,B)}’
and Apax (C) is the marimum characteristic root of a symmetric matriz C in its absolute
value, (i) E[||ve]|*] < +oo for any positive integer k > 1, and (1v) E[||yol*] < +co for
any positive integer k > 1.

Then
(3.14) Elly,l*] < 400

Proof : When m > 1, we can take the criterion function
(3.15) G(z) = ||=|*,
where z = (z;). We only show (3.14) for k = 1. When k = 1, we have

(3.16) ElG(W)lyr=2] < o+ E[lAQNz]l + E[|D()w]]
S &4 + \/P—IG(E) H

where A(t) = AI®" + BI® and ¢; (2 = 6, 7) are positive constants. The rest of arguments
and those for k > 2 are essentially the same as the proof of Proposition 1. (Q.E.D.)

Proposition 3 In the SSAR model when m > 1, assume (i) the coherency conditions

given by (2.7), (i) a sufficient condition for the geometric ergodicity 0 < p, < 1 or
0 < p3 <1, where

m m
p2 = 12}%’571{§ Iaijlaiz; [bss1},

11



and m m
ro = e 3~ losl 3 bl

Jor A = (ay), B = (by) , (i4i) E[||ve]|¥] < +o0 for any positive integer k > 1, and ()
Elllyol|¥] < +co for any positive integer k > 1.
Then

(3.17) Ellly.[I*] < +c0.

Proof : For x = (z;), we take the criterion function
(3.18) G(@) = (3 =)
i=1

for the first condition in (ii) and

(3.19) G(z) = ((max |z;])*

t=1,--;m
for the second condition in (ii), respectively. Then we use the same arguments as the
proofs of Proposition 1 and Proposition 2. (Q.E.D.)

3.2 The Univariate SSAR(p) Model

We give some sufficient conditions for the geometric ergodicity and existence of higher
order moments for the p—th order univariate SSAR model. We need some special con-
sideration because the disturbance term in the Markovian representation is degenerate in
a sense. From the Markovian representation of (2.4), we know that p, = p3 = 1 for the
univariate SSAR(1) models when p > 2. Hence Proposition 3 is useless for these SSAR
models. The following conditions we shall give are sufficient, but often too strong and
we do not necessarily need those conditions. The proof of Proposition 4 is based on the
method used in Chan and Tong (1985) for the threshold autoregressive models with minor
modifications.

Proposition 4 In the p—th order SSAR model given by (2.2), assume (i) the coherency
conditions given by

a b

To = ——=——,
51 (o)

1-— 1-b
(3.20) ro= 2T

a1 02
aj b_—,' .

L e (.7:27"'71))7
o1 02

(1) a sufficient condition 0 < p, < 1, where
P

pe = max(3" lasl, 3 b1,
J J=1

=1
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(i) {w:} has an absolutely continuous distribution with respect to the Lebesgue measure
on R, and its density function g(v) is continuous and strictly positive almost everywhere,
and (i) El|n|] < +co .

Then {y:} is geometrically ergodic.

Proof :
(i) Because of the assumption > 1laj] < 1, we can take §§-1) (y=1,---,m = p) such
that
O @ g

(3.21) 1<@<@<---<§
and

P §1)
(322) 1> E laji—m .

7=1 €J

Then we have 1 > EJ(-i)l/fJ(-l) (j = 1,---,p — 1). By the same token for the condition

53:1 |bj| < 1, we can also take §J(-2) (4=1,---,p)such that 1 > f(-i)l/f(-z) G=1,---,p-1)

3 J
and
P (2)

1
(3.23) 1> 371512 -
J=1 fj

(1) 4(2)
By rearranging v; = min{?i;, ?57} (7 =1,---,p), under the assumptions (0 < ps < 1) we

can take & (j=1,---,p) aJndOJsuchthat 1>0>¢&4h/60G=1,---,p—1),

a_&_ . &
(3.24) L<E<a<<g
and
b &y b
(3.25) 1>6>max{} " Iajlz—_,z |b_,|§—} .
=1 Sii= S

We take the criterion function

(3.26) G(z) =1+ max lz41&; -

Let a vector process y; = (Y, %1, -, Yt_p+1) and consider a Markovian representation
for {y,}. Then it is straightforward to show

(3.27) ElG(y)|y;; = x|
P
< e+ Elmax{) " |4;(0)|lye-lé1, |z1l&, - - |Zp-1]&HYe1 = ]
i=1
< co+ Elmax{) " |A;(t)lye—jlé1, 0lz1lér, - -, Olzpr)ép1 Y1 = 2]
=1
< o + max{[max{) |aj|§, > lbjlg}]
3= i =1 3
X [max{|z1|&1, - - -, |zp|&p}, Ol2116n, - - -, Olzp_1|ép1}
< en+0G(x),
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where A;(t) = ath(l) + bth(z) ¢ (¢ = 8,---,11) are some positive constants, and It(l) =
I(ye > yy) and I® =T (Y < y1—1) are defined by the indicator function I ).
(ii) We consider the case when p = m . We define a function by

1 1
(3.28) 0(z) = 2[-—I(z0) + —I(z<qy)
(5] 02

for any z .

