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One of the surprising decision-theoretic results Charles Stein discovered is the inadmis-
sibility of the uniformly minimum variance unbiased estimator(UMVUE) of the variance
of a normal distribution with an unknown mean. Some methods for deriving estimators
better than the UMVUE were given by Stein, Brown, Brewster and Zidek. Recently
Kubokawa established a novel approach, called the IERD method, by use of which one
gets a unified class of improved estimators including their previous procedures. This pa-
per gives a review for a series of these decision-theoretical developments as well as surveys
the study of the variance-estimation problem from various aspects. Related to this issue,
the paper enumerates several topics with the situations where the usual plain estimators
are required to be shrunken or modified, and gives reasonable procedures improving the
usual ones through the IERD method.
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1 Introduction

The decision theory of the parametric point estimation in a small sample has been remarkably
developed since Charles Stein established breakthroughs in some problems. One of them is the
surprising, important and seminal work given by Stein(1956), called the Stein phenomenon (or
Stein problem), that the maximum likelihood estimator(MLE) is inadmissible and is improved
on by a shrinkage rule in simultaneous estimation of the mean vector of a multivariate normal
distribution when the dimension of the mean is larger than or equal to three. Stein(1973)
developed an integration-by-parts approach, referred to as the Stein identity, which was very
powerful and useful for deriving improved estimators, so that it brought about a huge amount
of benefits and developments in this field. For the good accounts, see Judge and Bock(1978),
Berger(1985), Brandwein and Strawderman(1990), Robert(1994) and Rukhin(1995). Also see
Kubokawa(1997a) for an extensive survey including recent developments. The Stein identity
produced the Haff identity in a Wishart distribution, which caused substantial development of
research in estimation of a covariance matrix. This issue also stems from James and Stein(1961)
having proved non-minimaxity and inadmissibility of the UMV UE of the covariance matrix.



The other topic of Stein’s breakthroughs in point estimation is the amazing inadmissibility
result discovered by Stein(1964), that the usual UMVUE of the variance of the normal distri-
bution with an unknown mean is improved on by a shrinkage (modified) estimator by using the
information contained in the sample mean. The proposed shrinkage estimator is a truncated
procedure, and is still inadmissible since it cannot be expressed as a generalized Bayes rule.
Brewster and Zidek(1974) developed, on the basis of Brown(1968)’s method, a smooth estima-
tor better than the unbiased one, and showed the generalized Bayesness of it. The admissibility
was established by Proskin(1985). Both of the Stein and Brewster-Zidek methods have been
applied to provide improved confidence intervals of the variance and to get superior procedures
in estimation of the scale parameter of an exponential distribution. Recently Kubokawa(1994a)
and Takeuchi(1991) gave a novel technique for deriving improved procedures, which is based
on an idea of expressing the difference of the risk functions via an integral, and we call it the
TIERD (Integral Expression of Risk Difference) method. The IERD method unifies the above

two methods and gives a class of better procedures.

The major purpose of this paper is to survey a series of the decision-theoretical results con-
cerning the above issue of estimating the variance from various aspects. This review is given in
Section 2, including the Stein method, the Brown-Brewster-Zidek method, the IERD method,
extensions to general distributions, applications to the interval estimation, extensions to es-
timation of multidimensional parameters and other methods proposed by Strawderman(1974)
and Shinozaki(1995). Also the related problem about estimation of ratio of variances is dealt
with and double shrinkage improved procedures are given.

Decision-theoretic studies on the shrinkage procedures have produced a large amount of
beautiful and wonderful benefits in the above mentioned problems of Stein’s breakthroughs.
Beyond these familiar issues, we are really faced with lots of situations where the usual plain
estimators are required to be shrunken or modified. In such situations, it is of importance to
clarify the extent of how much usual procedures should be shrunken or modified. Empirical
Bayes and hierarchical Bayes rules, cross-validation (or leaving-one-out), bootstrap and penal-
ized methods and Wavelet analysis are standard techniques useful for specifying appropriate
extents of shrinkage or modification. In a decision-theoretic sense, it may be reasonable to
provide the extent of shrinkage such that the shrinkage estimator has a uniformly smaller risk
than the usual plain estimator. The IERD method may be expected as one of tools useful for
the purpose.

