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Abstract

We propose “local recoding” as a new technique for controlling disclosure risk of
microdata sets. Compared to the technique of global recoding, where the observed
values are grouped into broader intervals or categories throughout the data set, in
local recoding different grouping is performed for each observation when necessary.
As a means of performing local recoding we propose to form pairs of close individuals
and recode observed values within each pair. For optimally forming pairs we can
employ Edmonds’ algorithm (Edmonds (1965)) of maximum weight matching. We
illustrate the technique by applying it to the Japanese vital statistics data.!

Key words: Edmonds’ algorithm, local suppression, nearest neighbor, NP-complete,
perturbation, swapping.

1 Introduction

Global recoding is the obvious and the most important technique in disclosure control of
microdata sets. In global recoding the observed values are grouped into broader intervals
or categories. It is called global since the grouping is performed uniformly throughout
the microdata set. In this paper we propose “local recoding”, where each observed value
is recoded into broader intervals or categories when necessary.

As a means of performing local recoding we propose matching or pairing of close indi-
viduals of a microdata set. When two individuals are grouped into a pair, we can locally
recode observations of these two individuals within the pair. The idea of local recoding
is not necessarily tied to matching and other techniques may be used to perform local re-
coding. One advantage of matching is that a well known algorithm of optimum matching
is available and local recoding can be performed in reasonable amount of computer time.

Although many techniques are proposed for disclosure control of microdata sets, the
idea of local recoding appears to be new. The local suppression, where individual obser-
vations are marked as missing, is extensively discussed in Section 5.4 of Willenborg and

! This data set was used under permit No. 40, 1997, of Management and Coordination Agency, Gov-
crniment of Japan, for the purpose of disclosure control experiments.



de Waal (1996) and references therein. In Section 2.1 below we show that local suppres-
sion is an extreme form of local recoding. In this sense local recoding is a more general
technique of disclosure control than the local suppression.

Addition of noise to original observations is discussed by many authors including
Fuller (1993) and Duncan and Pearson (1991). One conceptual difficulty of addition of
noise is that it is not clear how one can add noise to purely categorical variable. The Post
RAndomization Method (PRAM) introduced by Kooiman et al. (1997) is a probabilistic
perturbation technique for categorical variables. One advantage of the present procedure
is that local recoding can be applied to a data set with both continuous and categorical
variables.

Another important technique of disclosure control is swapping discussed in Schlorer (1981)
and Dalenius and Reiss (1982). The pairing technique proposed in this paper can also be
used for the purpose of swapping rather than local recoding. This point is discussed in
Section 5.

The idea of pairing of this paper is close to the idea of microaggregation in Mateo-
Sanz and Domingo-Ferrer (1998). They use clustering algorithm whereas we use matching
algorithm to form groups. One disadvantage of clustering might be the lack of well defined
notion of optimality among various clustering algorithms.

The organization of this paper is as follows. In Section 2 we explain the idea of
local recoding and matching by a simple numerical example. In Section 3 we discuss full
optimization and approximate optimization procedures based on Edmonds’ algorithm. In
Section 4 our procedures are applied to a real data set of considerable size. We shall show
that computations can be done in a reasonable amount of time. Some discussions are
given in Section 5.

2 Simple numerical example

Here we discuss a simple numerical example at some length, because our idea and tech-
nique are best explained by an example.

2.1 Example data set

Consider a hypothetical population consisting of 10 household records of Table 1. Table 1
presents the whole population and there is no complication associated with sampling,
such as the distinction of the population unique and the sample unique. The variables
observed are 1. Age of head of household, 2. Size of household, 3. Income, 4. Occupation
in 3 categories (A,B or C). We consider these 4 variables as key variables which can be
used to identify the individual household records.

From Table 1 we immediately see that all the households are population uniques.
Therefore we need some disclosure control measures to avoid identification of households.
It is reasonable to round the values of the age and the income. If we round the age down
to 10’s and the income to 100’s, we obtain Table 2.

