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Abstract

We consider three estimators of the autocorrelation function for a stationary pro-
cess with missing observations. The first estimator is linked with the Yule-Walker
estimator, the second one the least squares estimator, and the third one the sample
correlation coefficient. We clarify their asymptotic differences and derive asymptotic
distributions for both short-memory and long-memory models. In most of short-
memory models the third estimator has smaller asymptotic variance than the others.
On the other hand, if a process follows a long-memory model and its spectral den-
sity function is not square integrable, then the asymptotic distributions of the three
estimators are all the same and the distribution is still the same as that of estimator

under complete sampling too.

1 Introduction

Estimation of the autocorrelation function of a stationary time series is one of the im-
portant aspects throughout time series model building procedure. An estimator of the
autocorrelation function is a fundamental tool in the identification stage to clarify the
dependence structure of a time series. Also if we adopt a Newton-Raphson procedure to
obtain the maximum likelihood estimator of a parametric time series model, we usually
calculate the initial value by the method of moments based on it.

Hence asymptotic properties of estimators of the autocorrelation function, especially
the sample autocorrelation function, the ratio of the sample covariance and the sample
variance have been extensively studied in the literature. Bartlett (1946) and Anderson and

Walker (1964) derived the asymptotic normality of the sample autocorrelation function



under the assumption that the coefficients in the infinite order moving-average representa-
tion of a linear stationary process are absolutely summable. And recently Cavazos-Cadena
(1994) and He (1996) extended their results to the case that the autocorrelation function is
square summable, which is equivalent to the assumption that the spectral density function
of a process is square integrable. Furthermore Hosking (1996 investigated the case that
a stationary process follows a long-memory model and its spectral density function is not
square integrable.

On the other hand, missing observations arise from a variety of causes such as machin-
ery disorder, clerical error or the inability to observe data in a bad weather or on holidays
[see, e.g., Robinson (1985)]. Many authors attempted to extend estimation procedures
suggested for time series data under complete sampling to those with missing observa-
tions. In this note we focus on estimation of the autocorrelation function among them for
the sake of motivation mentioned in the beginning.

We shall consider three estimators, two of which do not seem to have been discussed
fully as yet and clarify the difference in their asymptotic properties. The first one is the
sample autocorrelation function extended to the case with missing observations. Originally
this estimator was proposed by Parzen (1963); its asymptotic properties were investigated
in further details by Dunsmuir and Robinson (1981). The second one is a least-squares
type estimator. Finally the third one is a sample correlation coefficient type estimator.
The latter two ones were proposed by Takeuchi (1995). And Shin and Sarker (1995)
adopted the second estimator as the initial value of a Newton-Raphson procedure for

the maximum likelihood estimator in an AR(1) model. These estimators have the same



asymptotic properties under complete sampling but as is shown later, they can behave
asymptotically differently from each other in the presence of missing observations.

The rest of this note is organized as follows. Section 2 contains our model, notations,
basic assumptions and introduces the three estimators. Section 3 presents asymptotic
normality and asymptotic variances of the estimators under the assumption that the true
underlying process follows a short-memory model or a long-memory model with a square
integrable spectral density function. It is rather difficult to compare the differences among
the asymptotic variances of the estimators in a general situation. In Section 4 we distin-
guish the differences among the estimators clearer in more specified models for a stationary
process and a missing structure.

The results on the case that a process follows a long-memory model and its spectral
density function is not square integrable, are stated in Section 5. In Section 6 some
consideration is given to the properties of the estimators when the mean of a process is
unknown. Finally we shall reinforce the theoretical results by computational experiments
in Section 7.

Our main results are as follows. T'irst the third estimator is the best one in most
of short-memory models from the viewpoint of asymptotic variance. Next under the
assumption that a process follows a long-memory model and its spectral density function
is not square integrable, the three estimators have the same limiting distribution, more
interestingly which is also identical with the limiting distributions of those under complete
sampling. These results imply that there is no loss of information asymptotically even in

the presence of missing observations if a process follows a long-memory model since there



still exists a strong dependence between distant observations.

2 Model and Estimators

Let {X (%)} be a stationary process of the form

[ee) 0

X(0) =3 B0t~ 1), S BGY < o,

7=0 7=0
where the white noise process {¢(¢)} consists of uncorrelated random variables with mean
zero and variance 2. Parzen (1963) introduced the time series model with missing ob-
servations as a specific case of an amplitude modulated stationary process. Ioliowing
him we express observed data {Y(n)} (n = 1,2....,N) by Y(n) = a(n)X(n) where

{a(n),n = 1,2,...} represents the state of observation,

a(n)=1,  X(n)observed,

(1)
a(n) =0, X(n) missing.
We assume the same conditions as those in Parzen (1963) that {a(n)} follows
Mo = A}linoo a,a.s., (2)
YD) = lim (Cy(l) = a?), a.s., (3)
N—oo " ’
v(r,s,u) = Nim Colr,s,u), a.s., (4)
where
1 N
a = v }: a(n),
n=1
1 =
Call) = da(nyatn+1), 0<I< N~ 1,
n=1
N—-moz(r,su)
Colrys,u) = — Z a(n)a(n + rja(n+ s)a(n+u), 0 < r 5, u < N — 1.

n=1



We call a process which satisfies (2), (3), and (4) an asymptotically 4th order stationary
process in this paper. X,Y,Cx(l), and Cy(l) are defined in the same way as @ and C,(/)
respectively. And we assume that {X(n)} and {a(n)} are independent hereafter.

Next we put yx (1) = Cov(X(t), X(t+ 1)), px({) = Cor(X(t), X(t+ 1)) = vx (1)/vx(0)
and (1) = v4(1) + p2. And let f()) be the spectral density function of {X(n)}, vx(i) =
J7eMf(NdA. v (1) and py (1) are defined in the same way if {Y(n)} is a stationary
process. C implies a constant which is independent of N but is not always the same one
in each context.

Now we introduce the three estimators of the autocorrelation function {px(1)}. The
first one is proposed by Parzen (1963) and, later, investigated its asymptotic properties
under various assumptions on {e(n)} by Dunsmuir and Robinson (1981). We denote it by

ppor(l),

Cy(D/Cull) _ ENFY ()Y (n+ D/ S alma(n 4 1)

pprpor(l) = v (0)/CL(0) N Y (m)2) 0 a(n)?

Since the numerator and denominator are estimators of yx(!) and yx(0) respectively.
pppR(!) is interpreted as a kind of the Yule-Walker estimator,

The second one is proposed by Takeuchi (1995) and is adopted independently by Shin
and Sarker (1995) as the initial value of a Newton-Raphson procedure to obtain the max-

imum likelihood estimator in an AR(1) model. This estimator is defined by

oty BV 021
. l — = .
psst(l) Ef:;"{ a(n+ )Y (n)?

Yoo ama(n+)X (n)X (n+])
ZN‘: a(n)a(n+1) X (n)?

n=

Noting pgsr(l) = , we see that pggr(l) is the least squares esti-

mator for the regression model which consists of all of the observed pairs (X (7 +1), X (n))
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with X (7 + {) a dependent variable and X(n) an independent variable respectively.
Finally the third estimator is also proposed by Takeuchi (1995) and defined by

MAY(m)Y (n+ )

pr(l) = , .
VEN aln + DY ()2 SN a(n)Y (n + 1)

pr(l) is the sample correlation coefficients based on all of the observed pairs (X(n +

1), X(n)).

It is easily seen that these estimators have the same limiting distribution under com-
plete sampling (a(n) = 1). However as is shown later, though they are asymptotically
normally distributed, the variances of their limiting distributions are different from each
other if the spectral density function is square integrable. While if the spectral density
function is no longer square integrable, their limiting distributions are all the same, and,

more interestingly, are identical with that of estimators under complete sampling.

3 The limiting distribution (The spectral density is square

integrable)

We impose the same assumptions on {¢(n)} and f()) as those in Dunsmuir and Robinson
(1981) throughout this section.

