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1 Introduction

In the past decade various contingent claims including futures, options, swaps,
and other derivative securities have been introduced and actively traded in fi-
nancial markets. Except some simple cases such as the original Black-Scholes
model in which the underlying assets follow the geometric Brownian motions and
the risk free rate is constant, however, it has been difficult to derive the explicit
formulae for the fair market values of these financial contingent claims. Then sev-
eral numerical methods for the valuation of financial contingent claims in more
general situations have been proposed and used in finance.

Meanwhile, Kunitomo and Takahashi (1995), and Takahashi (1997) have pre-
sented a new methodology called Small Disturbance Asymptotic Theory which
is applicable to the valuation problem of financial contingent claims including
such as various futures, options, and other derivatives on stock, exchange rates,
interest rates, and others when the underlying asset prices follow the general
class of continuous Ité processes. They have shown that the asymptotic expan-
sion method in the small disturbance asymptotics can be effectively applicable to
various valuation problems of contingent claims in financial economics and gives
rather simple formulae when the underlying asset prices follow the general class of
continuous Itd processes. The asymptotic expansion approach is very simple, but
gives an unified method to the valuation problem of interest rate based contin-
gent claims. However, they have pointed out that some economic considerations
of theoretical restrictions on the structure of stochastic processes should be in-
dispensable when we apply the asymptotic expansion method to the valuation
problem of financial contingent claims. We need strong conditions on the form of
their drift functions because of the no-arbitrage theory, which has been standard
in financial economics. It implies, for instance, that the continuous stochastic
processes for spot interest rate and forward rates are not necessarily Markovian
or diffusion processes in the usual sense.

More specifically, for the term structure model of interest rates in the HJM
framwork, let P(t, T') denote the price of the discount bond at ¢ with maturity date
T <t<T<T < +0c0). We use the notational convention that P(T,T) = 1
at maturity date ¢ = T for normalization. Let also P(¢,7T) be continuously
differentiable with respect to 7' and P(t,T) > 0 for 0 < ¢t < T < T. Then the
instantaneous forward rate at s for future date ¢ (0 < s <t < T) is defined by

5,1y = -8 L0
ot

We consider the situation when a family of forward rates processes {f(s,t)} for
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0 < s <t <T follow the stochastic integral equation :

f(S,t) = f(O,t) + As [i U; (f(‘l),t),’t), t) [)i 0.: (j'(v,'y), 'Uay)dy dv

(1.1) N
+ A ZU:(f(’U, t),v,t)dwi(v) )
i=1
where f(0,t) are non-random initial forward rates, {w;(v),i = 1,---,m} are

m independent Brownian motions, and {o}(f(v,t),v,t),i = 1,---,m} are the
volatility functions !. The initial forward rates are observable and hence regarded
as fixed. Because f(s,t) is continuous at s = ¢ for 0 < s < ¢ < T/, the spot interest
rate at ¢ can be defined by 7(t) = f(¢,¢) . In this framework of stochastic interest
rate economy, Kunitomo and Takahashi (1995) have investigated the valuation
of contingent claims when a family of forward rate processes obey the stochastic

integral equation :

(1.2)
f(s)(sat) = f(0,t) + £? [)S [Z o-'i(f(s)(vvt)7vat) /t Ui(f(E) (v, y),v,y)dy| dv

+ SLSgai(f(e)(v,t),v,t)dwi(v) ,

where 0 < £ < 1and 0 < s < t < T < T. The volatility functions o;(f*)(s,?), s,1)
depend not only on s and t, but also on f ¢)(s,t) in the general case. Let f (s, 1)
be continuous at s = ¢ for 0 < s < ¢ < T < T. Then the spot interest rate process
can be defined by

(1.3) rO(t) = fO,) .

Then a small disturbance asymptotic theory can be constructed in this case by
considering the situation when € — 0 and we can develop the valuation method
of contingent claims based on {S(¢)} with the no-arbitrage theory.

On the other hand, for the Black-Scholes economy, Takahashi (1997) has
systematically investigated the valuation problem of various contingent claims
when d x 1 asset prices S(¢) = (Si(t)) (i = 1,---,d) follow the general class of
diffusion processes :

L) S =S80+ [ mse)d - [ 3 a8 udu),
J=1

IThe restrictions in (1.1) on the drift functions we are imposing in this arbitrage-free for-
mulation have been derived by Heath, Jarrow, and Morton (1992).
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where d x 1 vector p(S(v),v) and d x m matrix o*(S(v),v) = (05;(S(v),v))
are the instantaneous mean and the volatility functions, and w(v) = (w;(v))
is the m x 1 standard Brownian motion. It is evident that the Black-Scholes
economy and the Cox-Ingersol-Ross model on the spot interest rate are special
cases of this framework. In the simplest Black-Scholes economy, we have to change
the underlying measure and some restrictions on the drift terms are imposed
because of the no-arbitrage theory in finance. (See Chapter 6 of Duffie (1996),
for instance.) Then we consider the situation when S (t) satisfies the integral
equation of diffusion type:

(1.5)  S§9@) )+ / 5O (), 1) SO (w)dv + € Ltcr(S(e)(v),v)dw(v),

where 0(5©(v),v) (d x m) is the volatility term with 0 <€ <1 and r(;,-) is the
risk free (positive) interest rate. Then a small disturbance asymptotic theory can
be constructed in this case by considering the situation when € — 0 and we can
develop the valuation method of contingent claims based on {S ©)(¢)} with the
no-arbitrage theory.

The main purpose of this note is to give the validity of the asymptotic expan-
~ sion approach along the line called the Watanabe-Yoshida theory on the Malliavin
Calculus recently developed in stochastic analysis. The Malliavin Calculus has
been developed as an infinite dimensional analysis of Wiener functional by sev-
eral probablists in the last two decades. We are intending to apply this powerful
calculus on continuous stochastic processes to the valuation problem of financial
contingent claims along the line developed by Watanabe (1987) and subsequently
by Yoshida (1992a,b). However, we should mention that the continuous time
stochastic processes appeared in financial economics are not necessarily time-
homogeneous Markovian in the usual sense while the existing asymptotic expan-
sion methods initiated by Watanabe (1987) and refined by Yoshida (1992a,b) in
stochastic analysis have been treated for the case of time homogeneous Marko-
vian processes. Hence we need to extend the existing results on the validity of
the asymptotic expansion approach. Also the mathematical devices used in the
Watanabe-Yoshida theory have not been standard for finance as well as in many
applied fields, and there could be many mathematical refinements for researchers
except probablists. Hence we are intending a complete discussion on the valid-
ity of the asymptotic expansion apprach, although some of our discussions could
be regarded as rather straightforward applications of the existing results in the
Watanabe-Yoshida theory from the view of stochastic analysis. We think that
our developments are quite new to many researchers and practitioners in finance.



Some of the following derivations have been already reported in Kunitomo and
Takahashi (1995), and Takahashi (1997). However, these papers have cut some
important proofs on the validity of our asymptotic theory due to the lack of space
problems. This note tries to make the complete discussion of the validity of our
approach in a unified way.

In Section 2, we give some preliminary mathematical devices, which shall be
needed in the following derivations. Section 3 is on the validity of our approach
for the continuous Markovian setting, while Section 4 is on the validity of our
approach for the HJM setting of the interest rates models. Some concluding
remarks will be given in Section 5.

2. Preliminary Mathematics

We shall first prepare the fundamental results including Theorem 2.2 of Yoshida
(1992b), which is in turn a truncated version of Theorem 2.3 of Watanabe (1987).
The theory by Watanabe (1987) on the Malliavin Calculus and Theorem 2.2 of
Yoshida (1992b) are the fundamental ingredients and the key results to show the
validity of our asymptotic expansion method in this note from the view of math-
ematics. This is the reason why we call them as the Watanabe— Yoshida theory
on the Malliavin Calculus. For our purpose, we shall freely use the notations by
Ikeda and Watanabe (1989) as a standard textbook. The results in this section
are given without any proof. The interested readers may see Watanabe (1984),
Watanabe (1987), Ikeda and Watanabe (1989), Yoshida (1992b, 1995), and other
related works in stochastic analysis.

2.1 Some Notations

Let W be the m~—dimensional Wiener space, which is a Banach space consisting
of the totality of continuous functions w : [0,7] — R™ (w(0) = 0) with the

topology induced by countable system of norms

| w {|n= Ongltaggllw(t)l (n=1,2,---).

is in W and is absolutely continuous on [0,7’] with square integrable derivative
h(t) endowed with an inner product defined by

T . .
< h},hz >g= / hl(S) . hg(S)dS .
0
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A function f : W — R is called a polynomial functional if there exist . € NN,
h1, ha, - - -, hy € H and areal polynomial p(z1, o2, - - -, Zn) of n-variables such that

f(w) = p([h](w), [he](w), - - -, [Ba)(w)) ,

where h; € H and
m T . .
) (w) = 3 / hidw,
=170

are defined in the sense of stochastic integrals.
The standard L,-norm of R—valued Wiener functional F is defined by

1l = ([, 1P P(w)'?.

Also a sequence of the norm of R-valued Wiener functional F' for any s € R, and
p € (1,00) is defined by

1 s = 11 = L) Fp

where £ is the Ornstein-Uhlenbeck operator and || - ||, is the Ly-norm in the
stochastic analysis. In this notation

(I = L)*F =3 (14 n)2JF
n=0
where J,, are the projection operators in the Wiener’s homogeneous chaos decom-
position in Lg. They are constructed by the totality of R—valued polynomials of
degree at most n denoted by P, .

Let P(R) denote the totality of R—valued polynomials on the Wiener space
(W, P). Then P(R) is dense in L,(R) and can be extended to S, which is
the totality of smooth functionals. Then we construct the Banach space Dyp(R)
as the completion of P(R) with respect to || - ||ps. The dual space of Dp(R)
is the D7*(R), where s € R,p > 1, and 1/p + 1/q = 1. The space D*(R) =
Ns>0N1<p< oo Dy (1) is the set of Wiener functionals and D (R) = Us>0N1<ptoo
D:*(R) is a space of generalized Wiener functionals. For F' € P(R) and k € H,

P
the derivative of F' in the direction of h is defined by

DF(w) = lim é{F (w + eh) — F (w)} .

Then for F € P(R) and h € H there exists DF € P(H ® R) such that
DpF(w) =< DF(w),h >y, where < - >p is the inner product of H and DF
is called the H —derivative of F. Then there exists a unique DF' € S(H® R) .
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It is known that the norm || - ||, is equivalent to the norm 333, | D¥ - |- For
F € D*(R), we can define the Malliavin-covariance by

o(F) =< DF(w), DF(w) >y ,

where < - >y is the inner product of H. It is known that the operator D can be
well-defined in D*(R).

More generally, for a separable Hilbert space E, a function f : W  E is
called a polynomial functional if there exist n € N, hy, by, - - -, hn € H and a real
polynomial p(zy, 23, - -, L,) of n-variables such that

d
fw) = ;Pi([hl](w)a [he](w), -+, [ha] (w)) e

for some d € N, where ey, -,eq4 € E and py,---,pg are real polynomials.
The totality of E—valued polynomial functions and the totality of E-—valued
smooth functionals are denoted by P(E) and S(E), respectively. By extending
the above construction for P(R) to S(E), there exists DF € S(H ® E) such that
DpF(w) =< DF(w), h >, where < - >p is the inner product of H. By repeating
this procedure, we can define the k—th order H —derivative D*F € S(H o ®R%
for k > 1 and d > 1. (See Chapter V of Tkeda and Watanabe (1989) or Yoshida
(1995) for the mathematical details.)