We see that even after this global recoding all the households remain population
uniques. This can be understood by the following simple calculation. In Table 2 we count



Table 1: Hypothetical population of size 10

No. | Age Size Income Occup.
1 47 4 490 A
2 52 3 720 B
3 38 4 480 A
4 43 5 610 C
5 46 3 870 B
§) 35 3 540 A
7 43 4 640 C
8 51 2 560 A
9 44 6 580 A

10 | 33 3 380 A

Table 2: Result of obvious global recoding

No. | Age Size Income Occup.
1 40 4 400 A
2 50 3 700 B
3 30 4 400 A
4 40 5 600 C
5 40 3 800 B
6 30 3 500 A
7 | 40 4 600 C
8 50 2 500 A
9 | 40 6 500 A

10 | 30 3 300 A

the number of categories present for each variable. The numbers are 3 for Age, 5 for Size,
5 for Income, and 3 for Occupation. Therefore the total number of possible combinations
of the categories is

I XxHxHx3=225

We can think of 10 households thrown into 225 boxes and it is likely that these households
fall into different boxes. The usual “birthday problem” calculation yields an approximate
probability of e-(1+~+9)/225 — =02 — () g9

We proceed to more drastic global recoding: grouping the household size into 2 cate-
gories (>4 or < 3) and income into 2 categories ( > 500 or < 500 ). The total number
of combinations is reduced to 3 X 2 X 2 x 3 = 36 and the resulting table is Table 3.

We note that in Table 3 household No.4 and No.7 coincide and they are no longer
population uniques. However other 8 households remain to be population uniques. At
this point it seems to be very difficult to perform further global recoding without losing
substantial amount of information in the data set. This suggests that relying on global
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Table 3: Result of further global recoding

No. | Age Size Income Occup.
1 40 4 400 A
2 | 50 3 500 B
3 | 30 4 400 A
4 | 40 4 500 C
5 | 40 3 500 B
6 | 30 3 500 A
7 | 40 4 500 C
8 | 50 3 500 A
9 | 40 4 500 A

10 | 30 3 400 A

recoding alone may result in a microdata set which is too coarse.

Now let us consider the 2nd and the 5th household in Table 3. These two differ only
in Age. Therefore we might locally recode the Age for these two households and exhibit
these households as follows.

No | Age Size Income Occup.
2 140-50 3 500 B
5 14050 3 500 B

Then these two households are no longer population uniques.
Let us match remaining 6 households into the following 3 pairs

(1,3), (6,8), (9,10)

and locally recode the observations into intervals or unions of categories. The result is
shown in Table 4.

Note that Size and Income of the pair (9,10) are denoted by *’ and locally suppressed.
This is because merging two categories of a dichotomous variable (variable which have
been globally recoded into two categories) is equivalent to suppressing the observation.
Therefore we can interpret local suppression as an extreme form of local recoding.

2.2 Optimum matching based on distance function

The matching of households in Table 4 was performed by inspection. Here we formulate
the matching problem more precisely in order to perform the matching by computer.
The basic idea of the matching was to find close households. Therefore we introduce
some distance function between households. Distance function can be chosen based on
convenience. As a simple distance function we may use the Hamming distance, where we
just count the number of variables with different values. It is probably better to consider
relative importance of the variables and weight the variables accordingly.



Table 4: Local recoding by inspection from Table 3

No. | Age Size Income Occup.
1 13040 4 400 A
2 140-50 3 500 B
3 |30-40 4 400 A
4 40 4 500 C
5 | 40-50 3 500 B
6 |30-50 3 300 A
7 40 4 500 C
8 [30-50 3 500 A
9 |30-40 * * A