{e(n)} is a strictly stationary and ergodic process. Let F.(n) be the o-algebra of events
generated by {e(m);m < n}. And we introduce the following assumptions,

Assumption 1. (i)

E(e(n)|Fe(n - 1))

il
\'O
x
o

E((n)|Fin-1)) = o2 as.,



Ee(n)Y|F(n-1)) = 30"+, a.s.,

and E(e(n)’|F(n~1))is a constant, a.s. Hence  is the fourth-order cumulant of {e(n)}.
(i) f(A) is square integrable.

Here we note a relation between Assumption 1 (i) and a correlation structure of a
stationary process.

Assumption 1 (ii) is equivalent that the autocovariance function is square summable,
Yoo vx(R)? < 0o, If the autocovariance function of a time series model satisfies absolute
summability 377 |vx(h)] < co, this model is called a short-memory model. Clearly
the spectral density function of a short-memory model is squate integrable. A typical
example is an ARMA model since its autocovariance function satisfies |y (k)| < CrlAl
with a constant 7 (0 < 7 < 1).

On the other hand there are many actual time series in which the dependence between
distant observations are not negligible.

Long-memory models have been developed recently in order to explain such a series.
Two popular models are proposed. One is a fractional ARIMA model by Granger and
Joyeux (1980) and Hosking (1981). The other is a fractional Gaussian noise by Mandelbrot

and Van Ness (1968). Their autocovariance function is characterized by

vx(h) ~ L(hR* Y, 0<d< =, (5)

N

where ~ means that the ratio of the left and right hand side terms converges to 1 as
h — oo and L(h) is a slowly varying function of infinity,

L(ht)

0 1, as h — oo for all t > 0



It follows from (5) that yx(h) is no longer absolute summable. Hence Assumption 1
(ii) inciudes short-memory models and long-memory models with 0 < d < %. We shall
consider the case of long-memory models with % <d< % in the following section.

Now we consider asymptotic properties of the estimators. The limiting distribution
of pppr(l) has already been derived by Dunsmuir and Robinson (1981). We shall extend
their procedure to obtain the limiting distributions of pssr(!) and pr(l). For this purpose
we define the random variables b(ky, ks, koy) (ko) kisy kow = 0,1,2,...) by

N

b(kas kias ko) = N2 Y~ a(m)a(n + ko) (X (n+ k12) X (n 4 ka) = yx(kar = ki)
n=1

And we note that similar to Theorem 1 of Dunsmuir and Robinson (1981), we have

| XN
A;lgtl — Z a(n + kp)a(n + k)X (0 + 1)X(n+ ly) = Fu (k2 — ki1 )yx(lz = 1), as. (6)

n=1

Now we shall express pss7(l) and p7({) in terms of b(kq, k1z. k2.), Fa(1), vx(0), and px (1).
Let psst(l) and pr(l) be defined in the same way as pssr{l) and pr(l) except for the
summation Zfi_?ll being replaced by Z'Q]:].

Then

N2 (pr(1) = px (1) = N'2(pr(1) = px (1)) + 0,(1)
N=VISI Y ()Y (n 4+ 0) = px (Dy/ SNy aln + DY (02T a()Y (n + 1)
VESNga(n+ DY (02 F SV a(m)Y (0 + 0)?

+ 0p(1).

(7)

The numerator of (7) is expanded by

N
N-1/2 Z a(n)a(n + ) (X(n)X(n+ 1) —yx (1))

n=1



1~

-

— N~V (l) [\/ SN a(n 4 DY (2SN a(n)Y (0 + 12 = 3x(0) Y a(n)a(n + ‘)]

—

n=

= (1,0,0)

N | N N s
ny Y=g a(n)a(n + D(X(n)? - vx(0))
— / - : n=1
N=px (1) [7)((0) Z a(n)a(n + l)J (1 t Yx (O TN aln)aln + 1) )

Xd (1 N Sy a(n)a(n + (X (n + )2 — 7X(U))> _ 1}

n=l

Yx(0) iy a(n)a(n + 1)
= 0(1,0,1)

_ N
N exld {L a(m)a(n + D{(X ()2 = 1x(0) + (X (n + 1)? - ”’(“))}} ot

n==1

it

b(1,0,) = 5px (DB L 1) + B(1,0,0)) + 0,(1). (8)

The second equality is derived by noting that v/1 + z = 1+ Z+o(2?) and ( N a(n)a(n+

DX (n+ kY = 7x(0)))/ S0y a(ma(n + 1) (k = 0,0) is Op(1/v/N ).

Then it follows from (6), (7), and (8) that

N Hpr(h =ty = SRDPELR LRI 1) v

Similarly

Yallrx(0)

N'P(pssr(l) = p(l)) = + (1), (10)

Finally we express pppr(l) in terms of psst(l) and b(kq, kiy, koy) to compare the

variance of the limiting distributions of pppr(l) with that of pssr(l). We have

NY2(ppor(l) - px(1))

N-| . 2 N 2
— Afl/ﬁ ([’SSTU) _ PX(Z)) n=1 a(n)a(n + /)X(?l) n=1 a(n)

SN am P X (P SN atmpa(n 1)
N-1 E \2 N N2
A1/2 n=1 ¢(n)a(n + )X (n) n=10(n) - :
+ 2 S a(nPX(nf S a(mya(n 1) ).

10



The second term of (11) is equal to

La(n)? SN a(n)a(n+ (X (n)? — 5x 0))}
Zn_.] a(n)?X (n)2 0" lla(n)n (n41)
v, (D[ (n)( (n) r"”YX(U))}

S a(n) X (n)?
px (DFa(0)6(1,0,0) = 74(1)8(0,0,0)]
Ya(0)¥a(1)yx (0)

N1/ (0[

+ 0,(1). (12)

The last equality follows from (2), (3), and (6). Hence from (2), (3), (6), (11), and (12)

we have

N2 (pppr(l) = px (1)

F2(0)b(1,0,0) — %,(1)b(0, 0,0)]
'7@(0)’7@(.[)7)\’ (0)

= NY2(pssp(t) - px (1)) + 22 +op(1). (13)

The asymptotic distribution of pppr(l) has already been derived by Dunsmuir and
Robinson (1981). However the relation (13) is useful to distinguish a difference between
the asymptotic variances of pppgr(l) and of pssr(l) clearer. Since if the sum of the variance
of the second term and the two times covariance of the first and second terms of (13) is
positive (negative) asymptotically, it implies that the variance of N ]‘/2(ﬁp1)ﬂ(l) - px (1))
is greater (smaller) than that of N'/2(pgs7(l) — px (1)) asymptotically.

Now from (9), (10), and (13), it suffices to derive the limiting distribution of b(k,, kiz, koy)
and to evaluate its covariances matrices in order to consider asymptotic behaviors of the

estimators.

Proposition 1 Let {X(n)} satisfy Assumption 1. And let {a(n)} be an asymptotically
4th order stationary process which satisfies (2), (3), and (4). Then any finite set of the

b(kq, ke, koy) with Fa(ka) # 0 are asymptotically normally distributed with zero means and

11



COVATIANCES

lilﬂ C()v(b(kmklxakQ:z:)yb(laallxal2x))
N—o0
= Z V(kaou + ki — l].x’u + ke — e + la)'}’X(u)'YX(U + kip — kow — lip + l2m)

o0
+ Z I/(ka,,’u, + k'la: - leau + klay - l2a; + la)A/X(U)'YX(u + kkr - k2;17 + llr - 1217)

+K Z V(kaa U + klm - leau + klm - l]:L“ + l,,)
XD B)B(r = ki 4 kaa)B(r + w)B(r + 1 = by + loe). (14)
r=0

The proof of Proposition 1 is omitted since the result is derived in the same way as
Theorem 2 of Dunsmuir and Robinson (1981) with a slight modification.

Then the following theorem follows immediately from Proposition 1, (9), (10), and

(13).