A second purpose of the paper is to enumerate several problems where the shrinkage or
modification of usual estimators are required. These are given in Section 3, including estimation
of variance components, noncentrality parameters and restricted parameters and the linear
calibration, statistical control problems. Reasonable shrinkage procedures derived through
the IERD method are there presented. Other problems enumerated include the estimation
after a selection, multicollinearity, shrinkage procedures towards a null hypothesis, discriminant
analysis, estimation of error rates and the problem of improper solutions in factor analysis.

The IERD method, in some estimation problems, can provide classes of estimators which
include empirical and generalized Bayes rules improving on usual ones. The derivation of such
Bayesian improved procedures is meaningful from a robust-Bayesian point of view. In general,
the proper Bayes estimator depends on the prior knowledge completely while the knowledge is
neglected in the usual procedure such as MLE and UMVUE. The proper Bayes rule is sensitive
to the prior information and it has a large frequentist’s risk-reduction when the prior information
is true, while it gives a poor estimate otherwise. To the contrary, the merit of the Bayesian
improved procedure is to guarantee the superiority to the usual one even if one can not suppose
any exact prior information. The Bayesian improved procedure thus incorporates parts of the



prior information and yields no actual harm from the frequentist viewpoint, namely, possessing
the robust Bayesian property.

2 Estimation of Variance

Stein(1964) discovered the amazing inadmissibility result that the usual unbiased estimator of
the variance of the normal distribution with an unknown mean is improved on by a shrinkage
(modified) estimator by using the information contained in the sample mean. This section gives
a review of the developments concerning this estimation problem. One can also see Maatta and
Casella(1990) for good accounts of this issue.

2.1  The problem

We treat a canonical form which appears in analyses of experimental designs, linear regres-
sion models and others: Let S and X be independent random variables having

Sjo* ~ 2, X ~ N,(8,0°1,), (2.1)

where x2 and N,(8,0°1,) designate, respectively, a chi-squared distribution with n degrees
of freedom and a p-variate normal distribution with mean 6 and covariance matrix oI, for
identity matrix I,,. It is supposed that 8 and o? are unknown parameters and that we want to
estimate the variance o? based on X and 5. Every estimator § = §(X,5) is evaluated by the
risk function R(0?,8,8) = E[L(d/0c*)] through the Kullback-Leibler loss function

L(§/0*) = /0% — log(d/0?) — 1,

which 1s also called the Stein loss or entropy loss. When random variable y has density function
f(y;w), the Kullback-Leibler loss in estimating w by § is defined by the Kullback-Leibler dis-
tance between two densities f(y;6) and f(y;w), given by [log {f(y;d)/ f(y;w)} f(y;é)dy. An-
other popular measure is the squared errored loss L,(6/c?) = (6/0* — 1)*. It may be, however,
inappropriate to employ L4(6/0?) in the estimation of the variance %, because Ly(§/0?) pe-
nalizes the underestimate less than the overestimate as seen from the fact that limy_oL4(t) = 1
and limy_, ., L;(t) = oo. Thus the Kullback-Leibler loss L(§/c?) is adopted here.

A natural estimator of o2 is g = n~™1S, which is UMVUE and RMLE (restricted maximum
likelihood estimator). This is also optimal in the following sense: Let O(p) be a class of p x p
orthogonal matrices and consider the affine transformation S — 25, X — cI' X +d, 0% — c*0?,
0 = cl'0+d, ce R de R, I' € O(p). The estimation problem remains invariant under
the affine transformation when an estimator of o is equivariant, that is, 6(¢*S,eI'X + d) =
c*6(S, X)), which is equivalently written by (S, X ) = aS, @ > 0. The estimator minimizing the
risk among the equivariant estimators is called BEE (best equivariant estimator), just being dy.

Stein(1964) discovered the interesting result that the natural estimator &g is improved on
by using the information contained in X. For finding a superior procedure, he considered a
class of estimators equivariant under the scale transformation group S — ¢*S, X — cI'X,
o? — ¢*o? @ - ¢I'8, which is a subgroup of the affine group. The scale equivariant estimator
1s of the form

5= SHW), W = [IX|1/S.
where S and W are, respectively, equivariant and maximal invariant. Since || X||*/o? has a
noncentral chi square distribution x2(X) with unknown noncentrality parameter A = ||0]|*/0?,
there does not exist the best.estimator among the scale equivariant §,, but it is possible to




find out an estimator dominating dy within the class. Two approaches to the purpose are well
known: the Stein and Brown-Brewster-Zidek methods.

