CIRJE-F-37

Calculating Minimum k-unsafe and Maximum k-safe
Sets of Variables for Disclosure Risk Assessment of
Individual Records in a Microdata Set

Akimichi Takemura, The University of Tokyo

January 1999

Discussion Papers are a series of manuscripts in their draft form. They are not intended for
circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

Calculating minimum k-unsafe and maximum k-safe
sets of variables for disclosure risk assessment of
individual records in a microdata set

Akimichi Takemura
Faculty of Economics, University of Tokyo

January, 1999

Abstract

In the framework of disclosure control of a microdata set, an unique record is at
risk of being identified. Even if a record is not unique in the microdata sct, it may be
considered risky if the frequency & of the cell, in which the record falls, is small. The
notion of minimum ungafe combination introduced by Willenborg and de Waal (1996)
is important in this respect. The purpose of this paper is to clearly define closely
related notions and give an algorithm for obtaining relevant combinations of vari-
ables. We will define minimum k-unsafe and maximum k-safe sets of variables for
each record and give an illustration to show the usefulness of the proposed technique.

Key words: Hasse diagram, hitting set problem, local suppression, NP-complete,
sample unique.

1 Introduction

‘onsider a microdata set of n individuals and p variables. An unique individual of the
microdata set (sample unique) is at risk of being identified if the individual happens to be
a population unique as well. A sample unique individual is more likely to be a population
unique, if he (or she) is already a sample unique with only a small number of variables
out of p variables. Therefore it is important to find minimum set of variables, with which
the individual becomes a sample unique.

It is also of interest to find maximum set of variables, with which an unique individual is
no longer unique. This maximum set is obtained if we delete or locally suppress minimum
number of variables to make the individual non-unique. Therefore this maximum set is
important from the viewpoint of disclosure control based on local suppression.

In addition to uniqueness, we consider doubles, triples, etc. If an individual falls in
a cell with frequency j, we call him (or her) j-isolated. Suppose that we fix & > 1 and
consider up to k-isolated individuals as being at identification risk. We call an individual
k-unsafe (k-safe) if he is j-isolated with j < k (j > k). For a k-unsafe individual we will
consider minimum k-unsafe set and maximum k-safe set of variables.

The notion of minimum unsafe combination was introduced and discussed in Section
5.4 of Willenborg and de Waal (1996) and further in Willenborg (1996). However in
these papers the distinction between minimum unsafe set and maximum safe set was not
necessarily clear. The first purpose of this paper is to define these notions more clearly
and derive some relations between them. Another purpose of this paper is to give an
algorithm and a working program to obtain minimum unsafe and maxinum safe sets. We
will show that these sets of variables can be computed in a reasonable amount of time
even for a large data set.

In this paper we only discuss obtaining minimum unsafe and maximum safe sets
for each unsafe record of a microdata set. Essentially we consider each unsafe record
separately. This is another difference of our approach from the approach of Willenborg
and de Waal (1996) and Willenborg (1996), where unsafeness of the whole data set is
more emphasized. As these authors discuss, applying local suppression to unsafe records
and evaluating the disclosure risk of resulting data set involves much more complicated
optimization problem. Furthermore in this paper we are only concerned with rare records
in the sample and do not discuss the notion of population uniques or rare individuals in
the population. Some relevant results on estimation of the number of population uniques
are given in Takemura (1997) and Hoshino and Takemura (1998).

The organization of this paper is as follows. In Section 2 we give a definition of
minimum A-unsafe and maximum k-safe sets of variables and derive several relations
between them. In Section 3 we present an algorithm for obtaining these sets. In Section
4 we apply our algorithm to a data set of considerable size and show that calculations
can be done in reasonable amount of time. In Appendix B we present the source code of
a working program, which was used for processing the data set of Section 4.

2 Minimum k-unsafe and maximum k-safe sets of vari-
ables

Suppose that a microdata set is given in the form of an n x p matrix X. Each row of X
corresponds to a record of p observations of an individual. We refer to the columns of X
alternatively as “variables” or “fields”.

