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In this paper, we consider a multivariate one-way random effect model with equal
replications. We propose non-negative definite estimators for ‘between’ and ‘within’ com-
ponents of variance. Under the Stein loss function / Kullback-Leibler distance function,
these estimators are shown to be better than the corresponding unbiased estimators. In
particular, it is shown that the proposed restricted maximum likelihood estimator per-
forms better than the unbiased as well as the truncated estimators proposed in this paper.
Minimax and order-preserving minimax estimators are also proposed.
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1 Introduction

The estimation of variance components in univariate mixed linear models have been con-
sidered extensively in the literature and various results are available. For example, Rao
and Kleffe (1988) provide an exhaustive account of Rao’s MINQUE theory. Other impor-
tant contributions are due to Thompson (1962), Patterson and Thompson (1971,1975),
Searle (1971) and Harville (1977) who considered maximum likelihood and restricted max-
imum likelihood methods. However, since unbiased estimators of ‘between’ components
of variance take negative values with positive probability, considerable attension has also
been paid to provide positive estimators for ‘between’ components. Nonnegative estima-
tors improving upon the unbiased estimators have also been derived by Mathew, Sinha
and Sutradhar (1992) and Kubokawa (1995) from a frequentist-view point.

On the other hand, the estimation of variance components in multivariate mixed linear
model did not receive such an attention primarily due to technical difficulties encountered



in obtaining similar results. For example, Amemiya (1985) proposed a restricted maxi-
mum likelihood estimator for the ‘between’ components but it is not known whether it is
better (in any sense) than the usual unbiased estimator other than it is n.n.d. Similarly,
Calvin and Dykstra (1991) proposed estimators for the ordered covariances but nothing is
known about the properties of these estimators. Calvin and Dykstra (1991) also mentions
the computational difficulties encountered with the corresponding MINQUE theory given
in Rao and Kleffe (1988). Recently Mathew, Niyogi and Sinha (1994) considered one-way
random effect model with equal replications and proposed some shrinkage estimators but
the dominance result over the unbiased estimator remained open. Thus, no analytical

. . . . ”:1113
results are available in the literature for the dominance over 3,

In this paper, we also consider one-way random effect model with equal replications:
y,=pta; te;, =1,k j=1...r, (L.1)

where a;’s and e;;’s are independent random variables, a; having p-variate normal distri-
bution with mean 0 and covariance matrix X 4, N,(0, ¥ 4) and e;; having N,(0, £1). Here
p € RP is an unknown common mean vector and ¥4 and X are unknown covariance ma-
trices. Let g, = r~ S0y y, 0= (rk) ™ U0 i ¥ S1= Lk D (s — T (W
7. ) and Sy = r 8 (U, — ¥ )(¥. —¥.). The statistics §_, Sy and S, are the minimal
sufficient and are mutually independently distributed as ¥~ N, (g, (rk) " (E1 +rX4)),

S, ~W,(¥i.ny) and S, ~ W, (X, n,) (1.2)
for
Yo=X14+1r¥4, ni=k(r—1) and n,=k-1, (1.3)

where W,(X1,n;) designates the p-variate Wishart distribution with expectation ny 2y
and n; degrees of freedom.

In Section 2, the estimation of the ‘within’ multivariate component of variance is

addressed under the Stein (or entropy) loss function. The usual unbiased estimator of Xy,
~UB _ , . e . .
Y, =n7'S,, can be improved on by using the information from the order restriction

3, < %5, This issue was discussed by Mathew et al. (1994) who considered the estimator

S‘\"]WNS (n1 +TL2 “—p‘*" 1)~1(S] +Sz) lf II“I"S;]S‘A § (nl +TL2 ~~~p—|—1)/n1
' B n;tS, otherwise,

(1.4)
< MNS _ UB . - : :

and show that X, dominates Y| in the case of p = 2. But their arguments leading
to the showing of dominance of (1.4) over the unbiased estimator are not clear to us. For
exarmple, from their Lemma 3.1, it appears to us that the only claim that can be made is
that the estimator defined by

~ % (7&1‘{‘”2“}7“{'1)*1'1 '+' S;lSQi‘Sl lf |I+LSIIS'A i (711 —}‘ Tlg—])+‘ ,l)/n]

U=
= - :
n'S, otherwise

(1.5)



. ~UB
dominates ¥, when p = 2.

The estimator (1.5) was obtained by using the so called ‘pivot’ 5;1/2525;1/2 whose
statistical prop(‘rheb are difficult to obtain. In this paper, we consider instead the statistic
S“1 S, Sz /? and propose estimators of the type

S() = SYPPW(A)P'SY?,

where S%/% is a symmetric matrix such that S, = (8422 W(A) = diag(¢r(A), ..., 1, (A))

and P is an orthogonal p x p matrix such that

P'S;1%8,87'"'P = A=diag(Ap,.. ., N\)
= diag(N\,2=1,....p).

