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Abstract

The situation in which a decision maker is confronted with decision making
problems infinitely many times is considered. She does nof know the state-dependent
stochastic payoffs, and learns from past experiences according to some adaptive
learning rule. She is motivated by the maximization of the subjective expected payoff,
and never experiments with actions. We show that the decision maker comes to choose
only one action in the long run, irrespective of which states she anticipates are likely to
occur. This result holds even though she can almost perfectly monitor the true state. We
give a characterization and argue that the action chosen in the long run may be
objectively maximin.

JEL Classification Numbers: D80, D81, D83.



1. Introduction

The situation in which a decision maker is confronted with decision making
problems infinitely many times is considered. The decision maker has little knowledge
about the relevant aspects of this repeated situation, and therefore, has to lean
inductively from past experiences according to some adaptive learning rule. The
decision maker is mainly motivated by the maximization of the subjective expected
payoff in a myopic way, and never experiments with any action which neither
maximizes the subjective expected payoff nor is equal to the action chosen in the
preceding period.

In the middle run, the decision maker may frequently change the choices of action.
At the end of every period, the decision maker observes some signal which has
information as to which state of the world has actually occurred. The payoff obtained in
this period relies, not only on the choice of action, but also on the state of the world.
Hence, the decision maker positively learns to evaluate the probability of occurrence of
the informative signal, and then learns to evaluate the probability of occurrence of the
state of the world. Especially in the non-stationary situation, she may frequently change
her evaluations as to which signals are likely to occur, and therefore, the action
maximizing the subjective expected payoff may change as time goes on.

This paper, however, will propose the opposite scenario in the long run: That is, the
decision maker becomes gradually insensible to the change of her subjective evaluation
as to which states are likely to occur, and eventually comes to choose only one action
forever.

We assume that the decision maker does not know how the payoff depends on the
state of the world, and therefore, has to learn, not only the probability of observation of
the signal, but also the state-dependent payoff structure. With this assumption, the
decision maker comes to reach the following rigid misperception: That is, the decision
maker comes to believe incorrectly that there exists an action which always maximizes
her subjective expected payoff irrespective of which states she anticipates are likely to
occur. Hence, the decision maker comes to stop choosing the other actions, and stop
gathering information relevant to the payoffs for these actions. Of particular importance
is that this long run rigidity holds even though the decision maker can, not perfectly, but
almost perfectly, monitor the state of the world.

In the literature of dynamic decision making problems, Bayesian models called the
multi-armed bandit models have long been regarded as being standard, where the
decision maker updates her probability belief according to the Bayes rule (Rothschild



(1974), Gittins (1989)). Bayesian models have also been applied to the situation in
which the decision maker has little objective knowledge and updates her subjective
belief (Savage (1954), Kalai and Lehrer (1995)). Despite its mathematical tractability,
the application of Bayesian models to choice under uncertainty is criticized because the
underlying assumption that the decision maker is ideally rational is inappropriate
(Simon (1955, 1976), Binmore (1987, 1988), Dekel and Gul (1996), Matsushima
(1997a)).

An alternative approach to Bayesian models in game theory is the study of adaptive
learning (Brown (1951), Marimon (1997), Fudenberg and Tirole (1997)), where a
player may not be fully rational, may not be well-informed, and learns inductively from
past experiences about how the opponents will play according to a well-specified
learning rule. Most relevant works assume either that a player has the complete
knowledge about her own payoff function, or, in an evolutionary context, that a player
can observe the other player’s choices of action and their resultant payoffs. In contrast
with these works, this paper assumes that the decision maker does not know her own
payoff function, and also assumes that she can not observe the other decision maker’s
choices of action and their resultant payoffs.

In some works relevant to adaptive learning called the study of stimulus-response
learning, the decision maker experiments with multiple actions, i.e., she plays a totally
mixed action according to the suggestions of randomly selected stimuli (Cross (1983),
Borgers and Sarin (1996)). In contrast with these works, this paper assumes that in
every period the decision maker never experiments with any action which neither
maximizes the subjective expected payoff nor is equal to the action chosen in the
preceding period.

Most of the works relevant to adaptive learning have studied the convergence to
the rational choice of the objective best response, with the constraints of limited prior
knowledge and bounded rationality. This paper, however, investigates the possibility of
permanent dissonance between the subjective evaluations and the objective structure. In
the cognitive-dissonance literature of psychology, the tendency of people in a laboratory
to manipulate subjective belief by avoiding unappealing information has long been
discussed (Cotton (1985)). Recently, the possibility of the decision maker’s
misperception induced by the weak incentive to gather unbiased information becomes a
growing concern among economists (Akerlof and Dickens (1982), Rabin (1995),
Carrillo and Mariotti (1997)).

We also characterizes which actions the decision maker comes to choose in the long
run. We will show that, with positive probability, the decision maker comes to choose



only an action, if and only if there exists no other action whose objective minimal
payoff among possible signals and whose payoff eveluation in the initial period for
some signal are more than the objective minimal payoff for this action. Especially, we
will give a necessary and sufficient condition under which the objective maximin action,
which maximizes the objective minimal payoff among possible actions, is the unique
action which the decision maker comes to choose in the long run. That is, the decision
maker comes to choose only the objective maximin action, if and only if there exists at
least one signal for which the payoff evaluation for this action in the initial period is
larger than the objective minimal payoff for any other action.