Let J = {1,...,p} denote the set of variables. For a subsct J C J denote the
submatrix of X consisting of the columns in .J by

Xy = (.’II,;]‘), jeJ

Suppose that the i-th row of X is an unique record of X. If it is already unique in X,
we call the i-th record unique with respect to J and call J [-unsafe for the i-th record.
Generalizing this to k > 1, consider a k-unsafe record 4. If it is already k-unsafe in X,
we call the i-th record k-unsafe with respect to J and call J k-unsafe for the i-th record.

If J is k-unsafe for i, then any superset J' of J (J' D J) is k-unsafe for i. On the
other hand if .J is k-safe for i, then any subset J' of J (J' C J) is k-safe for i. Therefore
we are naturally led to the following definition.

Definition 2.1 Fiz a particular k-unsafe record i and consider k-safeness of sets J
fori. A set J C J is minimal k-unsafe if J is k-unsafe and any proper subset J" of J is
k-safe. J is minimum k-unsafe if it is minimal k-unsafe and its size |.J| is the smallest
among minimal k-unsafe subsets.

A set J C J s mazimal k-safe if J is k-safe and any proper superset J' of J is k-
unsafe. J is mazimum k-safe if it is mazimal k-safe and its size | J| is the largest among
mazimal k-safe subsets.

In Definition 2.1, all non-empty subsets of J may be k-unsafe for 7. In this case
minimal unsafe sets are the singletons {1},...,{p}, and maximal safe set is the empty set
0.

We denote the size of minimum k-unsafe set for 4 by ug(i) and the size of maximum
k-safe set for i by sg(4).

A convenient way of thinking of k-safe and k-unsafe sets is given in terms of an
indicator function on a partially ordered set. Let 27 denote the set of all subsets of J:

27 = {0, {1},... . {p},{1,2},.... T}

27 forms a partially ordered set with respect to the inclusion relation between subsets of
J. Let ¢; denote the indicator function of k-unsafeness of sets of variables for

1, if Jis k-unsafe for 7,

bi(J) = {(); if J is k-safe for 7.

Then ¢; is a non-decreasing function on 27. We are considering minimal elements of
#71(1) and maximal elements of ¢;'(0).

In the following we will make extensive use of the Hamming distance. The Hamming
distance between the i-th row and the #/-th row of X is defined by

d(i,) = " Iz # 1)),

J=

—

where I(-) denotes the indicator function. We also use the Hamming distance d,(4,")
between rows of submatrix X :

ds(i,i') = Z I(xij # w).

jeJ
For a particular individual ¢ we denote the Hamming distance to the nearest neighbor by
P (i) = rlrll;lél d(i,i'). (1)
Furthermore let hy(i) denote the Haraming distance to the k-th nearest neighbor:
hi(i) = the k-th smallest value in {d(z,7"), ' 5 i}. (2)

For J C J we define h7(i) and hj (i) based on d;(4,7') in an analogous manner.
Now we derive several relations between the above quantities.
|

Proposition 1 For k-unsafe 1

where the equality holds iff there exists m (0 < m < p) such that J is k~unsdfe off
|J]| > m.

Proof. By definition of s (i), any set of variables of size sx(i) + 1 is k-unsafe for u.
Therefore we obviously have (3).

Now suppose that there exists m of the proposition. Then si(i) < m and ug(i) > m.
Therefore s;(1) < up(i) or s,(i) + 1 < uy(i) . Together with (3) this implies s (i) + 1 =
ug(i). Conversely suppose that sx(i) + 1 = ug(i) = m holds. Then for any k-safe J and
any k-unsafe J',

] < sp(d) < mo=ug(i) < |J'].

To illustrate Proposition 1 we consider two simple examples.

Table 1
1 a A
1 a B
1 a B

In Table 1 the first row (z = 1) is unique (k = 1). It is already unique with respect
to the third column and u;(1) = 1. On the other hand J = {1,2} is the maximum 1-safe
set and s;(1) = 2. Therefore in Table 1 u(1) = 1 < s;(1) +1 = 3. It is instructive
to draw the Hasse diagram of the partially ordered set 27 (omitting the empty set) for
illustrating 1-safeness of the fist row of Table 1. In Figure 1 we clearly see that {3} is
minimum 1-unsafe set and {1,2} is the maximum I-safe set for the first row of Table 1.