For example, if W(A) = (ny + no) (I + A) for A = (ny/ny)I; W(A) = ny'A otherwise,
then
S, 4+ 8,) fI+87'S, < 1
S (W) = ("11+”2) (S1+S,) il I+ .1 2 < (e +ng)/m (1.6)
ny S, otherwise.
Clearly for large n,, the truncation in (1.6) begins later than in (1.4). But no dominance
result is available. We, however, show in Section 2.1, Corollary 1 that if we modify (1.4)

in which the truncation is without the determinant sign. then it dominates Ll for all
p. This estimator is similar, in spirit to (1.6) and perhaps can be obtained from the
: ~1/2 ~1/2 . . : :
pivot S, / 5,5, /2, However, we show in Corollary I that the estimator given by (1.6)
dominates this estimator. In Section 2, we describe a general method for obtaining the
estimators X;(¥) dominating another (me Ll((I/O)‘ ['rom this result, we get estimators
improving on the unbiased estimator L in terms of risk. One of the improved estimators
is the so-called REML estimator, Whl(h can be also interpreted as an empirical Bayes
rule. Using the general method, we provide minimax estimators dominating the minimax
estimator given by James and Stein (1961).

In Section 3, it is shown that non-order-preserving estimators can be improved upon
by the order-preserving estimators. This implies that the minimax estimators given in
Section 2 can be further improved upon.

r -obler - of s 8T e

The problem of estimating the ‘between’ mutivariate component ol variance 24 1s
treated in Section 4. The unbiased cstimator of ¥4 is given by

~UB _ _ _
Y = ! (71,2152 — 1y 151) ,

which is not always non-negative definite (n.n.d.). Amemiya (1985) proposed an REML
estimator which is n.n.d. for eliminating this undesirable property. However its supe-
riority over the unbiased estimator has not been established from a decision-theoretical
aspect. Mathew ef al. (1994) considered another type of estimators, namely, linear com-
binations of §; and S, and provided conditions under which the combined estimators



are n.n.d. and better than the unbiased estimator relative to the quadratic Joss function.
In the univariate case, the mean sqaured error (MSE) has been usually employed as a
criterien of comparing estimators of the ‘between’ component of variance. However we
do not think the MSE is an appropriate measure in evaluating estimators of dispersion
parameters because the MSE penalizes the under-estimate less than the over-estimate.
As an alternative measure, we employ the Kullback-Leibler distance or Stein loss function
and consider the estimation of ¥4 in the context of simultaneous estimation of X and
Y 4. Under this measure, the results given in Sections 2 and 3 are dirvectly applicable to
get estimators improving on the unbiased estimators (il YUY, From this result, it is
shown that the REML estimators of (£, ¥4) dominates the unbiased estimators. Also
n.n.d. estimators superior to minimax estimators of 3, and Y4 are derived. The paper
concludes in Section 5.

2 Estimation of Multivariate ‘Within’ Component of Variance

2.1 A general approach to improving estimators

Let S; and S, be independent random matrices, S; ~ W, (X, n;), ¢ = 1,2, with Xy < Xy
where ¥, < ¥, denotes that ¥, — ¥, is n.n.d. Denote the parameter space by 2 =
{(¥1,%,) | ¥y < X,}. Suppose thal we want to estimate X relative to the Stein (or
entropy) loss function

L(ZETY = tr 2 870 — log| ¥, 87 — p, (2.1)
which was proposed by James and Stein (1961) and also can be derived by the Kullback-

Leibler distance R
f(51;21)¥ o \
/{logf(SU o £(S1; 51)du(S1)

where f(SL; Y1) designates a density function of Sy with respect to measure v(-). Every
estimator L) is evaluated by the risk function Ry(w; ¥y) = E,[L(E,S71)] for w € Q.

Let 3'2’/ be a symmetric matrix such that S, = (S‘2 )2 and let P be an orthogonal
p X p matrix such that
P'S;'%8,8712 P = A = diag(My, ... A,
where Ay > Ay > ... > A,. We consider estimators of the form

Sy = SY*Pw(A)P'SY? (2.2)

where W(A) = diag(¢1(A), ..., 1,(A)) for nonnegative function ¥(A). For given estimator
31 (W), we define two types of truncation rules [W(A)]TH and [W(A)]"H* by

[T = diag(y ™ (A),.... 0, " (A)), (2.3)

(/]f}{(A) = min {7*/)1<A)7_—~/”M} , e=1,...,p,
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and

(WA = diag(¥{™(A), ., (), (24)
SR () = (ny +mng) (A 4+ 1) i (ng 4 ny) (A +T) < W(A)
) = ¥i(A) otherwise.