Readers may be reminded of one of the classical decision criteria of rationality
under uncertainty called “the maximin criterion”, according to which the decision
maker by intention chooses the maximin action (Luce and Raiffa (1957), Simon (1955)).
We must note that the decision maker in this paper does not accept this maximin
criterion. What this paper says is that the action which the decision maker chooses by
maximizing the subjective expected payoff happens to be objectively maximin.

After completing the previous version of this paper (Matsushima (1997)), I have
become aware of the work by Sarin and Vahid (1997), which has independently showed
the similar maximin property. That is, Sarin and Vahid showed, by investigating a
different class of learning rules, that the decision maker comes to choose only the
objective maximin action among the actions which she has ever chosen. Though points
of departure are similar, [ focus on different issues and the differences from their work
might be even more important than the similarities. In particular, Sarin and Vahid
assumed that the decision maker can not observe any signal relevant to the state of the
world and never evaluates the probability of occurrence of the states of the world. In
contrast with their work, one of the main theorem of this paper is that the rigidity of the
decision maker’s choice of action holds true even though she can almost perfectly
monitor the states of the world.

Throughout this paper, we assume that the decision maker is myopic. Needless to
say, this assumption is restrictive. Most papers in the Bayesian study of bandit models
have assumed in fact that the decision maker maximizes the discounted sum of
expected future payoffs with positive discount factor. I have not examined in this paper,
but 1 have a conjecture that the tendency of the decision maker to misperceive the
situations is robust even though we allow the decision maker to behave more patiently.

The organization of this paper is as follows. Section 2 gives an example which
explains the intuition about the long run rigidity. It is shown that the decision maker
succeeds to choose the objective best response in the perfect monitoring case, whereas



she fails to do so in the imperfect monitoring case. Section 3 gives the formal model,
several assumptions, and one of the main theorem (Theorem 1) which says that the
decision maker comes to choose only one action in the long run.

Section 4 characterizes the actions chosen in the long run (Proposition 2). Section 4
also gives a necessary and sufficient condition under which the decision maker comes
to choose only the objective maximin action in the long run (Theorem 5).

Assumption 3 presented in Section 3 is the driving force for our results, which says
that whenever the decision maker choose an action then she never get information
relevant to the payoffs for the other actions. Section 5 weakens Assumption 3 and
discuss the robustness of the rigidity of the decision maker’s choices.

Section 6 presents an algorithm to determine the action which the decision maker
comes to choose in the long run, where we assume that, in the initial period, the
decision maker has the state-independent payoff evaluations and maximizes the
subjective expected payoff.

Section 7 gives several discussions. Subsection 7.1 compares different signal
structures. Subsection 7.2 gives a remark on the effect of the change of the minimal
payoff vector. Finally, Subsection 7.3 gives a concluding remark.



2. An Example

Consider an entrepreneur (a decision maker) who chooses between the uncertain
action and the safe action infinitely many times. There are two possible states of the

world, i.e., state “boom” and state “recession”. In every period, state “boom” occurs with
positive probability p >0, whereas state “recession” occurs with positive probability

1- p> 0. If the entrepreneur chooses the uncertain action and state “boom” occurs, she
obtains 100 dollars. If she chooses the uncertain action and state “recession” occurs, she
loses 100 dollars. If she chooses the safe action, she obtains 0 dollar, irrespective of
which state actually occurs (See Figure 1).

[Figure 1]

At the end of every period ¢, the entrepreneur can not observe the realization of
state of the world w(¢) € {boom, recession} , but instead can observe the realization of

some random signal ¢(t) € {B, R}. If state “boom” occurs, the entrepreneur observes
signal “B” with probability 1-£>0 and signal “R” with probability £20. If state
“recession” occurs, she observes signal “B” with probability & and signal “R” with
probability 1- & (See Figure 2).

[Figure 2]

The entrepreneur a priori knows that the state-independent payoft for the safe action
is zero. The entrepreneur does not know the stochastic payoffs for the uncertain action.
She also does not know this signal structure.

She learns inductively from the past experiences: In every period ¢, the
entrepreneur evaluates the payoff for state “boom” by v?(¢) € R, and evaluates the

payoff for state “recession” by v*)(¢) e R. She evaluates the probability for signal “B”



by &(¢) €[0,1]. In every period > 1, the entrepreneur evaluates the payoffs and the
probability by

v(t-1) if she chooses the uncertain action in period
_ t—1land t—1)= 9,
v -1) otherwise,
and
+(Q-60)5(t-1) if p1-1)=5,
o) =

(1-)o(t-1) otherwise,
respectively, where ¢ e{B,R} and 6 €(0,1). When the entreprencur has chosen the
uncertain action and observed signal ¢ in the last period, she anticipates in this period
that, by choosing the uncertain action and observing the same signal ¢, she obtains the

same payoff as the one which she has obtained in the last period. Otherwise, the

subjective payoff evaluation is unchanged. We assume that 6 is so close to 1 that for
every large enough ¢, &(¢) is in the neighborhood of the true probability for signal “B”,

ie, p(1-&)+(1- p)e. For convenience of the arguments in this section, we assume
that v®(1)>100 and v*(1)>100.

In every period 1 , the entrepreneur chooses the same action as the one chosen in the
last period with positive probability 7>0, and also chooses the action which
maximizes her subjective expected payoff with positive probability 1-7>n. We must
note that the safe action maximizes her subjective expected payoff if

SEWP(H+(A- 8 P()<0,
whereas the uncertain action maximizes it if

S (@) + (1 -8OW () 20.
Of particular importance is that the entrepreneur never experiments with the action
which neither maximizes her subjective expected payoff nor is the same as the action
chosen in the last period.

