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ABSTRACT

In Kuriki and Takemura (1997a) we established a general theory of
James-Stein type shrinkage to convex sets with smooth boundary. In this pa-
per we show that our results can be generalized to the case where shrinkage
is toward smooth non-convex cones. A primary example of this shrinkage is
descriptive principal component analysis, where one shrinks small singular
values of the data matrix. Here principal component analysis is interpreted
as the problem of estimation of matrix mean and the shrinkage of the small
singular values is regarded as shrinkage of the data matrix toward the man-

ifold of matrices of smaller rank.

1. INTRODUCTION

In Kuriki and Takemura (1997a) we established a general theory of
James-Stein type shrinkage to convex sets with smooth boundary using tech-
niques of differential geometry. Tools developed in Kuriki and Takemura
(1997a) allow us to investigate shrinkage to much more general sets than
the affine subspaces extensively studied in existing literature on Stein esti-
mation. Justification of James-Stein type shrinkage to general non-convex
manifolds is very important in many fields including smoothing and nonlinear
regression.

In the case of convex sets the rate of shrinkage was expressed in terms

of the second fundamental form at the projection point. The second funda-
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mental form is a local property of the boundary of a convex set and similar
result is expected to hold for more general manifolds. However convexity is
a global property of the set and it guarantees the uniqueness of projection in
the whole sample space. In the case of more general manifolds, this global
uniqueness of projection is not guaranteed and certain regularity conditions
have to be imposed for avoiding this difficulty. In this paper we develop a
theory of Stein shrinkage to smooth non-convex cones satisfying some regu-
larity conditions on projection and treat principal component analysis as a
primary example of our theory.

In usual practice of principal component analysis, one ignores small
eigenvalues of the sample covariance matrix and interprets only the large
eigenvalues and the associated eigenvectors. In terins of the original data
matrix, this practice amounts to obtaining the singular value decomposition
of the (mean adjusted) data matrix and ignoring small singular values. It
seems difficult to justify the simple practice of just ignoring small singular
values from decision theoretic viewpoint. However if the small singular values
are shrunk rather than ignored, then the method of descriptive principal
component analysis can be regarded as shrinkage of the data matrix toward
the manifold of matrices of smaller rank.

In this paper we regard principal component analysis as estimation of
matrix mean. Let X : n x p be distributed according to the matrix normal
distribution Ny, x,(M, L, ® I,). We estimate the matrix mean M with the

squared error loss

L(M, M) = ||M ~ M|]* = te(M - M) (M — M).

Let the singular value decomposition of X be written as
P
X = Zligih;, (1.1)
i=1
where Iy > Iy > -+ > 1, > 0 are the singular values of X. g; corresponds

to the i-th principal component score vector and h; corresponds to the i-th

principal coefficient vector.



In actual practice of principal component analysis, the singular value
decomposition is applied to the mean adjusted data matrix. However by
considering the orthogonal complement of general mean space and trans-
forming the problem into canonical form, there is no loss of generality in
considering the singular value decomposition of X itself.

Let 0 < g < p be fixed and define
M = M, ={X | rank X = ¢}. (1.2)

M is a smooth manifold of dimension d = ¢(n + p — ¢q). Furthermore M is
a cone which is not convex. It is well known that when [, > [,41 the closest

point X ¢ in M from X,
|1 X — Xaql| = min | X =Y,
Yem

is unique and given by
q
Xp= Y Ligihi.
g==1

Let

p
Epm=X~Xm= Y Lgih]
t==g-+1

and

s1= 1 Xmll,  s2=||Faml-

We shall consider estimators of the form

M = (l - ¢1(81,82))XM -+ (] - (/)2(81, Sg))EM (13)