Then the corresponding truncated estimators are written as

([0 = Sy Pdiag(ef™(A),..., ¢! (A) PSS, (2.5)
£ ((W]TR) (ny +n2)7 (81 +S2) il (ny +n2) 7 (814 82) < Zi(W(A))
£ / = — )

2 (¥(A)) otherwise.

Note that each diagonal element is truncated componentwise in S([W)TR) while the
diagonal matrix is truncated for ¥, ([W]*%)
results.

. We get the following general dominance

Theorem 1.

(1) The estimator Sy([W)TR) dominates 3,(W) relative to the Stein loss (2.1) if
P[ (AT # W(A)] > 0 al some w € .

(2) The estimator 3,([W]"R) dominates SU([W]TE=) relative to the Stein loss (2.1) if
Pl[W(A)TE £ [w(A)])T*] > 0 at some w € .

Proof. Without any loss of generality, let ¥y = I and Yy, = O = diag(f1,...,0,)
with 6y > 1,...,0, > 1. The joint density of §; and S is

. 1
const.|8;|M=P=1/2| g |(ramp=1)/2| g =2 2oy [-f—g(Sl + @_152)] .

Making the transformation F = S;UZSlS;l/Z with J(S; — F) = |S,|#+Y/2 gives the
joint density of F and Ss:

frs,(F,Sy) = const.|F (m1=p=1)/21 G, |(mitn2=p=1)/2| Q| =n2/2 ey 1 F+0718,]. (2.6
122 2

Making the transformation F = PAP’, we see that the joint density of (A, P,S5) is
written by

f A, P, S,) = const.f,(P)g(A)|S,|mHme=r=072|g| 2/ 2etr Lpap ot S, |,
APs, P 2

where f,(P) = J(P'dP — dP) and g(A) is a function of A (see Srivastava and Khatri
(1979, p.31-32)). Hence the conditional distribution of S, given (A, P) is

S, | (A,P) ~ Wp((PAP’+(~)“1)_1 )

b



which yields the conditional expectation of S5 given (A, P),

BIS.|A. P) = (m, + ny) (PAP + 071) (2.7)
_ For the proof of part (1), we write the difference of the risk functions of 3 (W) and
S([w]TEY as

Ry(O, 51(W)) — Ry (0, 2, ([w)]™)
= Eg [tr(PW(A)P ~ PU(A)TRP)S, — log|B(A){[w(A)]H} ] (2.8)

= BN [tr(W(A) — [W(A)R) P E g[S A, PIP — logl W (A{[w(A)™} ]

From (2.7) and the fact thst W(A) > [W(A)]TF, it follows that the r.hus. in (2.8) is greater
than or equal to

B [ir{w(A) ~ A} (0 + ma)(A + 17" = log WA (A}

o i+ 1Y g+ ny ny + ng
= D by H(i/h(/‘) m+nz) " - log 9/(\)‘“:“;]"

=1
o N+ 1 ;
[ (A) > — 2.9
<r w22 29)
P ny + noy ny + noy } . A+ 1
= Y g [y ~ logh 2 LAy 5 L
- {5 g B ) ) >
> 0,

which proves part (1).

For the proof of part (2), note that (n, 4+ ny) "(A + I) < W(A) is equivalent to the
condition that (ny + n2) ' (A + 1) < ¢i(A) for every 4, and that under this condition,
PTR(A) = (ny + n2) " (i + 1) for every i. Since P[[W(A)]TF & [W(A)])F] > 0 for some

w € {2, there exists an index set J such that
PUTR(A) < I (A)] = Pul(ny +na)™ (A + 1) < @7 (A)] > 0
al some w € (2 for any 7 € J. By the same arguments as in (2.8) and (2.9), we have

R (0,3, ([w]TH)) - 1{1(() ([
>\i ‘E‘ 1 ) + No T4 -{‘ Ty
> ~ logi) 2
- ZE‘ H( A4) ny + n2> A+ ogt;(4) A+ 1 }

A4+1Y)
x I (d’j(A) > Jr_n?)J :

which is nonnegative, and the proof of Theorem 1 is complete. oo

6



Corollary 1. The estimator in (1.4) modified as
SS( ) (nj + 1y — [L)“l(kgl + Sz) lfI -+ Sl—lSQ S (nl + ny — (l)/nl
a) =
! n'S, otherwise
, “UB o9 , oS
where 0 < a < ny, dominates X, . Furthermore X7 (0) dominates X, (a).
Proof. Define the set A by

A = {I -+ Si_lsz é (m -+ g — a)/nl}

)Y A Ty —
— { 1'n1+n2 a>1}‘
A1 ny

Then the same arguments as in the proof of Theorem 1 gives that

Ry(0,57%) — k(0,57 (a))

}2_0"1; A Al ntne o Aimbng I]
z:‘; @ Ty nq -+ ng — a )\2 -+ ] gnl )\i -+ 1 AJ

P Ai_nytny,—a Ai nyFng—a
b -1 1t
; 0 [{ A+ 1 0% A1 A

7 ny

a M nitng—a
- — 11
—+n1+n2~wa{/\i+1 ny } A}’

which is greater than or equal to zero, and the first part of Corollary 1 is proved.
For the proof of the second part, define the set B by