10 | 30-40 * * A

Consider Table 2. Although the local recoding in Table 4 was obtained from Table
3, Table 3 is already too coarse and it seems to be better to perform local recoding
to the values of Table 2. Concerning the distance function, we might argue as follows.
Let us measure the difference of 5 years in age as distance “1”, since 5 years difference
might be noticeable from the appearance. Then 10 years difference in age is measured
as distance 2. Concerning the size of the household, we measure the difference of 1 as
just 1, since neighbors may know the exact household size. We measure the difference of
100 in income as 1. Finally we measure the difference in occupation as 2. As the total
distance between two households, we add these individual distances for the 4 variables.
Let o = (1,29, %3,24) and y = (y1,¥2, Vs, ys) denote the values of (Age, Size, Income,
Occupation) of two households. Then the distance between = and y may be defined as

dist(z,y) = |1 — y1{/5 + |22 — ya| + |23 — y3]/100 + 2115, 2y,

where [jz,x,, is the indicator function

7 :{1, if z4 # Y4,
[247ya] 0, if z4 =y

Table 5 shows the distance matrix between the 10 housecholds. Using Table 5 we can
list closest households (“nearest neighbors”) from each household as shown in Table 6.

From Table 6 the average distance to nearest neighbors is calculated as 2.4. It is
noted that the relation to nearest neighbor may be “one-sided”. For example the nearest
neighbor of household No.9 is household No.1, whereas the nearest neighbor of No.l
is No.3. If we allow this one-sidedness, we can match each household to its nearest
neighbor and apply local recoding to each household. If there are more than one nearest
household, we arbitrarily choose one of the nearest households. We call this type of local
recoding “one-sided nearest neighbor local recoding” or “optimum one-sided matching”.
A resulting data set with local recoding is shown in Table 7.

In Table 7 each row corresponds to at least two households in the population. Therefore
the one-sided nearest neighbor local recoding can withstand the “fishing strategy attack”
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Table 5: Distances between 10 households

1 2 3 4 5 6 7 8 9 10
110 8 2 5 7 4 4 5 3 4
218 0 10 7 3 8 6 5 9 10
312 10 0 79 2 6 7 5 2
415 7 7 0 6 7 1 8 4 9
o117 3 9 6 0 7 5 8 8 9
614 8 2 7 7 06 5 5 2
714 6 6 1 5 6 0 7 5 8
815 & 7 8 8 5 70 6 7
913 9 5 4 8 5 5 6 0 7
10(4 10 2 9 9 2 8 7 7 0

Table 6: Nearest neighbor and distance to nearest neighbor

N.N. Distance
1 3 2
2 5 3
3 {lor6orl0 2
4 7 1
5 2 3
6 3or 10 2
7 4 1
8 | lor2or6 Y
9 1 3
10 3orb 2

(Miiller et al. (1995)), where an intruder chooses an arbitrary record of the microdata
set and tries to identify this record in the population. On the other hand the one-sided
nearest neighbor local recoding does not guarantee defense against the direct search attack
(Miiller et al. (1995)), where an intruder possessing information on a household in the
population tries to identify the household in the microdata set. For example household
No.9 of the hypothetical population corresponds only to the 9th row of Table 7 and in
this sense the 9th row of Table 7 might be identified. This weakness clearly results from
the one-sidedness of the matching.

We now allow only two-sided pairs and obtain optimum matching in the sense of
minimizing sum of the distances within the pairs. We call local recoding by this type of
two-sided matching as “two-sided nearest neighbor local recoding” or “optimum two-sided
matching”. This optimization problem is called “maximum weight matching” in the field
of graph algorithms. In particular Edmonds’ algorithm (Edmonds (1965)) is a well known
algorithm for solving the maximum weight matching problem.



Table 7: One-sided matching to nearest neighbor

No. Age Size Income Occup.

1 30-40 4 400 A
2 40-50 3 700-800 B
3 30-40 4 400 A
4 40 4-5 600 C
5 40-50 3 700-800 B
6 30 3-4  400-500 A
7 40 4-5 600 C
8 50 2-3 500-700 AorB
9 40 4-6  400-500 A
10 30 3-4  300-400 A

In our hypothetical example n is only 10 and the total number of forming 5 pairs out
of 10 households is

9.-7-5-3 =0945.

Therefore we can check all 945 pairings and compute the sum of distances. Then the
optimum matching is obtained as

(1,3) (2,5) (4,7) (6,10) (8,9)

with the average distance of 2.8 within pairs. The resulting data set with local recoding
is shown in Table 8.