Figure 1: Hasse diagram for Table 1

123 !
12 0K 13 23 1 I :1-unsafe
OK :1-safe
1 OK 2 0K 31

Next, consider Table 2. The first row (i = 1) is unique (k = 1). Table 2 consists of 0’s
or 1’s only. Since we are concerned only whether the observations of the first row coincide

4

with those of other rows, without loss of generality we can let the first row (0,0,...,0)
and the other rows consist of 0’s and 1’s. In Table 2 any 3-element sct of variables is
minimum 1-unsafe and u;(1) = 3. Any 2-element set is maximum 1-safe and s,(1) = 2
Therefore in Table 2 the equality in (3) holds with m = 3 in Proposition 1. This situation

s

is clearly understood by looking at the Hasse diagram of Figure 2

Table 2
00 0 0
1 1 0 0O
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

Figure 2: Hasse diagram for Table 2

1234 !

120k | 130k | {1408 | | 230k | |24 oK l34 OK
| —=

10K 2 OK 3 OK 4 OK

It is easy to give an example of general size along the lines of Table 2. Consider a
table with
p |
n == (] + 1

rows, whose first row is (0,0,...,0) and other rows have 1’s in fields corresponding to (?)
ways of choosing [fields out of p fields. Considering the symmetry among the columns it
is easily seen that u;(1) = p — [+ 1,8(1) = p— 1 and the equality in (3) holds with m =
p—1+1. Furthermore if we repeat each row & times except for the first row and consider a
table with n = k x (ﬁ’) +1 rows, we have an example where ug(1) = p—I+1,5,(1) =p—1.

Now for the case k = 1, we derive a relation between maximum 1-safe set and nearest
neighbor in the Hamming distance.

Proposition 2
hl(i) =P - 81(@1\). (4)

Proof. Let ¢ = s,(i). Then there exists a set of ¢ variables J such that the individual
i is not unique with respect to J. Hence there exists another individual ', whose observa-
tions coincide with those of the i-th individual for ¢ variables in J. Then d(4,i") < p —c.
This implies that hy(¢) < p—si(i). -

Next let hi(i) = d. Then there exists another individual i’ such that i and ¢’ have the
same observations on p—d variables. Hence 4 is not unique with respect to these variables

Combining above two inequalitics we obtain hy(i) = p — s1(4). [

Proposition 2 is easily checked in Table 1 and Table 2. Indeed hy(1) =1 = 3 — 51(1)
in Table 1 and hy(1) = 2 =4 — 5;(2) in Table 2.

The equality in Proposition 2 does not generalize to k > 1. We only have the following
inequality.

Proposition 3 Fork >1

he(i) < p— sgli). (5)
Proof. Let ¢ = s(i). Then there exists a subset J of size ¢ = [J| and k rows
i1, ... ik (i # i) such that the rows 4,4y, ..., share same observations for the variables
of J. Therefore d(i,i;) < p—c, t =1,...,k and hg(i) <p-c |

It is easily seen that for k > 1 the equality in (5) does not usually hold.

3 Algorithm for computing minimum k-unsafe sets
and maximum k-safe sets

Here we discuss how to calculate minimum k-unsafe and maximum k-safe sets of variables.
Actually we shall discuss how to determine k-safeness or k-unsafeness of all subsets J of
J and propose two algorithms for doing this. One reason for determining k-safeness of
all subsets (rather than just minimum k-unsafe and maximum k-safe sets) is that except
for maximum 1-safe set, which can be determined by obtaining the nearest neighbor in
the Hamming distance (Proposition 2), it seems to be no more difficult to determine
k-safeness of all subsets J than to obtain minimum k-unsafe and maximum A-safe sets
only. This conjecture is based on the fact that obtaining minimum l-unsafe set is an
NP-complete problem as n and p — 0o. See Appendix A for detail.