Then given y;_; = (yi—1, -, Ytom) = (Z1,---,Zm) and a set A = (a1,b;) X 7, X -+~ x
Tm-1 € R™,

(3.20) P(x, A) = /

o(a1—z;)

a(b1—z1)

m
glvsyr —ro — > rizildueys
=

Let n = min{1/01,1/02} > 0 . Because g(-) is continuous and everywhere positive in R,
we can take a sufficiently small € > 0 such that for some compact set (zy, - - - ,ZTm) € Cy
and g[vi11 — 7o — i, 1i75] > € for any (x4, - - - »Tm) € C1. Hence given y,_, = x we have

P(z,A) > en(by —a;) > 0.

Also we take a set A = (a1,b1) X (a2, b)) XT1 X - - XTpp_o € R™witha; <0 < b; (1 =1,2).
Then

(3.30) Pz, A) = /

U(ag —Il)

o(ba—z1) ro(bri—ye+1)
[

m
Vir1 —To — Y TiZi
(@1—yern) glves 0 ; iZi]

m
Xg[vsye — To — T1y41 — Zrixi—l]dvt+ldvt+2 )
=2
where y311 = 21+ o (v — 19 — YimTiT)
Then by the same argument, we can take a sufficiently small € > 0, and

PYx, A) > E€n(by —a;) (b — ap) > 0.

Hence by using the assumptions in (jii), for A = (a;,b;) % -+ x (@m,bn) € R™ with
a; <0<b; (1=1,---,m), we have
(3.31) inf P™(z, A) >0

zcC.n

for a compact set Cr including the origin in R™. This shows that the Markov chain for
{v.} is ¢-irreducible.

(iii) By using the result in (i), we already know the growth condition in Lemma 1 is
satisfied if we set C' = {||z|| < M} for a large M. Because the Markov chain for {y;} is
aperiodic and ¢—irreducible as we have shown in (ii), we can apply Lemma 1. Hence we
establish that {3} is geometrically ergodic. ~ (Q.E.D.)

Proposition 5 In the p—th order univariate SSAR model (2.2) assume (i) the co-
herency conditions given by (3.20), (ii) a sufficient condition for the geometric ergodicity
pa < 1, (iii) E[lu|*] < +oo for any positive integer k > 1, and (iv) Ellyol*] < +oco for
any positive integer k > 1.

Then

(3.32) Elly:f*] < 40 .
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Proof : The method of proof is similar to the first part of the proof of Propposition 4.
We take the criterion function

_ £k
(3.33) G(z) =1+ (112% |z51€5)
for = (z;), where §; (j = 1,-- -, p) are defined as in the proof of Proposition 4. Then we
consider the Markovian representation for y; = (Y, Y1-1," "+, Yt—ps1). For k£ > 1, we have
(3.34) ElG(y)lyiy = 2] < e12 + 0G(x),

for some positive ¢12 and 0 < # < 1 . The rest of our arguments is the same as the proof
of Proposition 1. (Q.E.D.)

We should mention again that the above conditions given in this paper are quite
strong and sufficient, but they are not necessary and could be improved. Also some of
the results can be extended to more general cases easily. For an illustration, we will show
the existence of moments for the univariate SSAR(p) model with the MA error.

Let {w;} be the i.i.d disturbance terms satisfying the condition (iii) with £ = 1 in
Proposition 5. We assume that the disturbance terms {u;} in the SSAR(p) model given
by (2.2) are a sequence of correlated random variables such that

q
(3.35) v =) cw g,

—
where {c;} are constants with ¢j = 1 for the normalization. If we use a vector process
Yo = (Yo thor, - » Yt—p+1, Wy, Wy_1, - -+, Wy_q41), then we have a Markovian representation
for the vector process {y,}. By taking the criterion function
(3.36) Gl@) =1+ max |z,

where §; (j = 1,---,m) are defined as in the proof of Proposition 4 and m = p+ q. Then
we have an inequality

(3.37) ElG@)lyer = 7] < enll + z fous{] + 6G ),

where 0 < 6 < 1 and c¢;5 is some constant.

By repeating the above procedure and taking the conditional expectations, we have
t—-1 q

(338)  ElCW)lyo=2]< cia Y B+ [wns_sllyo = o] + G (a) .
k=0 j:l

Then by taking the expectation with respect to the initial distribution, we finally have

(3.39) Elly]] < +c0,

provided that we assume the condition (iv) with & = 1 in Proposition 5 and the condition
Efws|] < 0o for —g < s < 0. We can use the similar arguments to obtain

(3.40) Elly:]*] < 40

for an arbitrary integer k£ > 1.