2.2 Asymptotic Expansions

Let X®(w),e € (0, 1] be a Wiener functional with a parameter . Then we need
to define the asymptotic expansion of X (w) in the proper mathematical sense.
For k>0, X®(w) = O(¢*) in D; as & | 0 means that

X,
X b _

limsup
£]l0

’+OO,

where we use the notation D = D;(Rd) If for all p > 1,s > 0 and every
k=1,2,-
XO(w) ~ (g1 +ega+ -+ gr) = O

in D} as = | 0, then we say that X®)(w) has an asymptotic expansion :
XE(w) ~ g1 + &gy + -+ -

in D*™ as ¢ | 0 with g1,92,--- € D™.
Also if for every k = 1,2,---, there exists s > 0 such that, for all p > 1,
X(E)(w)yghg%' € D;S and

XO(w) — (g1 +ega+ - + ¥ gi) = O(¥)
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in D;* ase | 0, then we say that X )(w) € D has an asymptotic expansion:

XO(w) ~ gy +eg+ -

= 00

in D~ ase | 0withgy,ge,---€D
With these notations we are ready to state a simplified version of Theorem 2.2 of
Yoshida (1992b), which is a truncated version of Theorem 2.3 of Watanabe (1987).
The validity of the asymptotic expansion in this note is obtained by showing that
the conditions of this theorem are met. We shall apply the following theorem
when d = 1 and often use the convention D> (R?) = D™ for instance.

Theorem 2.1 | Yoshida (1992b) |

Let 4(y) be a smooth function such that 0 < ¢¥(y) <1 fory € Ry(y) =1 for
ly| < 1/2 andyp = 0 for |y| > 1. Suppose a set of sufficient conditions given below
are satisfied.

(1) X (w) = (X" (w)) € D*(R).

(2) X©(w) has the asymplotic expansion :

XO(w) ~ gy +egot -

in D®(RY) as € | 0 with g1, g5, --- € D®(R).
(3) {me(w); € € (0,1]} is O(1) in D*(R*) ase | 0 where c>0.
(4) % There exists ¢y > O such that for ¢ > co and any p > 1,

sup BlL gy (det o(X)) 7] <o
e€(0,1}

where (X)) = (0;;(X)) = (< DXZ-(E) (w),D.Xj(-E) (w) >n).
(5) For any k > 1,
1.
i ‘"‘k i —— g
lime™*P{Jrz] > 5} = 0.

(6) Let ) (z) be a smooth function in (z,£) on R4 x (0,1] with all derivatives
of polynomial growth order in = uniformly in «.

Then, (nS)¢' (X ©O)Ig(X®) has an asymptotic expansion:
(2.1) Y (X I (XO) ~ @ + 2@y + -

in f)"m(Rd) as e | 0, where B is a Borel set and ®¢,®y,--- are determined by
the formal Taylor expansion.

2This is the key condition that the Malliavin covariance of X*(w}) is uniformly non-degenerate
with a truncation.



As a remark of this section, we have to mention an intuitive meaning of the
asymptotic expansion (2.1) in the above theorem. It has been known in stochastic
analysis that for s < s and 1 <p <p we have ||F||,s < ||F|l,; o for F € P(R%)
and DY(R?) = L,(R?). (See Ikeda and Watanabe (1989) p.362.) Then for any
integer k > 1, the asymptotic expansion in (2.1) implies

(2.2) limsup B[ [$(1)6*(X ) [(X©)
el0 g

-—((I’() + @4+ é‘kvlq)k_l)” < 400

if we use the expectation operation in the proper mathematical sense. The precise
mathematical meanings of (2.1)-(2.2), the generalized expectation operations for
generalized Wiener functionals, and the related issues will be discussed at the
end of Section 3. (See Chapter V of Ikeda and Watanabe (1989).) Kunitomo
and Takahashi (1995), and Takahashi (1997) did use more intuitive methods for
deriving asymptotic expansions of random variables and their expected values in
continuous stochastic processes, which are based on the characteristic functions of
random variables. Although their methods on asymptotic expansions are intuitive
and formal, the resulting formulae can be rigorously justified by the arguments
based on Theorem 2.1.

3. The Validity in the Black-Scholes Economy

Now we give the proof of validity of our method in the Black-Sholes economy.
Without loss of generality, we consider the case when d = m = 1 because more
complicated notations are needed in the general case ® . For the fixed T' > 0 and
e € (0,1,

© T T .
(3.1) S = 5y + / u(89, s)ds + f 0 (S, s)dui, ,
0 0

where

u(SE),5) = r(84,5) 8
and o(S®, s) are [0,T] x R — R and Borel measurable in (S{,s). For the
notational convenience, we shall use this formulation of the drift function in
this section. We further assume that the drift and the volatility functions are
C*(R — R) for s € [0,T] with bounded derivatives of any order in the first
argument. That is, for the first argument there exist M; > 0 (¢ = 1,2) such that

3In the general case, we need some notations and the corresponding assumptions to the ones
we use in Section 3. On this issue we shall give only some remarks in the text for illustrations.



¢ 8"7},(537 S)
(32) Sef‘zs,ggsgz‘ | —__de
0% (S,, 5)

|<M1,

su - < M-
SGR,ogpng oSk | 2
for any k = 1,2,3,---. We further assume that there exists a positve M3 > 0
such that
(3.3) sup [|14(0, )| + o(0, )] < My -
0<s<T

These conditions imply that there exist some positve K; > 0 (¢ = 1,2) such that
for all s € [0, 7],

(3.4 (S, )] + o9, )] < a1+ 159
and
(35)  11(S9,8) — u(SL, 8)| + |o(SE), 5) — (S, 8)| < K|S — 55| .

Hence the standard argument (i.e. Ikeda and Watanabe (1989)) shows the ex-
istence of the unique strong solution which has continuous sample paths and is
in L, for any 1 < p < co. In the remaining of the section, we will discuss the
validity of the asymptotic expansion of HXD) 1(XE), where X5 is defined by
X = Sy’ % and B is a Borel set.

e

In the typical example of European call options, we take ¢(x) = (z + y)
and Ig(x) = {x > —y}, where y is a constant. Another simple application in
this section is the Awverage Options, which is sometimes called Asian options.
For this example we shall discuss the validity of the asymptotic expansion of
A7) I(Z8)), where Z$ is defined by

(3.6) 78 = é [ [) " F8)ds — [) ' f(sg"))ds]

and f(z) is a C®°(R — R) function. 1f we take f(z) = = and Ig(z) = {z > —y},
we have the standard Average options case, which has been called Asian Options.

First, we shall show that the Sr(,? ) in the general case is a smooth Wiener
functional in the sense of Malliavin.
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Theorem 3.1 Under the assumptions we have made, S is in D% and has an

asymptotic expansion :
(3.7) Séf’ ~ Sh+eqir + Egor+ -+
is in D™ as ¢ l, 0 with air,s 92T, & D,

Proof : The first part of our proof is to show that ,Srf,f ) in D*. For this purpose,
let us define a stochastic process {Y;*'} by

(3.8) dy;® = ou(S©, )P dt + 60 (SE, )Y,V duw,

where ' 0(5) = 1, and Op and 0o denote the 5%‘(‘5 and 5—%%7, respectively. The we
see Y® has the unique strong solution and Y © ¢ L,. Let Wt(g) = Yt(e)"l. Then
Wt(a) satisfies the stochastic differential equation :

AW = {089, 1) — 200 (S, )W dt — e (S, )W dus,

Wée) =1, and I/Vt(s) has also the unique strong solution and Yt(s)“] € Ly.
As the first step, we calculate the first order H-derivative of S_'(;). For any
h € H, we note that DhSq(f ) satisfies

T T T )
DhS,gf) — [) ead(Séf)’s)Dhsgs)dw(s)+[) au(3§5),8)[)h5§6)d8+/ EU(Sée),S)flst “
0
Then by using Lemma 3.3 below, we have that for h € H,
T a
DyS§Y = f YOV O 1eg(S©), 5)inyds .
0

We note that this relation is a result of the application of Lemma 3.2 below. Then
we have that for the first order H-derivative

T
DS = / YY) 1eq(SE), s)[2ds.
0

We note T
DS, < 2y [/ YO PR+ ‘555”)2‘13} |
1]

Then,
T ; ,
B[IDSPR] < 2B | IOP([| MO PR |s§f>|>2ds}] .
Likewise for any 2 < p < co, we can show

— T
B[IDSP1] < CRPTEE [ Op( [ v 1907y |
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In our evaluation of expectations, we repeatedly use the Holder inequality :
Ell.ys|} < Ellz. Pl Blly. |7
where p > 1,¢ > 1, + ¢ = 1, and the inequality,
(] -+ lyl)? < 2@V (j2lP + [y[?)

for p > 1. By using these inequalities and Fubini’s theorem, we can evaluate the
right hand side of the last equation as

E -IY%“" P{ /1 Y O-1p(1 + |S§E)|)?’ds}}
< B[vOp)'E [(/ {YO(1+ 1S9 Jrds) }]
< B[yop] e [ [ o |3;€>|)2PdSJ'
< B[P i Bvo ] a0 1s0)] asp
< E :[nﬁf)lzp:%Tz{/ {Iy(s) 1|4p] [2(4;) D1+ 15(5),4,,)]%(18}%‘

Hence, by S©, Y& vt e [, for s € [0,7] and any 1 < p < co, we have
E [!DS}E) |§I] < oo for any p > 1.

The rigorous proof for the existence of the sets of random variables {Yt(g)}
and {l)h5§f) } is a result of the approximations by the corresponding discretized

random variables and Ly-convergence arguments for p > 1. Let deline On(8) = 2—’3;
ifs €&, (kﬂ)) fork=0,---,(2"—1)T. We define a sequence of random variables

DpSy (c) , and VAR " which satlsfy the stochastic integral equations :
i
(E)n 38 +(&) (e)n +(€) (e)n
YO = v 4 / Op(Srs)Yiolids [ 200(S) . )Yy
and

ol L c00(SE) ), ) Dp S du(s) + / oSS, 5) DpsEds
T
: 5 8)hed
+L e0 (S, (s)» S)hsds

respectively. By considering the differences of YO v and DRSS — DLSY,

and evaluating the expectations as Lemma 4.1 and Lemma 4.3 in the next seotlon

4 we can show the following result.

4The arguments based on the discrete approximations to the continuous stochastic processes
have been standard in stochastic analysis. We shall illustrate these aspects in the proofs of
Lemma 4.1 and Lemma 4.2 in Section 4.
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Lemma 3.1  Under the assumptions in this section, for any p > 1 andn > 1
the random variables Y, ¥, v, ID”Séf) |, and |DS§5)I g are in L, Also
for any p>1

E[sup V" —yp] -0

0<t<T

and

E[sup |D"S) — DSP] —0

0<t<T

as 1 — +00.

From these considerations for the first order H—derivative we conclude that
SC([::) € ﬂ1<1r)<ool)11; .