Step B:

We first describe the obvious algorithm for extracting minimum k-unsafe, minimal
k-unsafe, maximum k-safe and maximal k-safe sets from the complete list of k-safeness
of all subsets of J. We prepare a list of unchecked subsets, initially set to the list of all
subsets of 7. Let m = |J| denote the size of subsets of 7. In order to list minimum k-
unsafe set we start with m = 1 and increase m until we find a k-unsafe set with smallest
m = m*. k-unsafe sets of size m* are minimum k-unsafe sets. Delete all supersets of
minimum k-unsafe sets from the list of unchecked subsets. Then increase m further until

we find another k-unsafe set in the list with smallest m = m**. k-unsafe sets of size ™ in
the list are {(not minimum but) minimal k-unsafe sets. Delete all supersets of minimal k-
unsafe sets from the list of unchecked subsets. Repeating the above process by increasing
m further, we can extract all minimal %-unsafe subsets. Extracting all maximum and
maximal k-safe sets is entirely analogous starting with m = p downwards instead.

Now we present two algorithms for determining k-safeness of all subsets of J. The
first algorithm is deterministic and the second one is probabilistic.

Step Al:

For the first algorithm we make use of the Hamming distance d(z,7'). Again we prepare
a one-dimensional list of unchecked subsets, initially set to the list of all subsets of J.
For definiteness we order the subsets J of J such that if |.J| > |J| then |J| precedes |.J'|
in the list. We compute the Hamming distance hy(2) to the k-th nearest neighbor from
the row 7. Proposition 3 implies that J is k-unsafe if |J| > p — hg(i). Therefore we flag
all J with |J| > p — k(i) as k-unsafe and delete them from the list of unchecked subsets.

Now we check subsets of size p— hi(i). For k =1 J is l-safe (actually maximum 1-safe
at this stage) iff there exists ¢ with d(¢,7") = hy (i) and

J={j | xij = x;}.

Therefore for k = 1 we can easily determine 1-safeness of J by just checking all 4 with
d(i,i") = hy(1). For k > 1 we need to check each J of size p — hy(i) separately whether it
is k-unsafe or not by actually forming the subset X ;.

If J of size p — hy(i) is k-safe, we flag J and all its subsets as k-safe and delete them
from the list of unchecked subsets. Otherwise we form submatrix X, and compute A} (4).
Then a subset J' C J is k-unsafe if |J’| > |J| — h{(i) (including J itself). We flag these
subset as k-unsafe and delete them from the list of unchecked subsets.

Now we can proceed as follows. We consider the first unchecked subset .J of the list of
unchecked subsets. We determine whether J is k-safe or not. If J is k-safe we flag J and
all its subsets as k-safe and delete them from the list of unchecked sets. If J is unsafe, we
form a submatrix X, and compute h{(i). We flag all J' ¢ J with |.J'| > [J| = h{(i) as
k-unsafe and delete them from the list of unchecked subsets. Repeating this process, we
can determine k-safeness of all subsets of 7.

Step A2:

As a second algorithm we propose the following simple randomized algorithm. There
are 2 — 1 nonempty subsets of 7. We randomly choose one of them and determine its
k-safeness. If it is k-safe, then all its subsets are k-safe. On the other hand if it is k-
unsafe, then all its supersets are k-unsafe. In either case we delete those sets from the list
of unchecked subsets. From the remaining unchecked subsets, we randomly choose one
and determine its k-safeness. Repeating this process, we can determine k-safeness of all
subsets of 7.

4 An illustration

Here we apply our algorithm to a fairly large data set and confirm that computation can
be done in a reasonable amount of time. The data set is obtained from “The American
Community Survey” page of U.S.Census Bureau home page. We downloaded PUMS
(Public Use Microdata Samples) file of population records data of Ohio for 1997, which
contained 17142 individuals. The data file contains a large number of variables, but
we chose 7 variables which may be used as key variables for individual identification.
These 7 variables are 1. RELT (Relationship), 2. SEX, 3. RACE, 4. AGE, 5. MARITAL
(Marital status), 6. ROWNCHL (Own child), and 7. RAGECHL (Presence and age of
own children). For detailed description of these variables, refer to the home page of The
American Community Survey. In summary we worked with a data matrix of size 171427,
The first 10 lines of this matrix are as follows.