B A ng+tng—a S 11 7
A+l ny I

Y

i

and denote the complement of A by A°. Similarly to the above arguments, the risk
difference is written as

~8 NS
Rl( 0, X (a)) — Rl((”),ZJI (0))

2 \Ex E@ {( )\L-{"]. - /‘\2—1"[ 'le**—’YALz _ 10g T %___(L_Z__}[A
— ni+mn,—a ni+ng—al M+1 ny+ny—a

i by NoAT1\ ny+no Ang+ngl .
E,; e ”‘] ———— 1 el
+; o [{(nl ny + ng) A+ Ognl A+1 Boa

which is greater than or equal to zero, and the proof of Corollary 1 is complete. 0o




2.2 Improvements on the unbiased estimator

- 1/2 g—1/2 —1/2 /2 41/2 1/2 . . oUB
Since Sy = Sz/ S, /5152 / 52/ = 5) PAP'SQ/ , the unbiased estimator X, =
n; '8, can be expressed in the same manner as (2.2) by

»\[[B ~
Ll — El(w[/B)’

where
UB 11 (1 R
U7 = diag(ny Ay, ...,n7 Ap).
The truncation rules given in Section 2.1 produce the estimators

S REML o, ‘
S N i) (2.10)

where
[WVPTE = diag (min_ {2—1-, nl\ll—:k;zl:\} so .., Mmin {%, %}) )
and
SPT = (TR (2.11)
(ny +n2)7(S1+ S2) if (ng 4+ n2) M8+ 82) < ny'S,
B ny's, otherwise.

For instance, suppose that
/\1 Z n]v/nQ,. "7/\(} Z n]/ng,/\q_l_l < TL]/TLQ, . ..,)\p < ‘nl/ng
for some ¢q. Then [WYP]TE takes the value

o g (AL Ao b )

Yt ) ER
ny+n ny+ny, n n
1 2 1 2 1 1

while

[WYBTE — diag (AJ e 51) .

ny ny
From Theorem 1, we get
‘ , o REML _ , SUSTR

Corollary 2. The estimator 3, dominates the estimalor X, which tmproves
on the unbiased one S8 relative to the Stein loss (2.1).
. , SREML | . : . o

I'he estimator X, is known to be the restricted {or residual) maximum likelihood
(REML) estimator of X, under the constraint ¥; < X,. Corollary 2 thus implies that the
S : , , , SUSTR .
REML estimator is superior not only to the unbiased estimator but also to X given
in (2.3), although it appears to have a natural form.

8



S REML .
It is interesting to note that the REMIL estimator Y| can also be derived as

an empirical Bayes rule. Let 5 = X' and €& = *1/2)]] ]2;’;/2. Suppose that 1 has

non-informative prior distribution |n|=®+"/2du(n) for some measure v(-) and that & is
unknown. The joint density of (1,51, S;) has the form

! 7 ny-—p— T =P VAR Th —P— 9 11 /2 ] < 9
const.m[("+ 2P 1)/2|511( 1=p 1)/2|’52‘( 2-p 1)/z|£l 1 2atr [__5 (61/25151/2 + Sz) 77} :

so that the posterior density given S; and S, and the marginal density of S, and S, are
given by
1,
(posterior) o [n|i"+77# Weetr [ (€V25,€/2 1 52) ],
(marginal) o ]5]7"/2|£1/251§1/z 4+ Szl""(“1+"2)/2|51I("l“P‘l)/Z|52|(n2“p“1)/2.

We thus get the Bayes estimator of ¥; under the Stein loss (2.1)

2?(6) — 8 1/2 'S S ) 1§~1/2

(‘n1+n2) 1£—l/2(£1/25151/2+Sz)£—l/2
= (ny +n2) 7" (S1 +€728,67'7).

Since € is unknown, € needs to be estimated from the marginal density. Putting 8 =
9*1/26 /28,6~ 1/25_1 /2 , the maximum likelihood estimator of 3 can be derived by max-

imising |3|"2/2|I + 8|~ (rre) 2 subject to the order restriction 8 < S;'*S,87 % gince
& > I. The resulting MLE of 3 is

B = Qdiag (min {7}3, :\1—} ,1 = 1,~-aP> Q'

ny

where @ is an orthogonal p x p matrix such that
Q'5,°8,8,'*Q = diag (A7, \1).