As the second step, we consider the second order H-derivative in the direction
of (hy, hy), Dﬁl,thg ), which satisfies a stochastic integral equation :

) T T ]
D2, 89 = L £80(S), 8)DZ, 5,5 dw, + /0 Ou(SE), 5) D2, 1, SO ds

T

+ [ [) £620(S9, 5) Dp, S Dy, 8 dw,
T < -

+ [) 82 u(SE), 8) Dy, S Dy, S ds

T . T .
+ / £00(8%9), ) Dy, S hosds + / £00(S), 5) D,y S hysds|
0 0

Then, by using {Y;(e)}, we can obtain a representation of the second order H-
derivative in the direction of (hi, hy) as

T
Dlzu,hzsi(;) - [) Yés)){s(s)—l[82ﬂ(s‘§a):S)Dhlss(E)Dh25§6)ds
+ 6P0(S9, 5) Dy, S Dy, S\ dw,
+ €80(S, 5) D, SO hyeds + 80 (S), 5) D, S hisds).
In order to show the L,-boundedness of the second order H-derivative, we

need three lemmas because the integrands in the stochastic integral equations are

defined in a Hilbert space. We give the first lemma as Lemma 3.1 for convenience,
which is Lemma 7 of Yoshida (1995).

Lemma 3.2 | Yoshida (1995) |
Let H be the Cameron-Martin subspace of an m-dimensional Wiener space. Let
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Fel* (R, - E® R?Y). Suppose that the linear operator L : H — E s defined

by -
Lih] = [) Fyhsds, h e H.

Then, L : H — E is a continuous linear operator, and if L : HxE - R
denotes the corresponding continuous bilinear form, then L € H @ E and

v ¢]
|LlpeE = \[[) |Es %@Rdds'
+(£)

We set d = m = 1 and will apply this lemma to Dy [DSy’], where ])Sg Vs in

H ® R. In our case, we notice that
. - T '17 - . -
Du[DSY] = / £00(59, 8) Dp[ DS dw, + / Bu(S©), s) Dy | DS ds
0 4]

T
+ [ / 62 (SY), s) DS DS dw,
0

T

+ [ s, ) DusP DS s
0
T . T ’ 7 :

+ / £00 (S, ) DS hyds +/ £00(5%), ) Dp S heds | .
0 Jo

In order to apply Lemma 3.2 to the present case, we need to express Dy, [DSrf,f ) |
by the process {Y,@} in (3.8) and other terms, which can be easily handled. For
this ourpose, we prepare the following lemma.

Lemma 3.3 Define Ug) by
) T N
U = / VYO a,ds + beduws]
JO

where Y}(E) is the solution of the stochastic differential equation (3.8). Then we
have a representation of US :

) T
(3.9) U9 = U+ / UL 0u(S®, s)ds + 00 (S, s)]dw,
0
T
+ [) lasds + bsdw,| .

Proof of Lemma 3.3 : It is enough to verify that U}E) satisfies (3.9). By the
rule of stochastic differentiation, we know that

£ - & .T >
e — dye / YO (auds + bydw,)]
0

v [Tyt ge .
dYp A YO Yauds + bsdws) + Yy - Yy (apdT + brdwr)

= dY UV 4 JardT + bpdwr] |
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Then by substituting (3.8) into the above equation we have the desired result
(3.9). Q.E.D.

By using Lemma 3.2 and Lemma 3.3, we can use a simple representation for
the derivative of the first order H—derivative in the direction of k as

T
Dups) = [ VYO Gu(S?, 5) DS DS ds
+ ePa(8,s)DSO DS dw,
+ 2600(SY), 5) DS hsds] .

Thus we have for any p > 1
T ; X .
DS g < 4 [l | YO u(sP,5) D80 @ DSPdston
T
+ J/O YEYO16826(8), ) DSE) @ DSE dws by

T
+ o2 A YOO Ledo (S, 5) DS 4ds| 5 | .

By the boundedness of (8, ), and 00(S®) | s), and L,-boundedness of YYI(‘E),
Y©-1 and DS, the similar evaluations as for the first order derivative show
the L,-boundedness of the first and third term in the last equation.

As for the term involving the stochastic integral {dw}, by using the bound-
edness of random variables we have

T
E|l [ YOV 1e8P0(SE),5)DSE @ DSE dw,fl
A ; N s ®QH

1
1 T . . 2
< E[IYT‘E’I2”]2E[I / n@)*lea%(s*f),s)os&’@Dss)dwsﬁfw]

Clearly, the first part is bounded for any p > 1. As for the second part, we need
a version of Burkholder’s inequality for Hilbert space valued stochastic integrals.
For this purpose, we need Lemma 2.1 of Kusuoka and Stroock (1982), which is
stated as the next lemma for convenience.

Lemma 3.4 | Kusuoka and Stroock (1982) |

Let E be a separable real Hilbert space and suppose that f : [0,00) x W™ —
R*Q® E is a progressively measurable process. Suppose also that for some p > 2,
E [ 1 fslRag Eds] < co. Then there exists a constant ¢, depending only on p such
that

i " T
E [Supostgﬂ A fud’@tl%] <GI*TE [ /0 1fsl’;zd®Ed3} :

15



Because DS @ DS is in H ®* @ R, we can apply Lemma 3.3 when d =
m = 1. By using the above inequality, we can evaluate the last part as

44
2

T .
E[| /ﬁ YO 2?0 (S9, 5) DSE @ DS dw, ,,@H}

[

_ T
< (ITE U YO e (SE) 5) PP DSS DS 2 d ]
0

Hence, we can see this part is also bounded for any p > 1 by using the bounded-
ness of P (S, s), and Ly-boundedness of Y~ and most importantly DS,
By applying the same arguments for the first or der H —derivative to the second
order H —derivative, we can prove that Sﬁf der 11<p<wa,.

We can repeat this method and use an induction argument because we have
a series of recursive stochastic differential equations. Then we can show the
boundedness of higher order H-derivatives with L, estimates of S8. By applying
the same arguments for the first and second order H —derivatives to any order
H —derivative, we conclude that 58 e D=

Next, we shall prove the second part of our proof. The coefficients appeared
in the asymptotic expansion of Sf(,f) are given by the Taylor formula. For instance,

dir = f YoV 1o (8O, s)dw,

g = [ G¥es (SO, ks + (SO, g}
and

1-’ Y : ¥
Ga1 / Yr¥, Y Pu(SY, 8)g10g2sds + gfu(‘sgo),.s)gﬁﬁdws + 00 (S©, 8) gaedw,}

where Y, = Yt( ) is the solution of the determiuistic differential equation
dY = op(S©,1)Ydt,

where Y = 1. The solution of this equation is Y; = ezp(fg u(S, s)ds). By the
boundedness of Yz, Y, !, a(8%,s) on [0,T], we see that E[|g|?] < co,s € [0,7]
for any 1 < p < oo. Given g5 € Lp, by using Burkholder’s inequality (or
local martingale inequality in Theorem [11-3.1 of lkeda and Watanabe (1989)),
we have E[|gas|P] < oo for any 1 < p < co. By the same token, the relation
grs € Ly, can be obtainable recursively given g, € Ly,j = 1,2,---k — 1. Hence
Qi1 Gory - "zkpwo[) By noting that Drgir = Yr j(;‘pYS U(S(O) s)h ds and

16



Df . pg1="0for k=2,3,---, we see that gir € D™. Also we have

T [ T
Dpgor = YT/ K—laz#(SS(O)’S)glthg]sds+/ 80 (SY, 8) Dpgsdws
0 0

T .
+L 00 (S, s)hyds ,

T T .
D2, pogor = A Yo, 162 u(S®, 8) Dp,greDnyg1sds + [) 80 (SO, §) Dy, grshasds.

and Df . gor = 0 for k = 3,4,---. Then, given g1, € D> for any s € [0, 7],
we can conclude that gor € D™,

Again, recursively we can show the Ly-boundedness of any order H-derivatives
of grr, k = 3,4, --. Therefore, we have proven the last part. Q.E.D.

Next, we define the normalized random variable X ©ar by

By using Theorem 3.1, we see ngf ) is in D™ and has a proper asymptotic expan-
sion

Xq(f) ~gir + Egar + -+

isin D> as e | 0 with g1, g0, - - € D*. We also have the first order H-derivative
of {Xéf)} as
T :
DX = / YEYO 15(SO, s)hyds .
0

Then, the Malliavin covariance G(Xéf ) ) =< D. %6) , DX}E) >y is given by
T
(3.10) o (X5 = [) YOV O-15(S9, 5)}2ds .
We notice that
T
(3.11) o(X9) 5, = L (VY 1o (SO, s)}2ds

as € | 0, where ¥, denotes the variance of g;.

We shall next consider the uniform non-degeneracy of the Malliavin covari-
ance, which is the important step of the application of Theorem 2.1. For this
purpose, we need the following assumption.

Assumption I : For any T > 0,
T
(3.12) Sy = A (YrY 1o (SO, 5)¥3ds > 0 .

17



This assumption assures the non-degeneracy of the limiting distribution of
random variables, which can be easily checked in many applications. The con-
dition can be extended to the more general case when d > 1 and m > 1 in a
straightforward manner. We define 7; by for any ¢ > 0,

T
/]75 == (},/ IYT(,E)(Y&(E))"}‘U(SI;F),S) - YJ'Y;_-lU(Sﬁﬂ)v ,S’)IzdS :
0

Then, we have the following resut on the uniform non-degeneracy of the Malliavin-

covariance.

Theorem 3.2 Under the assumptions we have made and Assumption I, the
Malliavin covariance G’(X,g)) is uniformly non-degenerate. That is, there exists
co > 0 such that for c > ¢y and any p > 1,

(3.13) supeeo, B [Lggen{det o(X57)} 7] < co.

Proof : Let
9 =Y o(s¥),s)

and £, = VY, 10(S9), ). Then, the condition |r}| <1 implies
T 2
| 1650~ gurPds < .

We have an inequality
~(€) - T (£)\2 2

oK) =Sl = | [ €D~ (Gr)ds

T 2 ‘ ©

< [ 16— Gurlds 12 [ leurliel — o

2 . 2.1
< ;+2L§1(2)2 .

ds

Hence we can take ¢g > 0 such that for any ¢ > c,
0 < By, — o (X)) = ¥y, | < o(X7)
holds uniformly for € € (0, 1]. Thus, (3.13) is concluded. Q.E.D.

Next, we present two inequalities which are useful to show that the truncation

by 7; is negligible in probability when we derive the asymptotic expansion.
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Lemma 3.5 (1) There exist positive constants a; (i = 1,2) independent of &
such that

(319)  Plsupcscr S — 5| > ) < 700+ C)eapl(— e )

for all ag > 0.
(2) There exist positive constants a; (i = 1,2) independent of & such that

2

(3.15) P(supogsgm<f>—n|>a0)g%(ao + C)exp(— ™ jrag) £72)

for all ag > 0.
Proof : (1) Let
) = So +/ (8, s)ds +/ £0 (S, s)dws

and

SO = S5+ / (SO, )
Using the Lipschitz continuity of p(S%®,¢) in the first argument,
i s
|St(e) - St(u)l < K[) 1SE) — S©|ds + SUpogsStI—/() £0 (S, u)duw,)|.

In order to evaluate this inequality we recall the useful Gronwall’s inequality (i.e.
Elliott (1982) p.192, for instance). Suppose a(t) is a Lebesgue integrable function
on [a,b], and that C' and D are constants such that

alt) <C+ D[: o(s)ds

for all t € [a,b]. Then
a(t) < CePt)

By using this Gronwall’s inequality,
SUPO<s<T IS( S 9(0)| < SUPo<s<T l/ FU(LS(E) w)dw,|e"T

We next use the method of time change (i.e. lkeda and Watanabe (1989)
p.197, for example) in stochastic analysis. There exists a Brownian motion B (t)
such that \

B(Ay) = [) 0 (S®), 8)dws ,
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where A; = [j £20(S(), s)%ds .
Then,

supo<s<r]SE — SO < supocs<r|B(As)le"" .