First, consider the case that £=0. In this case, the entrepreneur can perfectly
monitor what the true state of the world is, that is, she observes signal “B” if and only if
state “boom” occurs. By choosing the uncertain action and observing signal “B” in a
period ¢, the entrepreneur certainly obtains 100 dollars and makes v®(z +1) equal to
100. By choosing the uncertain action and observing signal “R”, she certainly loses 100
dollars and makes v®(¢+1) equal to -100. Moreover, in the long run, the probability
evaluation &(¢) for signal “B” is in the neighborhood of the true probability p for state

“boom”, because ¢ =0 and @ is close enough to unity. Hence, the entrepreneur comes



to choose only the objective best response, that is, comes to choose only the safe action
if p< y , and choose only the uncertain action if p > % :

Our main concern is the case that &> 0. In this case, the entrepreneur can not
perfectly monitor the state of the world. We must note that the entrepreneur can not
perfectly, but almost perfectly, monitor the state of the world if & is close enough to
zero. This imperfect monitoring case substantially differs from the perfect monitoring
case: The entreprencur makes both v*(r) and v™(r) equal to -100, and stops
choosing the uncertain action forever, whether it is the objective best response or not
(See Figure 3).

[Figure 3]

We give the brief explanation below. For every ¢ 21, consider the event that:
1) the entrepreneur chooses the uncertain action, observes signal “B”, and obtains
payoff -100 in period ¢ +1,

i1) she chooses the uncertain action, observes signal “R”, and obtains payoff -100
inperiod f+2,

and

1i1) she chooses the safe action in period ¢+3.

We must note that if this event occurs, it holds that v*(r+3)=-100 and
v®(¢ +3)=-100 . Hence, the entrepreneur regards the safe action as the subjective

best response, and therefore, mever chooses the uncertain action. Because the
entrepreneur never experiments with the uncertain action, she never changes its payoff
evaluations. Given that the entrepreneur has chosen the uncertain action in period 7,
this event occurs in period £ +3 at least with positive probability
(- pYe-e(1-m)>0.

Suppose that the entrepreneur chooses the uncertain action infinitely many times. Then,
this event almost surely occurs at least at once within the finite time horizon. This is a
contradiction, because once this event occurs she never chooses the uncertain action.
Hence, she chooses the uncertain action at most finitely many times, and therefore, she

eventually comes to stop choosing it.
We can also check that the entrepreneur comes to make both v*'(¢) and v*(1)



equal to —100: Suppose that the entrepreneur stops choosing the uncertain action but
vB(1)# -100, that is, either v'®(£)=v*®(1)>100 or v*?(r)=100. Choose &>0

such that

P+ 1=y O(H)>0,
and choose a positive integer s’ large enough to satisfy that

(1-6) <&,
For every period ¢ >1, consider the event that the entreprencur observes signal “B”
from period ¢ +1 through period ¢+s'. If this event occurs, the subjective expected
payoff for the uncertain action in period +s’+1 becomes more than zero. Since this
event occurs with positive probability {p(1-£)+(1- p)e}” >0 in every period, it
occurs at least at once within the finite time horizon. This is a contradiction, because

once this event occurs the entrepreneur has incentive to choose the uncertain action
again. Hence, it must hold that v*)(+)=-100 in the long run. Similarly we can also

check that v'*(¢) = —100 in the long run.

From these observations, we have concluded that v*'(r)=v®(¢£)=-100 and the
entrepreneur comes to choose only the safe action in the long run, whether it is the
objective best response or not.

The above example is unsatisfactory for the following reasons. First, we assumed
that the probability that state “boom” occurs, p, is constant. It is more realistic that it
depends on time and history, and therefore, which action is the objective best response
crucially depends on time and history.

Second, we assumed that there exists the unique uncertain action. It is more realistic
that there are multiple uncertain actions the payoffs for which are a priori unknown to
the decision maker.

Third, we confined our attention to a very limited class of learning procedures. It
might be much more satisfactory if we can derive general results in a wider class of
learning procedures.

Fourth, it is needless to say that the assumption that the payoff evaluations for the
uncertain action in the initial period are more than 100, is very restrictive.

These drawbacks urges us to investigate the more general models in the next
sections.
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3. Assumptions and the Basic Theorem

A long-run single-person decision making problem D = (A4,Q,®,H,u", p",q") is
defined as follows: A is the finite set of actions. Q is the finite set of states. @ is the

finite set of signals. A decision maker chooses actions among A infinitely many times.
In each period ¢2>1, the decision maker chooses an action a(f)e€ 4 and a state

w(r) €Q is realized. The decision maker can rot directly observe this realized state
@(t). At the end of period ¢, the decision maker obtains a payoff v(r)e R and
observes the realization of a random signal 1) e ®.

Let h° be the null history and H® ={r"}. Let u"):AxQ— R be the payoff
function in period 1. Recursively, forevery ¢ 21, let 4’ = (a(r),0(7),v(z), 1)), be
a history up to period t ,and let u": 4 x Q — R be the payoff function in period 7 +1
provided that /4’ is realized, where v(7)= w(a(zr),w(7)) forallz €{l,...,1}. Let H' be

the set of all histories 4" up to period ¢, and H = UH'. The payoff function »’ may
t=0

be history-dependent. In every period ¢, the decision maker obtains the payoff
v(t) = u” (a(t),®(t)) according to this history-dependent payoff function .