P

. - i - . o B . .. .
Putting 3 or £ into the Bayes Estimator 2 (§), we obtain the empirical Bayes estimator

(& 1 " { | ( | {n2 l} = ) } "
= S, ag | — o =1,..., S,
, (&) T Q ¢ diag { min no 1 p)+1:Q
1 ]/2 . . ]. /\i +' ] . 1/2
= — S | min { —, ————— =1,... S,
paarae Qdiag (mm {nl, TR a=1,....p]Q

Here note that orthogonal matrices P and @ satisfy

57241/2515;1/2 — (S ]/Zsl/Z)(S;l/ZSi/Q)/ — PAP/
718,87 = (571788 sy = A

9



Then we have that

Hence fjl(é) is rewritten as

1 T + 1o

e 3 Ao+ , Y
X&) = Sé/ZPdiag (min {““7 “*"j*"'} 1= ],.”,p) P S;/z,

S . ; , ~REML
which is identical to the REML estimator X,

interpreted as the empirical Bayes rule.

Hence the REML estimator can be

2.3 Improvements on the minimax estimator

Historically, the first interesting event in estimation of the covariance matrix was brought

by James and Stein (1961), who established the non-minimaxity of the unbiased estimator
o UB .. . .
Y, and presented the minimax estimator of the form

2!1]5 = /Ilemq"ll7

where T'; is a lower triangular p X p matrix such that §; = T,T", and D™ is the diagonal
matrix given by D™ = diag(d,,...,d,) for

di=(ni+p+1-20)7", i=1,...,p

. .. . . . oS . . .
We now obtain a minimax estimator (improving on X ) using the information on Sj.
Let us consider the estimator of the form

= () = S P (A P'SY (2:12)

where
T AN e
UA) = diag(di Ay, ..., dpA,).
.. . o
We first demonstare the minimaxity of X .
e . X om L. . . . oS .
Proposition 1. The estimator Y, is a minimazx estimalor improving on Y,  relative
1 ! ! 1
Lo the Stein loss (2.1).

Proof. Recall that F = §,'%8,8;"? = PAP' and that §; ~ W,(I,ny). Then it is

seen that the conditional distribution of F given Sy has W,(3,,n,) for X, = S;'. Then
. . ~mo,
the risk function of X is represented by

RO, X)) = E% |EFS [t PU™ (A P' ST — log|PU™ (AP ST — plSa||,  (2.13)
1 i * g .

10



so that given S, conditionally P Y™ P’ corresponds to the Stein’s orthogonally invariant
minimax estimator of X,. Then from the results of Stein (1977) and Dey and Srinivasan
(1985), it follows that the conditional expectation EF12[-|S;] given in (2.13) is less than

, .. . LS . .
the constant minimax risk of £, which proves Proposition 1. oo

Now, using the truncation rules given in Section 2.1, we get the estimators

~MTR = o |
U0 =Xy ((erth, (2.14)
where
m A+l . A, -+
[ (AR = diag (mm {ff])\lﬂ EIE} o {d”/\p’ ;Ip:;t;}> 7
and
Si\/fSTR — 21([wm]'1‘1%*)
— (n1 4 n9) (S + 8y) if (1 +12) 71 (S + 52) < b3
2:71% otherwise,

From Theorem 1 and Proposition 1, we can get

, : SMTR . : _ , S MSTR
Corollary 3. The estimator X, s a minimazr estimator improving on X,

. . oM o . S o
which dominates X, and Y| relative to the Stein loss (2.1).

3 Dominance Results by Order-Preserving Estimation

We consider the general type of estimators given by (2.2), namely,
S = SYPPU(A)P'SY? W(A) = diag(th(A),. .., (A).
For the diagonal elements 1y (A), ..., 1¥,(A), it is quite natural to satisfy the condition
Pi(A) > a(A) > .. > by(A) for any A,

which is called order-preserving in She< na and Takermura (1992). The minimax and im-

MTR MST :
proved estimators ? and Zl gwen in the previous section do not satisfy the
order-preserving condmon

In this section, we show that non-order-preserving estimators can be improved on by
the order-preserving estimators. We first write the risk function of S (W) as

RO, 5,(¥)) = EgltrPU(A)P'(PAP' + 0717 —log|W(A)| — log|S2| — p]
= Egltrw(A)(A+ P'O'P) —log|W(A)] —log|Sa| —p].  (3.1)

11



Let B = A+ P'O7'P and denote the (i,7)-diagonal element of B~ by B". Then the
following lemma is essential for proving the required result.