X a4 itself is a particular estimator of this class with ¢; = 0, ¢o = 1. The
simple practice of ignoring the last p - ¢ singular values in the principal com-
ponent analysis can be interpreted as estimating M by X 4. For theoretical
convenience we assume that ¢ is fixed . In practice the number of principal
components retained is data dependent. In Section 5 we shall discuss how

our theory may be generalized to the case where ¢ is data dependent.
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In Section 4 we give a suflicient condition for the minimaxity of esti-
mators of the form (1.3). The minimax estimatiou of M has been discussed
in literature: Efron and Morris (1972) gave a minimax estimator of M by
empirical Bayes method. Stein (1973) gave an unbiased estimator of risk
as well as an estimator which improves upon the Efron-Morris estimator.
Stein’s results were generalized by Zheng (1986). Ghosh and Shieh (1991)
treated the problem under some more general losses. For the the estimation
of the matrix mean in the MANOVA model, see Bilodeau and Kariya (1989),
Konno (1991a, b), and Honda (1991). In this paper, we do not intend to
give an impression that our minimaxity result in Section 4 is a substantial
contribution to the existing literature in view of the decision theoretic prob-
lem of estimating matrix mean. Rather our objective is to clarify geometry

of shrinkage toward M, in a general framework.

In Section 2 we develop a general theory of shrinkage toward a smooth
non-convex cone. We derive an unbiased estimator of the risk of the estima-
tor of the form (1.3) in a general setting and give a sufficient condition for its
minimaxity. Actually the technical results in Section 2 are direct generaliza-
tions of the corresponding results in Kuriki and Takemura (1997a), and we
refer most of the proofs to those in Kuriki and Takemura (1997a). In Section
3 we establish some geometric properties of M,. In Section 4 we give a class
of minimax estimators of the form (1.3) for the principal component analysis
based on the results in Sections 2 and 3. In Section 5 we give some discussion

on possible extensions of the results in the present paper.

2. SHRINKAGE TO SMOOTH NON-CONVEX CONE

In this section we develop a general theory of shrinkage toward a smooth
non-convex cone. For simplicity we take RP as the sample space A and
consider estimating the mean vector 4 of the multivariate normal distribution
N, (p, I,) with the ordinary squared error loss. Note that the set of n x p
matrices of Section 1 can be identified with R™ together with the standard

inner product.

Let M C X be a manifold of class C? and we assume that M forms a
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cone, that is, M = c¢M, Ve > 0. Let
d=p-m=dimM,

where m is the codimension of M. Let SP~1 C RP be the unit spbere and
write

M1:Mﬂ5’p~1.

M is a (d — 1)-dimensional manifold of class C*.

If there exists a unique closest point x ¢ in M from = € RP satisfying
o = 2pall = min [l -y,
yeM

then we call 744 the global projection point of x onto M. We also say that
x has the global projection point if x4 is uniquely defined for z. When x g
is defined we call
EM =T — TM

the residual. The tangent space of M at & € M is denoted by 7,(M) and
its orthogonal complement is denoted by T;-(M). Since M is a cone, z
itself belongs to the tangent space Ty, (M). Tt follows that eaq € Ty, (M)
and x4 is orthogonal to eaq.

Suppose that z has the global projection poiut z o and let
sp=[lzall, 52 = llead;
u=2zrp/81 € My, v=-enm/52.

Then z is expressed as
s = T paq + eaq = S1U + S20. (2.1)

Actually v and v have to be expressed in terms of local coordinates.
u € M can be expressed in terms of (d — 1)-dimensional local coordinate
vector 6 as u = u(f). Now v is the vector on the unit sphere ™! in
Tt (M). Note that Ty, (M) = T,(M) and T, (M) = T;- (M) since M is

a cone. Therefore v can be expressed in terms of § and additional (m — 1)-
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these local coordinates can be shown as in Section 2 of Kuriki and Take-
mura (1997a). For simplicity we omit local coordinates because there is no
possibility of confusion.

We have considered (2.1) for 2 which has the global projection point. We
need a regularity condition which guarantees that sufficiently many points
z have the global projection point. Our regularity condition is given in
Assumption 2.1 below. In order to state our regularity condition, choose
arbitrary w € My and v € S™1 C T;-(M) and consider x of the form (2.1)
for 51 > 0 and s, > 0. We are interested in the range of (s1, ) such that
s1u is the global projection point of & = syu + spv. As we show below, this
range is closely related to the radius of curvature at the point u.

