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Abstract

Fisher’s logarithmic series model (Fisher et al. (1943)) is a classical model in statistical
ecology. In this paper we show that this model is a key model linking three models
discussed in Takemura (1997), i.e., Poisson-gamma model (Bethlebem et al. (1990)),
Dirichlet-multinomial model (Takemura (1997)), and Ewens model (Ewens (1990)). This
connection opens up the possibility of applying existing techniques of statistical ecology
to the problem of microdata disclosure risk assessment.

1 Introduction

Fisher’s logarithmic series model was the starting point of the whole area of statistical
ecology. The logarithmic series model and other related models for populations consisting
of large number of species are called “abundance models” or “stochastic abundance models”
(Engen (1978)). In disclosure risk assessment of categorical microdata set, we often find
that the total number of cells of the population is very large, because it is the product
of the number of categories of many categorical or categorized attributes. Therefore the
models developed in statistical ecology are likely to be useful in disclosure risk assessment
of microdata sets.

In releasing a microdata set, the statistical agency can control the coarseness of the
categorization (“global recoding”) of each attribute. Detailed categorization of each variable
decreases the cell size (the number of individuals falling in the cell) and the identification
risk of individuals of a cell is thought to be inversely related to the cell size. Thus microdata
sets with many small cells are regarded as risky. In particular, the population uniques
may be identified when their attributes are disclosed. The number or the proportion of the
population uniques is one of the key quantities in disclosure risk assessment of a microdata
set.



Bethlehem et al. (1990) proposed the Poisson-gamma model for estimating the number
of population uniques. For a survey on the Poisson-gamma model see Skinner (1992). In
the Poisson-gamma model the population size N is a random variable having a negative
binomial distribution. Takemura (1997} derived Diricklet-multinomial model as conditional
model where the population size N of the Poisson-gamma model is fixed. Equivalently
the Poisson-gamma model is obtained by taking mixture of the population size N of the
Dirichlet-multinomial model according to negative binomial distribution. In this paper we
will prove that the same relation holds between the Ewens model and the logarithmic series
model, i.e., the Ewens model is a conditional model of the logarithmic series model where
the population size N is fixed and the logarithmic series model is obtained by taking mixture
of the population size N of the Ewens model according to negative binomial distribution.

Takemura (1997) also showed that the Ewens model is obtained from the Dirichlet-
multinomial model by a limiting argument similar to the law of small numbers. We will
prove that the logarithmic series model can be obtained from the Poisson-gamma model by
exactly the same limiting argument. The above two parallel relations can be conveniently
summarized by saying that the conditioning and the limiting process commute in Figure 1.

Furthermore we show that simple random sampling without replacement from the log-
arithmic series model leads to the same sampling distribution as simple random sampling
without replacement from the Ewens model. Therefore under simple ranidom sampling with-
out replacement, inference on the logarithmic series model is exactly the same as the inference
on the Ewens model.

In Section 2 we set up appropriate notation and prove our main results. In Section 3 we
discuss sampling from the logarithmic series model.

2 Main results

Consider a discrete population of size N. Let K denote the total number of the cells and
let Fj, j =1,..., K, denote the size of the j-th cell. In superpopulation model we consider
F;, j=1,...,K, as random variables. Let \S; dencte the number of cells of size 7. In terms

of the indicator function
1, F;=1
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S; can be expressed as
K
Si=Y I(Fj=1).
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S;, ©=0,1,..., are called size indices (Sibuya (1993)) or frequencies of frequencies (Good
(1965)). Obviously
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In microdata disclosure risk assessment, the number of population uniques Sy or the propor-
tion of population uniques 7 = 51 /N are of particular importance.
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Figure 1: Diagram of four models

Fisher’s logarithmic series model is defined in terms of the joint distribution of size indices
S;, i > 1. Empty cells are not observed and Sy is not defined in this model. Let S7,53,...,
be independent Poisson random variables with mean

i1
B(S) = A= No™——, i=12..,

where Ny > 0, 0 < p < 1 and ¢ = 1 — p. The joint probability function of the size indices
(S1,S2,...) is given as
oo S
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where only finite number of S;’s are nonzero. Note that
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is the expected population size.
We first derive this model from the Poisson-gamma model of Bethlehem et al. (1990) by

a limiting argument similar to the law of small numbers. In the Poisson-gamma model Fj is
a Poisson random variable with mean Ngp and g has gamma distribution with parameters
@, 3. The unconditional distribution of F} is negative binomial distribution with the following
probability function.
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where ¢ = NoB3/(1+Nyf3), p = 1—¢. In the Poisson-gamma model «, 3 are assumed to satisfy
the restriction a8 = 1/K. Furthermore Fj, j = 1,..., K, are assumed to be independently
and identically distributed. In summary the Poisson-gamma model is defined by the joint
probability function of F}’s as

P(Fy,...,Fk) = ~-%:-~—lp“qF og= s p=l-qg af=— (3)

In this model N = F} + - -+ F is a random variable having negative binomial distribution
with « replaced by A = Ka in (2), because negative binomial distribution is closed under
convolution. E(N) = KE(F;) = KNpaf = Ny is the expected population size.