2.2 The Stein method

The approach by Stein(1964) is to minimize the conditional expectation given W = w,
E\[L(p(w)S/a?)|W = w] with respect to ¢. Let u = [[X||*/o? v = S/o? and denote their
density functions by f,(u;\) and f,(v), respectively. Then the optimal function ¢3(W) is given
by

1
E[S[a*|W = w]
Jvfplvw; X) fo(v)dv
J ot fo(vw; A) fu(v)do
Jofp(vw; 0) fu(v)dv
J 2 fp(vw:; 0) fo(v)dv
[t O gy
- fU(7L+z»)/2e~(1+w)u/2dv = ¢0(w)a

P (w) =

where the above inequality follows from the fact that f,(u; A)/f,(u;0) is increasing in u. Since

dh(w) = (1 +w)/(n + p), letting

‘ 1 14+W
¢7(W) = min {;, ni p_} (2.2)

guarantees the inequalities ¢5(W) < ¢r(W) < n~!. Hence from the convexity of the loss, we
can assert that Ey[L(¢r(W)S/0?)|W] < Ex[L(rn™15/0)|W], yielding the inadmissibility result

that the truncated estimator

1 =y, =i {5, SHIXIE)

n’ n+p

has a uniformly smaller risk than dy. Such a truncated procedure obtained with this Stein
method is here called the Stein type.

The Stein estimator §°7 is interpreted as a preliminary-test estimator for the hypothesis

H : 8 = 0, that is, we have the estimator (S + || X||?)/(n + p) if H is accepted, and otherwise
we take d. Since the risk of &y gets larger for smaller n, the estimator §°7 is more effective for
smaller n and larger p. The risk of §°7 has the minimum value at A = 0 and approaches that
of 8y when A tends to infinity.

It is interesting to indicate that 7 can be derived as an empirical Bayes estimator from
the Bayesian aspect (Kubokawa, et al.(1992)). Let 1 = 1/0? and let us suppose that € and n
are random variables, § having a conditional distribution given n such as

1
fln ~ 0y, —1I
|77 NP( 05 an p):

where a is an unknown parameter and 8 is a known vector to be chosen beforehand. Also
suppose that 7 has the noninformative prior n'dy. Then the Bayes estimator of o? against
this prior is given by

1 | X — 8o|)* + S

+ 2 — —
75(00) = EnX,S] n-+p




for 7 = a/(1+a). Since 7 is unknown, it is needed to be estimated {rom the marginal distribution
of (X,5), which is written as

+P/2

(rlle = Bl + )07

n/2-1

(const.) x s

Taking the restriction 0 < 7 < 1 into account, we see that MLE of 7 is given by

7 = mi N 1
S IX el

By substituting 7 for 7 in the Bayes rule 6%(8y), we get the empirical Bays estimator

. AIX - 6l2+S5 (S
51,5(80) = - = min rg

?

X - 0] + 5
n-+p

and 6%5(0) is identical to 67,

The value of 8y is given based on prior information and o7 ,(64) has a large risk-reduction
for @ near 8, so that in the case where one can guess or take the prior information about
0, 57,5(80) brings a good estimate. Even if one can not suppose any exact prior information,
the risk of 67,5(00) is always less than that of § and it does not yield any actual harm from
the frequentist’s viewpoint, that is, ¢%5(68¢) is robust for the prior information. The Bayes
estimator depends on the prior knowledge compietely while the knowledge is neglected in the
usual procedures such as UMVUE and MLE. The empirical Bayes estimator is thus interpreted
as an intermediate of the Bayes and usual ones such that the drawbacks of both estimators are
made up for.

2.3 The Brown-Brewster-Zidek(BBZ) method
Another approach to improvement on dy stems from Brown(1968), who divided the half line
[0,00) at r > 0 into two parts and considered the truncated estimator of the form

~2BR; o [ €5, if W<r,
7o) = {n—ls, W

When the constant ¢ minimizing the conditional expectation E\[L(cS/c?)|W < r] is denoted
by ¢ = ¢5(r), we observe tat

[ Fy(rv; A) f(v)dv
JoF,(rv; X) fu(v)do
f Ep(rv;0) fo(v)do
JoF,(rv;0) f(v)dv
L AR (1 4 X)inded /24 )
no+p fg APV /(1 4 A)ntn)/24 1)

xl(r)

= ¢(r), (2.3)

where F,(x;X) = [ fo(;A)dt, and the inequality in (2.3) follows [rom the monotonicity of
£, (25 M)/ F,(2;0). Note that ¢j(r) is increasing in r and that ¢§(r) < lim, . ¢5(r) = n~'. From

this fact and the convexity of the loss, it is seen that Brown’s estimator 6285 (c5(r)) is better
than &g.