For z € M and y € T;-(M) let H(z,y) denote the second fundamental
form of M at z with respect to the normal vector y. Then H(z,y) =
soH (z,v), where s2 = ||y|| and v = y/ss. Furthermore since M is a cone we

have

, 1 ,
H(z,v) = —H (u,v), s = ||z||, v=x/s1.
51

Therefore it suffices to consider H(w,v) for {ul| = |jv|]| = 1. If H(u,v) is

nonnegative definite, define

y(u,v) = 0.

In this case, M looks locally like the boundary of a convex set and v can
be regarded as an outward normal vector of the convex set at u. Otherwise,
let —Amin denote the the minimum eigenvalue of H(u,v), which is negative,

and define
1
y(u,v) = ——.

/\min
In this case, at the boundary sy = s;v(u,v) the projection onto M becomes
ambiguous even in the local sense.

Define two dimensional cone C(u,v) by
Clu,v) = {z | T = s1u + 820, 0 < s1, 0 < s2 < s17(u,v) }.

We call the pair of directions (u,v) (u € My, v € S™1 C TH(M)) regular

with respect to projection onto M or projection regular (p.r.) if every x €
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C(u,v) has the global projection point z¢ which coincides with syu. Let

X denote the union of C(u,v) for all projection regular (u,v):

X = U Clu,v).

(u,v):p.r.
Now we make the following regularity assumption on M.
Assumption 2.1 The inlerior int X of Xaq is not empty.

From now on we consider shrinking z in the region int X'a4 only. Because

we are now considering z in the open set int X4, where the correspondence
x> (81,u,82,)

is one-to-one, we can consider the Jacobian of this correspondence. This
Jacobian is the basic technical tool for our theory and was originally derived
in Weyl (1939). A simpler proof is given in Appendix A of Kuriki and
Takemura (1997a).

Lemma 2.1

dz = Iy + H(zp, ea)| s77 sy du s5 " dsy do

89 — v —
= |[d + —;—H(u,v){ sf Ydsy du sy Ydsy dv,
81

where du denotes the volume element of M1, dv denotes the volume element
of St ¢ TH(M), and H(u,v) s the second fundamental form of M at u

with respect to the direction v.

Remark 2.1  Since M is a cone, H(u,v) has at least one eigenvalue equal
to 0 with the associated eigenvector u. Therefore |1y + (s2/51)H (u, v)]sd1

is a polynomial in (sq, $2).

Let z be distributed according to N,(u, I,,). From Lemma 2.1 the condi-
tional density of (s, s2) given (u,v) is written as follows. We omit the proof

since it is a direct generalization of Lemma 2.2 of Kuriki and Takemura
(1997a).



Lemma 2.2 On int Xaq the conditional density of (s1,82) gwen (u,v) is

written as

. 1
f(s1,82 | u,v) o exp { — ‘2“(52 + 52) 4 s1u'p o+ sov'

d—1 _m—1

X $1 Sy

I+ ﬁzH(u, v)
51

As already stated in Section 1, we consider estimator of the form

~

[ = (1 — d)l(sl, SQ))ZEM + (] - ¢2(317 82))6/\4

o (51, 59 2.2
el s, G
9 52

for € int Xpq. For ¢ ¢ int Xpq we let o = z. (¢1,¢2) or equivalently
(c1,¢2) in (2.2) can depend on u,v.
We now derive an unbiased estimator of risk for estimator of this class

under the following boundary condition for integration by parts.