Let a stopping time be 7 = inf{s;|S — S| > ap} . Then by using the fact
that the event {7 < T} implies {supg<s<r<r|B(As)|eXT > ap}, we have

P({supo<s<rlSE) — S| > ag}) = P({T < T, supo<s<r|B(As)|e"" > ao}).
Also we note that for s < 7, |S®| — [S©] < |8 — S| < gg. Then, we have
S8 < ag + 1SP] < ag + supocscr] S|

and
0(SE),8) < (1+189) < (a0 + ),

where C = 1 + supy<s<r|S?]. Thus A, for s € [0,7] is evaluated as
s I3 r
A, = | 20(8Y,u)du < *T(ap + C)*.
0
Therefore, we have an inequality

P{r < T, supgcscr|B(A)e"T > ag})

< P({supocuzerr(aor 0| Bw)e®T > ap}).

By using the reflection principle and the inequality

1 OO _ g2 1 ..,f’.a
/ 2 dr < agle™

e e
\ﬁ 21 Jao v 2w

we obtain

P{supy<ecr|SE — SO > ap}) < 2P({max B(*T(ap + C)?) > age™*T})
4P({B{e*T(ag + C)*) > age *"})
4eKTe\/T (ag + C)
< s
B V2 ao
~2KT 2
e 1 ag .
2T (ag + C)?

X

ezp(—

Finally, by defining two constants a; and ap in an appropriate way, we conclude
the result. This can be done by taking



and KT
o

2T
(2) Let a stochastic differential equation be

ag =—

4y, = ap(S®, )Y O dt + 80 (S, 1) Y, dw, .
The corresponding deterministic differential equation is given by
dY; = op(S©, t)Yidt .

By using the smoothness and the boundedness of derivatives of p(S$¥) s) in the
first argument and the boundedness of Y; on [0, T, there exist positive M; and
M, such that

|0u(SE, 8)YE) — opu(80, 5)Y|
< [O(SE), )|V — Y| + |Yallop(SE), s) — 0u(SE, 5)]|
< MYS Y|+ My|SE) — 5O

Then we have
v -y < [MZTSUP0§s§T|5§E) — S|+ supo<ozr] L edo (Sf),u)Yf)dwui]
M, L Y~ Yildu.

Again, by using the Gronwall’s inequality, it is possible to take a positive constant
Ms such that

S
suppcecr| YO —Ye| < My [SUPOSssﬂSéE) — S| + supo<s<r| A do(SY, u) Yu(f)dwul] ,
We take a constant 6 = 333~ and a stopping time
T = inf{s; 15€) — SO > §or [V — Y| > ag} .
Then we have

P({supp<oct|Y® — Y| > ag})
5 — SO < 6}
SO — 59 > 8}

+P({suppcs<r |V — Yi| > ao, supocs<r

< P({supocecr |V = Yi| > ao, supocscr|SSY — S| < 6})
+P({supocs<r|SE — S| > 6})
<

P({r < T, supp<ecr|SE — S| <6,
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(a0 — M) < Mssupoceer] [) " 80(59, w) YO dwa|})
+P({supo<s<r|SE) — 59| > 6})

= P({r<T, supggsgﬂsgs — Séo)l <e,
% < Mysupseosr |B(* [ 00(S0, 0¥ du)]})
+P({supocacr|S) — 801 > 6}) .

The second term in the last equation is equivalent to the first part of Lemma.
Hence, what we have to do is to evaluate the first term.. We note that the
condition 0 < s < 7(< T) implies [Y{® —Y;| < ap for s € [0,7]. Then for
s € [O 7], we have |[Y®] < ag+ C , where we take C = supo<s<rYs. Together

S w)| < My, we can show an inequality :
/ 80 (S, u)2 YRy < 2T M2(ag+ C)? .

Then

P({T < r]8® — 80| < ¢,

D s ~
Qs Misupocr [BE [ 00(, 0¥ P )
0

P({

"2 M2 < < SUPo<u<e2T M2 (ay +C)2JIB(U)!}) .

Therefore, repeating the similar arguments as we used in (1), we can conclude
that there exist positive constants a;; (¢ = 1,2) independent of € such that

P({T < T, SUPOgngiss(-E) - SEO)I S (S,
L < Mysupocoer BE [ 00(59,*YPdu)]})
0

IA

2
a
% (g + Ceap(— 2D e 2)

—&
ag (ag + C)?
Q.E.D.

We now can show that the truncation by the bounded random variable 7] is
negligible in probability by utilizing the above large deviation inequalities. We
summarize this result as the next lemma.

Lemma 3.6 For ¢ > 0, n is O(1) in D> and for ¢y > 0, there exisl some
constants ¢; (1 = 1,2,3), such that

(3.16) P{|n] > co}) < crexp(—coe™ ) .
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Proof : The result follows from the inequalities (1) and (2) in the previous

lemma. First, we note
T ,
= e[ YO (80, 8) — oY, o(SO, 5) s
0
2
< Tsuppescr [YYO0(S9,5) = VoY, la(S0,9)] .

Then the condition |n;| > ¢p implies

(gl > co} € {supocacr [YOVO10(89,5) = VoY, (59, 8)] > ()3}

We set a constant ¢4 = (%)% Then

¢
(317) I > e} C {suposacrl¥r¥, M o(89,5) = o(SO,8)| > )
; ] .
U {suposecr VO o(89, 91V ~ Vil > S}
U {supsocr[Yrllo (S, VO =¥, > T
By using the boundedness of |Y7Y;™!|, the Lipschitz continuity of o(S ), 5) in the

first argument, and Lemma 3.5, the first term of the right hand side implies that

there exist positive c¢11,¢1, and c3; such that

P({supsecrVeY, o8, ) — 0(5°, )] > 2})

S P({SUPOSSSTISS) - S§O)| > c5}) < cnexp(—cad ),

where we take
Cy

- 3K supo<s<r|YrYst|

Cs

We note that for any cgz > 0, the condition |Y{)~1 — Y,"!| > g3 is implied by
Y- > maz(|cs + Y7, |cos — Y37 1]). Thenby Y, ' > 0for0<s < T,

(YO > mi} C YO =¥ > cos}

where we set my = cg3 + S’U,pogng}/_;l. We also note that for any ¢g; > 0, the
condition |S{ — S@| > ¢y, is implied by |S¥)| > maz(|jepi + SO, |ecor — SO)) .
Then it also implied by [S®)| > o1 + supocs<r|SP|. Hence by |o(S®),s)| <
My(1+1S9)),

{lo(S$?,8)] > ma} C {ISE ~ S| > en}-

where we set my = K (1+ o1 + supp<s<r|S?}). Therefore, as for the second term,

= ¢ 5 ] Cy .
{supocecrl VO Mo (S, VS =Vl > 3}
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c
C {]Y;(E) —- Y| > ~——~4——;—- 9up0<s<p]Y( £)- < ml,supo<é<p|0(,5£ ),s)l <mg}
2

{supocscr|YO |0 (SO, 8)|IY) — Y| > —supo<s<frlY“ Y > ma}

(v —vy| > —2— }u{supo<s<qny<“ Y > s}

J
U {supocecr| YO Y0 (S9, 5)[IV5 — Yo| > 'g , sup<s<r|o(S), s)| > ma}
< 3y

u

{supo<s<r| S — S¢ | > cor} -

Then, by using the inequalities in Lemma 3.5 , we can take positive constants
C12,C2,C32 > 0 such that

({eup0<sq|Y( )= 1”0(,&(” s)|| Y(6 -Y > ﬁ}) < clgexp(_cgze“ca?) .

The similar arguments can be applied to the third term. Then by summarizing
all terms and the result is concluded. Q. E.D.

By suminarizing Theorem 3.3, Theorem 3.3, and Lemma 3.5, we have shown
that the conditions of Theorem 2.1 are satisfied. Then we immediately obtain
the next result.

Theorem 3.3 Under the assumptions with Assumption I we have made in this
section, for a smooth function &9 (x) with all derivatives of polynomial growth
orders, (n)¢® (X (6))[3(X§f )) has an asymptotic expansion :

(3.18) () (XF ) I(Xi) ~ @o + @it

in D~ ase | 0, where B is a Borel set, {(x) is a smooth funetion such that
0 <yx) <1 forze Rap(x) =1 for|z| <1/2 and ¢ = 0 for |z| > 1, and
Oy, 1, - - - are determined by the formal Taylor expansion.

Finally, we obtain an asymptotic expansion of the expectation of $) (X (F))I B (X}E)),
which is the main result in this section. It is the direct consequence of the uni-
form integrability of {|¢(z)[P}(p > 1), Theorem 3.3, and Lemma 3.6, which has
shown that the effects of truncation is negligible in probability.

Theorem 3.4 Under the assumptions with Assumption I we have made in this
section, an asymplotic expansion of E[¢© (X)) Ig(X®)] is given by

(319 EBOXO)IXD)] ~ B (XO)s(x¥)
~ E[®o] + eE[®q] + -

as € | 0, where ¢¥(.), ¥(-), and B are defined as Theorem 3.4.
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As another application, we consider the validity of the asymptotic expansion

(F) 0) T T
@ Gr —2Zr) 1 () 70 _ (©)
z - [) F(S)ds [) F(8®)ds|

£

of

where f(z) is a smooth function, which is in C*°(R — R). Then, an asymptotic
expansion of the random variable Z§f ) s formally given by

29~ [ 5(sOyds+= [ 05(S)guds
122 [P I(SO)gh + 1S guc}ds
& [T + PSSP gregne + OF (SO )gucbes -
= 2D et Bt St

By using the smoothness of f(z), Séf) € D™, and gis, gas, g3s, - - - € D, we see
that Zp € D and Zéf ) has an asymptotic expansion, which is in D> as e | 0
with g2, k=1,2,---.

The Malliavin covariance of Z,}f ), which is denoted as O'(Z}E)), is given by

o(7) = / [{ / Bf(SENY©ds}Y )1 (Sff),u)] du .

In this particular case, O'(Zq(f )y = Yz, 88 € 1 0, where

5.z ~/ [{/ 8f(SO)Y,ds}Y, 'o(SO, u rdu.

AT

If we define 75(Z) as before by
T[T
n(Z) = ¢ /0 [{ f 8f (SO)Yds}Y O e (89, u)

T 2
[ OO} (59, |

then we can have the corresponding results as Lemma 3.2 and Lemma 3.6 for
n:(Z) instead of 7% in the same way. As before, in the process we need to make
a use of Lemma 3.5 and the smoothness of f(x). Consequently, we can apply
Theorem 2.1 to Y(n:(2))p(Zy 2 )1, and the same results as in Theorem 3.4 and
Theorem 3.5 hold for Z; () as follows under the following assumption instead of
Assumption I.