0010131500
00 20223501
0220202510
0010129100
01 20126104
0010125500
10 2 01 26 5 0 4
00 20222501
0210202510
0310217500

Out of these 17142 individuals, 1721 (10.04%) were sample uniques and 896 (5.23%)
were 2-isolated. The machine used to measure the processing time is equipped with Intel
Pentium Pro processor and 64 MB of memory.

It took 770 CPU seconds to obtain minimal 1-unsafe and maximal 1-safe sets for 1721
sample uniques. The first few lines of the output are as follows.

n=17142, p=7, k=1, file=ohiotest.dat

Tow: MU:Minimal Unsafe sets MS:Maximal Safe sets
30: MU: 1000100 1011000 MS: 0111111 1101011 1110011
38: MU: 0011000 0010100 MS: 1101111 1110011

50: MU: 1011001 MS: 0111111 1101111 1110111 1111110

Note that sets of variables are represented by bit patters in this output. For example
1000100 denotes the set {1,5}. Therefore, for example, the record No.30 is a sample
unique and its minimal unsafe sets are {1,5} and {1,3,4}, with the former being the
minimum unsafe set. The maximum safe set for the record No.30 is {2,3,4,5,6,7}.

Computation for 2-safeness for the same data set took 1246 CPU seconds for processing
2617 2-unsafe records. The first few lines of the output are now as follows.

n=17142, p=7, k=2, file=ohiotest.dat

Tow: MU:Minimal Unsafe sets MS:Maximal Safe sets
10: MU: 1001000 MS: 0111111 1110111

11: MU: 1001000 MS: O111111 1110111

13: MU: 1011000 MS: 0111111 1101111 1110111

8

- We see that although n in this case is large and the computation is fairly intensive, it
can be done in a reasonable amount of time.

5 Some discussion

In Section 2 and 3 we discussed 1-safeness and more general k-safeness (k > 1) in parallel.
However the case k = 1 seems to be particularly simple. Here we discuss an alternative
formulation of the problem, which reduces k-safeness problem to 1-safeness problem. As
in Table 2 consider an n x p data matrix X consisting 's or 1’s with the first row
(0,0,...,0) and consider k-safeness of the first row. Construct an expanded data matrix
X of size (1 + (";c"l)) x p such that the first row of X is (0,0,...,0) and the other rows

of X correspond to field-wise “or” of k rows out of (Ti1, . Tip), 0= 2,....n. It is clear
that k-safeness of the first row of X is equivalent to the I-safeness of the first row of X.
Therefore by forming the expanded data matrix X the problem of k-safeness is reduced
to the problem of 1-safeness. We did not take this approach because in our problem n is

not small and forming X requires a large amount of storage.

A NP-completeness of calculating minimum 1-unsafe
sets

The argument of this appendix was communicated to me by Daishin Nakamura. The
following “hitting set problem” is known to be NP-complete.

Given a collection C of subsets of a finite set S and a positive integer K < |S],
determine whether there exists a subset S C S with || < K such that 5
contains at least one element from each set of C.

See p.222 of Garey and Johuson (1979) and Karp (1972).
Given an instance of the hitting set problem

S={1,...,p}, C={C,....Ch,1}. K,

form an n x p data matrix X = (2;;) with the first row (z11,...,23,) = (0,...,0) and the
rest of the rows (i > 2) defined by

= {1, if je i,
W10, otherwise.

Now obtain minimum l-unsafe sets for the first row of X and let m be the size of the
minimum 1-safe sets. Note that J ¢ S is 1-unsafe iff J contains at least one element from
C;. i=1,...,n—1. Therefore the hitting set problem can be solved by comparing m and
K. We see that any algorithm of finding minimum l-unsafe sets can be used to solve the
hitting set problem. Since the hitting set problem is NP-complete, the problem of finding
maximum l-unsafe subsets is NP-complete as n and p — oc.