Let p"™" = p™ D (|a(t):Q— R, be a probability function on Q, and let
g = ¢ (|a(r),w(t)):® -> R, be a probability function on ®. When A" was
realized and the decision maker chose a(f)e 4 in period ¢, a state w(f) € is
realized with probability p* (w(1)la(1)), and the decision maker observes a signal
#1)e® with probability ¢ (k1)|a(r),w(r)). We must note that both of these

(h'"

probability functions, p* and ¢, may be history-dependent.

A decision maker is modeled by a learning rule (d,T'). d:H — A(A) is a decision
rule, where A(A) is the set of mixed actions. For every ¢>1, every A e H"™' and
every a € A, the decision maker chooses a with probability d(A~')(a). We must note
that d(h'") is independent of (w())", because the decision maker can not observe
the true states. I' =(T'“),_, is an evaluation rule, where TV = ((v\**?),,6“) is an
evaluation rule for action a, v\*Y:H — R is a payoff evaluation rule for (a,d),
8 H — A(®) is a probability evaluation rule for action a,and A(®) is the set of
probability functions on @ . The decision maker anticipates that she obtains the payoff,
or the expected payoff, v'*®(#'"), in period ¢, when A’ was realized, she chooses
action a(¢) = a, and she observes signal ¢(¢) = ¢. The decision maker also anticipates
that she observes signal ¢(¢) = ¢ with probability 5(4"")(¢) in period ¢, when A"
was realized and she chooses action a(t)=a. Forevery a € 4, every ¢ =1, and every

i1



h'™' e H'?, the subjective expected payoff is defined by
VO™ y= Y 8RN g O ().
ped

We assume that v“?(-) is bounded.

We present six assumptionson D and (d,I") as follows.

Assumption 1: Forevery ¢>1 andevery A e H',
d(h'" Ya(t-1))> 0,
[VOR Y2 VR forall o e A]=[d(hYa)> 0],
and
[a#a(t-1)and V(R <V (h) for some a' € 4]
=[d(h"" Ya)=0].

The first inequality in Assumption 1 implies that the decision maker maximizes the
subjective expected payoff with positive probability. The second inequality implies that
she maximizes the subjective expected payoff with positive probability. The third
inequality implies that she never experiments with any action which neither maximizes
the subjective expected payoff nor is the action chosen in the last period.

Assumption 2: Forevery ¢ >1,every h' e H',andevery (a,d) e Ax D,
y (k') 2 min [v(t), e (pt! )] whenever a(f)=a.

Assumption 2 implies that the decision maker never makes the payoff evaluations
for an action less than either the obtained payoff or the payoff evaluations in the
preceding period, provided that she has chosen this action.

Assumption 3: Forevery ¢>1,every &' e H' ,and every (a,4) c Ax D,

[(a(), §()) # (a, ) 1=> [P (h') = v (h)].

Assumption 3 implies that the payoff evaluation for an action and a signal is
influenced only by the decision maker's experiences when she actually choosing this
action and observing this signal. Assumption 3 plays the crucial role in deriving
Theorem 1 presented in this section. Later in Section 5, we will weaken Assumption 3.

Assumption 4: For every > 0, there exists a positive integer s~ such that for every
(a,v,§) e AxV x® every >s andevery 4" e H'if

12



(a(t),W(7), (1)) = (a,v,p) forall c=t-s",. .. ¢-1,
then
VOB =< u,

and
SN Y P)>1-u forall a’ € 4.

Assumption 4 says that if the decision maker has chosen action «, obtained payoff
v, and observed signal ¢ for a large number of periods, then she believes that, by

choosing action a, she almost certainly observes signal ¢ and obtains payoff v
approximately. Assumption 4 is satisfied if the decision maker always gives a fixed
positive weight to the current experience.

Assumption 5: For every a € A4, there exists a finite set of possible payoffs V(a)c R

such that forevery ¢2 0 andevery h' ¢ H',
veR v=u" a,w)forsomen eQ}=V(a).

M

Assumption 5 automatically holds if the payoff functions #"’ are independent of

time and history. Clearly, the example in Section 2 satisfies Assumption 5.

We define
v(a)=min V(a),

which is the minimal payoff for action a. We must note from Assumptions 2, 3 and 5
that forevery t=1,every A’ e H' andevery (a,¢) e Ax D,

v(a’¢)(ht ) > min [l)_(a), v(a,¢)(h0 )], (1)

which will be presented again as Assumption 9 in Section 5.

Assumption 6: There exists a positive real number &> 0 such that for every £ 21,
every i e H™' and every (@,4) eQ2x ®,

P (@la)> s,
4" (Hla.w)> ¢,
[d(h"" Ya)> 01 [d(h ™ Ya)>e]forall aed,

and
[V (h'Y~v(a')|> & forall aeA andall o’ #a.

The first two inequalities imply that the probability functions p* (@) and

q" (|a,w) have the full supports with uniform positive lower bounds. The third

13



inequalities imply that the positive probabilities on the choice of action have also the
uniform positive lower bound.

We must note that these inequalities automatically hold if this dynamic stochastic
process is described by a finite Markov chain. The fourth inequalities imply that the
payoff evaluation for an action never converges to the minimal payoff for another
action. We must note that the fourth inequalities and Assumption 4 imply that for every
aedandall o' #a,

v(a)# v(a"),
and
v@O(h'y#v(a') forall 20 andall A’ eH'.
Let the real number & > 0 in Assumption 6 be chosen close to zero.