Brewster and Zidek(1974) presented, on the basis of Brown’s approach, an innovative idea of
partitioning the half line [0, oo) into lots of parts. For a sequence of partitions 0 = 7,4 < r;; <



s < Ping—1 < Tign, = 00 such that limi oo = 0, limioorin,—1 = o0 and lim;,, sup;, lri; —
r;;-1| = 0, one can consider the corresponding sequence of estimators of the form

& = {cg(rij)S; rijor SW <riitimtms

which is guaranteed to dominate & since ¢(r) is increasing in .
As the number of the partitions tends to infinity, 62 converges to

S(W)S =687, say,
which is referred to as the Brewster-Zidek estirnator. From Fatou’s lemma, it follows that

E[L(§%%[0%)] = E[L(lim &?/0%)]

100
< lim BIL(5Y)
=00
S E[L((SO/UZ)L

which implies that the limiting value §BZ improves on &. We here call this approach the
BBZ{(Brown-Brewster-Zidek) method, and the derived estimator the BBZ type.

Brewster and Zidek(1974) verified that §24 is the generalized Bayes estimator against the
hierarchical prior distribution

1= A ] 1
5 n L), A~ ~loy(A)dr, g~ ;d'f/

and that it is admissible within the class §4. Proskin(1985) established its admissibility beyond
the class. Thus §%7 is an admissible and minimax estimator improving on d.

As pointed out by Rukhin(1987), the risk gain of 487 is quite small for p = 1 while it is
more effective for larger p. In contrast to 6°7, the estimator §%2 has no risk gain at A = 0
while the maximum of the risk gain is attained a bit far from zero.

2.4 A new unified approach
The unified method in derivation of the Stein type and BBZ type estimators was proposed
by Kubokawa(1994a) and Takeuchi(1991). Since this method is based on an idea of expressing

the difference of the risk functions via an integral, and we call it the IERD (Integral Frpression
of Risk Difference) method.

Let us suppose that the shrinkage function ¢(-) satisfies limy, e d(w) = n~1. The difference
of the risk functions of the estimators dy and 4 is expressed, by using the definite integral
argument, as follows:

R(0,0% &) — R(0,0%,84)
= E[L($(o)S/0")] — BIL($(W)S/o?)

= E[L(¢(tW)S/a?) tm]

= B[ L)/
= B /1 Y L(G(W)S o) (W)W S/ o2 di]

= [T )8 (S ude, a 0) (o) dudo, (2.4)




Making the transformations w = ({/v)u, & = (wv)/t in order with dw = (t/v)du, dx =
(wv)/t3dl, the 1.h.s. of the extreme equation in (2.4) is rewritten by

R(0,5°,60) — R(0,0%,8,)

wv

= [T st ) 0 )
= /OOO /OOO (/va L'(p(w)v)d' (w)v fla; X) folv)dedvdw
= /Om ¢ (w) /Oo L'(p(w)v)vf,(wo; A) f,(v)dodw.

JO

The following inequality due to Strawderman(1974) is here useful for getting conditions on ¢.

Lemma 2.1. Let h(z) be a nondecreasing and integrable function on interval (a,b), and let
v(+) be a finite measure on (a,b). If for integrable function K(z) on (a,b), there exists a point
xg on (a,b) such that K(z) <0 for x < x¢ and K(x) > 0 for x > xq, then

/a K (2)h(z)v (d:r,)_>_h(;z:0)/ K (2)v(dz),

where the equality holds if and only if h(z) is a constant almost everywhere.

Supposing that ¢'(w) > 0, from Lemma 2.1 and the monotonicity of Fy(x;N)/F,(x;0), we
get that

R(0, 0% 80) - R(0 0%, 84)

/ ¢ (w ﬁ Ziz(()): Oi {/Oo L'(p(w)v)v F,(wo; O)fn("u)d'v} dw.
For the sake of simplicity, let F,(x) = F,(z;0). It is thus concluded that é, improves on Jy if
P(w) satisfies the following conditions:

(a) ¢(w) is nondecreasing and limy, o, d(w) = n~1,

(b) fo~ L'(dp(w)v)v F,(wv) fo(v)dv > 0, that is, ¢(w) > ¢o(w), where

Jo© Fp(wv) fa(v)dv
15 vF,(wo) f(v)dv

Since ¢o(w) = c(w) for ¢i(r) given by (2.3), ¢po(W)S is just the Brewster-Zidek estimator
§B7. Tt can be checked that ¢o(w) and ép(w) given by (2.2) satisfy the conditions (a) and
(b), so that this class includes §%7 and the Stein estimator §°7. Two types of the improved
estimators §°7 and §87 derived separately in the previous subsections are thus obtained at

once through the TERD method.