Theorem 1 ;N']’/?(ﬁgg{p(l) - px(l’)), N1/2([3f(l) - px(l)), and N 1/2([3;)[)12(1) - px(l)) are
asymptotically normally distributed with zero mean and variance AVssr(l), AVr(l) and

AVppr(l) respectively where

AVssp(l) = W#W Jim Var(b(,0,1) - px(1b(1,0,0)),
AVp(l) = ml\;@me(b(!,O,l)«pX(l)(b(l,O,O)—I-b(l,l,l))/Z)

and

AVppr(l) = AVSST(Z)

2px (1) NS . .
T R i, Cov] (b0 0.0 = px(081,0,00), (30(012.0,0) = 4, (1p(0.0, )]

+ px ()" limm Var{3,(0)6(,0,0) — #,(1)6(0.0.0
Tal 0D (0 e ! 7 [To (M0 0,00 = 3e(06(0,0,0)f

12



4 Examples (The spectral density is square integrable)

The asymptotic variances of the estimators in Theorem 1, AVssr (1), AVr(l) and AVppr(l),
are rather complicated in a general situation of {X(n)} and {a(n)}. Hence we shall im-
pose more specific assumptions at least on {X(n)} or {a(n)} to derive a clear-cut ranking
among the estimators. Throughout this section {X(n)} is assumed to be a Gaussian
stationary process, which implies x = 0. Hence the third term of (14) vanishes.

Now we shall consider two examples. In the first example we assume that {a(n)} is a
sequence of Bernoulli trials. However we do not need any additional condition on {X(n)}.
In the second one we specify that {X(n)} is an AR(1) process, X(n) - ¢X(n — 1) = &(n)
but do not impose any other condition on {a(n)} except that {a(n)} is asymptotically 4th

order stationary. First we have the following theorem.

Theorem 2 Let {X(n)} be a Gaussian stationary process and {a(n)} a sequence of
Bernoulli trials with p = Pr{a(n) = 1}. Then
(i) Avr(l) < AVssr(l) for any | (t=1,2,...).

(ii) AVssr(l) < AVppr(l) holds if and only if 0 < -;; + 2(px(20) — px(l)2) or px (1) = 0.

Proof. (i) First we note that 3,(0) = E[a(n)?] = p and F,(/) = Ela(n)a(n + )] = p?* for

[ > 1. Then it follows from Proposition 1 and Theorem 1 that

PP AVssr(l) = Zz/(l, w,u+ Dpx(u)? + }j v(l,u,u — Dpx (w)px(u ~ 20)

u

“~4PX(Z:) Z VU: Uy U — l)pX(u)/)X(u - Z)

U

+2px(1)? Z v(lu,u + Dpx (u)?. (15)

U

13



Similarly

prAVE() = Zt/(l,u, u+ Dpx(u)? + }: v(lu,u— Dpx(u)px(u— 21)
u

u

‘wsz(l) Z l/(lv U, U+ l)/’X(“)ﬂX(“ - l)

w

=2px (1) Z v(lu,u — Dpx(u)px(u—1)

ox (D2 Y vl u,u + Dpx (u)?

+px (P vl u+ Lu+ 20)px (v)? (16)
Next we have
P, u=0,
vibu,ut+l) = PP, u= 1, (17)

P, otherwise,

e, u::[’

v(lu,u—1) = P, u=0,2l, (18)

otherwise,

and

P, u=—I,

vilbu+lu+2l) = P2, u= 20,0, (19)

pt, otherwise.

And note that v(j,k,!) are symmetric with respect to their arguments. Then it follows

from (15), (16), (17), (18), and (19) with an elementary calculation that

PH(AVE() = AVsst(D) = px (0201 = p)[pox (21 + (1 = plox (1F - 1]

IA

px (11 =p)[p+ (1= p)~ 1]= 0, (20)

14



Hence we have the result,. 1

(ii) It follows from Proposition 1 and Theorem 1 that

p*(AVppa(l) - AVssr (1))

= dpx()[p 3o vl uut Dox(whpx(u— 1) = p* 3l u,wpx (w)px(u - )

U

—ppx (li)ZI/U?u,u + Dpx(u)? + png(:l)Z v(l,u, u)[)x(u)z]

w

+§px(1)2 {pz Zz/(l, w,u+ Dpx(u)? — 2p° Z v(l,u,u)py(u)?

w U
+p42u(0,u7u)px(’u)2]. (21)
w
And
prou =01,
v(liu,uy = (22)
p®, otherwise,
and
p, u=40,
v(0,u,u) = (23)
P, u#0.

Then from (17), (21), (22), and (23) we have

P(AVppR(l) = AVssr(1)) = 4px(1)*(p" = p°) (px (20) = px (1?) + %px(l)z(p4 - ")

= 205 (70" = )5+ 2(ox2n - px 7)) (20

F

Hence we have the result. '

The following corollary shows a few sufficient conditions which ensure that AVsst(l) <

AVPDR(I).

Corollary 1 If at least one of the conditions: (i) p < L, (i) 1 px (1%, or (iii) px (1)? <

A

% and 0 < px(21) holds, then AVssT(l) < AVepr(l).

15



Proof. Tirst we note that the partial correlation between X (1) and X (2{+1) given X (I+1)

is (pX(QZ) - px(l)g)/(l - pX(l)Q). Hence

lpx(20) = px (D] < 1= px(? < 1. (25)

Hence clearly 0 < % +2(px(20) = p()*) if p < §. Next if & < px(1)?, from (25)

1 , 1 .
0% 20x (1) = 12 = 2(1 = px(D) < 5+ 2(px(2h) = px(1)").
Finally if px (1) < % and 0 < px(2l), we have
e Y (TN e P 1y 1 . 9

0.< 20x(20) = 1+ 2(px(20) ~ 5) < =+ 2(px(20) = px (1))
Hence the proof is completed. [
A definite inequality between AVgsr(l) and AVppp(l) does not hold for px(20) < 0
and 0 < px(I)? < %. However we do not have any example in which {X(n)} satisfies the

assumption in this note and AVssr(l) > AVppr(l) is true at the moment.

Next we show the result on the second example.

Theorem 3 Let {X(n)} be a Gaussian AR(1) process and {a(n)} an asymptotically jth

order stationary process which satisfies (2), (3), and (4).
AVT(U < AVSS’T(U.
Proof. Put I =1 and px(u) = ¢! and replace p* by Y.(1)* in (15) and (16). Then

'7)/0,(1)2 (AVT(],) - AVS'ST(l))
= 2¢ Z{V(l,u,u +1)—v(l,u- vl_,u)}d)]u»lﬂu—n

+6* 3 {v(Lu+ Lu+ 2) vl uu 4 1. (26)

16



Noting that 3, v(1,u — Lu)He=1l = 5~ w1 uu 4+ 1)gletHitl S w(lu + Lu +
)¢ = T vl u,u + D¢l and v(1, —u+ 1, —u+ 1) = v(1,u,u + 1) for u > 0, we

have

Fa(1)2 (AV2(1) = AVssr(1))

= (1-¢")](1-¢") i v(Lu, w4 1)6™ - v(1,0,1)6). (27)

=SS |

From the definition and Schwarz’s inequality we have

v(Liu,u+1)

N —(u+1)
= \Pinoo —N ; a(n)a(n + Dya(n + v)a(n +u + 1)
N—{(u+1) 127 1 N—(u+1) 1/2
: 2.0, 2 A 4 2 12
< ]\}gf(t)o[—ﬁ nz:;l a(n)*a(n + 1) } {N n; a(n+u)aln+ut1) ]
= v(0,1,1).
Hence the right-hand side of (27) is bounded by
s =0 « G
(1= (0,1, 1)[(1 = 6% Y. 6% - ¢?] = 0.
u=1
Then the proof is completed. I