Assumption 6 is required for simplicity of our arguments. The essence of the
theorem presented below will be unchanged even though Assumption 6 is dropped.

For every ¢’ >1 and every ¢>¢', a history up to period ¢, ' € H', is said to be
reachable from a history up to period ¢, A" e H" ,if forevery 7 e{t'+1,..,1},

d(h" Ya(r))>0.

The basic theorem in this paper is presented as follows.

Theorem 1: Suppose that Assumptions 1 through 6 hold. Then, for every & e(0,1],
there exists a positive integer s such that for every t 2 s, the following property holds
at least with probability 1- &: There exists a’ € A such that

d(h'Xa")=1,

VR 2 wa" Y- e>vOO(R') forall axa’ andall ¢ €D,
and for every t'>1 and every h' € H'" that is reachable from ',

d(h" Ya') =1,

VDR Y2 v(a )€,
and

VOB Y= v (B forall a#a” andall ¢e®.

Theorem 1 implies that, in the long run, the decision maker comes to choose only
one action a, never choose any other action, and never change the payoff evaluations
for any action other than action « , irrespective of which signals and payoffs she
experiences in the future. This long run rigidity of the decision maker’s choices and
payoff evaluations holds true even though the decision maker can almost perfectly
monitor the true state of the world. Since which action is the objective best response
crucially depends on the distributions of state of the world p™ (@|a), one gets from

14



Theorem 1 that the decision maker in general fails to choose the objective best response
in the long run.

Proof of Theorem 1: Let m =|®|, & =|4], and denote ®= {¢',...¢"} and
A={d',...,a* }. Let the real number x>0 in Assumption 4 be less than &. For every

t > 1, consider the event that:

1) from period ¢+1 through period ¢+, the decision maker chooses action
a = a(t), observes signal ¢' and obtains payoff v(a),

recursively, for every k €{l,...,k"} andevery me{l,..,m'},

2) from period z(k,m)+1 through period 7(k,m)+m's , the decision maker
chooses the action a which maximizes the subjective expected payoff in
period 7(k,m)+1 and obtains payoff v(a), where

tk,m)=t+5 +(k=1)(m)Ys" +(m-Dm's",

forevery m' ef{l,....m'},

3) from period r(k,m)+(m'—1)s’+1 through period z(k,m)+m's", the
decision maker observes signal ¢™" , where

G = F A mAm > m

and

4) in period 7(k” +11)+1, the decision maker chooses the action a which
maximizes the subjective expected payoff, obtains payoff v(a), and observes
signal ¢'.

Here s is the integer introduced in Assumption 4.

Assumption 4 says that for every me{l,..,m'}, every kefl,. k'}, every

m efl,....m},and for a=a(r(k,m)+m's"),

v(@) = <D < ya)+p.
Let 4" < A be the set of actions « such that
a=a(t') forsome ' e{l+s +1,.. (k" +11)}.
Let a” e 4" be the action such that
v(a')y>v(a) forall aed /{a’}.
Assumptions 1 and 3 say that if this event occurs, for every ¢ e®,
|y @O Ry y(g) <y forall aed,
and
VED(RTERDY cyg Y4y forall ag A
From the fourth inequalities in Assumption 6 and u < ¢, the last inequality means

YED(RTE Y y(g Yy g

15



Since we can choose x4 and & so close to zero that

va)+pu<v(@)-¢forall aed /{a’},
one gets that for every ¢ e® andevery a=a’,

v(a‘,¢)(hr(k‘+1,m1 )2 X(a‘) —e> v(a,m(hr(k‘n,lm ).
This, together with Assumption 1, implies that after this event occurs the decision
maker never chooses any action other than a” . Assumption 3 implies that the decision
maker never changes the payoff evaluations for any action other than a” . Assumption 2
implies that the decision maker never makes the payoff evaluations for action a” less
than v(a')- &. Moreover, Assumption 6 implies that in every period this event occurs
at least with positive probability £ <*} 50 and therefore, it is almost certain
that this event occurs at least at once within the finite time horizon. From these
observations, we have completed the proof of this theorem.

Q.E.D.
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4. Characterization

In this section, we characterizes the action «  presented in Theorem 1 which the
decision maker sticks to choose in the long run.

Proposition 2: Suppose that Assumptions 1 through 6 hold. Then, the action a ed
presented in Theorem 1 satisfies the following inequalities for a = a’,

v(a) > min I:}g(a'), max VO R° )] forall a' €A. (2)

Moreover, if an action a € 4 satisfies inequalities (2) and d(h’Ya)>0, then a" =a

holds with positive probability.

Proof: Suppose that a” does not satisfy inequalities (2), that is,
v(a' )< v(a) and v(a")<v“?(h’) for some a#a andsome ged.
This, together with inequalities (1), implies that for every ¢ >0 andevery h' e H',
VER(R) > wa'),
which is a contradiction because Assumption 1 implies that the decision maker chooses
a # o with positive probability. Hence, a’ must satisfy inequalities (2).
Next, suppose that a satisfies inequalities (2) and d(4’)(a)> 0. Consider the event
presented in the proof of Theorem 1 for ¢ =1 with a(1)=a. Since d(h°Ya)> &, this

3{5‘ *k“(m‘ )2 s +1

event occurs at least with positive probability & >0, and after period
2+s +k"(m s, action a = a satisfies the properties presented in Theorem 1.