A weak point of §%7 is that it has the same risk as §, at A = 0, that is, R(0,0%, &) =
R(0,0%,68%), while 6°7 gives a substantial risk gain at A = 0. For seltling the weakness,
Ghosh (1994) and Maruyama(1996) gave an alternative generalized Bayes estimator of the
form

do(w) =

IS fW» )\p/z—k/(f + )\) n+p /2~k+1d/\
nobp+ 201 — k) [V ARk (1 4 X)) /2= k2 )

against the prior distribution

1—A 1 1
0, ——n"'I,), A~ —Io(A)dX, n~ ~—dn for n= 1/o%
, "

GB __
67 =

Oln, A ~ N,y 3 G

~



It is demonstrated that 2 belongs to our class of improved estimators for 1 < k < p/2 + 1.
When k = 1, 6% is identical to 652,

We here provide a numerical comparison of risks for the above improved estimators. This
is done on the basis of simulation with 50,000 replications in the case of n = 4 and p = 10.
Figure 1 gives the risk performances of the estimators &y, 6°7, §82, §§% and &P for k = 3, 4,
which are indicated there by UB, ST, BZ, GB(3) and GB(4), respectively. The axes of ordinate
and abscissa in the figure designate, respectively, the values of the risk and the square root
of the noncentrality parameter {|0||/c. From the figure, it is revealed that the improvement
of §5T is small for ||@]|/c > 6 and that 6%% has no risk gain at the origin. Also the figure
indicates that the generalized Bayes estimators 657 and §$P eliminate these drawbacks and
give substantial risk reductions in a wide range of the noncentrality parameter while their
maximum risk reductions are smaller than those of §°7 and §52.
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square root of the noncentrality parameter

Figure 1. Risks of the estimators &y, §°7, 682,
658 and 658 for n =4 and p = 10

It may be interesting to note that the problem of improving on the UMVUE of the variance
is related to that of improving on the James-Stein estimator in the simultaneous estimation
of the mean vector of the multivariate normal distribution, where the Stein type and BBZ
type estimators, respectively, correspond to the positive-part Stein and Strawderman-Berger
estimators (IKubokawa (1991, 94a)). Rukhin(1992b) showed that their two problems are asymp-
totically equivalent to that of estimating a positive mean of a normal distribution. Kubokawa
et al.(1993b) demonstrated that the use of better estimators of the variance leads to the im-
provement on the James-Stein estimator.

2.5 Extensions to general distributions and applications to interval estimation

The use of the IERD method enables us to extend the result of the previous subsection to the
Bowl-shaped loss functions and general distributions with monotone likelihood ratio properties,
including normal, lognormal, exponential, Pareto and inverse Gaussian distributions. It is also
applicable to construct improved confidence intervals.



Let S and T' be mutually independent random variables whose density functions are given
by
Sjo ~ !J(U)][wo]a T/(f ~ h(u; )‘)1[u>k(>\)]7

where k(-) is a real-valued function, o is an unknown scale parameter, A is an unknown
real parameter and Ij) is the indicator function. In the case of the exponential distribution
o~ lexp{—(2 — p)/0}z>,, for instance, we have A\ = p/o and k(A) = A, and for the normal
distribution, A = [|0]*/c? and k(X)) = 0. Let L(¢) be a continuous and bowl-shaped function,
that is, it is decreasing for ¢ < 1 and increasing for ¢ > 1. We address the issue of estimating the
scale parameter o by estimator § = §(.9,T') relative to the bowl-shaped loss function L(é/0).

Let do = oS be the best estimator among multiples of S, and for improving on it, consider
estimators of the form

5 - {¢(W)S, if W >0,
R it W <o,

where W = T/5. Denote H(x;X) = [ h(w; M) usiogdu, H(z) = H(2;0) and h(z) = h(z;0),
and assume that

(A.1) H(z;A)/H(z) is nondecreasing in z > 0.