9

B Program for obtaining minimal k-unsafe and max-

imal k-safe sets

Here we present a C program for obtaining minimal unsafe and maximal safe sets. This
program implements Step Al and Step B of Scction 3 and was used for computing the
example in Section 4. Memory allocation of two-dimensional array is adapted from
Press et al. (1988). Updated source of the following program is available via Internet

from
http://www.e.u-tokyo.ac.jp/ takemura/minimalunsafe.html.

1 /x

2 Program for obtaining minimal unsafe sets and maximal safe sets
3 for each unsafe row of an nxp data file. We assume that the
4 values in the data file are integers separated by white spaces.
5 Akimichi Takemura (A.Takemura@e.u-tokyo.ac.jp)

6 Ver. 1. January 1999

7 x/

8

9 #include <stdio.h>

10 #include <stdlib.h>

11

12 #define DEBUGPRINTO

13 #undef DEBUGPRINT1

14

15 #define LONGBITS 32 /* assuming that long is 32 bits.
16 We are limited to 32 bits.
17 Practically we are limited to
18 about 15 bits (or variables)
19 */
20 #define INFTY OxTfffffffL
21 #define ALLONE Oxffffffff
22
23 #define SAFE O
24 #define UNSAFE 1
25 #define UNCHECKED -1
26
27 /* is a subset of b? */
28 #define issubset(a,b) (((a)|(b)) == (b)7 1: Q)
29
30 long **data; /* data matrix available to subroutines */
31
32 /* powers of 2 */
33 long ipow2(short p)
34 {
35 long m = 1;
36 short j;
37 for (j = 1; j <= p; j++, m *= 2);
38 return m;
39 }
40
41 /* print least significant p bits of long variable */
42 void printbits(long longval, short p)

10

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

short j;
for (j=p-1;J>

=0; -9

printf ("%d", (longval >> j)=& 1 7 1 : 0);

)

/* number of 1’s in bit pattern of length p */
short bitweight(long longval, short p)

{
short j, w = 0;
for (j =p - 1;
return w;

}

j >= 0; w += ((longval >> j) & 1), j—-);

/* allocate a long nxp matrix, routine adapted from the book

"Numerical Recipes 1
long *x*
makematrix(long n, lon
{

long **m, 1i;

/* allocate pointer

n C" x/

g P

s to rows */

m = (long **) malloc(n * sizeof(long));

/* allocate rows and set pointers to them */
m{0] = (long *) malloc(n * p * sizeof (long)J;

if (m[0] == NULL) {

printf ("Memory allocation failure\n");

exit(1);
}
for (i

= 1; i <= n;
m[i] =

m{i - 1]

i++)
+p;

/* return pointer to array of pointers to rows x/

return m;

}

/* binomial coefficient
long binomial (short m,

{

long bin;
short 1i;
bin = 1;

it ((5 ==0) Il (
return bin;

if (m - 3§ < j)
j=m -0

for (1 = 0; i < j;
bin = bin * (m

return bin;

3

/* construct a list of

*/
short j)

== m))

i++)
-1y / 4+ 1)

integers from O ..

/* bin is always integer.

11

However bin may overflow */

2°p-i

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

{

3

sorted according to the number of 1’s */
void makebitlist(long *bl, short p)

/* reserve an array of pointers. i-th pointer
is an array of patterns of i+l bits */

long **bitlists;
long m, j, bnsum;
short i, k;

bitlists = (long #**) malloc(sizeof (long) * p);
bitlists[0] = (long *) malloc(sizeof(long) * 2);

m = 2;
bitlists[0][0] = 0;
bitlists[0][1] = 1;

for (i = 1; i < p; i++) {
m *x= 2;

bitlists[i] = (long *) malloc(sizeof(long) * m);

bnsum = 0;
for (k = 0; k <= i; k++) {

for (j = 0; j < binomial(i, k); j++)
bitlists[i][2 * bnsum + j]