We are not able to find a clear-cut relation between AVssr(1) and AVppr(1). Though
we omit a laborsome detail, it suffices to evaluate by the same argument as in Theorem 2
(ii) that
AVppr(1) — AVssr(1)

o0
= 21720 vl uut D™+ u(1,0,1)¢7]
u=1

~4(3a(07(0) " [ 3 w0+ 167 + 3 w1, w)¢™]
u=:0 u=1

17



+9,(0)72[4 ‘j: w0, u, u)¢* (0,0, ()_)gb?} : (28)

=l
Later we evaluate (28) by considering a more specific example of {a(n)}.
Remark 1. (i) Let {X(n)} be an AR(1) process. Then p(2) = p(1)? = ¢* (I > 1). Hence

it follows from Theorem 2 that
AVr(l) < AVssr(l) < AVppr(l),

for any {(> 1). Especially if we put [ = 1, it follows from (15), (17), and (18), after some

calculation that

N 1, , .
AVssr(1) = ;5(1 — ¢%). (29)
Thus we have from (20) and (29)

P*(1 = p)(pg* + (1 - p)¢* — 1)

AVr(l) = AVssr(l)+ 7
p? ’
and from (24) and (29)
2¢%(1 -
AVppr(l) = AVssr(l)+ _ﬁ_%;__?ﬂ
= LT..M (31)

P

The relation (31) is equal to (6.9) of Dunsmuir and Robinson (1981). The relations (30)
and (31) also follow from (26), (28), and (29).

(ii) In order to evaluate (28), we consider an A — B sampling in which A consecutive

values are observed and next B values are missing. Then the first term of the right-hand
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side of (28) is

o ) A+ B ) = o
Yov(Luwut D¢ = S v(luu+ )™ Z(,x,zmw)(zuu]
u=1 u=1 =1
1 A+B ‘
= ”MQ(A-FBJ Z 1/(1,u,'u+~[)¢2u.
1~ ¢ w=1

The other terms are obtained similarly. And 7,(0) = Z——ﬁ-’—m, Fao(l) = %{%. And v(i,u, ut
1) and v(i,u,u) (i = 0,1), are derived straightforwardly. Here we put 4 = 3,4 to make

the relation clearer. Then after an elementary calculation,

_Adt (¢4 —1)2 (392 44) 4=3

. ; 9(1_¢8) 9 b Ty
AVppr(l) — AVgsr(1) =

5¢2 (92 —1)2 (~6¢° ~0¢* —$2 +2) A =4

36(1-¢10) ’ -

Clearly AVppr(1) < AVssr(l) for A = 3. While if we put f(z) = —62% — 92? — 2+ 2 with
@ = ¢, then f(0) =2, f(1) = —14 and f(x) is a decreasing function of z in [0,1]. Hence
if 2 is closer to 0, AVppRr(1) > AVssr(1) and contrarily if ¢* is closer to 1, AVpppr(1) <

AVgsr (L) for A = 4. In Section 7 we shall show by computational experiments that the

larger 4 is, AVssr(1) achieves the better performance than AVppr(1).

5 The limiting distribution (The spectral density is not square

integrable)

We shall consider the case that f(\) is not square integrable in this section. Hence we
assume that vx (k) satisfies (5) with 3 < d < § and that L(h) = a with a constant « for
simplicity since the result in this section can be generalized to any slowly varying function
L(h). And let {X(n)} be a Gaussian process. The consideration for a non-Gaussian

process is given in the end of this section.
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Hence we impose the following assumption on{X(n)}.

Assumption 2. {X(n)} is a Gaussian stationary process and yx(h) satisfies

R2=1 <d< -

rx(h) ~ « % (32)

Assumption 3. {a(n)} is a 4th-order stationary ergodic process and if we define y,qk(h)

by

Yaak(h) = Cov(a(t)a(t + k), a(t + h)a(t + k + h)),

then

’Ya(tk(}l) — 0 (h '"’ Oo)ﬂ

for any fixed k(> 0).

Assumption 4. {a(n)} is deterministic and periodical with period M, that is, a(n) =
a(n + M) for any n(> 1).

Then the relations (2), (3), and (4) are satisfied under both Assumptions 3 and 4. We put
the sample size N = N*M without loss generality under Assumption 4.

First we investigate the asymptotic behavior of b(kq, k12, kog ).

Lemma 1 Let {X(n)} be a Gaussian stationary process and {yx(h)} satisfy (32). And

let {a(n)} satisfy Assumption 3 or 4.

(i) fd =

i

b4

b(kmklx»kilm) Ya k‘
Vieg N - m0g)ﬂf Z[X =7x(0)] 4 0p(1), as N — co.
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() If < d< },

b(kq,kizs kow) _ Fa(ka)

N
N2d-1/2 T TN Zj[)((7l')'3 —7x(0)] + 0p(1), as N — oo.

na=l

Proof. We only prove (i) since (ii) is shown in the same way. First we impose Assumption
3 on {a(n)}. Then
N 2
E [Z (alm)a(n + ko) = Fa(ka)) (X (0 + k1o)X (n + ko) = 7x (kap ~ bz ))}
n=1
= Z Z7aaka(n - m){’y)\'(n - 77?,)2 + 7x ('IZ + kfl,a; —m — k21‘)7x (77 + kop —m — klz)] .
n m

(33)

For any € > 0, there exists H such that |y,.,(h)| < € for any h > H. Then for sufficiently

large N

b

1222 Jaaka(n = m)yx(n—mP =1 3" (N = [Al\yuar, (h)yx (b))

[hl<N -1
< N9k, (0) Z vx(h)* + Ne Z vx(h)? < eC(log N)N.
[h|<H H<[h|<N~1

The second term of (33) is evaluated in the same way. Hence

(log N)"Y2b(ky, kir, kos)

= (NlOgN)“l/‘z:}'a(ka) Z{X(n + kla:)X(n + ka) —7X ("‘7% - klm)} +‘)p(;[)‘ (34)

T
While as in the proof of Theorem 2.1 (2) of Yajima (1992), we have

N

Var[zg{prp+km)xoz+k%)*4x00§m(7X“@ﬁ_km)—qx(m)}}

=o(NlogN).  (35)

Then the assertion follows from (34) and (35).
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Next we consider the case that {a(n)} satisfies Assumption 4. And we note that

Ya(ka) = 5 M a(r)a(r + k). Now we show that
(log N)™1/2[b( ks Frzs ko) = bkay bz hzw = 1)] = 0,(1). (36)
Put k, = koy — k5. Then

(108 N )78 kv kaa) = Blkay ki, koo — 1)

N
= (Nlog N)™'* 3" a(n)a(n + k)
n=1
x [X(n ki) (X(n 4 kas) = X0+ ko = D)= (yx (k) = (ks = :1,))}
N*-1 M
= (Nlog N)™V% 3™ S a(r)a(r + ka)
1=0 r=1

[X(,]M 7 klx)(X(jA[ +r ko) — X(GM + 7+ kop — 1))
"‘('}'X(kx) ~vx (ks - 1))}. (37)

Forany r (= 1,... M),

N*-1 .
Var [(Nlog N2 N XM v+ ku)(X(jM dr ko) = X(GM 4 7+ kyp — 1))J
J=0

= (Nlog M) 323 vx (G5 — )M
x [27X ((j - z')M)-—yX ((j — M + 1) vy ((j — M — 1)]
+H(V1og V)™ 575 s (G = 031 4 k)= (GG = 001+ b = 1)

i
x [7)( ((j — )M — kx) —x ((j ~ )M — ky + 1)]
= (Nlog N)™ 37 (N — [h)yx (hA) [ 2yx (hM) = yx (AM +1) = yx (hM — 1]
|B|<N*~1

+(Nlog N)™h 37 (N = A [ax (M + ko) = yx (hM + &, - 1]
Al -1

x[vx(hM = k) = yx (hM =k, + 1))
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= o(1). (38)

The last relation follows from that yx(h) — yx(h + 1) = o(h~"/%) as h — oc. Then the
relation (36) follows from (37) and (38).