Then applying the IERD method gives that ¢, dominates &g if

(a) ¢(w) is nondecreasing and lim,, .. P(w) = co,

(b) [57 L'(p(w)v)vH (wv)g(v)dv > 0.

Assuming further that for ¢; > ¢y > 0,

(A.2) h(caz)/h(e ) is nondecreasing in x,
we can see that the BBZ type and Stein type estimators belong to this class (Kubokawa(1994a)).
The assumptions (A.1) and (A.2) are satisfied by normal, lognormal, exponential and Pareto
distributions. For the exponential distribution, the Stein type estimator was proposed by
Arnold(1970), Zidek(1973), and the BBZ type estimator was given by Brewster(1974).

For an inverse Gaussian distribution, the Stein type and BB7 type estimators are derived
by Pal and Sinha(1989) and MacGibbon and Shorrock(1994), respectively. Kourouklis(1997)
recently demonstrated the monotone likelihood ratio property for the inverse Gaussian dis-
tribution, so that (A.1), (A.2) are satisfied and it belongs to the general framework given in
this section. An improved truncated estimator of scale in a uniform distribution was derived
by Rukhin et al.(1990). Rukhin(1991) demonstrated that the issue of estimating the scale in
the general location-scale family is asymptotically equivalent to that of estimating a function
including a quadratic form of a random variable, and provided the Stein type and BBZ type
estimators with asymptotical improvements.

For interval estimation of the variance, we can obtain the results corresponding to the case
of the point estimation. Confidence intervals proposed by Tate and Klett(1959) are of the form
Iy = [aS5,b5], where constants @ and b satisfy the requirement PlaS < o < bS] = 1 — « for
confidence coefficient 0 < 1 — a < 1. Several criteria are employed in order to specify the
constants uniquely. One is to minimize the length b — a and the resulting confidence interval is
refereed to as the Minimum Length Confidence Interval (MLCI). The other is to minimize the
ratio b/a and the optimal values of @ and b satisfy the equation ¢ 'g(a¢™") = b=1g(b™"), giving
the Minimum Ratio Confidence Interval (MRCI). We here address the issue of constructing a
confidence interval improving on the MRCI.

When a confidence interval of the form

L {[agb(W)S, bp(W)HS], if W >0,
T, if W<0



is considered, it has the same ratio of the endpoints as /.

Using the IERD method, Kubokawa(1994a) showed that [, improves on the MRCI [, in
the sense of maximizing the coverage probability if we assume (A.1) and if

(a) ¢(w) is nondecreasing and lim, o, ¢(w) =1,

(0) L) H() 2 o) ().
The essential inequality utilized in the proof is given in the following lemma which corresponds
to Lemma 2.1.

Lemma 2.2. Assume that h(z)/g(z) is nondecreasing for positive functions g(x) and h(x).
Then for ¢y, ¢; > 0 and 0 < 2y < x4,

h{zy)
g(z1)

exh(g) — erh(ey) > {eag(zy) ~ crg(z)}

The Stein type and BBZ type confidence intervals can be obtained under the assumption
(A.2). The Stein type confidence intervals in normal and exponential distributions were derived
by Nagata(1989, 91). In the normal case, for instance, it is given by

°r = Jagg(W)S, bor(W)S]

) at=bt1+ W
dr(W) = mm{l, loa(b/a) n+p }

On the other hand, the improvements on the MLCI was stemmed frem Cohen(1972), and
the BBZ type confidence interval and its generalized Bayesness was studied by Shorrock(1990).
Goutis and Casella(1991) obtained the BBZ type confidence interval improving on the MLCI
in both senses of the length and the coverage probability and verified its generalized Bayesness.

2.6  Other improved estimators
Besides the Stein and BBZ methods, there are other methods for deriving improved es-
timators. In this subsection, we state briefly the methods given by Strawderman(1974) and

Shinozaki(1995).

A shrinkage estimator Strawderman(1974) treated is of the smooth form

o 1 1 1
STD __ * . IS
% n{l ¢<1+W) (1+W)6}“

for nondecreasing function ¢(-). The conditions on ¢ and ¢ for the estimator 5§TD being better
than &y can be derived. Mathew et al.(1992) applied this method to the estimation problem of
variance components in mixed effects models.