Table 8: Two-sided matching to nearest neighbor

No. Age Size Income Occup.
1 30-40 4 400

2 50 2-3  700-800
3 30-40 4 400

4 40 4-5 600

5 50 2-3  700-800
6

7

8

9

1

30 3 300-500
40 4-5 600
50 2-6 500
50 2-6 500

0 30 3 300-500

= Qe Qe

From Table 7 and Table 8 we see that two-sided nearest neighbor local recoding leads to
stronger protection accompanied with larger average distance within pairs. The advantage
of the two-sided nearest neighbor local recoding is that it withstands both the fishing



strategy attack and the direct search attack. From the computational viewpoint, the
one-sided matching is very simple because we can treat each record separately, whereas
the two-sided matching is more complicated requiring combinatorial optimization.

3 Full combinatorial optimization by Edmonds’ algo-
rithm and its approximation

In this section we explain our implementation of Edmonds’ algorithm for our problem
and an approximation to the full combinatorial optimization. The material in this section
and Appendix A is largely due to Daishin Nakamura.

Let G = (V, E) be a graph, where V is the set of vertices and E is the set of edges.
Matching is a subset E of E such that each vertex v € V is contained in at most one
edge e € E. Suppose a weight w, is associated with each edge ¢ € E . The problem of
maximum weight matching is to obtain a matching E such that the sum of the weights
of edges in F is maximized:

> we — max. (1)
ecE
Edmonds’ algorithm (Edmonds (1965)) is a remarkable algorithm for solving maximum
weight matching problem and is fully explained in a number of standard textbooks on
graph theory (e.g. Gondran and Minoux (1984) or Lawler (1976)).

As in the example of the previous section, suppose that a data set X is given as an
n X p matrix. For simplicity we assume that n is even. Choose an appropriate distance
function dist(z,y) between two rows of X . Then our goal is to form a complete matching
of n rows such that the sum of distances within the pairs is minimized:

> dist(z,y) — min. (2)

T,y

Here complete matching refers to the requirement that every row of X belong to some
pair and hence n/2 pairs be formed. Apart from the trivial difference in maximization
of (1) and minimization in (2), there is no requirement on the number of edges in (1)
whereas in (2) we require complete matching.

However this difference is superficial and the minimization problem in (2) can be easily
reduced to the maximum weight matching in (1). Consider a complete graph

G = (rows of X, pairs of rows of X). (3)

Let M be a sufficiently large positive number and to each pair of rows e = (x;,z;) assign
the weight
Wiy = M — diSt($i,$j).

Then minimization in (2) is reduced to maximization in (1). In the case where the distance
function is nonnegative integer valued, it is shown in Appendix A that M can be taken
as n

M = —2—U+ 1, U= max dist(z; ;). (4)

1<i<j<n



Edmonds’ algorithm requires amount of time of order O(n?). It can be improved to
O(n?) time using O(n?) amount of memory. In our application n is not small and the
latter approach is not practical. As shown in Section 4 full optimization by Edmonds’
algorithm is found to be too intensive for a data set of size n > 10000 . Hence there is a
need for approximate optimization.

Here we propose an approximation, which is found to work very well in our experiment
in Section 4. Let k be a small integer. We first construct a list of edges to the k& nearest
neighbors for each row of X . This requires O(kn) amount of memory. Let G, be a
subgraph of G of (3) where the edges are restricted to the above kn edges. Note that
the same edge can appear twice in the above list and therefore the number of the different
edges of the graph Gy is at most kn . We apply Edmonds’ algorithm to G and obtain
an optimum matching for Gy, . It may be the case that for small k& , the resulting matching
is not complete. In this case we increase k and perform the optimization again. Let k*
be the smallest k£ such that the resulting optimum matching is complete. We use this
matching as an approximate solution to our problem. For finding k&* we could start with
a fairly small value of £ (k=5 for example) and increase k if the resulting matching
is not complete and decrease k if the resulting matching is complete. In practice it
would be better to try some k£ much larger than £*, possibly with a randomly selected
subset of rows of X | and see if the average distance of the optimum matching drastically
decreases with larger k. If not, our approximate solution seems reasonable.