A] be a conditional expectalion with respect to P given A. For

Lemma 1. Let ]
< j;

E[B"

Al < E[BY|A]. (3.2)

Proof. Irom (2.6), it is seen that F = 551/25152_1/2 has the density
const'iFl(m~p~])/21F + @——1l—(’fz1+n2—>p-~l)/2|@Al,ing/‘zv
so that the joint density of (A, P) is given by
const. f,(P)g(A)|A + PO~ P|~tmtm-r=/z|g|=na/2)

where f,(P) ia a Jacobian and g(A) is a function of A. Hence the inequality (3.2) is
equivalent to

[ (B = BY)A+ PO PO (p) 2 0,

O(p)

where p(-) designates the invariant probability measure on the groups of p-dimensional
orthogonal matrices O(p). Without any loss of generality, we demonstrates the case where

j =2 and ¢ = ];, that iS,

/(')( (B - B'Y[A + P'O™ P tmtmmr= 02, Py > 0, (3.3)
O(p

Let B,

£ 1 =1,2, be the cofactor determinants corresponding to the element B;;. Then

B* — B' = (B], — B{,)/|B|, and (3.3) can be written as

[, (Bl = BlA+ PO P () 2 0 (3.4)

Note that p(P) is invariant with respect to permutation of columns of P. By interchang-
ing 1 and 2, the left-hand side of (3.4) can be written as

— /()(p)(B§2 — B{l)l/\* + P/@-IPI—(m+n2"p+1)/2dlu(P> >0, (35)

where A* = diag(Xy, A\, Az, ..., A,). Adding (3.4) and (3.5), we see that for o = —(n +
ne —p+1)/2, E[B”lA] > E[B“lA] if and only if

]O( (BL = Bl){IA+ POTPI [ PO (P 2 0. (36)
P

12



Let us decompose P'O7'P as

’
an a2 Qg
P,@_IP = 1o A9 a{23 .
a3 ax Ass

Then we have

Bl gl - |% + Ay aj, | an+ Ay al,
i " a3 Az + As as; Az + As
7 I
= (A — M)A + A i a3 | @22 A3 7
(M 2)lAss + Aol + a3 A+ As ayy Az + As

!
Ai+ay —2 a12 Qs
1 -1 p
|A* + PO P! = ajo /\2 + ayy + @ Ayq
a3 Aoy Ass + As

!
/\1+(L|1 a4

— /1 .
= [A+ PO PH.E' o AL A

!/
Ay + ap Ay

Aoy Agy + Ay
= |A+PO7'P|+|Ag + Asl(xhy — 2Xy — 2%) + kp p
= ‘A ’{“ P/@_.lp‘ +‘ k'P’A()\] - )\2)’

where
!
99 (l23

. A ry—1 L) =
kP,A - k(P © P’ A\g) a3 Agd + Ag

ayq a’]g
a3 Az + Ag

Therefore the inequality (3.6) is represented by
/O(p) {0 = o)l Ass + Ao + kg } {14+ PO
—(|A+ PO P+ kp 4 (M — A1)} dp(P) = 0.
Since |Ass + As| does not depend on the above permutation of exchanging | and 2,
/O(,,)(Al — ) A + Al {[A+ PO PP
A+ P OTP|+ kp (M = A2) dp(P) = 0.

Noting that (|A + P'O7'P| + k, 4(A — A2))* is a decreasing function of kp 4 for a =
—(ny +ngo — p+1)/2, we see that

kpa {14+ PO P = (JA+ PO Pl 4y 4 (M — M)} 2 0,

13



which establishes the inequality (3.6), and Lemma 1 is proved. oo

Now we demonstrate that non-order-preserving estimators can be improved upon by
the order-preserving estimators. Let X;(¥) be a non-order-preserving estimator. Let
PP (A) be thc i-th largest element in (¢y(A), ..., ¥,(A)), so that ¥P(A) > ... = ¢2(A).
Note that (¥?,. ..71/);?) majorizes (1, ...,%,), that s,

J J P p
L Z for 1<j57<p-1 and Zzb,o = Zz/»;. (3.7)
1=1 =1 =1

Let 5,(0°) = Sy PUWO(A)P'SY? for WO(A) = diag(¥(A),...,42(A)). Then we get

Theorem 2. [f P [U(A) # (I/O(A)] > 0 for some w € 0, then $(W) is dominated

by the order-preserving estimator 3, (W) relative to the Stein loss (2.1).
Proof. The risk difference is written as
Ri(0,2,(9°)) = Bi(0,51(W)) = Eglte(¥7(A) ~ ¥(A)B™]

p
N lz (7 (A) = (A E[BY[A]| . (3.8)
=1
Following Sheena and Takemura (1992), we use the Abel’s identity to get the equation

Al

P
Z _(#) an

(7 — ) (E[BY |A] — E[B|A])
(U + Uf — by — '{,/22)(E[B22.A] — E[B”

A])

+-
0 (0] \ —ip--1 .
HP 40—y e Yyt )(E[BP™HP }/\] _ E[Bppt/\]),
which can be seen to be negative from Lemma 1 and (3.7). Hence from (3.8), Theorem 2
is proved. bo
. ‘ SMTR <MSTR , . :
Applying Theorem 2 to X} and ull , we obtain the ordcr—prc\ﬁwlng estimators
. . - . . Lol ..
improving on them. For instance, the order-preserving estimator of X/, is given by
M TRO 1/2 m TR0 1/2
50T = 8PPt Psy,
where [[WTTF)9 = diag(yMTRO, .. pMTEO) and MTFO is the i-th largest in the diag-

onal elements min{d;X;, (ny + n2)~ (/\ + 1)}, o= 17... .-

14



4 Estimation of the ‘Between’ Multivariate Component of Vari-
ance

In this section, we consider the estimation of the ‘hetween’ multivariate component of
variance in the context of the simnltaneous estimation of ‘within’ and ‘between’ compo-
nents.