Assumption 2.2 ¢ and ¢y in (2.2) are continuous in (s1,82). 1 18
piecewise differentiable in sy for each so and co is piecewise differentiable in

89 for each syi. Furthermore

61(81, 82)

lim (81,82 | u,v) =0
s1—+82/v(u,v),00 S1 f( bz I / ) ’
. Co{ 81,85 , )
liru le(sl, s9 | u,v) = 0.
$2-0,817(u,v) So

Under Assumption 2.2 an unbiased estimator of the risk difference

is given in the following lemma.

Lemma 2.3  An unbiased estimator of the risk difference AR is given by

& O o
AR = }:: (9252 — 2 83: 5i = 2pisig log P(s1, 89) — 2¢;)
2 2 L
C; C; 1 ()Ci
= 2 (gilsy, s2) — 1) — 2= ),
; (S? b? (qi(51,52) ) 5 dsi)
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where .
Plosysa) = [fa + 2Bty
S1

0 L
qi(s1,82) = sza-s— log P(s1,$2), ©=1,2.
T

Proof is omitted since this is a direct generalization of Lemma 3.1 of
Kuriki and Takemura (1997a).
Based on Lemma 2.3 we can give a sufficient condition for the minimax-

ity of estimators of the form (2.2) as follows.

Lemma 2.4  An estimator of the form (2.2) satisfying Assumption 2.2 s
minimaz if AR <0 on int Apg.

[t seems that, given a particular form of the second fundamental form
H (u,v), many minimax estimators satisfying the condition of Lemma 2.4 can
be constructed. However it is desirable to have a simpler sufficient condition
which guarantees the condition of Lemma 2.4.

Let dg, d4,d_. denote the number of zero eigenvalues, positive cigenval-
ues, and negative eigenvalues of H(u,v), respectively. In Remark 2.1 we
mentioned that dy > 1. Let the positive eigenvalues of H{u,v) be denoted
by 0 < Apq < -+ < Apq, and the negative cigenvalues of H (u,v) be denoted
by 0> —A_y > -+ > —~A_g_, where A_g_ = Amin = 1/7{w,0).

For (u,v) such that H (u,v) is nonnegative definite, the estimator for the
convex case in Theorem 3.1 of Kuriki and Takemura (1997a) can be directly

applied. More precisely let ¢; = s1/(s1 + $2A44), ¢ = 1,...,d4, and let

do — 2+ 32 i if do > 2,
ci(sys2) = ¢ 0 25;1 U .
dO -2+ L’i:lti +II[:1(] - t’t)? if dO - la (2 3)
(:2(9 S ) e m =2+ E:ij;l(l - tl)a m 2 2,
DLy 02) —
m=24+ Y - t) + I, ifm=1,

then as in Theorem 3.1 of Kuriki and Takemura (1997a) it can be shown that
AR < 0. The quantities on the right hand side of (2.3) can be motivated
by a geometric notion of average codimension as discussed in Section 3.2 of
Kuriki and Takemura (1997a).
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When H(u,v) has negative roots, it is difficult to give a simple explicit
estimator as in (2.3). We present a sufficient condition which covers the
case of the principal component analysis in Section 4. However it is not as

satisfactory as (2.3). We consider (u,v) such that 0 < d_ < d4 and
)‘+i S /\_i S /\+(i+d+——d-)7 7 - ]., ey d__. (24)

Then we have the following theorem.

Theorem 2.1  Consider (u,v) such that 0 < d_ < d and (2.4) is satisfied.
Suppose that dg > 3, m > 3. Write dy = do—2, dy =m 2. If de;/0s; > 0,
0<e¢ <2d;,1=1,2, and

c 1
= >

ca = V2(u,v)

then AR < 0.