4 Experiment with Japanese vital statistics data

Here we apply the procedure of the previous section to a data set of considerable size and
show that computations can be done in reasonable amount of time. In the experiment it
is found that the full combinatorial optimization using Edmonds’ algorithm is computa-
tionally too intensive. We show that our approximation of the previous section achieves
almost the same optimization as the full optimization with a fraction of computation
time. Source code of a working program by Daishin Nakamura for the computations of
this section is available from the URL in References.

4.1 The data set

The data set used is the death records data for the year 1995 from the Ministry of Health
and Welfare of Japan. This data set is a “census” recording all deaths of Japanese
nationals. Except for the classification of cause of death, which might be sensitive and
requires certain amount of medical knowledge, all other variables are straightforward
personal attributes. We prepared a file of 78648 deaths in a certain prefecture during
1995. The variables we chose are the following 6 variables: 1. sex (1 or 2), 2. age (in
years), 3. month of death, 4. major cause of death, 5. subcause of death, 6. traffic accident
or not (1 or 2). The major cause of death is coded by a single alphabet in the range A-Y
and the subcause of the death is a single digit. Detailed description of the variables is
not relevant for the present discussion. The first 10 records of the data set are shown in



Table 9: 10 records of the dataset

Sex Age Month Major and subcause Accident

1 56 3 El 2
2 86 4 N4 2
2 68 2 L9 2
2 47 11 PO 2
2 80 9 B3 2
2 81 1 B9 2
1 78 3 C7 2
1 84 1 Q8 2
2 64 4 Q3 2
2 97 10 C7 2

Table 9.2
Among the 78648 deaths, 17090 deaths (21.72%) were unique with respect to these

variables. In this paper we only discuss results of computations on this subset of 17090
unique deaths. The distance function we chose is

dist(z,y) = 201z, 4y,) + 2|22 — va| + |73 — ys| + 3 [zetyy
Hizi=ya) ~ Lestys) + 10stye), (3)

where
Ty = Sex, zp = Age, r3 = Month, z4 = Major Cause, z5 = Subcause, x5 = Accident.

Here we measure 1 month difference as 1. Then we count the difference in sex as 20, 1
year difference of age as 2, difference of the major cause of death as 3. The difference of
subcause is 1 provided that the major cause of death is the same, and traffic accident is
10.

The machine used to measure the processing time was equipped with Intel Pentium
Pro Processor and 64 MB of memory. We have first performed the one-sided matching
among these 17090 deaths. The CPU time needed was 224 seconds and the average
distance within the pairs in the optimum one-sided matching was 1.49508.

The full optimization by Edmonds’ algorithm took 328163 CPU seconds (about 4
days) with the minimized sum of distances 14418 or the average distance of 1.6873 =
14418/8545 . The distribution of the distances of the optimally matched pairs is tabulated
in Table 10.

Although the exact optimization was possible, processing time of 4 days is not practi-
cal. Therefore we applied the approximate optimization discussed in the previous section.
Table 11 presents the results of the computation.

2 Actually the observations in Table 9 show simulated values different from the real values on the
magnetic tape supplied by the Ministry of Health and Welfare. This is due to the condition of the special
permit granted to us by the Management and Coordination Agency of Japanese Government.
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Table 10: Distribution of distances of optimally matched pairs

distance 1 2 3 4 5 6 7 &8 9 10
number of pairs | 4896 1878 1531 142 60 15 9 4 1 3
distance 11 12 13 14 15 16 17 18 19 20
number of pairs 1 2 2 0 0 0 0 0 0 1

Table 11: Approximate optimization results for various &

k 1 2 3 4 5 6 7 8 9 10
number of pairs 6553 8115 8537 8543 8544 8544 8544 8544 8544 8544
sum of distances | 9273 13803 15297 14872 14692 14578 14519 14467 14446 14427

CPU seconds 165 218 245 283 298 311 330 355 368 391

k 11 12 13 14 15 16 17 18 19 20
number of pairs 8544 8544 8544 8544 8544 8544 8544 8544 8544 8544
sum of distances | 14412 14405 14403 14396 14395 14394 14394 14393 14392 14392

CPU seconds 420 438 456 469 482 498 544 539 556 576

k 21 22 23 24 25 26 27
number of pairs 8544 8544 8545 8545 8545 8545 8545
sum of distances | 14392 14392 14423 14423 14423 14423 14423

CPU seconds 595 614 631 650 669 688 707

CPU seconds in Table 11 is the time for obtaining the maximum weight matching for
kn edges. In addition it took about 340 CPU seconds to form the list of k neighbors for
each of n = 17090 rows of the data set.