Another approach was tried by Shinozaki(1995), who rewrote the Stein estimator §°7 as

o S s IxPEyt
55T = = —%— (—— — I-L—U——) , at =max(0,a),
n n-+p\n p

and, beyond the class of equivariant estimators, proposed three types of non-equivariant esti-
mator shrinking S/n toward max(1,||X]|*/p). One of them is given by

S S S X\t
551’\7:___ p — |
A n+p¢(S+1|Xn2){n (1 p

10




where a* = max(e,0). The estimator (ifN has a uniformly smaller risk than §p under some
conditions on ¢. Also it is revealed that the actual risk-gains of the non-equivariant estimators
are much larger than those of the Stein estimator. In the case of n = 3, p = 1 and 0% = 1, for
instance, the relative risk improvements of 6°7 and 5£N over §, are, respectively, 4.23% and
14.22% for 0 = 0 and 3.98% and 11.03% for 6 = 0.5. While the Stein estimator shrinks too
much n7'S towards p~'|| X||* when o* > 1 > || X|]?/p, the proposed estimator 65" shrinks it
to max(1,p™"||X||?) and this explains why 65" is more efficient.

2.7  Double shrinkage estimation of ratio of variances
The problem related to the variance estimation is to derive double shrinkage procedures for
the ratio of the variances. Let X, S;, X, and S, be mutually independent random variables
where for 7 = 1,2,
X~ Npi(aha;'zlm)v Si ~ Xn
When it is supposed that we want to estimate the ratio of the variances p == o3/} relative to
the Kullback-Leibler loss p/p — p/p — 1, the best estimator among multiples of S;/.5] is given

by
52 ny — Z

o ul

A

Po =

For improving on py by using X | and X2, Gelfand and Dey(1988) considered the estimators
53 {nl*‘Q 711+p1_'2}
= —- max y = 5 (>
T S S H[IXP

R . {52 Sz+[|X2H?} ny — 2
P = min{ —, —
(P ny + p2 Sy

which may be called single shrinkage estimators since they use either of the statistics || X ][?
and || X]|*. Although it had been desired to develop a double shrinkage improved procedurc
utilizing both of them, it was known to be technically difficult, for it shrinks in opposite
directions. Recently Kubokawa(1994b) resolved this issue by utilizing the IERD method. The
resulting double shrinkage estimator is

DS A N
PP = it pr—

= pp + min {0,

77/1"”2 512 "}"HXQH) N }
— po
no + Po Sy
ny+pp — 2 S R

ne S IXGE

= pg + max {0,

which dominates both of p; and p;. The second terms in the r.h.s. of the second and the third
equations are interpreted as modification parts against over-shrinkage of p; and py, respectively.
Kubokawa and Srivastava(1996) established the natural double shrinkage estimator improving
the single shrinkage ones, given by

DS . {& 55+HXQP} {n1~2 n1+py~2}
Py = MmMiny4 —, —————— 7 X max - o 5 (>
N ny + po Si Sy + 11X

and also gave the improved and generalized Bayes estimator p&8 = ¢3(Wy)S2/{é;(W1)S5}
where for ¢ = 1,2, W; = || X;]|*/S; and

1 25
m+m+%—ﬁu'%

1 BEEL4(i-2) g,
#:(w) = ; ?)

V(14 2) g
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We provide Monte Carlo simulation results for the risk functions of the estimators po, p1,
pa, P55, pP5, p9B. The simulation experiments are done in the cases of n; = 3;p; = 10;07 =
LA = ||6:]]*/e? = 0.0,0.5,1.0,5.0,10.0 for ¢ = 1,2. Table 1 reports the average values of
the risks based on 50,000 replications. From the table, it is revealed that pP% and p“F have
smaller risks than others, and that p“® is the best estimator with significant improvements.
It is also indicated that the risk gain of p; is much greater than that of p,. This may arise
from the unstableness of the denominator of py in comparison with the numerator. That is,
the simulation result for p; and p, implies that stabilizing the denominator yields a more
improverment than stabilizing the numerator.