4. Estimation of the SSAR Models
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4.1 Maximum Likelihood Estimation

Sato and Kunitomo (1996) have proposed to use the maximum likelihood (ML) estimation
for the SSAR models. Given the initial condition y, and [£2;] # 0 (z = 1,2), the ML
estimator for the vector SSAR models under the Gaussian disturbances is defined by
maximizing the conditional log-likelihood function

m(T —1 1 L2
@y 1ogLr(e) = "L Drogam L5510 10600
t=21=1
1 L2 I @)
-3 Do (v — i — Ay ) 27y, — 1 — Asy, ) IY
t=2 i—=1

where A; = A, A, = B, IV = I(ey, > ey, ), and I® = I(ely, < e}y, ;) with the
indicator function I(-). In the above notation we denote the vector of structural parame-
ters 6 = (6;) .

We note that the numerical maximization in the maximum likelihood estimation
should be done by using the coherency conditions given by (2.7). Because the restric-
tions imposed by these conditions are not highly nonlinear, the surfaces of the likelihood
functions are standard and smooth in most cases. As an illustration for the numerical op-
timization problem we give the concentrated likelihood function for the first order SSAR
model with constant terms in Figure 3. In the SSAR(1) model 8 = (ro, 1,01, o2) and
we concentrate the likelihood function with respect to 7y and r; such that rq = ro(01,02)
and r1 = r1(01, 02) by using the likelihood equations.

< Figure 3 >

As for the asymptotic properties of the ML estimation method when the underlying
process is (geometrically) ergodic, we expect that under a set of regularity conditions and
the Gaussian disturbances the ML estimator 0,4, of unknown parameter 8 is consistent
and asymptotically normally distributed as

(42) VT (8w~ 60) -4 N[0, 1(00)7Y]
where
43) 100 = Jim 75 |- "e 5z 0,

which is a non-singular matrix and 6y is the vector of true parameters.

The rigorous proof for the asymptotic properties of the ML estimator is the result
of lengthy arguments on the (geometrically) ergodic SSAR models. We also expect the
corresponding results on the ML estimator for the the scalor SSAR(p) models when they
are (geometrically) ergodic.

4.2 An Instrumental Variables Estimation

Because the estimation problem for the SSAR models is quite similar to the estimation
problem of the structural equations in the nonlinear simultaneous equations, the alter-
native estimation method would be the nonlinear instrumental variables (IV) estimation.

16



Actually it is a special case of the Generalized Method of Moments (GMM) proposed by
Hansen (1982). Given the initial condition ¥, and the observations of {v.}, one type of
the IV estimators is defined by minimizing the criterion function

(4.4) Qr(6) = Fr(6) H;'F(6) ,
where
( v1,4(0) \
: 1
T 1,t—-1
(4.5) Fr(0) = %; vi’gg)(o_)l ® y’s :
E Ymi—
\ v2,,(8) -1 )

1 1

1 | Y Y11
Hr = W= Z . ]
T =2 . :

Ymit—1 Ymi-1

and W is a 2m X 2m nonsingular matrix.
In this notation the random variables v;(0) = (v;4(0)) and y,_, = (¥it—1) are obtained
from
1) yy— 2) 1y—
v(0) = It( )D1 1[yt —p — Ay, 4|+ It( )Dz l[yt — g — By, 4]

under the assumption of |D;| # 0 (i = 1,2). We denote the nonlinear instrumental
variables estimator for the vector of the structural parameters @ as Oy .
Let

[ v1(60)

Um.+(0
2=E| v?,t(gi) 0_) 1 (vl,t(ao), -+, Um(60),v14(80) — 1, -+, 02, ,(B0) — 1)]

 ©2,,(80) — 1 )

be the variance-covariance matrix. Then it may be desirable to use an estimator 27 of 2
for the matrix W in Hr. But it seems that we should not use an iteration procedure of the
minimization of the criterion function Q; and 27 in the estimation. It is partly because
we can hardly obtain an initial consistent estimator for £2 and we do not necessarily have
a good numerical convergence. As an illustration of the numerical optimization problem,
we give the surface of the criterion function for the SSAR(1) model with constant terms

when
1 0
W_n_<0 K,4+2)

as if it were known in Figure 4. The parameter x4 represents the kurtosis of the distur-
bances (ks = E(v}) — 3) and we did concentrate the criterion function with respect to

17



the parameters such that ro = ro(0q,02) and 7y = r1(01,02) by using its components.
The surfaces of the criterion function could be flat in a direction depending on the pa-
rameter K4, which may result in a difficulty in the numerical convergence property in the
estimation.