Proof P(s;,s2) can be written as

dy d_
P(Sl, 82) = Sclloﬁlé‘;n—l H(Sl -+ 32/\_1;@') H(él — 52/\-i)~
t=1 =1

Therefore,
’L 2 c
(92 - 292(% - 1))
i=1 ! 71
dy d—
61(61 - 2d ) 2()1 81 ~ Si
Rk s 10 Dy y ) Dirmrny w
81 51 1% SoA L 51 2A 4

e i

1~ S2A

1"

Now by (2.4),

dy d. d.
IR o S B o S B
— S1 4+ SeAyy Pt $1+ SaA4i Pt S1 4+ $aA_;
Hence
(fi\ 81 & S1 - 25’%
D P WD Dl wri Bl s



Similarly using A_; < Aygipa,—d_), =10, d_., we obtain

di d.. N
<~ S2Ayy z S2A_ S Z 25302
51 + so A P 92)\~z = Siz sA2

It follows that

> (G-

=1

. ()1(61 — 2d1) 02((2 - 26]2 C1 — (,2/\
; — 1)) < S‘{ + Z _

swlsw

=1 st .
Note that if ¢1 > ca/v2(u,v) = c2A2; then ¢; — A%, > 0 for 1 <i < d_.
It is now easy to see that under the assumption of the theorem AR < 0.
Q.E.D.

3. GEOMETRY OF THE SET OF MATRICES OF
REDUCED RANK

In this section we derive some basic results on geometry of M = M,
in (1.2). These results are of some independent interest. Recall that the
singular value decomposition of X : n x p is written as (1.1). As mentioned
in Section 1, M has the special property that every X for which lj > 441
has the global projection point X . Furthermore from Lemma 3.4 below it
follows that

int Xpq ={X | lg > lg }

Therefore int Xaq coincides with the whole sample space X = R"P except
for a null set.
Now we determine some differential geometric properties of M. First

we consider the tangent space.

Lemma 3.1 Let g, p+1 < j < mn, be n x 1 vectors such that the ma-
triz (g1, .-, gn) is n X n orthogonal. Then the tangent space of M and its

orthogonal complement at X a4 are given by
Tx ., (M) = Span(g;h;, min(i, j) < q)

and

Tk, (M) = Span(gilij, min(i, j) > q),
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respectively. Their dimensions are d = q(n+p —q) and m = (n—q)(p — q),
respectively.
Proof is easy and omitted.

The Jacobian of the singular value decomposition (1.1) is known to be

p p
ax =[[w* I @-o)[Ja A gda N Hjdhi, (3.1)
g=z1 =1

1<i<j<p 1<i<p,i<i<n 1<i<j<p
J= > >

where dX =[], H§:1 dx;; is the Lebesgue measure of R™ ((8.8) of James
(1954)). We show here that the right hand side of (3.1) can be split into
three parts. Proofs of the following three lemmas are similar to those of
Takemura and Kuriki (1995) or Kuriki and Takemura (1997b) and we only

give sketches.

Lemma 3.2 The volume element of M at Xpq = Y 1, Ligih, is given by

q

q
-+ p—2 - .
[Tete2 I @-o[la A gde AN Hjdhi (3.2)
1=1 1<i<j<q i=1  1<i<qi<j<n 1<i<q,i<i<p
Lemma 3.3  The volume element of T)"(LM(J\/I) at By = X — Xpm =
Sy g1 Ligihi s given by

r b
e [ @- 1] A gde N\ Hidh

i=q+1 g+1<e<i<p i=q+l  g+1<i<pi<j<n g+1<i<j<p
(3.3)

Proof of Lemmas 3.2 and 3.3 Let L, = diag(ly,...,lq), G1 = (91,---»
9q)s G2 = (gg41s---+9n), Hy = (h1,..., hy), and Hy = (hg41,---+hp). The

exterior derivative of X = G1L1H{ is given by
dX p = dG L H} + G1dL, Hy + G1LidH;.
Consider an orthogonal transformation which preserves the inner product:
o ‘
dY = (dy;;) = (G’;) dX s (Hy H3)

([ GYdGyLy + dLy + LydH{H, LidH{H,
- GdG Ly 0 '