Assumption I’ : For any T > 0,
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T T 2
(3.20) Yy = / {{ ] 8 (SOY,ds}Y, oSO, u)| du>0.
0 u

Theorem 3.5 Under the assumptions with Assumption I’ instead of Assump-
tion I we have made in this section, for a smooth function ¢ (x) with all deriva-
tives of polynomial growth orders, 1¥(nS(Z))p® (Z:Sf ) )Ig(Zéf )) has an asymptotic
ETPOTSION :

(3.21) Y(E(2)) (2SN 15(Z)) ~ By + eDy + -

in D= as e | 0, where B is a Borel set, y(x) is a smooth function such that
0<o(x) <1forze Ryp(z) =1 for |z| <1/2 and ¢ =0 for |z| > 1, and
By, Dy, - - - are determined by the formal Taylor expansion.

Theorem 3.6 Under the assumptions with Assumption I’ instead of Assump-
tion J we have made in this section, an asymptotic expansion of E[¢p©N(Z©)) 15(Z9)]
s given by

(322)  ERYEZIs(Z)] ~ EW@(2)¢9 (2 )1s(2)]
~ E[®] + eE[®q] + - --

as e | 0, where p\9(.), ¥(.), and B are defined as Theorem 3.6.

Qur next objective is to show that the resulting formulae of asymptotic ex-
pansion are equivalent to those from our method which is based on the simple
inversion technique for the characteristic function, which have been used by Ku-
nitomo and Takahashi (1995), and Takahashi (1997). For this purpose, we only
discuss the case of Xrﬁf ) because the same argument holds for the asymptotic
expansion of Zéf ). In our method we shall explicitly derive the formulas of the
asymptotic distribution function and the density function, and also that of the ex-
pectation of the random variable Xﬁf )in a certain range. Then we shall show that
they are equivalent to those by our simple method, which is based on a formal
inversion technique known in the standard asymptotic theory of mathematical
statistics. We start with the explicit evaluation of the expectations appeared in
Theorem 3.5. We observe that in Theorem 3.5, the terms of @4, ®,, and ¢4 are
given by

o = ¢g1)Is(g1) ,
56©)

¢, = "26 le=o(g1) + 06 (g1)gz | Is(gn) + 9 (g1)018(g1)g2
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and

o, — [855—-_15-0<gl)+8¢<6’(91)g2] Bls(91)a:

[1 ol 0%¢ (z)

(3.23) -2'"5—*82“15.-:0(91 + e lszo,m:gl}gz

1,
+0¢@(g1)gs + defbm) (91)93] Is(g1)

+ ¢ (91){“12‘6218(91)95 + 0Ip(g1)g3} ,

which can be derived by applying a formal Taylor expansion and we use the no-
tation g; for g;p (1 = 1,2,3) for convenience.

In the above expressions we have used the notation 0 (z)y and 0* ) (z)y?
when d = m = 1 for differentiation because they become ¥¢ ; 8;¢)(z)y; and
e 123 i qﬁ( )z )yzyJ for o = (xz) and y = (y;) in the general case. We shall
also use the notation ’a_ and 2 3 <5 even when d = m =1 because it is straightfor~
ward to derive the corresponding results with the notation a““ and 5—5« in the
general case when d > 1 without any confusion. The differentiation of the indi-
cator function Ig has a proper mathematical meaning as the generalized Wiener
functional. The rigorous mathematical foundation of differentiation has been
given in Chapter V of Tkeda and Watanabe (1989). The next result suminarizes
the explicit expressions for the asymptotic expansion of expectations of the above
random variables based on the Gaussian density function.

Theorem 3.7 Each terms in the asymptotic expansion of (3.21) E[®;] (i =
0,1,2) are given by

(3.24) E[0,] = /B $O (z)n[z]0, 5y, |dz

O
E[‘I’l] = [3{ gg

b O [

i5:0($)7L[x!03 zgl]

—0E|[ga|g1 = z]n|z|0,%,]
or

}dx

B = [ -2 100 L (Blgalos = 2inlelo, S

16%¢)
b 3 o(@nlal0, %y

1

+ —2—¢(0)(x) B}S{E[gg lg1 = zn[z|0, X4, 1}

+ 4O {~Blaslgy = alnfel0, S}
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where n|z|0,Y)] is the density function of the Gaussian distribution with zero mean

and the variance X.

Proof : The essential part of the present proof is in the fact that we can use
the integration by parts operation repeatedly. The use of integration by parts
formula for Wiener functional has been explained by Chapter V of Ikeda and
Watanabe (1989), and extensively used by Yoshida (1992a,b).

First, the formula for E[®] is the direct result of calculation. Second, the

expectation of the first term of @1 is given by
0P

E [{ o) + das(gl)gz}fs(ga]

({22 ) + 060 Blalen = alynlel0, Ve

As for the expectation of ¢ (g;)815(g1)gz, Wwe notice that ¢(¥(g1)g2 € D™. Then
by using the integration by parts formula for Wiener functional, we have

E [¢(0)(gl)8lls(gl)g‘z] = B [¢(0)(gl)g261'3(91)]
= E[G(w)Is(g1)]
= E[E [G(w)lgx = z|15(g1)]
= / E[G(w)lg1 = #ln[z]0, ¥ig; |dz

[Plﬂ?
B

for a smooth Wiener functional G(w). In order to obtain an explicit representa-

i

tion of py(z), we set By = (—co,z] . Then we have

i

E [6°(91)0]5,(91)92] = / — $OW)Elgalgr = yl6Ts, (y)nlyl0, g, ldy
= e J[ _ ¢ (y) Elg2lgr = yl62{y)n[y|0, £y, |dy
== “¢(O)($)E{92|91 = x]"MO, 5391] )

where 8,(y) denotes the delta function of y at z. By differentiating the above

term with respect to x, we have

P(@) = 2 [0 (o) Blgalon = 2hnlzlo, %] -

By adding two terms, we have the explicit formula for E [®4] as

/{ngi . 0 .I,‘)’IZ[J?IO Lgl] + d)(ﬂ)( ) [‘"aElgﬂfh len{l]oyxglj]}d(ﬂ ]
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Third, we shall derive an explicit representation for E [®,], which is more
complicated. For this purpose, we write it as

Efes] = [ p(e)de

where pg; (i = 1,2,3) corresponds to each line of ®; in (3.21). The first term
pa1(z) can be calculated directly as E [®;] by using the integration by parts for-
mula and is given by

P (&) = 2 [ {qu;

For the second term, we only need the standard differentiation and p(z) is

le=0(2)Elg2|g1 = 2] + 88 (2)Elgzlgs = 2]}n[z : 0, %] | -

given by ‘
(€) 2 (&
(o) = B%lszo@)+{§§—(‘§(‘€Qle—o}E[Q2lgl‘f] 106 @)Blgslo, = 1

+ ~1-6205("’(93)13[923’ 91 = l‘]] nfz]0, Xg] -

In order to derive pos(z), first we need an expression of the second order gener-
alized derivatives of Winer functional E [24)(0) (91)6213(91)g2] . By taking B =
B, = (—o0, ] and using the integration by parts formulas for Wiener functionals,

we have

E[%QS(O)(Ql)azIBz(gl)gg]
. / 2321&( ){-1—¢<°><y)E{g§|gl = yinlyl0, S}y
- ax / ) ¢<°> (4)Elgilon = ylnlyl0, To, }dy
- 5;{50%0’() (2191 = 2lnlz{0, 5,1}
- [ 5O W g — im0, T}y

For the term of E [qﬁ(o) (91)018(q1) gg,] , we obtain

E [¢(91)015,9] = / a; %{-(b«n (¥)Elgslgr = yln[yl0, 3g,]}dy -

Hence, po3(z) is given by
& 1 ,
pu(a) = 5560 @Elglg = 2inlzl0, X}
0
+ A=V @Elgslg = 2Infz(0, g}
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Finally, by collecting and rearranging each term of pa; (), pea(2), and pas(z), we
conclude

AP 0 _
Pz(ﬂ?) = “—gzm 5::0(33)5;{E[g2lgl = 1’]"[35 : 0, 291]}
1629

-+ '2‘ “‘é“”‘é"’ls:()(m)n[xlov 291]
+ ¢(0)($) {E[gzlfh = zlnz|0, g, |}
+ ¢O(z)5- {~~E[Jslgx - zjn[z]0, X, |}-

Q.E.D.

If we take a particular function ¢{*)(z), we can derive the corresponding formu-
lae in the asymptotic expansion. We shall give two examples for an illustration.
If we take ¢ (z) = | and B = (—o0, z, then we have an asymptotic expansion

of the distribution function, which is given by

i c T L z -0 =y DX
XD <2l ~ [l gy e [T 2B =Yl Ral
z ] % ,
+ 62 [ oo 55'—"2_{ [Qngl - ]n[yIO, 291]}

+ %{_E[Qi’)lgl = ylnlylo, Em]}} dy+ -

N[{.} - e{~Elg:lg: = 2]n[z]0, ]}

19 | '
* [éb_EL%IQl = z|n[z|0, Ly, | — Elgs|g1 = z|nfz(0, Xq,]| +

As the second example, we take the payoff function of European call options. For
this purpose, we set ¢°(z) = z + y for a constant y and B = [y, c0). Then we

have

Bletn)] ~ [ (o) nlzioSylds

n e/wx —~0E|ga|g1 - z|n|z|0, 53gl]dx
—y oz

oo [ 9 ;
b & [ | Bl slnlah, T )

2
LS bl sl m, | as
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These formulas we have obtained are equivalent to the formulae by using the
inversion technique ° for the characteristic function of the corresponding random
variable for the European call options under an additional assumption, which
have been reported by Takahashi (1997).

The valuation problem of financial contingent claims in the Black Sholes econ-
omy can be simply defined as to find its “fair” value at financial markets. Let
V(T) be the payoff of a contingent claim at the terminal period T. Then the
standard martingale theory in financial economics predicts that the fair price of
V(T) at time ¢t (0 <t < T') should be given by

T (& 1
‘/t(T) — Et l:e-j; 1‘(61(, )’v)de(T) ,

where E; [|] stands for the conditional expectation operator given the information
available at £ with respect to the equivalent martingale measure.

In particular, Takahashi (1997) has given many asymptotic expansion for-
nulas for the examples we have mentioned in this section when r is a positive
constant in details. In this case, the conditions in (3.4) and (3.5) do not have any

restriction on the drift term.

4 The Validity in the Term Structure Model
of Interest Rates

We shall show the validity of our method in an arbitrage-free pricing model based
on a family of the instantaneous forward rates processes in the HJM framework.
For the sake of completeness, we repeat (1.2) and assume the forward rates pro-
cesses obey the stochastic integral equation :

s | m %
f(f)(sa t) - f(oat) + 82/ [Z Ui(f(E)(vvt),v’ t)/ o'i(f(s)('vay)v v, y)dy dv
0 =1 v
s M .
+ i\J e 7t 3 7t d i )
e ) Lolr O, )duto)
where 0 < ¢ < 1and 0 < s <t < T < 7. The volatility function o;(f©® (s,t), s,t)

depends not only on s and t, but also on f¢)(s,¢) in the general case.
In this section we make the following two assumptions.

5Fujikoshi et. al. (1982) have given useful inversion formulas, which have been extensively
used by Kunitomo and Takahashi (1995), and Takahashi (1997) to derive explicit results of
asymptotic expansions.
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Assumption I1: The volatility functions {o;(f¢)(s,t), s,) } are non-negative,
bounded, Lipschitz continuous, and smooth in its first argument, and all deriva-
tives are bounded uniformly in &, where f()(s, t) are properly defined in (&, s,t, f©(s, 1))
€ (0,1]x{0 < s <t < T}x R". The initial forward rates f(0,t) are also Lipschitz
continuous with respect to t.