Similarly
(log N) ™Y/ [b(kas ks Kz = blka, ki = 1, kae)| = 0,(1). (39)
Then applying (36) and (39) repeatedly,
(log N)™Y2b(k, ks, ko) = (log N)~V20(k,,0,0) + 0,(1).

While by the same argument,

N*—-1 M
(log N)™H20(ks,0,0) = (Nlog N)™/2 37 3™ a(r)a(r + ku) (X (GM +1)* = 7x(0))
2=0 r==0
‘ N*—1 M )
= (Nlog N)™/* 37 S a(r)a(r + ka)(X(GM)? = 1x(0)) +o,(1)
7=0 =0
; N1 , ,
= (Nlog N)™23,(ka)M 7 (X(GM)! = 7x(0)) +0,(1)
5=0
o N ) ’
= (Nlog M), (k) D (X (1) = 1x(0)) +0,(1).
n=1
Hence the proof is completed. [

Now we have the limiting distribution of the estimators.

Theorem 4 Assume the same conditions on {X(n)} and {a(n)} as those in Lemma 1.

N TS o L N _pr{l=-px(l) N_pssT()=px(} ' N_sppr(=px(l) ‘
i) Ifd =g Ay T],~px(7) » \Tog N ST1T~px(1)x s oand /1w PDllE—px(l)X have the
common limiting distribution, N(0, ﬁ)‘mj) as N — oo,

(ii) If § <d < L, N1-2dbrlzex () yi-2d2sst(D=px ) g N1-2420DR0)=2x W) prve 1he
1 2 Topx (D) N I-px (I

T=px(l)
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common limiting distribution as N — oo, which is identical with the distribution of R(1)

where R(1) is the value of Rosenblatt process {R(t);0 <t <1} att =1,

Proof. (i) Similar to (9), we have that

b(1,0,1) = px (1) (b(4:1.1) + b(1,0,0)) /2
Ta(0)7x(0)(log N)172

N

]Qg l\r(ﬁT(l) - ng(l)) =

+ 0,(1).

Then it follows from Lemma 1 (i) that

N

N
e () = px()= (1= px (D) (¥ log N)* 3" [X (0)? — 30(0)] frx(0) + 0,(1).
n=1

From Theorem 1’ of Breuer and Major (1983), the limiting disteibution of
(N log N)~1/23°N [X('n)2 - X (0)] is N(0,4a?). Hence we have the result.
Similarly the limiting distribution of ,/E%(ﬁggrf(l) - pX(l)> is obtained. Finally

using Lemma (i), we can show in the same way as (13) that

‘lOé;VA]V (ﬁPDR(l) » /)X([)):‘-: ” -l-c-)-g—i]—v— ([)SSTU) - pPx (l)) '1"0;9(].).

Then the proof is completed. ]

(ii) By the same argument as that in the proof of (i), we see that the limiting distri-
bution of the estimators is equal to that of yx (0)~'N =243V | (X(n)2 - 7,\7(0)), which in
turn is identical with the distribution of R(1) [see Proposition of Rosenblatt (1979)).
Remark 2. (i) Interestingly the limiting distribution of the estimators is independent
of {a(n)}. Hence the limiting distribution is still the same as that of estimators under
complete sampling (a(n) = 1). According to the proof of (i), the asymptotic distributions

of the three estimators are determined only by the limiting distribution of the term
N

(1= px(D) (N log NY1/2 32 [X ()? = 7x(0)] /10 (0). (40)

n=1
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AR . . . ' . . . —p IVMAS{' — !
T'herefore the 3-dimensional asymptotic distribution of ( log w4 l(i)p;(’;)m , 10;’N £ f_f;)x (‘;';‘ 0

\/;;V—N_ﬁ £ Dl’i(i);(?)" @y is the degenerated distribution whose covariance matrix has rank 1
apparently. Moreover the asymptotic distribution of the estimator under complete sam-
pling also depends solely on the term (40) as Hosking (1996) proved. A similar fact holds
for Theorem 4 (ii) too.

We interpret this result as the correlation between distant observations is so strong
that the presence of missing values between these observations cause no loss of informa-
tion asymptotically. We shall consider the following example to make the reason more
understandable.

Let X be a random variable. And suppose
X(n)= X, foranyn.

We can regard {X(n)} as a most extreme long-memory time series. Then px(l) = 1 for

any {. If we assume that we observe only two samples at k and £ + [, that is,

1, n=4kh+l
a(n) =

0, otherwise,

and consider pr(l) for example, then

ac(mla(n + DX(X(n 4 1) _ X(W)X(k 40 _ X2
SN-Fa(m)a(n + )X (n)? B X (k) D C

pr(l) =

On the other hand, under complete sampling (a{n) = 1),

pr(l) = Zomt XXt ) _ X2
o g::il X(n)? X

Therefore only two samples can supply all of the information about the autocorrelations

of the time series. A similar situation emerges asymptotically for a long-memory model
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fh L 1
with 3 <d < 3.

(i) We assumed Gaussianity of {X ()} throughout this section. However Theorem 4 (ii)
remains true even it {X(n)} is a non-Gaussian process. Assume that {(t)} consists of

independently and identically distributed (i.i.d.) random variables with & [g(t)‘*] < oo and

]
<d < -

B(7) ~ v+t v >0, 5

-

as j — o0. Hence yx(h) satisfies (32). Then it is shown in the same way as in Theorem 3
of Hosking (1996) that Lemma 1 (ii) still holds since the fourth order cumulant terms are
asymptotically negligible. Then it follows from Theorem 2 of Avram and Taqqu (1987)
that the limiting distribution corresponding to the right-hand side of Lemma 1 (ii) is the

same as that of a Gaussian case.

6 Mean Correction

Here we consider the case that the mean, EX(n), is unknown. Then we can put EX (n)=0

without loss of generality. And for simplicity we assume that {X(n)} is a Gaussian process

and

1x (h) ~ ah®1 0 < d< %

since the short-memory case can be treated in the same way. And let {a(n)} satisfy
Assumption 3 or 4 and v,(h) — 0 as h — o under Assumption 3.

Define X = ¥'/a. Then similar to Theorem 1 of Dunsmuir and Robinson (1981), we

have

i X = "I- n
1\113}50 X = F LX(n)] , a.s.,
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if 1, # 0. Hence we adopt X as an estimator of EX(n).
First we shall show

X = 0(N12) (41)

and

X-X= ap(Nd‘]'/Q). (42)

We express X by
_ Tl a(m)X (n)/N

(43)
andn/N
First we impose Assumption 3 on {a(n)}. Then {Y(n)} is a stationary process and
w(h) = Falhhyx(h) = va(h)yx (h) + piyx (h).
Hence
N N
Var[ 3 Y (n)]=Var[ 3 a(n)X (n)|= O(N?HH1), (44)
na=l n=1

The dominator of (43) converges to yi, a.s. as N — oo. Hence X satisfies the relation
(41).