12



This implies that

dy;; = dl; (1<i<q)
e — ~ligidgi + Likdh; (1 <i<j<q)
Yis =\ ;' dhy (1<i<g, g+1<j<p)
o Lighdgi — iljdh, (1 <i<j<q)
Mji = Ligsdgs (1<i<gq, q+1<j<n)

and all the other dy;; = 0. We can now obtain (3.2) by taking the exterior

product A i jy<q Wis-
Let Ly = diag(lys1s---»lp), and Gor = (gqe1,- -+, 0p), G2z = (Gp+1,- -+
gn). The exterior derivative of Faq = Ga1L2Hj is given by

dEp = dGoy LoHY + GodLyHy 4 Gy Lod H,

Noting that GdG2; = O and H{dHy = O, we have

G
752
0 0
=10 GlzldG21L2 + dLo + del]é]lg .
O Gh9dGo1 Lo
which implies
g = dl; (g+1<i<p)

dgs; = —l;gjdgi + Lihidhy  (q+1<i<j<p)
P ligidgi — ljhidh;  (¢+1<1<j<p)
Vit =\ Lighdg (g+1<i<p p+1<j<n)
and all the other dg;; = 0. We can now obtain (3.3) by taking the exterior

product A i i)>q @Wis- Q.E.D.

Lemma 3.4  The second fundamental form H(X am, Ea) has the following

2q(p — q) nonzero eigenvalues:

+-2 1<i<gq q+1<j<p.

i
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Proof Define the matrices G’s, L’s, and H’s as in the proof of Lemmas
3.2 and 3.3. Then, Xy = GiL\H}, Ep = X — Xy = GoLolly. We
adopt a new coordinate system of X by the orthogonal transformation X —

f
(g}) X (Hy Hy). In the new coordinate system, we can write
2

" ;Ll O O O - ml
Lo\ .
where o )B (n—4¢q)x(p—q), and

T 0= {y = (5 ) [V =)< -0}

It is easily shown that a partitioned matrix with (1,1) block g x g, say
VAYERAY . . L. o

Z = 1 12 ), in the neighborhood of X4 is of rank ¢ if and only
Zor 22

if Zog = Zngl_llZm. Hence, the triplet (Z11, Z12, Z21) can be taken as a

local orthonormal coordinate system of M. Consider the Taylor expansion

of tr(E'\,Z) around Z = X, that is, (Z11, Z12, Z21) = (L1,0,0). Then,

tr(EZ) = tr((L2, O)Za LT Z13)
—tr((Lg, 0)Zn LT (Z11 — L)Ly Z12) + -+,

and the quadratic term (the leading term) is written as

[y

: - ] 7o @) L;l ® L2 VQ(Z(Zzll)
(vee(Zan1)', veo(Z12)') (Lf1 ® Lo 0 vee(Z1y) /7

bo

where Zo11 is a (p — ¢) X ¢ matrix consisting of first p — g rows of Zay. (See
Muirhead (1982), page 74, for the definition of vec(-).) This means that the
nonzero part of the second fundamental form of M at X with respect to
the direction Faq = X — Xaq 18

O Li'® Ly
L' ® Ly O ’

which has eigenvalues &[;/l;, 1 <i<gq, q+1<7 <p. Q.E.D.
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Remark 3.1 We can now confirm that the rhs of (3.1) is factored into
three parts: the volume element of M at X in (3.2), the volume ele-
ment of T% (M) at Exg = X — Xpq in (3.3), and [ + H(Xa, Epm)| =
Hf1 j= q+](1 - 42/12)

The lengths of X and Eq are given by

s1= |1 Xmll ::\/7§~+ 12, sy = |[Eumll ::\/?q+1 g

Define . .
(l]‘,....7lq) = (ll,. . .,lq)/b‘l,
(gsts s lp) = (gwrs- - 1) /50
Then from Lemma 3.4, H(u,v) = H(X am/s1, Fat/s2) has 2¢(p — ¢) nonzero

eigenvalues

L
i%, 1<i<q q+1<j<p,
and the radius of curvature is given by
i
y(u,v) = =
Ly

From this radius of curvature it follows that every (u,v) is regular with

respect to projection onto M.