Assumption Il : For any 0 <s <t <T,
g m
(4.25) Y(s,4) = jf S0 (v, 8)3dv > 0,
0 =1

where
0'2(0) ('Ua t) = Ui(f(E) (U’ t)’ v, t) IEZO‘

The conditions we have made in Assumption II can exclude the possiblity of
explosions for the solution of (1.2) 8. They are quite strong and could be relaxed
considerably, which may be interesting from the view of stochastic analysis. I'or
practical purposes, however, we can often use the truncation arguments as an
example given by Heath, Jarrow, and Morton (1992). Assumption III ensures
the key condition of non-degeneracy of the Malliavin-covariance in our problem,
which is essential for the validity of the asymptotic expansion approach as we
shall see in the following derivations for the forward rate processes. Under these
assumptions we can get the stochastic expansions of the forward rates and spot

interest rates processes. We show this in several steps.

Without loss of generality, we consider the case when m = 1 because more
complicated notations are needed in the general case. Weset m = 1 and € = 1
in (1.2) in the first step. The startiug point of our discussion is the result by
Morton (1989) on the existence and uniqueness of the solution of the stochastic
integral equation (1.2) for forward rate processes.

Theorem 4.1 [ Morton (1989) |

Under Assumption II, there exists a jointly continuous process {f(s,1),0 <
s <t < T} satisfying (1.2) with = = 1. There is at most one solution of (1.2)
with € = 1.

We shall consider the H—derivatives of the forward rate processes {f(V(s, t)}.
For any h € H, we successively define a sequence of random variables {£™ (s,t)}
by the integral equation:

SFor example, Morton (1989) has shown that there does not exist any meaningful solution
when the volatility function is proportional to the forward rate process.

32



s,y = [ [(90(f“’(v,t),v,t) [ o w9, 0,9)dsE® (0,1)] ao
A LORCORN) ) [ 0059w, 1), 0.9 v, )y
+ [ 00O, 1),9, 60, Hdw(o)
(4.26) + Ea(f“)(u,t),u,t)hvdv

where the initial condition is given by £@(s,t) = 0. Then we have the next result

by using the standard method in stochastic analysis.
Lemma 4.1 : Foranyp>1and0<s<t<T,
(4.27) E[l€" (s, )] < o0,
and as n — oo

(4.28) sup E[sup |7 (u,t) — ™ (u, 1)]?] —

0<Cs<t<T O0<u<s

Proof [i] We use the induction argument for n. We have (4.27) when n = 1
because o(-) is bounded and h,, is a square-integrable function in (4. 26) Suppose
(4.27) hold for n = k. Then there exist positive constants M;(é = 1,---,4) such
that

€0 0P < My [0l du-+ Ml sup | [ €W o, kel P
(4.29) M / / 1E®) (0, ) Pdydv + My / i PP/
0 Jv 0

By a martingale inequality 7, the expectation of the second term on the right
hand side of (4.29) is less than

MER [ 160 (v, )Pdvi) < M [ E[IE® (v, 1)l

/ " vy 7 . .
where M, and M are positive constants. Because h, is square-integrable, we
have (4.27) when n = k4 1.

"The maritingale inequality in the standard case has been given as Theorem [11-3.1 of Ikeda
and Watanabe (1989), for instance, which could be regarded as a special case of Lemma 3.4 in
Section 3.



0<s<H,

€405, 0) ~ €9, OF < Myl [ 1EP(w,0) — € Do, o

(130) bl [ [ 10 ,1) — €00 (0, 1) dyca?
b ML 00,0, 5,016 (0,0 ~ €7 o, ldw(v)
= Y,
=1

where we have defined I(™(s,t) by the last equality. By using the Cauchy-
Schwartz inequality,

Bl sup /" (0] < Mys [ BIEW w0 = €D, .

O<u<ls

By repeating the above argument to the second term of {4.30), we have

(4.31) 15 (u, 1)

IA

u it P
M@’f‘/o l /; 160 (v, ) — €5V (v, ) dyl*dv

ot \ .
Myt [ [ 16,y) = €00 (w,y) Pdydo
0 Jv

IA

Then

(@.32) Elsup 19(w,0] < Most [ [ Bl w,9) ~ 6w, ) dydo

0<u<Ls

For the third therm of (4.30), we have

(4.33) E[ sup I"(u, )] < M, EE[K(")(U, t) — £V (v, 0)"ldv

0<u<s

because of the boundedness of do(-), where M, is a positive constant. By using
(4.31), (4.32), and (4.33), we have

Bl sup |60 (uw,1) ~ €7@ 0P) < My (/SE[ sup €0 (v,0) — €V (v, ) ldu

g<vsu

i f / sup €™ (v,y) — 6(""1)(v,y)lzldydU)
0<v<u

where Mj is a positive constant. By defining a sequence of {u(™(s,t)} by

u™ (s, 1) = B[ sup £ D, t) — €7 (u, )]

<u<s
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we have the relation
s t
ul™ ) (s,1) < Mg [) [ / u™ (u, y)dy + u™ (u, 1)]du
u
If we have an inequality

< a1 1 n 1
(4.34) u™ (s, 1) < CEm ([My(t + 1)s]™*

we can show (4.28) as n — +00. We use the induction argument for n > 1. When

n = 1, there exists a positive constant Mg such that

uW(s,1) = B[, sup. Ié(l)(u,t)—é“’)(u,t)lzl

= KE|sup | (f(l)(u 1), u, t) hydul?|

0<u<s JO

< Ms(1+1)s

because 0(-) is bounded and h, is square—integrable. Suppose (4.34) hold for

s ot \
u* (s, t) < MS/ [/ u® (u, y)dy + u® (u, 1)|du
O u°
s gt s*
< M [ Wb DSy M 1S

k+1

S Mk+1(t - 1)k+l(k - l)'

QE.D.

Because of (4.34) and the Chebyshev’s inequality, we have

00 ) 1
S P{ sup [ D (u,s) — P (u,5)| > —}
n—1 O<u<s<t 2n

1
Z n— [AM(T + D)T)" < 400 .

Then by the Borel-Cantelli lemma, the sequence of random variables {£™ (s, )}
converges uniformly on 0 < u < s < ¢ (< T). Hence we have established the

existence of the H—derivative of f)(s,t), which is given by the solution of the
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stochastic integral equation :

DhfO(s,8) = [)s [50(]0(1) (v,1),v,1) [uta(f(l)(v, ’y),v,y)d’yan“)(v,t)] dv

[ e 0,00 [ 00O, 00 DO w,v)dy]
[ 90(590,0,v,H D01V (0, Odu(e)

+

(4.35) %_A%UmWﬂwﬁmw-

We note that for the spot rate process {r®(t)} the H-derivative can be well-
defined by
Dur(e) = limg Daf (s,

Now we define the random variables {5;};1) (w)for0<u<s<t<Thya
stochastic integral equation :

0w = [ 000, 0,0,085w) [ (7D 0,), v 9)dydo
+ /dwwzvt/&7w@wvw“Uw@m
n /aaﬂwvwva(”wmmw
(4.36) + o(fP(u,t),u,t).

Then we can show that

/émmmmzmﬂm@.

The rigorous proof for the existence of the sets of random variables { Dy, f M (s,1)}
and {ﬁgltl)(u)} in L,~norm can be given by using the approximations by dis-
cretized stochastic processes and their convergence in Lpnorm For this purpose,

we define ¢,(s) = & if s € [2n>QC“J%H), and Yn(s) = £ if s € (% %) for
k=1,---,(2"—1)T. Then we can define a sequence of random variables 6(1 Dn (u)

by the solution of a stochastic integral equation :

€6y = [ 00U (Ga), 0,0, 060

x [ o (Gu(0), ), v, Oy
+ [T eV (galw), 1),

Yn(u)Vs
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t Dnr
x [ 00 (7D (@ulv), 1), v, 0 (w)dyelo
L, s 27U 600,00, 08, 5 (w)dlw)

+ (SO (palu), 1), u,1) -

Then we can define a sequence of random variables { D f(V (s, ¢)} by the solution
of a stochastic integral equation :

DpfW(s,t) = / L}n(u)vé o (FO(Bu(w), 1), v, HELD™, ()
8 4[; o (fD(¢n(v),y), v, ) dydvhydu
E /i(u)de(f(l)(‘b"(”)’ t),v,1)
< [ B0 G(0), 1,0, DEGEL )y
‘/: / .i(u)Vs 00 (1) ($u(v), 1), v, 085, (w)duw () hud
+ ﬁ o (f O (Snlw), 1), u, t) hydu .

We also consider a sequence of the corresponding random variables {f(V(s,t)},
which are defined by

POt = 10,01 [ o)., (w0) [ ol (o), 1), )i
+ [ (P (Gafo), 0,0, )du(v)

In order to examine the existence of higher order moments of {S(l D)}, {&s, Dy )}
and other related random variables, we prepare the following inequality.

Lemma 4.2 : Suppose for kg > 0,k1 > 0,Ay >0 and 0 < s <t <T, a
Junction wy(u, s,t) satisfies (i) 0 < wy(u,s,t) < Ay and (ii)

L] s pt
(4.37) wn(u,s,t) < ky+ ki [/ wy (U, v,t)dv Jr/ / wy (u, v, y)dydv

Then,
(4.38) wy{u, s,t) < kgeFr+Ds

Proof : By substituting (i) into the right hand side of (4.37), we have
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S s pt
(4.39) wn(u,s,t) < ko+ Ank: [/ ds —1‘*/ / dyd’u]

U u°

< k‘o -+ ANkl(l + t)S .

By repeating the substitution of (4.39) into the right hand side of (4.37), we have

k)

1., 1 . et
wN(u, S,t) < kg Z 7{!“61(1 -+ t)S]k + “(‘f,‘L'j*"*ﬁ*’-AN[k‘l(l -+ t)s} + .

Then we have (4.38) by taking n — +oo. Q.E.D.

We consider the truncated random variable :

(4.40) M) = 63 W] Ints,0)

where Iy(s,t) = 1if
S‘lpogvgs,vgygt|§v,y(u)| <N

and Iy(s,t) = 0 otherwise. By using the boundedness conditions in Assurption
Il and h, being square-integrable, we can show that there exist positive constants
M; (¢ = 10,11, 12) such that

(@41) (P < My [ 16N w)Pdo+ Mol [ Chlw)dw (@)
[ [ I () Pdydu -+ Miglo(fD(u, 1), u, O .

= }:: JiN(u‘vsa t) b

4==1

+

where we have defined JN (u,s,t)(i = 1,---,4) by the last equality. By using the
martingale inequality, we have

(4.42) E[JY(u,s,t)] < ME| / €Y, (w) o
< MGE|[ G P,

where My, and M, are positive constants. Also JJ (s,1) is bounded because o ()
is bounded. If we set wy(u, s,t) = E[|(s(u)|?], then we can directly apply Lemma
4.2. By taking the limit of the expectation function wy(u,s,t) as N — co, we
have the following lemma.

Lemma 4.3 : Under the assumption II, for any p > 1,

(4.43) B[P (w)P] < +oo .
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By modifying slightly this method for the existence of moments, we can also
show that for any p > 1,

~ 1,1 .
E[ sup (6" (w)lP] < oo
0<u<s

Because of Assumption I, for any p > 1 we have
Elsup [fO"(u,t)?] < 400
0<u<s

and
Bl sup [f®(u, 1)[f] < co.