Recall that as described in (1.1), (1.2) and (1.3), S and S, are independent random
matrices having W, (¥, n1) and W, (Y, ny), respectively, for Yy = X1 +r24. We want to
estimate X 4 based on Sy and S, and to discuss the preference of estimators in a decision-
theoretic framework. The parametric structure X, = ¥; + rX4 means that estimators
of ¥4 can be provided through estimation of both X; and X,. This suggests that the
estimation of ¥4 may be considered in the context of the simultaneous estimation of
(X1, Xq).

We thus consider the problem of estimating (X, ¥) simultaneously relative to the
Kullback-Leibler loss function

Lp(E1,8 4351, 54)
= g {65, 57— log| .57 — p} (4.1)
g {0x(S1 4 r S (B0 4 1) = logl(E0 4+ rEa) (1 4+ ra) T = b}

which can be really derived from the Kullback-Leibler distance
/ []og {f(Sh Sy; 2117 SJA)/f(SI: Sai X1, ZA)H f(S1, 8 217 SA‘)dV(Sl)dz/(S:z)

for joint density function f(Si,Sq; 2, Xa).

When }71 and EzA: Y1 +rX 4 are estimated by 571 and 572, it is quite natural to take
the form ¥4 = r=}(3Xy; — ) as an estimator of X4. As long as such types of estimators
are treated, the risk function of (¥, ¥4) relative to the Kullback-Leibler loss (4.1) is
written as

Rip(w; 51,54) = E. {Ll{[,(??u 5 51,2/1)]
anl(w; 21) + ’7L2R2<UJ; 22),

where w = (¥, X1+ r¥4) € 2 and

Ri(w,j_jl) B Ew {trilz‘;l MlO?;'ElEJ_ll -p]
Ry(w; Xy) = E, [trizz‘;* ~log| 2, 55" — p] -

Hence the original probiem under the loss (4.1) is decomposed into two problems of
estimating ¥, and ¥, in terms of the risk functions R;{w; X1) and Ry(w; &), respectively.

15



Since the estimation of ¥ in terms of the risk R;{w;Y;) has been treated in previous
1 1{W; 244 1
sections, we need only to consider the estimation of Xy under the risk Ry(w; Xy).
1/2 . : /24
Let Sl/ be a symmetric matrix such that Sy = (.51/ )2 and let @ be an orthogonal

p X p matrix such that

IST_1/25251'_1/2 — A—l — dla’ /\*17”' )\—1 ,
) | gL

Tp

where A7! < ... < AZ'. The diagonal matrix A is also defined in Section 2.1 as
P'S;'?8,8;1°p = A,
so that we note that the following relation holds:
Siip = 81PQA2. (4.2)
We consider the estimators of the form
Sy(0) = 517 Qa(1)Q'S,”, (4.3)
where @(A) = diag(é1(A), ..., ¢,(A)). From (4.2), it is seen that the estimator 2’2(@) is

also represented as

52(0) = SYPPAM2H(A) A2 P S, (4.4)

We shall provide general conditions for the dominance of ,(®) given by (4.3) in terms
of the risk Ry(w; 5)2) Making the transformations, we can suppose that §; ~ Wp(@_l, n)
and Sy ~ W,(I,ny) with any loss of generality, where @~' = diag(0;",...,0;") for
o7t < 1,... 0, 1 <1. Therefore we can apply the results directly to get the improvements

on Yy(@). The corresponding truncation rules are described as

{D(AN™ = diag (17(A), ..., 617 (1) (49)
d)zTR(A) = deI(ZSz(A),A;I_Fl}* iz]a"'vpa
I_ g + 1y
and
{@(/\)}TR* — dlag ( ’{’R*’ o ,¢Z)R*(A)) ; (46)
HI(A) = (n1 4 n2) " AT+ 1) il (g +n2) (A + ) > @A)
‘ o Pi(A) otherwise.

Then the corresponding truncated estimators are given by

D)) = 8 Qdiag (4{"(A).....5)(1) @'SY”, (4.7)
({0} = (A"l + 1) (S1 + 8) if (m + n2) "M (S1 + Sa) = Xa(@(A))
Yo(@(A)) otherwise.

16



Similar to Theorem 1, we can verify that Y,({®@}7%) dominates Yy({®}77*) which is
better than Yy( @) in terms of the risk Ry(w; 2s).