For k < 22 there does not exist a complete matching. However for 5 < k < 22 all
but 2 deaths are matched in pairs. k* = 23 is the minimum & , for which the maximum
weight matching becomes complete. In this matching the sum of distances is 14423 with
the average distance 14423/8545 = 1.6879 . This is almost the same as the fully optimized
matching with the sum of distances 14418. The distribution of distances of approximately
optimized pairs with k£ = £* = 23 is tabulated in Table 12, which is very close to Table
10.

The actual local recoding for the first 20 rows of the data set is shown in Table 13.
The first set of columns “Original” shows the original rows and the same as Table 9. The

Table 12: Distribution of distances of pairs for k = k* = 23

distance 1 2 3 4 5 6 7 8 9 10
number of pairs | 4899 1869 1534 148 55 13 13 2 4 3
distance 11 12 1320 21
number of pairs 3 1 0 1
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Table 13: Local recoding by one-sided and two-sided matchings

Original One-sided N.N. Two-sided Exact Two-sided Approx. Quadruples

S A M CT

i 56 3Et2 1 562-3E12 1 56 2-3E12 1 56 2-3E12 1 56 2-3E 1,3,7 2

2 86 4N42 2 8 4N 3,42 2 86 4N 3,42 2 8 2-4 N 42 2 86 25N 3,4 2

2 68 2192 2 68 2L 1,92 2 682-3L92 2 682-3L92 2 68 2-3L 1,4,9 2

2 47 11 PO 2 2 47 11-12 P 0,7 2 2 47 11-12 P 0,7 2 2 47 11-12P 0,7 2 2 47 9-12 P 0,7 2

2 8 9B32 2 80 9B3,42 2 8 9B3,82 2 80 9B3,42 2 80 9 B 3,4,7,8 2
2 8 1B92 2 8 1B7,92 2 8 1B7,92 2 81 1-2B0,9 2 2 8 1-28B 0,2,7,9 2
1 78 3¢C72 1 78 3C7,82 1 78 3C7,82 1 78 3C7,82 1 78 244 ¢C 1,7,8 2

1 84 1082 1 84 1Q7,82 1 88 1Q7,82 1 88 1Q7,82 1 8 1-20Q 4,7,8,9 2
2 64 4032 2 643-4Q3,72 2 64 4Q,J %2 2 64 4Q,) %2 2 64 3-4Q,3 = 2

2 9710C7T2 2 979-10C 1,72 2 979-10C 1,72 2 97 9-10C 1,7 2 2 97-98 6-10 C 1,7 2

2 48 1B32 2 48 1-2B32 2 48 1B 2,32 2 48 1B 2,32 2 48 1-2B 1,2,3 2

2 1110P01 2 11810F,P*1 2 118-10F,P*x1 2 11 8-10F,P *x 1 2 11-12 8-10 D,F,P * %

2 B0 BET 2 2 8 8EO0,72 2 80 8EO0,72 2 80 8EO0,72 2 80 8-9E 0,4,7 2

1 77 10 K4 2 1 77 10-11 K 4 2 1 77 10K 1,4 2 1 77 10-11 K 4 2 1 76-77 10-12 K 4 2
2 47 7D4 2 2 47 7-9D 42 2 47 7-8D 2,4 2 2 47 7-8D 2,4 2 2 47 T7-8 N,D,F x 2