0<u<s
Then we can develop the method similar to the one used in the proof of Lemimna
4.1 for proving the convergence of sequences of the discretized random variables
to the corresponding continuous processes in L,—norm. Because the method has
been standard in stochastic analysis (see Lemma 2.1 in Chapter V of Ikeda and
Watanabe (1989), for instance) and it needs lengthy evaluations, we omit the
details. As the result of these arguments, we have the next result.

Lemma 4.4 : Under Asumption 1, for any p > 1 we have

sup B[ sup |fO"(u,t) - /O, )] -0

0<s<#<T  0<u<s

a4s n — +oo. For any p > 1 we can show thal

. 11 L1
sup Bl sup |65 (w) €57 ()P — 0
0<s<t<T  U<u<s
as n - +co. Also for any p > 1 we have
sup Bl sup |DfO"(u,t) — DfD(u, )] — 0
0<s<t<T 0<u<s

as n — +00.

By using Lemma 4.3, Lemma 4.4, and the equivalence of two norms stated in
Section 2.1, we now have established the following property of the first order
H —derivative :

f(l)(S,t) < m1<p<+001__);, .

Since we have completed the investigation of the first order H-- derivative,
our next task is to investigate some properties of the second order H —derivative
of fM(s,t). As for the second order H— derivative, we have
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1)h(1)j<1>(b t)]

o\xha\

O\\%é\

8

00 (10(0,0),0,1) [ 7O w.0). )y DD O )] o
(£ (w,0,0,1) [ 90(7V w,9),v,1) Dl DS O o, )y o
00 (F(v,),0,6) Do DO (o, ) o)
Po(fOw,1),0,8) [ o(O(0,0),0,9)dyDus e, DIV (w, 1) dv
;acf(f“’(v,t),w,t) [ oG, ),0,9) D80, 0 DO 0, )y o
60(/O (0,0, 0,) DO (w,1) [ 001D (1), 0,9) DI O (v, )dy] o
100, ),008) [ Pl 50,08 Do 0, DS o, )]
ydﬂww@mmpgm@m DO (v, t)dw(v)

[ 00V w,0,0,0[Duf D (0,0, + DF o, 0}
JO

Although the above stochastic differential equation has many terrus, the basic

structure is the same as the first order H—derivative of f(s,t). Now we define
the random variables {E(l 2)( Jpfor0<u<s<t<Thy

2
Sﬂu

?w

|
-+

?w

e

e

[

\7“\?\\

@«

@®

@

*

wn

i
dv( IO, 0,0,0) [ (7O w,u), v, y)déss” ('U)] dv

U(fUl (v,1),v t)/ do(fY(v,y),v y)ﬁ(]2 (u)dy] dv

acr(f“’(v,t),v,t) 2 (u)dw(v)

Po(f0w,0.0,0 [ o(fO,5),0,0)dyDn O, 165" )] do
O'(f(l) ('U7 t)) v, t) L. U(f'(l) (U’ y)-, v, y)é’}lt,l)(u) th(l) (U7 y)dy] dv
90 (/0 (0,00, Duf O 0,2) [ 0(£D (v, ), v,1)E )y do

o'(j(])(v t),v,t) / Fo f(l)(’U ), v, y)th(l (v, y)C(l U(U)(U J)dy} dv

6“’0(1“1)(@ £),0,8) Do f O (, )65 () dw(v)
do*(f(l)(v t),v,t) [5,(,1 ) (u) + Dfw (’U,t),]hvdv .
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Then we can show that
[ €84 hudu = DUDIV (5,1

The rigorous proof for the existence of random variables {Dp[DfM (s, )|} and
{5(’"2’ (u)} can be again given by modifying the same method as {Dpf M(s,1)}
and {§(l ])( )}. From the above representation, we have

(4.44) 102 105, ) ronge = [ 1645 () ygndu

Then by applying Lemma 4.2, repeating the procedure as Lemma 4.3, and using
induction with respect to 7 (4 > 1), we have the next lemma.

Lemma 4.5 : Under the assumption I, for any integer j > 2 and p > 1,
i, ;
(4.45) Bl65” (4) g5 10m] < +00.

Then by using this lemma, we can derive the higher order H-—derivatives
of fM(s,t), which are in L, for any p > 1. By the same constructions and
induction arguments, for positive integers j (> 2) we can define a sequence of
random variables : {f©®)(s, )}, {5(&’7)(u)} {D]f®(s,t)}, and {D7fE)(s,1)}. The
rigorous proof is again the results of convergence arguments of the corresponding
discretized random variables. Hence we can obtain the following result.

Theorem 4.2 : Suppose Assumption Il hold for the forward rate processes.
Then for any e € (0,1] and 0 < s <t < T,

(4.46) f@(s,t) € D™ .

Let a stochastic process {Y(s,1),0 < s < ¢ < T} be the solution of the

stochastic integral equation :

S 1
YO =1+ & [ [0 ),0,0 [ o w.0),v.udy| YO, 00
0 v

(4.47) b A " 80 (O (0, 1), v, )Y O (v, ) dw(v) .

Since the coefficients of Y (s, t) on the right hand side of (4.47) are bounded by
Assumption I, we can obtain the next result.

Lemma 4.6 : Forenyl <p<+400,0<e<1,and0<s<t<T,

(4.48) E[[Y©(s,0)P] + E[lYY"(s,1)"] < +o0.
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Proof : We define a sequence of random variables {Y,¥)(s,¢)} by

Y60 =1 + & [ 000w 0,00 [ o7, v VO, )dv
+ &‘As o (f©(v,1),v,t)Y, (v, t)dw(v) ,
where the initial condition is given by YO(E) (s,£) = 1. Then by the same argument
as in the proof of Lemma 4.1, we have
E[|Y, (s, )] < 0,
and as n — oo

E[ sup [V 9\(s,8) = Y (s,1)]*| - 0.

0<s<t<T
Hence we can establish the existence of the random variables {Y©) (s, ) } satisfying
(4.47). Then by the same argument as (4.40)-(4.43), we have

E[[Y“) (s, )7} < oo
for any p > 1. Let Z©)(s,t) = Y ~1(s,¢). Then we can show that

diZ (s, )Y (s,0)] = 0

and
s X i ) ]
29,0 =1 = & [ [00O 0,000 [ o), v.0)d] 29w, d
0 v
- 6/5 Ao (fE (v,t),v,8) 2 (v, t)dw(v)
0

by using Ité’s formula and Z¢)(0,¢) = 1. Hence by the similar argument as on
Y (s,1), we can establish

E[|Z)(s,t)]P] < oo

for any p > 1. Q.E.D.

Now we consider the asymptotic behavior of a functional
1
(4.49) FO(s,0) = = [19(s,0) ~ FO0,0)

as ¢ — 0. By using the stochastic process {Y®)(s,#)}, the H—derivative of
F©)(s,t) can be represented as

(4.50) DhF©(s,1) = / YO (s, ) YO (0, )0 (v, 1) d
Q
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where

COw1) = a(f O, 1), v,k + o (O, 0),0,1)
i
x [ 60(£)w,1), v,1) Duf ) (0, y)dy

Then by re-arranging terms in the integrands of (4.50), we have the representation
DuFO(5,0) = [ Whadu,
0
where

v () = YO(s,)Y O (u, )0 (f(u, 1), u,t)
(4.51) + ¢ / Y (5, ) YO N, t)o (O (v, 1), v,t)

x ([ 80w w), )50 ey ) do,

and {5 (u)} are defined by {£{;"(u)} by replacing (1, 1) with (e, 1). Hence the
Malliavin covariance of F©®) (s, 1), o(F©)(s,t)) is obtained by

o(FO(s,t)) = < DF® DI >y
/ IVstl)(u)}zdu
Let
7 = /lf‘ (f YO (s, )Y O, t)o (£ (v, 1), v,t)
/ Do (fO (v,y),v,y)E" 1)( )dyd'u) [*du
+ ¢ L Y (s, )Y O u, ) o (fO(u, t), u,t) — o(FO(u, ), u, t)|*du,

for a positive constatnt ¢ > 0. Then the condition in Assumption III is equivalent
to the non-degeneracy condition :

(s, t) = Asa (f(o)(v, t),v, t)2 dv >0

because YO (v,¢) = 1 for 0 < v < s < {. The next lemnma shows that the

truncation by n{)(s,t) is negligible in probability.

Lemma 4.7 : ForO0<s<t<T and any k > 1,
im e * Pl Ly
(4.52) hr%e P{In(s,1)| > 5} =0.
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Proof : We re-write (4.52) as n{?(s,t) = 7' 4 ). By using Assumption I,
Lemma 4.3, Lemma 4.6, and the Markov inequality, it is straightforward to show
that for any p > 1 and ¢; > 0 there exists a positive constant c; such that

(4.53) P{n¥| > e1} < 6.

By the Lipschitz continuity of the volatility function o(-), there exist positive
constants My3 and Mj, such that

(4.54) |57 < My f© (s, 1) — OO, )] + Mis|Y O (s, ) YO w,8) — 1] .

Then by Lemma 3.3 and Lemma 3.4, for a positive ¢z and sufficiently small £ > 0,
there exist positive constants ¢, and ¢5 such that

(455) P sup_[fO(s,0) — FO0,0)] > es} < csezp(—cse ).

0<s<t<T

For the second term of the right hand side of (4.54) for 15, we re-write
ms = MuY O (u,t) Y (s, 1) = YO (v, 1)]
where
Y(E)(s,t) - Y(E)(v,t) = & lf [Oa(f(g)(u,t),u, t) Lt U(f(é)(u,y),u,y)dy Y(E")(u, t)du
+ 5/:)8 Ao (O (u, 1), u, )Y O (u, t)dw(u) . |

Then by Lemma 4.6, for any p > 1 and ¢ > 0 there exists a positive constant cy
such that

(4.56) P{ns| > co} < ere™ .
By using (4.53), (4.55), and (4.56), we have (4.52). Q.E.D.

By a similar argument as Theorem 3.3 in the Black-Sholes economy, we shall
obtain a truncated version of the non-degeneracy condition of the Malliavin-
covariance for the spot interest rates and forward rates processes, which is the
key step to show the validity of the asymptotic expansion approach.

Theorem 4.3 : Under Assumptions ll and Iil, the Malliovin-covariance o(F'® (s, t))
of F©)(s,t) is uniformly non-degenerate in the sense that there exists co > 0 such
that for any ¢ > ¢g and any p > 1

(4.57) sup E[/(|n0] < 1)o(FP(s,1))?] < +o0,
0<e<1
where I(-) is the indicator function.
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Hence the validity of the asymptotic expansions of the distribution function or
the density function of spot rate and instantaneous forward rates can be obtained
under Assumption 11 and Assumption III because we have proved that a set of
conditions in Theorem 2.1 are satisfied. By expanding the Wiener functional
FE)(s,1) as

F(s,t) ~ Ay(s,t) +eAa(s,t) +---

where the coefficients in the asymptotic expansion can be obtained by a formal
Taylor expansion. For instance, A;(s,t) and As(s, t) are given by

A, t) = [ o(7(0,),v, D

and
As,t) = [[o0,0,00 [ o(70,9),0,9)dydv
i j{) " A, )80 (0, 1), v, t)dw(v) .

These formulas have been previously obtained by Kunitomo and Takahashi (1995)
in the general case. Then by applying similar arguments, which are quite tedious,
we can show that the L,-boundedness of any order H-derivatives of Aj(s,t) for
any 0 < s <t < T and integers j > 1. Hence we conclude that for any j > 1

Aj(s, t) € l)OO :
We summarize our result as the next theorem.