= bitlists[i -

1] (bnsum + j];

for (j = 0; j < binomial(i, k); j++)
bitlists[i][2 * bnsum + binomial(i, k) + j]l
= (1 << i) | bitlists[i ~ 1] [bnsum + jI;

bnsum += binomial (i, k)
}
}
for (j = 0; j < m; j++)
bl[j]l = bitlists[p - 11[j];
for (i = 1; i < p; i++)
free(bitlists[il);
free(bitlists);

y

/* construct a list of integers from 2"p-1 to O downwards */
void makereversebitlist(long #*bl, short p)

{

I

long i, m = ipow2(p);

makebitlist(bl, p);

for (i = 0; i < m; i++)
bl[i] = bl[i] ~ ALLONE;

/* Hamming distance between two rows. We only count
positions with 1 in the bit pattern vector */
int hamming(long *a, long *b, short p, long bitpat)

{

int ham;
short i;
ham = O;
for (i = 0; 1 < p; i++)
ham += (ali] == b[i] 7 0 :
return ham;

1) * ((bitpat >> (p -1 - 1)) &1 71 :

12

0);

151)

152
153 /* Compute the k-th minimum hamming distance from the i-th row. Once
154 the k-th hamming distance is 0, just return 0 */

155 int minhamming k(long i, long n, short p, long bitpat, short k)
156 {

157 long j, *minham_Kk;

158 int h, tmpval;

159 minham_k = (long *) malloc(k * sizeof(long));

160 for (h = 0; h < k; h++)

161 minbam_k[h] = INFTY;

162 /* store minimum k values in ascending order */

163 for (j = 0; j <m; j++) {

164 if (j == 1)

165 continue;

166 if (hamming(datalil, datalj], p, bitpat) < minham k[k - 1]) {
167 minham_k[k - 1] = hamming(datal[i], dataljl, p, bitpat);
168 h=%k-1;

169 while (h > O && minham_k[h ~ 1] > minham_k{h]) {
170 tmpval = minham k[h];

171 minham_k[h] = minham_k[h - 1];

172 minham _k{h - 1] = tmpval;

173 h--;

174 }

175 ¥

176 if (micham_k[k - 1] == 0)

177 break;

178 }

179 return minham_k[k - 1];

180 free(minham_k) ;

181 %

182

183 /* printout minimal unsafe sets */
184 void print_minimal_unsafe(signed char *safenesslist, short p, long *bitlist)
185 |

186 signed char *checklist;

187 long i, j, m = ipow2(p);

188 checklist = (signed char *) malloc(m * sizeof (signed char));
189 for (1 = 0; i <m - 1; i++)

190 checklist[i] = UNCHECKED;

191 /* going through safenesslist in reverse */

192 for (i =m- 2; i > 0; i--) {

193 if (checklist[i] != UNCHECKED)

194 continue;

195 if (safenesslist[i] == UNSAFE) {

196 printbits(bitlist{i], p);

197 putchar(’ 7);

198 for (j =4 -1; j > 0; j—) {

199 if (issubset(bitlist[i], bitlist[jl))
200 checklist[j] = UNSAFE;

201 }

202 }

203 }

204 free(checklist) ;

13

205 }

206

207 /* printout maximal safe sets */

208 void print_maximal_safe(signed char.*safenesslist, short p, long *bitlist)
209 |

210 signed char *checklist;

211 long i, j, m = ipow2(p);

212 checklist = (signed char *) malloc(m * sizeof(signed char));
213 for (i =0; i <m - 1; i++)

214 checklist[i] = UNCHECKED;

215 /* going through safenesslist */

216 for (i =0; i <m - 1; i++) {

217 if (checklist[i] != UNCHECKED)

218 continue;

219 if (safenesslist[i] == SAFE) {

220 printbits(bitlist[i], p);

221 putchar(’ ’);

222 for (j =i+ 1; j<m=-1; j++) {

223 if (issubset(bitlist[j], bitlist[il))
224 checklist[j] = SAFE;

225 }

226 }

227 }

228 free(checklist);

229 }

230

231 /* comnstruct the list of safeness for i~th row.