Using these truncation rules, we can get several truncated estimators being better
than unbiased or minimax estimators. For instance, applying the truncation rule {®}7"
to the unbiased estimator

~UB . g 9
T, =np'S, = 81'Qe"Q's )

for ®V8 = diag((nyh)7h, ..., (n2A,)7"), we obtain the REML estimator

~REMI - ) ,
3, = 5,({dVE}H, (4.8)

. . < UB
improving upon Y, , where

R A At 41
{(PUB}TR = diag (max {_’};1_,_7 M 1} .., max {_p_v 'Q“‘i”}> .

Ny Ny 4 Ny Ng Ny + N

Also the minimax estimator corresponded to (2.12) for X, is given by

-~

By = 5(em) = 5,/°Qe"(1)Q's)”,

where
€ €
p™(A) = diag | -2, ..., —
07(4) = ding (..., 51

for ¢; = (ny + p+ 1 — 2i)~% It should be noted that the order of ¢,...,¢, in ®@™(A)
is reveresed to the case of W™(A) in (2.12) because AJ!' > ... = AT'. Applying the
truncation rule yields

SMTR S mT

T = B({emyth, (4.9)

improving on 3, , where

e, AL+ 1 e A+
¢ (AR = di Jo A cooymax{ E B )
{o™(A)} lag (max 1 VR , INax N m T,

We now construct estimators of ¥4 along the manner that Sa=r (8 - by 1) It
will be interesting to know the kind of nonnegative estimators that can be obtained by
combining truncated estimators of ¥y and X,. Combining S1([W]TR) given by (2.5) and
3,({®}TR) given by (4.7), and noting the expression (4.1), we get the estimator of X4 of
the form

A1y = 7 (ST - By
= ISYEP A (oA TRAYE — (W)} P'SY

17



where
AVLO(A)FTRAVE — [w ()]
= diag (max {qpl(/l))\,/ ﬁ_ii—} — min {1!)1( B At 1—}) . (4.10)

ny 4+ ng n1 + N
REML < REML : :
In the case of combining the REML estimators Z] and X, , the i-th diagonal

element in (4.10) is

{1 Aml} : {)\@- A,~+1} {l i }
nax —min{ —, ——— = max4{ — — —, O,
ng N1+ Mo ny Nyt ng Mo 14

which gives the estimator

oREML ,RBML ~REML
: 1 A ) .
= 7‘"15§/2Pdiag (max{—— - A——,O] =1, ,p) p'S;/z7
2% 13 j

which is n.n.d. This REML estimator of X4 is similar to the one proposed by Amemiya
- ~REMI ~REML ) ~UB ~UB )
(1985). We thus get n.n.d. estimators (3, .2, ) improvingon (&, , X, ) relative

to the Kullback-Leibler loss (4.1).

C . . < MTR ~MTR :
In the case of combining improved minimax estimators X and ¥, the i-th
diagonal element in (4.10) is

A+ 1 Ai + 1
max {6p_i+1, —‘——+—-—-} — min {di/\i, ~—j——~}

ny + ng ny -+ ng

1 A
= max —~ — 5 0¢,
{nz—(p«l—1—~22) ny+p+1—2 }
which gives the estimator

Y‘T

uz L ]

1 Ai .
= ”151/2Pdiag (ma}({ ( — — - _50} Je=1,.. ) P’S’l/z
Ty —

GMTR _ - (%MTR AMTR>

p+1—21) n+p+1-—=2

CMTR < MTR, . :
V\hl(‘h i also n.n.d. In the sequel we get n.n.d. gstlmamlb (L1 ; _/A improving on

(27, 27) in terms of the risk Ryp(w; 3y, 54) where Y= (2) = 57, Comparing

two n.n.d. estimators ¥, and L¥TF we can note that for 1 > (<)(p+1)/2,

1 A DY
<~ — > (<)— — —,
ng—(p+1-21) ng+p+1—2i ny My

I8



which implies that

1 A;

Ai
ng — (p+1—2) *n1+p+1~2i>

P >(<,)P[L~—>O}.

0

Ty 1y

Hence we cannot compare them in the sense of maximizing the probability that they are
positive-definite.

5 Concluding Remarks

In this paper we have proposed n.n.d. estimators for the ‘between’ and ‘within’ covariance
matrices. We considered a natural ‘pivot’ Sf_1/2515;1/2 instead of S;UZSQSII/27 the
latter is even difficult to handle. Although it can be shown that the results of this
paper hold for any factorization of S;, the symmetric factorization is easier to handle
and from practical viewpoint can easily be obtained from any statistical packages. The
restricted maximum likelihood estimators have been shown to perform better than the
unbiased and the truncated estimators proposed in this paper. The proposed truncated
estimators, however, are natural estimators and somewhat simpler to implement than
restricted maximum likelihood estimators. This estimator also dominates the estimator
proposed by Mathew et al. (1994) and modified by us.
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