Q.E.D.

Inequalities (2) say that there exists no action whose minimal payoff and whose
payoff evaluation in the initial period for some signal are more than the minimal payoff
for action a. Proposition 2 says that inequalities (2) are, in some sense, not only
necessary, but also sufficient. '

Let a € A be the maximin action in the sense that
wad)zv(a) forall ae4.
The maximin action maximizes the minimal payoff v(a) with respect to pure action
aeAd.' Since v(a)#v(a') for all a €A and all a'=a, the maximin action 4

! The definition of maximin action in this paper is different from the definition in the textbooks
for game theory. The latter is in terms of mixed action, whereas the former is in terms of pure

action.
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uniquely exists.
Lemma 3: Inequalities (2) for a = a always holds.

Proof: From the definition of maximin action, one gets that for every a € 4,

¥(@)2 v(a)> min [x(a), max v“*”(h")] .

Q.E.D.

From Proposition 2 and Lemma 3, one gets that whenever the learning rule assigns
the maximin action a positive probability in the initial period, i.e., d(h°)(a)> 0, then,
with positive probability, the decision maker comes to choose only the maximin action
d in the long run.

The main purpose of this section is to clarify a necessary and sufficient condition
under which the maximin action d is the unique action which the decision maker sticks
to choose in the long run.

Lemma 4: The maximin action @ is the unique action a which satisfies inequalities (2)
if and only if there exists ¢ € @ such that

V@R > v(a) forall a=+a. (3)

Proof: The proof of the “if” part is as follows. Inequalities (3) says that

min [g(&), max V@O (O )] >v(a) forall a=a,

which implies the violation of inequalities (2) for all @ # . Lemma 3 says that 4 is the
unique action a which satisfies inequalities (2).
Next, the proof of the “only if” part is as follows. Choose an action @ #d 50 as to
satisfy
v(@)zv(a') forall a'#a.

Suppose that inequalities (3) do not hold. Then,
w@)> v (h°) forall ped,

and therefore, one gets

v(d@) > min [y_(a'), max VP (R° )] forall a' € 4,

which is equivalent to inequalities (2) for ¢ =a .
Q.E.D.
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Inequalities (3) say that there exists at least one signal for which the payoff
evaluation for the maximin action in the initial period is larger than the minimal payoff
for any other action.

The main theorem of this section is presented as follows.

Theorem 5: Suppose that Assumptions 1 through 6 hold. If there exists ¢ € ® which
satisfies inequalities (3), then a" =& always holds. If there exists no such ¢ and an
action a # @ satisfies that d(h°)a)>0 and

vayzv(a') forall a' #a,

then a’ = a# a holds with positive probability.

Proof: The first part of this theorem is straightforward from Proposition 2, Lemma 3
and lemma 4.
We will prove the latter part of this theorem as follows. Since there exists no ¢

which satisfies inequalities (3), the proof of the “only if” part of Lemma 4 says that the
action a # 4 suchthat v(a)>v(a") forall a' = a satisfies inequalities (2). Hence, the
latter part of this theorem is straightforward from the latter part of Proposition 2.

Q.E.D.

Theorem 5 implies that the decision maker comes to choose only the maximin
action a in the long run, if and only if inequalities (3) holds, that is, if and only if there
exists at least one signal for which the payoff evaluation for the maximin action 4 in
the initial period is larger than the minimal payoff for any action other than 4.
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5. Some Generalization

Assumption 3, which is one of the most crucial assumption for deriving these results,
may be restrictive in a class of situations. A real decision maker may learn something
relevant to an action when she chooses any other action. In this section, we will weaken
Assumption 3 and present necessary and sufficient conditions under which these
properties hold.

The following two assumptions are weaker than Assumption 3.

Assumption 7: Forevery 1 >1,every h' e H',and every (a,4) e Ax D,
v (h') < max [v(t), VO (i )] whenever a = a(t) and ¢ # #(7).

Assumption 8: For every v >1,every r27+1,every h' e H', and every a €4, if
a(t)=a, a(t)=a,and a(r')+#a for ' =7+1,...,1 -1, then
VR <V (T forall ged.

Assumption 7 excludes the case in which the decision maker makes the payoff
evaluation for an action and a signal larger than both the obtained payoff and the payoff
evaluation in the preceding period, provided that she has chosen this action and
observed this signal. Assumption 8 implies that the payoff evaluations for an action
when the decision maker starts choosing it is always less than or equal to the
evaluations in the preceding period in which she has just stopped choosing it.

Theorem 1 in Section 3 explained the possibility that the decision maker comes to
choose only one action in the long run. The following proposition says that the property
in Theorem 1 still holds even if we replace Assumption 3 with weaker assumptions
such as Assumptions 7 and 8.

Proposition 6: Suppose that Assumptions 1, 2, and 4 through 8 hold. Then, for every

& (0,11, there exists a positive integer s such that for every t2s, the following

property holds at least with probability 1— &: There exists a’ e A such that
d(h'Ya")=1,

and for every t' >t andevery h" e H' that is reachable from h',
d(h" Ya")=1.