232 Assume that i-th row is k-unsafe */

233 void build_safeness_list(signed char *safenesslist, long i,
234 long n, short p, long *bitlist, short k)
235 {

236 long m = ipow2(p), j, h;

237 int minham k;

238 for (j =0; j <m - 1; j++)

239 safenesslist[j] = UNCHECKED;

240 for (j =0; j <m~-1; j++) {

241 if (safenesslist[j] != UNCHECKED)

242 continue;

243 minham_k = minhamming_k(i, n, p, bitlist[j], k);
244 for (h = 3j; h<m~-1; h++) {

245 if (!issubset(bitlist[h], bitlist[jl))

246 continue;

247 if (minham_k == 0)

248 safenesslist[h] = SAFE;

249 if (minham_k > O &&

250 bitweight(bitlist[jl, p) - bitweight(bitlist[h], p) < minham_k)
251 safenesslist[h] = UNSAFE;

252 }

253 }

254 }

255

266 int main(int argc, char *argv(])

257 A

258 short k, p;

14

259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307

308 }

long *bitlist, n, m, i, j;
signed char *safenesslist;
FILE *filep;

if (argc !'= 5) {
printf("Usage: %s n p filename\n", argv[0]);

printf (" where n is number of rows\n");
printf (" p is number of columns\n");
printf (" k is the threshold (in \"k-unsafe\")\n");
exit(1);
}
n = atoi(argv[i]);
p = atoi(argv[2]);
k = atoi(argv[3]);

if (NULL == (filep = fopen{argvi4], "r"))) {
printf ("Can not open file: %s\n\n", argv[3]);
exit(1);

}

m = ipow2(p);

bitlist = (long *) malloc(sizeof (long) * m);

makereversebitlist(bitlist, p);

data = makematrix(n, p);

/* read in the data. values are assumed to be integers
separated by white spaces */
for (i = 0; i < n; i++) {
for (j = 0; j < p; j++)
fscanf (filep, "%1d", &datalil [j1);

safenesslist = (signed char *) malloc(m * sizeof (signed char));

printf ("n=%1ld, p=%d, k=%d, file=Ys\n", n, p, k, argv[4]);
printf ("row: MU:Minimal Unsafe sets MS:Maximal Safe sets\n");
for (i = 0; i < n; i++) {
if (minhamming k(i, n, p, m - 1, k) == 0)
continue; /* k-safe */
else {
build_safeness_list(safenesslist, i, n, p, bitlist, k);
printf ("%1d: ", i + 1);
printf(" MU: ");
print_minimal_unsafe(safenesslist, p, bitlist);
printf (" MS: ");
print_maximal_safe(safenesslist, p, bitlist);
putchar(’\n’) ;
}
} .
free(bitlist);
free(safenesslist);

15

Acknowledgment

I am grateful to Daishin Nakamura for pointing out the NP-completeness of minimum

1-unsafe set problem and to Nobuaki Hoshino for some helpful comments.

References

[1]

2]

[6]

[7]

8]

Garey, M.R. and Johnson, D.S. (1979). Computers and Intractability. A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, San Francisco.

Hoshino, N. and Takemura, A. (1998). Relationship between logarithmic series model
and other superpopulation models useful for microdata disclosure risk assessment.
Journal of Japan Statistical Society, 28, 125-134.

Karp, R.M. (1972). Reducibility among combinatorial problems. in R.E. Miller and
J.W. Thatcher (eds.), Complexity of Computer Computations, Plenum Press, New
York, 85-103.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1988). Numerical
Recipes in C'. Cambridge University Press, Cambridge.

Takemura, A. (1997). Some superpopulation models for estimating the number of
population uniques. Discussion Paper 97-F-29, Faculty of Economics, University of
Tokyo. To appear in Proceedings of Statistical Data Protection "98, 10S Press.

U.S. Census Bureau. The American Community Survey. (Data available from the
URL http://www.census.gov/acs/www/)

Willenborg, L.C.R.J. (1996). OR in statistical disclosure control. Research Paper no.
9627. Statistics Netherlands.

Willenborg, L. and de Waal, T. (1996). Statistical Disclosure Control in Practice.
Lecture Notes in Statistics 111, Springer, New York.

16