Next we impose Assumption 4 on {a(n)}. Then

Var(ZY(n)) - sm[ZZY (M +7)]

nazl g-]r-

< C‘LVar[LY JM 47|

r==]
]V*
< CMVar[ 3 X(iM + )]
J=1
< CMN* 3" |yx(Mhb)] = O(N?H1y, (45)
|hI<Ne =1

Hence the relation (41) is derived.
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Next consider X — X. We express X — X by

v ] Z(ﬁ’ ~ n))X(n)qLYLn 1<a(n) ,wa)/N.

mz\;can 1

- (46)
fall

From (2), (44), and (45), the second term of (46) is 0,( N7~1/2) under both Assumptions

3 and 4.
Next consider the first termn of (46). Let Z(n) = ( Wn) ;L(,)‘ (n). Then {Z(n)} is a sta-
tionary process under Assumption 3 and yz(h) = v,(h)yx(h). Hence 'Vm[z,‘y_,l (a(n) —

,ua> X(n)} is o N4y which implies that the first term is o, N9~1/2),

Next we impose Assumption 4 on {a({n)}. Noting $~M [(L(ﬁ?‘) — ;La] = (), we have

tewpz]
N N* M
L (a(n) - p:a)X(n Z Z(a(r) - pa) (X(j.ZV[ +7r)- X(’jM)>,
n=l J=1r=1
Hence
Var{i (a(n) - Ha) X ()] < C L la(r) ua|\/a,r[§()((j M+ 1) = X(jM))].
n=1 r=1 i=1

By the same argument as that in Lemma 1,
N*
Var[Z(X(jM +7r)— X(j]i/[))]: o( N*Hhy (r=1,2,..., M).
i=1
Hence the first term of (46) is 0,(N9=1/2). Then the relation (42) is obtained.
Now we define 5(ka, kizy kas) and E(ka,, K1z, kaz) by replacing X (n) in b(ky, kyy, kay ) by
X(n)-X,X(n)— X respectively. Then though we omit the details, it follows from (41)

and (42) that

I

, \ 1
b(ka, iz, koz) b(kay k1o, kor) +0p(1), 0<d< 1 (47)

(log N)™/2b(ky, biay kg) = (log N)™2b(ky, kipohns) + 0p(1), d=2, (48

4’

N2 28 ko Ry ha) = N2y ki ko) + 0,(1), ‘;‘”“* % (49)
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and

N2k kg kop) = N7%3,(k,) Y UX(n) ~ X)) = vx(0)] + 0p(1),

1 1 .
- < 3 o0
4<d<2 (50)

We have from (47) and (48) that Theorem 1, 2, 3, and 4 (i) still hold even if EX(n)
is unknown. While the relations (49) and (50) imply that the estimators have the same
limiting distribution for + < d < 3, which is also identical with that of estimators under
complete sampling. However this distribution is different from that of R(1) in Theorem

4 (ii) in the case that £X(n) is known [see Yajima (1992} and Hosking (1996)]

g

The

characteristic function of the distribution is given by Hosking (1996).

7 Computational Experiments

Here we shall reinforce the results in the previous sections by computational experiments.
To generate random numbers, we use "ran2.c” in Numerical recipes in C' [ Press et al
(1988)]. we suppose that {e(n)} are independently and identically distributed (.i.d.)
normal variables N(0,1) in the first part of this section and then i.4.d. non-Gaussian
random variables in the second part. The sample size is N = 1000 from Table 1 to 4
and Table 8, and N = 1000 and 5000 from Table 5 to 7. The number of replications is
K = 5000 for all of the tables.

{a(n)} is a sequence of Bernoulli trials and follows A-B sampling. We use

_CENEX ()X (n 4 1)
T X X (0

Peamp(l)
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as the estimator under complete sampling in this section and then consider the empirical
ratios of the sample variances of the three estimators to those of the estimator under
complete sampling, peomp(l). For notational convenience, we denote them by ERppr(l),
ERgssr(l), and ERr(l). We also denote the three theoretical asymptotic ratios of the
variances by ARppr(l), ARssr(l), and AR7(l) and give them in Table 1 and 3.

For example if we consider an AR(1) process, X(n) = ¢X(n—1)+¢e(n) and a sequence
of Bernoulli trials {a(n)}, the asymptotic variances: AVpppr(1), AVssr(1), and AVy(1),
are given by (29), (30), and (31). On the other hand if we denote the asymptotic variance
under complete sampling AVie)np(1), we have AViom,(1) = 1 — ¢?. Hence the asymptotic
ratio ARgsr (1) is AVssT(1)/AViomp(1) = 1/p? for pssr(1) and any ¢.

Table 1 show the result of the case that {X(n)} is an AR(1) process from ¢ = —0.9
to 0.9 and {a(n)} is a sequence of Bernoulli trials with p = 0.9. On the other hand, the
autocorrelation px (1) of the AR(1) process is identical with the parameter ¢. And Reinsel
aud Wincek (1987) (Theorem 2) and Qian (1988) gave theoretical asymptotic variances
for the Gaussian MLE for ¢ with missing observations. Thus we also listed ratios of the
asymptotic variances of &MLE in reference to the other ones. We can find from Table
L that the empirical values and the theoretical values are nearly equal to each other,
and that ERr(1) < ERgsr(1) < ERppr(1) holds as Corollary 1 showed. Additionally,
ARr(1) and ERy(1) are relatively small and close to those of &M[,E. pr(l) is therefore
as competitive as <2’MLE-

Table 2 shows the result for A-B sampling. ER7p(1) is always the smallest one.

And ERppr(l) is always smaller than ERyp(1) with A-B=3-1. However for A-B=4-1,
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ERpppr(1) is smaller than ERgsr(1) only when |¢| is large. Conversely, ERgs7(1) is
smaller than ERpppr(1) when |¢| is small as Remark 1 (ii) assured. Further if A is larger
with A=5, ERssr(1) is smaller than ERpppr(1) except for the case |¢] = 0.9.

Next we consider a MA(1) process, X (n) = f¢(n — 1)+ ¢(n). Table 3 shows the result
of the case of Bernoulli trials. We calculate the asymptotic variances by Theorem 2 in the

following way. Substituting (17), (18), and (19) into (15) and (16), we have

1 . .
[1—(1+2p)px(1)* + 4px (1)4],

AVssr(l) = —
ST ) [)2

and
, 1 ; : ,
AVr(l) = '1;5[1 =~ (24 pox (1) + (14 p)px (1), (51)
where px (1) is ]""4‘_075 since {X(n)} follows the MA(1) process. And we obtain

1

AVppr(1) pz[i. + (1 —4p)px (1)* + 4ppx (1)1,

by (24) and (51) and
AVeomp(1) = 1 = 3px (1)* + 4px (1),
by Bartlett’s formula [see e.g., Brockwell and Davis (1991)).

We listed the theoretical asymptotic ratios and the empirical ratios in Table 3 as in
Table 1. We can find that the empirical values and the theoretical values are almost
similar and ARy(1) and ER7(1) are the smallest for each 6. On the other hand, Table 4
contains the ratios of the empirical variances under A-B sam pling to those under complete
sampling as in Table 2. ERssr(1) are alwz;ys larger than ERpppr(1) with A-B=3-1 and
ERssT(1) are always smaller than ERppr(1) with A-B=4-1 and A-B=5-1 in contrast to

the result in Table 2.
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Table 1: Ratios of variances to complete sampling, AR(1), Bernoulli trials p=0.90

sample size 1000, replications 5000.

PPDR pssT pr dMLE
¢ empir  theor empir  theor empir  theor theor
-0.90  2.1955 2.2872 1.2102 1.2346  1.0574 1.0617  1.0131
-0.70  1.4646 1.4718  1.2567 1.2346  1.1585 1.1474  1.0529
-0.50  1.3087 1.3169  1.2386 1.2346  1.1966 1.1968  1.1111
-0.30  1.2545 1.2590  1.2282 1.2346  1.2150 1.2226  1.1780
-0.10  1.2173  1.2371  1.2145 1.2346  1.2127 1.2333  1.2273
0.00 1.2296 1.2346  1.2304 1.2346  1.2299 1.2346  1.2346
0.10 1.2256 1.2371  1.2265 1.2346  1.2238 1.2333  1.2273
0.30  1.2705 1.2590 1.2466  1.2346 1.2323  1.2226 1.1780
0.50 1.3166 1.3169 1.2450  1.2346 1.2035  1.1968 1.1111
0.70  1.4713 14718  1.2330 1.2346  1.1510 1.1474  1.0529
0.90 2.2860 2.2872 1.2244  1.2346 1.0616  1.0617 1.0131