Proof: Let the real number 4 >0 in Assumption 4 be less than &. For every 121,

consider the event presented in the proof of Theorem 1. Assumption 4 says that for
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every me{l,...,m}, every kef{l. k), every mefl,.,m}, and for
a=a(t(k,m)+m's’),

m+m'

v(@)= p< VDAY < ya)+ .
Assumptions 1, 7 and 8 say that if this event occurs, for every ¢ e @,
e RHOY ~ y(a)| < p forall aed,
and
vy < wa" )+ p forall agd,
where 4" and o € A" are the set of actions and the action defined in the proof of
Theorem 1, and A(a) €{l,...,7(k" +1,1)+1} is the last period in which the decision

maker has chosen action a.Let A(a)=0 if a(r)#a forall zefl,..., (k" +L)+1}.

We can check that the decision maker never chooses any action other than a” in the
following way: If this is not true, then there exist an action a#a and a period
> (k" +11)+1suchthat @ = a(r) and a(7')=a #a forall ' e{da)+1,...,t~1}.
Assumption 1 says that this action a maximizes the subjective expected payoff in
period 7. But this is a contradiction, because Assumption 8 says that for every ¢ e ®,

VOB <V (RH Ny < v(a") - €,
whereas Assumption 2 says that for every ¢ €@,
VIR 2@ ) ~¢.

Similarly to the proof of Theorem 1, one gets that it is almost certain that this event
occurs at once within the finite time horizon. Hence, we have completed the proof of
this proposition.

Q.E.D.

We also introduce another assumption which automatically holds if Assumptions 2,
3, and S hold.

Assumption 9: For every ¢>1 and every A’ € H', inequalities (1) hold.

Proposition 2 in Section 4 characterized the class of actions which the decision
maker sticks to choose in the long run. The following proposition says that the
characterization in Proposition 2 still holds even if we replace Assumption 3 with
. weaker assumptions such as Assumptions 7, 8 and 9.

Proposition 7: Suppose that Assumptions 1, 2, and 4 through 9 hold. Then, the action

a’ € A presented in Proposition 6 satisfies inequalities (2) for a =a’. Moreover, if an
action a € A satisfies inequalities (2) and d(h®)a)>0, then a =a holds with
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positive probability.

Proof: The former part of this proposition is proved in the same way as the proof of the
former part of Proposition 2.

Next, suppose that a satisfies inequalities (2) and d(h°)(a)> 0. Consider the event
presented in the proof of Proposition 6 for ¢ =1 with a(1)=a. Since d(h®Ya)> &,

s K (m P s+

this event occurs at least with positive probability & >0, and after period
248 +k"(m)?s", a =a satisfies the properties presented in Proposition 5.

Q.E.D.

Theorem 5 in Section 4 explained the possibility that the decision maker comes to
choose only the unique maximin action in the long run. The following proposition says
that the property presented in Theorem S still holds even if we replace Assumption 3
with weaker assumptions such as Assumptions 7, 8 and 9.

Proposition 8: Suppose that Assumptions 1, 2, and 4 through 9 hold. If there exists
¢ € ® such that inequalities (3) hold, then o = & always holds. If there exists no such

¢ and an action a # a satisfies that d(h°)a)>0 and
v(a)zv(a") forall a'+#a,

then a’ = a# a holds with positive probability.

Proof: The first part of this proposition is straightforward from Proposition 7, Lemma 3
and lemma 4.

We will prove the latter part of this proposition as follows. Since there exists no ¢
which satisfies inequalities (3), the proof of the “only if” part of Lemma 4 says that the
action a # d suchthat v(a)=v(a’) forall a’ #a satisfies inequalities (2). Hence, the
latter part of this proposition is straightforward from the latter part of Proposition 7.

Q.E.D.

In spite of the above arguments on the robustness of our results presented in the
previous sections, we must admit that Assumption 8 is still restrictive when the
observed signal ¢ includes information as to the other decision makers’ choices of
action and resultant payoffs in similar decision making problems. If the decision maker
observed the fact that the other decision makers have chosen an action other than action
a’" and obtained high payoffs, it might be reasonable that she increases the payoff
evaluations for this action and choose it again. Apparently this contradicts the
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requirement of Assumption 8. A related point will be also discussed in the companion
paper Matsushima (1998a).
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6. State-Independent Initial Evaluations

In this section, by requiring additional assumptions on learning rules, we give an
algorithm to determine the action a which the decision maker comes to choose in the
long run .

At the very beginning of the long-run decision making problem, the decision maker
may have serious lack of reasons why and how her payoff evaluations condition on
different signals. In this case it might be reasonable for the decision maker to start with
the state-independent payoff evaluations. Hence, we assume:

Assumption 10: Forevery a e 4,
v (R®)= v (h) forall ¢ e® andall ¢ e®P.

Needless to say, a special case which satisfies Assumption 10 is the case in which
the decision maker can observe no signal, i.e., the set of signals ® isa singleton.’
On Assumption 10, inequalities (2) is equivalent to the following inequalities:
v(a) = min [g(a’), V"’“’(a')] forall a' e A. 4)
We denote 4 ={q,,...,a,}, where k=|4|, and
VN a) >V (ay)> > V5)(a,).
Forevery g €{l,...,k}, the action a, is the g —th subjective best response in the initial
period. Moreover, we assume that the decision maker chooses the action which
maximizes the subjective expected payoff in the initial period with certainty. That is,

Assumption 11: d(A°)a,)=1.

We will specify an action, action & , according to the following algorithm. For every
g €{l,...,k} , we define
4,={a,,....,a,},
and let a'” e 4, be the maximin action among 4, i.e.,
v(a?)2 v(a) forall aed,’
Let ¢ €{l,...,k} be the minimal integer ¢ such that

wWa@?)2v*™a,,).