2 8011 K42 2 80 10-11 K 1,42 2 80 11-12 K 1,4 2 2 80-81 11 K 4 2 2 79-81 11-12 K 1,4 2

1 80 1K32 180-81 1K32 180-81 1 K32 180-81 1K32 1 80-81 1-3 K 1,3,4 2

2 85 8A82 2 85 8K,A=x2 2 8 8T,A=*2 2 8 B8 T,A *2 2 85 8 C,T,AM = 2
1 5510C12 1 5510-11C 12 1 5510-11C12 1 55 10-11 C1 2 1 65 8-11¢C 1 2
2 70 3D42 2 703-4D 4 2 2 703-4D 4 2 2 70 3-4D 42 2 70 2-4D 4,8,9 2

second set of columns “One-sided N.N.” shows the result of the one-sided nearest neighbor
local recoding. The third set of columns and the fourth set of columns show results of
fully optimized two-sided matching and approximately optimized two-sided matching,
respectively. The last set of columns “Quadruples” show the result of tentative formation
of quadruples by application of matching to matched pairs. See Section 5 for discussion
of forming quadruples. In Table 13 the comma “” denotes “or” of the categories. If the
main cause of death is locally recoded, then the subcause of death becomes irrelevant and
denoted by the asterisk “*”.

5 Some discussion

In local recoding the observations are displayed as intervals or union of categories when
necessary. The presentation of this form might be unfamiliar for the users of the data
set. Another possibility is to use matching for the purpose of swapping of observa-
tions. If we just present one endpoint of the interval in local recoding, possibly always
differently from the real values, we obtain swapping of observations (Schlorer (1981),
Dalenius and Reiss (1982)). Once we obtain the two-sided optimum pairs, the swapping
can be done within these pairs. Since the pairs are formed optimally, the swapping is
performed only between close records.

On the other hand statistical agencies might prefer interval presentation of observa-
tions by local recoding rather than swapping, because in interval presentation the infor-
mation is not distorted as in swapping. In this sense local recoding is not a perturbation
technique, whereas the swapping is certainly a perturbation technique.

In this paper we have discussed forming pairs of individuals for disclosure control. For
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more security it might be more desirable to form groups of larger size. Unfortunately, it is
generally known that the problem of forming disjoint triples is an NP-complete problem
and hence it is practically infeasible to obtain fully optimized set of triples for large n . See
the description of 3-dimensional matching problem and the exact cover by 3-sets problem
on page 221 of Garey and Johnson (1979). This does not preclude the possibility that
there might exist a satisfactory algorithm for approximate optimization. Even if this is
the case, it may be hard to measure the performance of an approximate optimization
algorithm in the absence of full optimization algorithm.

For groups of size 2" h =2,3...., we might apply the optimum matching algorithm
repeatedly. After forming matched pairs, we can introduce some distance measure between
two pairs of rows of X and use the optimum matching algorithm again to form pairs of
pairs or groups of size 4. If we repeat this process, we can form approximately optimized
groups of size 2", h > 2. The “quadruples” of Table 13 show local recoding based on
groups of size 4.

More precise description of the procedure we used for forming quadruples of Table 13
is as follows. We started with the result of matching by approximate optimization with
k = k* =23 as discussed in Section 4. Since there were odd number (i.e. 8545) of pairs,
we took out one pair and worked with 8544 pairs. We defined the distance between two
pairs (z,z') and (y,vy’) as

disto((z, 2'), (y,¢)) = dist(z, y) + dist(z, y') + dist(z', y) + dist(<",¢/),

where dist() is given in (5). With this distance function disty() between two pairs
we applied the approximate optimization. This time a complete matching of pairs was
achieved with k = k* = 4 neighbors. The quadruples of Table 13 show the result of local
recoding based on this pairing of pairs.

A Proof of (4)
Let U = maxj<icj<n dist(z;, z;) and let
wi; = M — dist(z;, z;),
where M > U . Then
M~-U<w; <M, 1<i<yi<n.

A lower bound of the sum of distances for all complete matching is given by (n/2)(M —U)
and an upper bound for all non-complete matching is given by ((n/2) — 1)M . Hence if
((n/2) = 1)M < (n/2)(M — U) or equivalently if

n
M>-U
2
then maximum weight matching results in a complete matching. Hence we can take

n
M=_-U+1.
7 +
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