Theorem 4.4 Under Assumption II, F©)(s,t) is in D™ and has an asymptotic
eTPansion :

(4.58) FO(s,1) ~ Ay(s,t) + eAg(s,t) + -

ase | 0 and Ay(s,t), Ax(s,t),--- € D™

We notice that the limit of the Malliavin-covariance as € -— 0 is given by
¥.(s,1), which is in turn the variance of A;(s,t). Hence we have the Gaussian
random variable as the leading term in (4.55) and we can use the same method
as in Section 3 to derive the asymptotic expansion of the expected values of
random variables. Let v : R — R be a smooth function such that 0 < y¢(z) <
1,9(z) = 1 for |z| < 3, and ¢ (z) = 0 for |z| > 1 as before. Then the composite
functional ¥/(n©)I4(F)) is well-defined for any A € B in the sense that it is
in D™, where B is the Borel c—field in R and I4(-) is the indicator function.
By using Theorem 2.1, it has a proper asymptotic expansion as € — 0 uniformly
in D . Hence we can obtain an asymptotic expansion of the expectation of
PO (F (s, )} Ig(F ©)(s,t)), which is the main result in this section.
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Theorem 4.5 Under Assumptions II and [l in this section, an asymptolic
expansion of Bl (F©)Ig(F®)] is given by

(4.59) E[p)(FO)I3(FO)] ~ E(n0)e"™ (1) Is(F )]
~ E[q)o} -+ EE[‘P1] -+

as € | 0, where ®; (j > 0) are obtained by a formal Taylor expansion of the
left-hand side in the expectation operator, and y(n%), ¢ (-), and Ig(-) are defined
as tn Theorem 3.3.

Alsoc it is straightforward to obtain the similar non-degeneracy conditions of
the Malliavin covariance for the discounted coupon bond price process and the
average interest rate process in the general case, i.e., when m > 1. We note that
the discount bond price process is given by

PO, T) = exp —/ f(f)(t,u)du} .
t
Then using (1.2) and the 1td’s lemma, we can consider the stochastic process :
YO, T,p) = (PO, T
for any integer p > 1, which is the solution of the stochastic integral equation :

GOT,p) = GO0,Tp)
t 0 — m o )
i [p#“(v) $ E RSN [ (1O o), )| GO, T p)
| 2

m

T
+ f —pe) ) / 0i(f© (v, y),v,4)dyG (v, T, p)dwi(v) .
=17t
Hence by using the fact that E[|r)(¢)[P] < +oo for any p > 1 under Assumption
II and the standard arguments in stochastic analysis, we have the following result.
Lemma 4.8  Under Assumption Il, foranyp > 1 and 0 <s <t <T,

E[|P¥(s,1) P] < +eo.

Similarly, we can investigate the properties of the H—derivatives on the set
of discount bond price processes as for the forward rate and spot rate processes
we have discussed. Because the essential arguments are the same, we only report

the result.
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Theorem 4. 6 Under Assumption Il for the forward rate processes, for any ¢ €
(0,1] and 0 <t < T, PO(t,T) is in D™ and has an asymptotic expansion :

(4.60) PO@T) ~ By(t,T) + eBy(t, T) + - -

ase | 0 and Bi(t,T),By(t,T),--- € D*, where Bj(t,T) (j > 1) are oblained by
a formal Taylor expansion of P (t,T) .

More generally, most interest rate based contingent claims can be regarded as
functionals of bond prices with different maturities. Let {¢;,7 = 1,---,k} be a

sequence of non-negative coupon payments and {73,5 = 1,---,k} be a sequence
of payment periods satisfying the condition 0 <1 <71} <--- <T} < < T. Then the

price of the coupon bond with coupon payments {c;,j = 1, e ,k} at 1 is given
by
(£} &
Py e (t ZCJP( (¢, T5),

where { PE)(¢,T}),5 = 1,---,k} are the prices of zero-coupon bonds with differ-
ent maturities. The corresponding normalized random variable Q,(f%TJ 1, {Cj}(t) is
defined by
k
©) 1 (s - '
Q. t13),4e3 (1) = = Z‘ﬂ”’ T - ]TT((')T)'l '
=
By using (4.49), the first order H-derivative of Q,(:){I] " {cj}(t) can be represented
as

k = sl T7 e
DilQ ey ] = (~1)chp(é)(t,f1j)[ DalFO(t, )| du
=1
k ot .
DY ePOT) [ D w)dulhdo,
j::] 0 t

where F'®)(t,4) and I/,L(Eu )(v) are defined by (4.49) and (4.51).
Then as for the prekus case we 1mmedla,t91y obtain the next result under the

it is equivalent to A.ssumptmn 1L

Assumption I’ : Forany 0 <s <t <7} <.-. <71},

m ok T
s PO,T;) 7 ‘
(4.61) S, (st k) = f ZZ y P(OO 5, "o (v, u)dulPdv > 0.

=1 f==
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Theorem 4.7 Under Assumptions Il and IIT’ in this section, an asymptotic
expansion of E[¢p¢® (Q,(:}Tj}, {Cj}(t))IB(Q,(ﬂn 1iey ()] is given by

El6© Q51,1 10, O) B (QL (a5, 10,3 (1)
(4.62) ~ ER )82 Q) ey O I8 Qh 4y 10 D))
~ E[®}] +£E[®]] + - --

as € | 0, where ®} (j > 0) are obtained by a formal Taylor expansion of the
left-hand side in the expectation operator, and ¥(n), ¢ () and Ig(-) are defined
as in Theorem 3.3.

As a simple example, the payoff function of call options on the coupon bond
with coupon payments {c;,j = 1,---,k} at {T},j = 1,---,k} can be written
as VI(T) = [ ’,ﬁé{)TJ ies) (1) — K]+, where K is a fixed strike price. We note
that the call options of swap contracts at expiry date 7' (0 < 7" < 73) has the
same payoff function. In this case we can take ¢ (z) = z + y for a constant
y and B = |—y, c0), then we apply the asymptotic expansion method under an
additional assumption. Also as another type of interest rates based contingent
claims, we should mention the payoff function of the call options on average
interest rates, which is given by V®(T) = {% Jo LT(t)dt — K r , where K is a
fixed strike price and the yield of a zero coupon bond at ¢ with time to maturity
of 7 (0 <t <t+ 71 <Ty) years is given by L (¢) = [;,le’;;—;—) - l]% . For the
rigorous validity of an asymptotic expansion in this case, however, we need to
modify the condition of Assumption III by another assumption, which ensures

the non-degeneracy of Malliavin covariance.

The valuation problem of many interest rates based contingent claims in com-
plete market can be simply defined as to find the “fair” value of a function of a
series of bond prices at financial markets. Then the fair price of V(T) at time
t (0 <t < T) should be given by

) - B e Koy @)
where V(T') be the payoff of a contingent claim at the terminal period T and
E:[-| stands for the conditional expectation operator given the information
available at ¢ with respect to the equivalent martingale measure. Because we can
derive an asymptotic expansion of the spot interest rate r(*(s), it is straightfor-
ward to obtain the fair value of interest based contingent claims. For instance,
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the normalized random variable for the call options on the discounted coupon

bond at the initial period t = 0 is given by
€ s 1. _r (&} ry .
Ritryep(D) = Zfe o @ P e () — K]

ZCJP 0,77 — KP(0, 1))},

where 0 < T < Ty < --- < T}. 'This random variable is considerably different
from the normalized randoin variable Qf,iT,-}, {c,-}(t) on the coupon bond itself 3 .
By using (4.49), the first order H-derivative of R,(:LJ 1, {c,»}(T) can be represented

as
2 r - ris ) ¥ - T -1{& n
Dh[Rfc,i:/;},{cj}(F)] = j (8)ds[Px§E{)r b {<J}(1) - M/o Dh[f'( (s, 5)]ds

T (¢ R e
—e KOs PO 1) [ Dy el
5= T

where F)(t,u) is defined by (4.50).

From this expression we can obtain a simplified representation of the first order H-
derivative in this case as before. Hence we can obtain the asymptotic expansion of
the expected payoff value of discounted coupon bond as Theorem 4.7 if we use the
following condition instead of Assumption 111, which ensures the non-degeneracy
of the Malliavin covariance.

Assumption IV : Forany 0 < T <T; <--- <y,
T .
(4.63) Vg (k) = / o) ()0 (v)dv > 0,
A .
where

k
0!, (v) = —[3_¢;P(0,T;) — KP(0,T)|of (v) “‘Z(a 0,7)0), ()

:)'::1 2=1

and o (v) and o T (v) are 1 x m vectors such that

0‘§9)(v) = {[)To“go)(v,t)d‘t} , O'TT (v) = [/[Tj fﬁo)(v,u)du} )

8]t has an intuitive interpretation in financial applications. Its meaning and the related
additional assumptions for practical applications have been discussed in Section 3 of Kunitomo
and Takahashi (1995).
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Theorem 4.8 Under Assumptions 11 and IV in this section, an asymptotic
expansion of E[(,!)(E)(R,(:,)L-n_},{cj}(T))]B(.R,(i%ﬁ},{cj}(T))] 15 given by

E[6) (R)5,) e, (D8R ey (1)
(4.64) ~ B0 (Rt o) (T8R4 (D))
~ E[0}] + cE[®] + -

as € | 0, where ®** (j > 0) are obtained by a formal Taylor expansion of the
left-hand side in the expectation operator, and Y (1z), $© () and Ip(-) are defined
as in Theorem 3.3.

The proof of this theorem is similar to those in the previous results but quite
tedious and thus we omit the details. By the same token, for the average interest
rates options, we can also obtain the corresponding result under another assump-
tion for the non-degeneracy of the Malliavin covariance instead of Assumption I1I.
For these examples we have mentioned in this section, Kunitomo and Takahashi
(1995) have already derived more explicit formulae of the asymptotic expansions
in details.

As the final remark of this section, we should mention that we can use the
equivalence between the formulae by the Schwartz’s type distribution theory for
the generalized Wiener functionals and the formulae by the simple inversion tech-
nique for the characteristic functions of random variables as we have discussed in
Section 3. Kunitomo and Takahashi (1995) have used the latter method because
it is rather simple. Hence the results of Kunitomo and Takahashi (1995) can be
justified in the proper mathematical sense by the arguments we have developed
in this section.

5 Concluding Remarks

This note gives the mathematical validity of the asymptotic expansion approach
for the valuation problem of financial contingent claims when the underlying
forward rates follow a general class of continuous [to processes in the HIM term
structure of interest rates model and the underlying asset prices follow a general
class of diffusion processes in the Black Scholes economy. Our method called the
small disturbance asymptotic theory can be applicable to a wide range of valuation
problems of financial contingent claims. It is evident from our discussions in this
note that our approach can be extended and applied to more general situations
than those treated by Kunitomo and Takahashi (1995), and Takahashi (1997).
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For instance, the diffusion processes for asset prices with stochastic interest rates
in the multi-countries framework are simple examples.

Since the asymptotic expansion approach can be justified rigorously by the
Watanabe-Yoshida theory on the Malliavin calculus in stochastic analysis, it is
not an ad-hoc method to give numerical approximations. In our previous papers
(Kunitomo and Takahashi (1995), and Takahashi (1997)), we have illustrated
that the approximations we have obtained via the asymptotic expansion method

can be satisfactory in many cases for practical purposes as well.
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