2 This is the case that Sarin and Vahid (1997) investigated.
3 We must note that a‘? may not be equal to a,.
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This inequality means that the maximin payoff among 4, is more than or equal to the

subjective expected payoff for action a_,, in the initial period. Finally, we specify
action a by
as= a(&)_
The following proposition says that the action & specified above is the unique
action which the decision maker comes to choose in the long run, provided that the
decision maker has the state-independent payoff evaluations and maximizes the

subjective expected payoff in the initial period with certainty.

Proposition 9: Suppose that Assumptions 1 through 6, 10 and 11 hold. Then,
a=a.
Proof: Let ' e{l,...,k} be the integer such that " =a_ Let q” {l,....k} be the
integer such that @ = a_, All we have to do is to show q =q".
Suppose that ¢~ > g . Then, from inequalities (1) and the definition of a,
V@) z min [w(@), V" (@)1> v " (a,).
Assumption 11 says that the decision maker never starts to choose action «a . in any
period ¢ aslongas
V¥ e ) =" (a,)< V" (@),

but this is a contradiction.
Suppose that ¢” <q' <g . Since a is the maximin action among A also, one gets

from the definitions of ¢ that
w@y<v"ia,).

Since V “‘o’(aq.) <V ")), one gets
v(a,) < W(@)=min [x@),V (@),

which contradicts inequalities (4).
Finally, suppose that g° < ¢" . The definition of § says that

W@y <V a,) =V @),

which, together with the definition of 7", says that
v(a,) S ua") < V@),

Moreover, since a'?” = & , one gets
wa,)<ud).

These inequalities implies
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¥(a ) < min [p(a®), V) (a)],

which contradicts inequalities (4).
Q.E.D.
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7. Discussions

In this section, we present several points which have not been discussed yet in the
previous sections.

7.1. Change of the Minimal Payoff Vector

We must admit that Assumption 5, which says that for every action a € 4 there
exists the minimal payoff v(a) common to all histories, may be restrictive: In general,
the minimal payoff for an action a with respect to the state of the world,
min #")(a,w), may be history-dependent, and therefore, the maximin action may be

history-dependent. Unfortunately, we have not examined a generalization in this
direction, and it seems to be beyond the purpose of this paper.

A relevant question is whether the decision maker in the stationary position will
change the choice of action again, if the vector of the minimal payoffs suddenly
changes. Suppose that the decision maker have already reached the stationary position
described in Theorem 1, and suppose that the long run single-person decision making
problem suddenly changes, and its constant minimal payoff vector is changed from
(v(a)) to (¥'(a)). Then, we can easily check from Theorem 1 that the decision maker
will change the choice of action from action @ to any other action, only if the minimal
payoff for action a’ decreases, that is, only if

vi(a")<ua).
Otherwise, the decision maker never stops choosing action a ', no matter how
drastically the minimal payoffs for the other actions are increased.

7.2. Comparison of Signal Structures

We have shown in this paper that the rigidity of choice of action in the long run
holds true irrespective of the degree to which the random signal is informative about the
true state of the world. However, the set of possible actions which the decision maker
comes to choose in the long run, i.¢., the set of all actions which satisty inequalities (2)
in Proposition 2, relies significantly on whether the decision maker can observe the
signal or not. Suppose that the decision maker can not observe this signal. Then,
inequalities (2), 1.e., the necessary and sufficient condition for the actions chosen in the
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long run, is replaced by the following inequalities:

v(a) = min [g(a'), V("O)(a')] forall a' € A. (5)
Because
W) 1 (@$)(p0
V" (a )Sr?gv (h)y,
that 1s,

min [y(a), ¥*"'(a)] < min [z(a"), max v‘“’*"(h“)],

one gets that inequalities (5) are weaker than inequalities (2), Hence, the set of possible
actions chosen in the long run in the case that the decision maker can not observe the
signal, is bigger than, or equal to, the one in the case that she can observe it.

7.3. Further Remarks

The analysis of this paper can be applied to the game theory where the set of states
is interpreted as the set of the opponent’s actions and the decision maker at best
imperfectly monitors the opponent's choice of action. The companion paper
Matsushima (1988a) investigated the game-theoretic situation in which an individual is
randomly matched with an opponent in every period and plays a symmetric component
game together the payoff function of which is unknown. Matsushima (1988a) showed in
a wide class of component games that the individual comes to believe incorrectly that
there exists the strictly dominant action vector which is uniquely Pareto-efficient, and
therefore, she comes to believe that there is no substantial strategic conflict with respect
to fairness as well as efficiency.

Throughout this paper, we have assumed that at the beginning of every period, the
decision maker never notices any characteristic of the current situation which
distinguishes from the past situations. If the decision maker can notice such a
characteristic, then she may regard the current situation as being exceptionally fit to
choose any action different form action a”, even though its payoff evaluations are much
lower than the other actions’. This might put the decision maker’s experimentation with
multiple actions consistent with the maximization hypothesis of the subjective expected
payoffs. The other companion paper Matsushima (1988b) investigated the repeated
situation in which the decision maker is infinitely many times confronted with decision
making problems which are contextually different each other, and learns from past
experiences according to a more complex learning rule based on “induction by analogy”.
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Matsushima (1998b) characterized Markovian learning rules according to which the
decision maker succeeds to choose the objective best response in the long run.
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Figure 1: The Stochastic Payoff Structure
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