Takemura (1997) showed that the conditional Poisson-gamma model given N equals the
Dirichlet-multinomial model defined by

NIT(Ka) &
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P(F,...,Fx | N) =

Let Ko = A be fixed and consider a limiting process similar to the law of small numbers:
K — o0, a-0, (A = K« : fixed). (4)

Here N and 8 = 1/(K«) remain to be fixed. Takemura (1997) showed that the marginal
distribution of (57, Ss, .. .) of the Dirichlet-multinomial model converges to the Ewens model
with parameter A:
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where AN = 4(A+1)(A+2)---A+N-1), U=V, 5.

We now apply the same limiting process (4) to the Poisson-gamma model. The following
result was already implicit in Fisher et al. (1943). See Anscombe (1950), Section 3.2 of Engen
(1978) or Johnson et al. (1993} for more discussion.



Proposition 1 Apply the limiting process (4) to the Poisson-gamma model in (3). Then
the marginal distribution of (Sy,Sa,...) converges to Fisher’s logarithmic series model in (1).

For convenience we give a proof of this proposition in Appendix.

Now we consider fixing the value of N in the logarithmic series model. As already
mentioned N has negative binomial distribution
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Note that this distribution does not change by the limiting process in (4). Therefore N =

5", 1S; has the same negative binomial distribution under the logarithmic series model. More

precisely

P(N) =
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and this equals (5). We have proved that the conditional logarithmic series model given N
coincides with the Ewens model with parameter A. Conversely by the product of (7) and (6)
it can be easily proved that if N is distributed according to negative binomial distribution
then the mixture of the Ewens model becomes the logarithmic series model.

Theorem 1  The conditional logarithmic series model given N is the Ewens model with
parameter A = Ka = 1/3. Conversely if N has negative binomial distribution of (6) in the
Ewens model, then the mizture becomes the logarithmic series model.

3 Sampling from logarithmic series model

Here we consider sampling from the logarithmic series model and estimation of the number
S; or the proportion 7 of population uniques from the sample. We discuss two sampling
schemes: 1) simple random sampling without replacement, 2) the Bernoulli sampling. Sample
size indices are denoted by sy, 89, . .., S,, where n is the sample size.

3.1 Simple random sampling without replacement

From Theorem 1 and the fact that the Ewens model is closed under simple random sampling
without replacement (see Section 4 of Takemura (1997)), we have the following proposition.

Proposition 2 Let (sq,82,...,8,) be the sample size indices obtained by simple random
sampling without replacement from the logarithmic series model. Then (si,s2,...,5,) has
the Ewens distribution in (5) with N replaced by n.

Proof is the same as in Corollary 1 of Takemura (1997) and omitted.
Maximum likelihood estimation on the Ewens model is discussed by Sibuya (1991). We
rewrite the result in our notation. By (7) log likelihood of the sample is

L=ulogA-—log(A+n-—1)—log(A+n—2)—--—log A+ const,

where u = "% | s;. Thus the maximum likelihood estimator of A is the solution of

ZA——l-l—j

This is easily solved by the Newton-Raphson method with starting value A = s1.
By Sibuya (1993)
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Therefore a simple moment estimator of A is

dodons

s1—n

and the proporticn of population uniques can be estimated by

_ s1(1 —n)
s1(N —n)—n{N -1)

3.2 Bernoulli sampling

In the Bernoulli sampling, a coin with success probability r is tossed for each individual
and the individual is drawn if the coin results in heads. See Section 2.2 of Sdrndal et al.
(1992) or Appendix A of Takemura (1997). The Bernoulli sampling is only a convenient
approximation to simple random sampling without replacement in the context of sampling
of official statistics. However in ecological sampling, it is more natural than simple random
sampling without replacement. For example, 7 may represent the probability of each animal
caught in a trap. Under the Bernoulli sampling the sampling distribution of the logarithmic
series model is easily derived.

Suppose that the sample is obtained by the Bernoulli sampling with r = ng/Ng. For
convenience we replace ng/Ng by n/N. Then

I)(317327"')'_’]:I*—i—rw """"" - 3

where A; = npg'~! /i. The log likelihood function turns out to be

r

L= 7

log p — ulog B + nlog g -+ const,

where u = 37" ;. Differentiating L by 3, the maximum likelihood estimate 73 is the solution
of
nlog(NG+1) —uNg = 0.

This can be solved by the Newton-Raphson method. Then the proportion of population
uniques is estimated as

If the sample size is sufficiently large then (3 will give a reasonable estimate for simple random
sampling without replacement.



Appendix A : Proof of Proposition 1

Consider the joint probability generating function of S1,Ss,..., under the Poisson-gamma
model. If K =1, then

GI(Z]rZQa"') = E{H Zfi]
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By the independence of Fj’s, the joint probability generating function for general K is
expressed as

G(zlaz%'--) = G] Zl,Z‘_),...)K
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Now consider the limiting process (4). Then the limit of (8) is

[i(zi B 1)(1' +oe-—1)(i+c;'~ 2y (a+ 1)0‘paqi L

Zri [1+';;g(zwl)(H—am1)(i+3_2)”'(a+1)AP"‘qi]K
5 exp(ff]m SN
- exp(i(zwl)?qi).

Using A = Ka = 1/Band A¢' = Ag-¢ ! = Nopg'~ 1, the limiting joint probability generating
function can be written as
oC

I(lgnooGLZhZQ, S = exp(z iz — 1)),

=1



where

1

Nn-p-g—}
Ai:w

This agrees with the joint probability generating function of independent Poisson variables
Siyi=1,2,..., with mean E(S;) = ;.
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