4. A CLASS OF MINIMAX ESTIMATORS FOR PRINCIPAL
COMPONENT ANALYSIS
It is now straightforward to give a class of minimax estimators in the
principal component setting based on the results of Sections 2 and 3.
By Lemma 3.4, dy =d_ =q(p—q) and dy = qg(n-+p—q) —2q(p—q) =
g(n —p+q). Let

q(n—p-tc 1 (n— g)—1 272
P(s1, $2) = 51( -prtg) - ( o{p—q)— H (3 —-5)l)
1<i<q,g+1<j<p

Z(IJ q)
i1 l; for nota-

Here we have multiplied P(sy, s2) of Lemma 2.3 by [}

tional simplicity. Now by Lemma 2.2 the conditional density of (s1,s2) is
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written as
-1y 9
J(81,82) o< exp { - »2*(31 + 55) + s101 + Sal }P(sl, S3),

where vy = Y7 . LigiMh;, vy = S 1 ligiMh;. Therefore the unbiased
q+

-

estimator of the risk difference is given by

2

A D c 1 1 0cy

AR= (-4 -2(qg(n—p+q) —2)= —2—
(3{ (4n=p+a) )sf s1 081>

Co 1 Jey

2
5 , 2
2 _9(lp — ) — L g
+( 2 ({n=a)(p—q) )S% o 032)

L7272
I S
TRy
1<i<q,q+1<j<p 1" o2%
By Lemma 3.4, positive and negative singular values appear in pairs.
Therefore from Theorem 2.1 we immediately obtain the following theorem.
Theorem 4.1 Letdy = qg(n —p+q)—2,d2 = (n—q)(p—q) —2. An

estimator satisfying 0c;/ds; > 0, 0 < ¢; < 2d;, 1= 1,2, and

2
c 1z
“1 > .‘1_;__1_'
C
2 { p

18 MANUNAL.

We have considered fixed ¢ and estimators of the form (1.3) which have
the same shrinkage factors for the first ¢ singular values and for the last p—g
singular values. For estimators treating each singular values separately, the
unbiased estimator of risk and the result corresponding to Theorem 4.1 are

given in Zheng (1986) based on results of Stein (1973).

Remark 4.1  OQur derivation of the unbiased estimator of risk is similar to
the method of Sheena (1995) and much easier than the method employed in
Stein (1973), Zheng (1986), or Konno (1991a).

5. SOME DISCUSSION
In this section we give some discussion on possible extensions of the

results of the present paper.
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As mentioned several times, for simplicity we considered the case where
the number of principal components ¢ was fixed. More flexible approach
is to treat each singular value separately. For example in the Efron-Morris
estimator (Efron and Morris (1972))

P
- —~ . n—-p-—1 ,
M = (1- lg"—“)ligzhiv
i

7

I
=t

the rate of shrinkage is larger for the smaller singular values. Note also that
by taking the positive part (1—(n—p—1)/I2)% it is justified to ignore singular
value I; if 12 < n—p—1. In order to treat each singular value separately
in our general geometric framework, we need to investigate the structure of
nesting of the manifolds M, in (1.2) for ¢ = 1,...,p — 1. This nesting has
a remarkable structure that the composition of projection onto M, followed
by the projection from M, onto M,_; coincides with the direct projection
onto M,_1. In this sense projections to My, g = 1,...,p — 1, are similar to
the projections to nested affine subspaces.

In usual practice of principal component analysis, larger singular values
are not shrunk. We tried but did not succeed in justifying this practice from
decision theoretic viewpoint. If we fix the first ¢ singular values, then the last
p — q singular values are restricted to a bounded region. In general it seems
very difficult to obtain minimax estimator when shrinkage is restricted to a
bounded region. This causes a serious difficulty in justifying Stein shrinkage
toward a general smooth manifold. In the setting of the present paper, the
cone C(u,v) is unbounded and the boundedness problem can be avoided by

shrinking both sy and sy as we approach the boundary s2 = s17y(u,v).
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