Table 2: Ratios of variances to complete sampling, AR(1), A-B sampling

A-B=3-1 A-B=4-] A-B=5-1
¢ pPPpr  PssT Pt pPPDR  PssT  Pr pPPDR  fssT  PT
-0.90 1.3726  1.9827 1.1026 1.4203 1.6898 1.0836 1.4508  1.4562 1.0541
-0.70 1.6307 1.9301 1.37%3 1.5816  1.6499 1.2908 1.5345  1.4872 1.2350
-0.50 1.8996  2.0019 1.7096 1.7000  1.6586 1.4978 1.5598  1.4943 1.3883
-0.30 1.9496 1.9671 1.8663 1.6562  1.6450 1.588() 1.5010  1.4754 1.4413
-0.10 1.9795  1.9817 1.9689 1.6663 1.6689 1.6561 1.4926  1.4900 1.4863
0.00 2.0410 2.0508 2.0403 1.6929  1.6927 1.6936 1.5316  1.5323 1.5324
0.10 2.0483 2.0549 2.0354 1.7159  1.7069 1.7036 1.5039  1.5030 1.4982
0.30 1.9657 1.9812 1.8970 1.6908  1.6556 1.6153 1.5175  1.5069 1.4592
0.50 1.9069 2.0277 1.7091 17798  1.7478 1.5637 1.6009 1.5419 1.4105
0.70 1.6349  1.9081 1.3708 1.6289 1.6640 1.3005 1.5251  1.4617 1.2210
0.90 1.3863 1.9370 1.1106 1.3829  1.7001 1.0734 1.4059  1.4670 1.0514

sample size 1000, replications 5000.
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Table 3: Ratios of variances to complete sampling, MA(1), Bernoulli trials p=0.90

4 PPDR pssT Pr
empir  theor empir  theor empir  theor

-0.90  1.3923 1.3633  1.3232 1.2959  1.2579 1.2367
-0.70  1.3514  1.3534 1.3116  1.2917 1.2510 1.2417
-0.50  1.3227 1.3229 1.2911  1.2777 1.2536  1.2465
-0.30  1.2709  1.2748 1.2474  1.2545 1.2352  1.2428
-0.10  1.2200 1.2395  1.2172 1.2370  1.2155 1.2358

0.10 1.2277 1.2395  1.2286 1.2370  1.2259 1.2358

0.30  1.2871  1.2748  1.2673 1.2545  1.2535 1.2428

0.50 1.3234 1.3229  1.2895 1.2777  1.2511 1.2465

0.70 1.3672 1.3534 1.2946  1.2917 1.2505  1.2417

0.90 1.3740 1.3633 1.3095  1.2959 1.2483  1.2367

sample size 1000, replications 5000.

‘Table 4: Ratios of variances to complete sampling, MA(1), A-B sampling

9 A-B=3-1 A-B=4-1 A-B=5-1
pPpDR  Psst  Pr APDR  PssT  pr ppprR  psst  Pr

-0.90 2.4605 2.5523  2.0129 2.0436  1.9563 1.7110 1.7596 17174  1.5049
-0.70 2.2995 2.3675 1.9718 1.9132  1.8810 1.6549 1.6897  1.6143 1.4802
-0.50 2.3466 2.3822 2.1149 1.9060 1.8594 1.7227 1.6784  1.6266 1.5408
-0.30 2.1173  2.1206  2.0249 1.7385  1.7296 1.6729 1.5593  1.5363 1.5033
-0.10 1.9996 2.0016 1.9889 1.6772  1.6797 1.6668 1.5001 1.4976 1.4940
0.10 2.0683 2.0751 2.0554 1.7274  1.7183 1.7151 1.5116  1.5108 1.5039
0.30 2.1301 2.1338 2.0546 1.7792  1.7439 1.7052 1.5742  1.5673 1.5199
0.50 2.3515  2.3933 2.1147 2.0039 1.9390 1.8011 1.7324  1.6753 1.5755
0.70 2.3256  2.3942 1.9748 1.9799 1.9326 1.6815 1.7362  1.6691 1.5191
0.90 2.4088 2.4772  1.9902 1.9587 1.8900 1.6573 1.7500  1.7189  1.5041

sample size 1000, replications 5000.



Table 5: Fractional ARIMA(0,d,0), from d = 0.1 to 0.49

Bernoulli trials with p = 0.90 A-B sampling with A-B=9-1
PPDR _ PssT Jy PPDR___ PSsT Jiag

100G .
0.10 1.21463  1.21140 1.20862 1.22314  1.21811 1.21924
0.20 117815 1.17117  1.16459 113955 1.13372  1.12391
.25 1.13042  1.11982 1.11247 111397 1.09757  1.09371
0.30 1.08216 1.06593 1.05692 1.06435 1.05582 1.04992
0.40 1.02905 1.02243 1.01550 1.02160 1.01904 1.01110
0.49 1.01744  1.00769 1.00694 1.00627  1.00403  1.00259

5000
0.10 1.21830  1.21470  1.21403 1.24943  1.24360  1.24388
0.20 1.16696  1.15429 1.14856 115289 1.14342  1.14084
0.25 L11716  1.09653  1.09529 1.07462  1.06828  1.06451
0.30 1.05818  1.04880 1.04159 1.05192  1.04638 1.04074
0.40 1.01341  1.00784 1.00537 1.00800  1.00496  1.00391
0.49 1.00814 1.00259 1.00215 1.00048  1.00277  1.00012

replications 5000.

Table 6: Mean Unknown, Fractional ARIMA(0,d,0), from d = 0.1 to 0.49

Bernoulli trials with p = 0.90 A-B sampling with A-B=9-1

N - , - . - -
PPDR PSST PT PPDR PSST pT

1000
0.10 1.21953  1.21221 1.21144 1.22640 1.22755  1.22267
0.20 1.20482  1.19041 1.18301 115375 1.14267  1.13846
0.25 1.16935  1.13422  1.14755 L14750  1.13695 1.12516
0.30 114322 1.11043 1.10391 1.12362  1.11054  1.09668
0.40 1.09654  1.06089 1.05189 1.05556  1.03837  1.02924
0.49 1.09394  1.05055 1.03628 1.05218  1.04061  1.02060

5000
0.10 1.21844 1.21564 1.21354 1.25129  1.24967  1.24596
0.20 118341  1.16905 1.16437 117327 1.17120  1.16026
0.25 LI5807 1.14207 1.13044 110025 1.09954  1.08742
0.30 1.10731  1.07947 1.07709 1.10218  1.09227  1.08284
0.40 1.05217 1.02995 1.02255 L.03862  1.03428  1.02195
0.49 1.04564 1.01852 1.01152 1.01066 1.01393 1.00334

replications 5000.
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Table 7: Variances, Fractional ARIMA(0,d,0), from d = 0.1 to 0.49 (upper line, Mean

known; lower line, Mean unknown)

complete  Bernoulli trials with p = 0.90 A-B sampling with A-B=9-1
N “  sampling  pppr PssT or PPDR PssT pr
1000
0.10  1.13180 1.37471 1.37107 1.36792 1.38435 1.37866  1.37993
111171 1.35576  1.34763  1.34677 [.36340 1.36468  1.35926
0.20  1.56162  1.83983 1.82893  1.81865 1.77955 1.77044  1.75513
1.38224  1.66534 1.64543  1.64211 1.59475 1.57944  1.57362
0.25 0.29615 0.33478 0.33164  0.32946 0.32990  0.32505  0.32390
0.22492  0.26301 0.25961  0.25811 0.25810  0.25573  0.25308
0.30  0.82339 0.89103 0.87767  0.87025 0.87637 0.86935 0.86449
0.48391  0.55322 0.53735 0.53419 0.54373  0.53740  0.53070
0.40  0.11966 0.12314 0.12235 0.12152 0.12225 0.12194  0.12099
0.04222  0.04629 0.04479  0.04441 0.04456  0.04384  0.04345
0.49 0.01176  0.01197 0.01186  0.01185 0.01184  0.01181  0.01180
0.00357  0.00391 0.00375  0.00370 0.60376  0.00372  0.00365
5000
0.10  1.12800 1.37425 1.37019  1.36943 1.40936  1.40278  1.40309
112330 1.36867 1.36553  1.36317 1.40558  1.40375  1.39959
0.20  1.55142  1.81045 1.79079  1.78190 1.78862  1.77393  1.76993
1.41238  1.67142 1.65113  1.64453 1.65710  1.65417  1.63873
0.25  0.28954  0.32347 0.31749  0.31714 0.31115 0.30932  0.30822
0.21649  0.25071 0.24725  0.24473 0.23819  0.23804  0.23541
0.30 0.80881 0.85586 0.84828  0.84245 0.85080 0.84632 0.84176
0.44952  0.49776 0.48524  0.48417 0.49545  0.49099  0.48675
0.40  0.12101 0.12264 0.12196 0.12166 0.12198 0.12161  0.12149
0.02838  0.02986 0.02923  0.02902 0.02947  0.02935  0.02900
0.49  0.00862 0.00869 0.00864  0.00864 0.00862 0.00864  0.00862
0.00172  0.00179 0.00175 0.00174 0.00173 0.00174  0.00172

replications 5000.
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Table 8: Variances, I'ractional ARIMA(0,d,0), from d = 0.1 to 0.49, Uniform distribution

and t-distribution (upper line, Mean known; lower line, Mean unknown)

distribution complete  Bernoulli trials with p = .90 A-B sampling with A-B=9-1
sampling — pppr  Psst T PPDR PSSt P
uniform