< Figure 4 >

Also we can use other orthogonal conditions such as E[v;v;;] = 0 for i # j. Then the
computation of the IV estimation would be more complicated.

As for the asymptotic properties of the ML estimation method when the underlying
process is (geometrically) ergodic, we expect that under a set of regularity conditions and
fairly general distributions for the disturbances the nonlinear instrumental variables esti-
mator 6y of unknown parameter @ is consistent and asymptotically normally distributed
as

(4.6) | VT b1y —60) % N[0, V(8o)] |
where
4.7) V(6y) = (GH'G)'GH' (N ® M)H'G(G'H'G)?,
where H = plim,_, . Hr,
X OF1(0)

G = plim [‘ 26 '0="°] ’

and
1 1
T
M = plim l Z Y1,e-1 yl,‘t—l ’
T—oo £ 129
Ymit—1 Ympi—1

provided the quantities appeared are well-defined.

"The rigorous proof would be a set of lengthy arguments on the (geometrically) ergodic
SSAR models. We also expect the corresponding results on the nonlinear instrumental
variables estimator for the univariate SSAR(p) models when they are (geometrically)
ergodic.

5. Concluding Remarks

In this paper we have given several conditions on the geometric ergodicity and the
existence of moments for the simultaneous switching autoregressive (SSAR) models. Some
of our derivations and discussions in this paper are rather straightforward and we hope
that they could be well-understood for econometricians as well as statisticians.

The SSAR model has been introduced by a disequlibrium econometric model, which
can be classified as a Tobit type in the class of limited dependent variables models 3.
Amemiya (1974) has investigated the estimation method of a Fair-Jaffee model and the
estimation problem of the SSAR model can be regarded as an extension in its dynamic
aspects. Kunitomo and Sato (1996a,b) have discussed this issue in a systematic way. An

3Chapter 10 of Amemiya (1985) has been a survey on this class of econometric applications including
some disequilibrium econometric models.
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interesting aspect of the SSAR modelling in econometrics may be to shed new lights on
the possible applicability of the limited dependent variables models mainly developed for
the cross section data analyses to the non-linear time series analysis.

Finally, we should mention that the standard SSAR process discussed in this paper
has been recently extended to a class of non-stationary SSAR processes by Kunitomo
and Sato (1996b,c). For an illustration, in Figure 5 we give two sample paths of the
homoskedastic SSARI(1) (first-order simultaneous switching integrated autoregressive)
process and the SSARI(1) process with the first order ARCH (autoregressive conditional
heteroskedasticity) model. They are the I(1) processes defined by the SSAR model given
by (2.2) with p = 1 and

(5.1 Vg = U1+ wt\/’; )

where {w,} are i.i.d. random variables with E(w;) = 0, E(w?) = 1 and h, = 1+ aw? ;.
The conditional heteroskedasticity is modeled by the volatility function h;, and we have the
homoskedastic SSARI(1) model when « = 0 in this framework 4. This type of time series
modelling shall be useful for econometric applications of financial time series data. This
is because they give simple ways to produce integrated processes with the asymmetrical
paths as well as the conditional heteroskedasticity, which have been often observed in
many financial time series including asset price processes.

< Figure 5 >

“The ARCH modelling for the conditional volatility functions of asset variables has been introduced
by Engle (1982).
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Figure 1

Some of sample paths generated by the ergodic SSAR(1) processes without constant terms are
given. When A=B, the SSAR(1) model is the standard AR(1) model. When A # B, the sample
paths in the up-ward phase are significantly different from those in the down-ward phase. We set
r=1 in all simulations.
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Some of the sattionary distributions for the SSAR(1) processes are given. For each
distribution the first four moments (Mean, Var, Skw, Kur) are calculated numerically under the
normal disturbances where Skw is the skewness and Kur is 3+4 « (where & 4 is kurtosis).
When A # B, we have the stationary distributions which are quite different from the normal
distribution.




Figure 3

The surface of (-1) times the concentrated likelihood function of the SSAR(1) model with
constant terms when A=0.2 and B=0.8 is drawn. It is constructed by the simulations under the
Gaussian noises and T=20,000. Y-axis is the O : variable while X-axis is the O : variable.



Figure 4

The surface of the concentrated criterion function of the SSAR(1) model with constant terms
when A=0.2, B=0.8, and & « =-2.0 is drawn. It is constructed by the simulations under the
Gaussian noises and T=20,000. Y-axis is the O 1 variable while X-axis is the O : variable.
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Figure 5

Some of sample paths generated by the non-ergodic SSAR(1) processes are given. The first
one is a sample path of the SSARI(1) model given by Kunitomo and Sato (1996b) while the
second one is a sample path of the SSARI(1)-ARCH(1) model given by Kunitomo and Sato
(1996¢) where Aplha is the coefficient of ARCH(1) model for the disturbance terms. We have
set a linear time trend function in the simulations.