0.10 114757  1.38978 1.38909  1.38664 1.39278  1.38981  1.38813

1.12806  1.37449 1.36852  1.36922 1.37585  1.37234  1.37185

0.20  1.52957  1.79709 1.78018  1.77304 1.8276G9  1.81468  1.80384

1.37593  1.65272  1.62700  1.62745 L.6T8Y8  1.65533  1.65728

0.25  0.29978  0.33663 0.33259  0.33040 0.33950 0.33713  0.33429

0.23093  0.26761 0.26167  0.26165 0.26910  0.26429  0.26470

0.30  0.76048  0.81956 0.80975  0.80260 0.81151  0.80945  0.79992

046179 0.52360 0.50739  0.50919 80.50813  0.49960  0.49962

0.40  0.12345 0.12761 0.12652  0.12540 (3.12635  0.12624  0.12522

0.04091  0.04469 0.04292  0.04289 0.04417  0.04315  0.04299

0.49 0.01071  0.01091 0.01079 0.01076 0.01081  0.01076  0.01075

0.00358  0.00396 0.00374  0.00371 0.00373  0.00369  0.00365

t-dist

0.10  1.07246  1.44369 1.32376  1.39479 1.46156  1.39282  1.47376

1.06056  1.43376 1.72229 1.39145 1.44275  1.92157  1.45802

0.20  1.50438  1.79771 1.75038  1.75372 1.79396  1.75177  1.75469

1.36032  1.64600 1.65579  1.60499 1.64832  1.67203 1.61284

0.25 0.30006  0.34754 0.33639  0.23795 0.34710  0.34365  0.34303

0.22242  0.27127 0.27395  0.26146 0.26850 0.27740  0.26422

0.30  0.80312 0.88733 0.86918  0.86724 0.85696  0.84914  0.84718

0.47686  0.56595 0.56703  0.54498 0.54158  0.56298  0.53090

0.40  0.12452  0.14049 0.13180  0.13733 0.14222  0.13233  0.13993

0.04049  0.06000 0.08858  0.05545 0.06048 0.105652  0.05866

0.49  0.01207 0.01278 0.01230  0.0i252 0.01268  0.01226  0.01245

0.00358  0.00492 0.00664  0.00456 0.00467 0.00716  0.00463

sample size 1000, replications 5000.
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Next we consider a fractional ARIMA(p,d,q) process. {X(n)} is expressed as
H(BY1 - B)!X(n) = 8(B)e(n),

where B is the backward shift operator and {e(n)} is a white noise process with mean
0 and variance oZ. d is a real number with 0 < d < . Let ¢(2) = | — Yo ¢i7 and
B(z) = 1— ijl 8,27, where p and g are positive integers. Suppose $(z) and #(z) have no

zeros on or inside the unit circle and no zeros in common. It has the spectral density

, 2 yo2a 182
/\. | 2 - .C.TE.: . :'L/\ —Zd—!'—-——rmr—,
f( 3{]7@99705) 27!'“ € I ’¢((z\)12

And the spectral density is not square integrable when % < d < —ﬁ- In the followin

g
experiments, we generate the fractional ARIMA(0,d,0) process by i.i.d. normal variables
N(0,1) and the Durbin-Levinson algorithm [see e.g.. Brockwell and Davis (1991)].

Table 5 gives the empirical ratios of pppr(1), pssr(1), and pr(1) to those under
complete sampling for d = 0.1, 0.2, 0.25, 0.3, 0.4, and 0.49 respectively. We can see
from Table 5 that pr(1) is relatively efficient and all the values become nearly equal, as d
increases. On the whole, the ratios also converge to 1, as N increases, for d > 0.25. These
facts are consistent with Theorem 4.

Next if EX(n) is unknown, we replace Y (n) = a(n)X(n) by Y(n) - a(n)X(n) =
a(n)(X(n) — X(n)) and calculate the empirical variances as in Table 5, where X(n) fol-
low fractional ARIMA(0,d,0) processes and EX(n) = 0. The values in '['able 5 and the
corresponding values in Table 6 are almost similar for d < 0.25. On the other hand, the

differences between the values in Table 5 and those in Table 6 are large as d increase. But

the ratios mostly converge to 1, as N increases, for d > 0.25 as well as in Table 5. These
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facts are consistent with the things described in Section 6.

Next we listed the asymptotic variances for a fractional ARIMA(0,d,0) in Table 7
to compare the case of mean known with the case of mean unknown in further details.
Here we calculate the empirical variances of '\/ﬁ(ﬁp[)}{(l) - pror(1)), \/K"—(ﬁgs’r(]) -
psst(1)), and VN(pr(1) = pr(1)) for d = 0.10,0.20, /N/log N{prpr(1) = prpr(1)),
VN[log N(psst(1)=pssr(1)), and /N Tog N(pr(1)~pr(1)) for d = 0.25, N'=2(pppp(1)-
prpr(1)), N'7¥ (pser(1) ~ pasr(1)), and N'"24(jpr(1) — pp(1)) for d = 0.30,0.40,0.49,
where pppr(1), psst(1), and pp(1) are sample means. For each d, the case of mean
known is on upper line. the case of mean unknown on lower line in Table 7. When d is
simall, the difference between the case of mean known and the case of mean unknown is
small. Especially, the difference disappears as N is large. It supports the facts indicated
by (47) and (48) in Section 6. On the other hand, when d is large — the spectral density
is not square integrable, the difference between the case of mean known and the case of
mean unknown is large. The reason is that the asymptotic distributions are different as
the relations (49) and (50) showed. But the empirical variances under complete sampling
and the other ones are nearly equal. Especially, whether missing observation exist or not,
all the values are become the same ones as N increase. The experiments support the fact
that the existence of missing observations have no influence on the asymptotic variances
when the spectral density is not square integrable and N is sufficiently large. It has also
already been shown in Remark 2 (i) and at the last paragraph in Section 6.

Finally we assume that e(n) are non-Gaussian random variables. First {e(n)} is a

sequence of i.2.d. random variables which follow a uniform distribution; the probability
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density function is assumed to be

o
plz) = :2"\7:;1(—\/57 V3),

where /(+) is an indicator function. The mean is 0, the variance is 1, and the fourth-order
cumulant # is -1.2. Secondly we also assume that {¢(n)} is a sequence of i.i.d. random
variables which follow a t-distribution. Let £, be a random variable of t-distribution with
freedom v and e(n) \/7-—?‘11,,. The 4th-order moment of ¢, exist if v > 4 holds. We there-
fore suppose v = 5. The mean of ¢(n) is 0, the variance is 1, and & is 17?'5; = 6. In Table
8 as well as in Table 7, we give empirical variances of the case of non-Gaussian. As d is

large, the values become similar to those in Table 7. In other words it is assured that

non-Gaussianity does not have a serious influence on the limiting distributions.
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