Table 1. Expected kullback-Leibler losses of pg, p1, p9,
5DS | pDs

P37 and f)GB for ny = ny =3 and p; = py, = 10

- ~ P NS D5 “GB
Ay Ay Po 4! P2 P3 Pq P

0.0 | 1.075 0.749 1.016 0.593 0.566 0.530
0.5 1.075 0.749 1.016 0.600 0.572 0.536
0.0 1.0 { 1.075 0.749 1.016 0.606 0.578 0.541
5.0 1 1.075 0.749 1.025 0.651 0.624 0.584
10.0 | 1.075 0.749 1.039 0.689 0.669 0.635
0.0 { 1.075 0.750 1.016 0.596 0.574 0.530
0.5]1.075 0.750 1.016 0.603 0.530 0.335
0.5 1.0 | 1.075 0.750 1.016 0.609 0.585 0.540
5.0 | 1.075 0.750 1.025 0.653 0.629 0.581
10.0 | 1.075 0.750 1.039 0.691 0.672 0.629
0.0 1.075 0.751 1.016 0.600 0.582 0.530
0.51]1.075 0.751 1.016 0.606 0.587 0.535
1.0 1.0 | 1.075 0.751 1.016 0.612 0.593 0.539
5.0 1 1.075 0.751 1.025 0.655 0.634 0.579
10.0 ] 1.075 0.751 1.039 0.692 0.676 0.625
0.0 1.075 0.778 1.016 0.645 0.650 0.541
0.5} 1.075 0.778 1.016 0.650 0.654 0.544
5.0 1.0 | 1.075 0.778 1.016 0.654 0.657 0.547
5.0 | 1.075 0.778 1.025 0.691 0.686 0.574
10.0] 1.075 0.778 1.039 0.724 0.717 0.608
0.0 | 1.075 0.829 1.016 0.713 0.730 0.566
0.5 ] 1.075 0.829 1.016 0.717 0.732 0.567
10.0 ] 1.0 | 1.075 0.829 1.016 0.721 0.733 0.569
5.0 | 1.075 0.829 1.025 0.751 0.754 0.586
10.0 | 1.075 0.829 1.039 0.779 0.779 0.610

2.8 Extensions to estimation of multidimensional parameters

As one of extensions to estimation of multidimensional parameters, this subsection briefly
deals with estimation of a covariance matrix and the generalized variance in a multivariate
linear regression model whose canonical form is given by p x p matrix § and p x r matrix X,
which are mutually independent random variables and

S ~W,(n, %), X ~Nyu (0,Y21,)
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where W,(n, ¥) designates a Wishart distribution with mean nX and @ denotes the Kronecker
product.

For the point estimation of the generalized variance ||, Shorrock and Zidek(1976) derived
the Stein type improved estimator with using the Zonal polynomials and Sinha(1976) provided
another proof of it without the Zonal polynomials. A series expression of its risk function and
numerical comparisons were given by Sugiura and Konno(1988). To the contrary, it is not
easy to get the BBZ type estimator for r > 2, since the maximal invariant statistic X's'X
is not one-dimensional. The Stein type procedure in the interval estimation was given by

Sarkar(1989).

It is interesting to note that |S| = [T?_, y; where y1, ..., y, are mutually independent random
variables, y; ~ a;x%_;,, for |X] = [Tl o:. This implies that the estimation of |X] is expressed
by estimation of the product of scale parameters of independent gamma distributions. Using
the results of Berger(1976a,b), Rukhin and Sinha(1991) proved the interesting fact that the
usual estimator of |¥| can be improved without the information in X when p > 4, and that for
p < 3, it is admissible within the subclass of estimators depending only on yy,. .., y,.

For estimation of the covariance matrix X, the Stein type estimator was derived by Sinha
and Ghosh(1987). In the special case of r = 1, Perron(1990) proposed other types of improved
estimators, Kubokawa et al.(1992) gave an empirical Bayes rule improving the Sinha-Ghosh
estimator, and Kubokawa et al.(1993a) clarified the structure of the estimation of X and ob-
tained a generalized Bayes improved estimator. Similar to the case of ||, it is recognized as a
hard work to derive BBZ type minimax or generalized Bayes minimax estimators when r > 2,
and so some important problems remain still open. Inadmissibility results of usual or minimax
estimators of X without using X are of course well known, so that it will be of great interest

to construct minimax procedures with incorporating X.

3 Related Problems Where Modifications of Estimators Are Re-
quired

Studies on the shrinkage procedures, from the decision-theoretic viewpoint, have produced a
huge amount of beautiful and wonderful benefits especially in the estimation problems of the
variance, the covariance matrix and the mean vector. From the practical aspects, on the other
hand, the concept of shrinkage has been recognized as an important tool to stabilize estimates in
various small-samples problems such that the data smoothing, small-area estimation, estimation
of mortality rates and others. Beyond some familiar theoretical or applied issues, we are really
faced with lots of situations where the usual plain estimators are required to be shrunken or
modified. In such situations, it is of importance to clarify how much usual procedures should be
shrunken or modified. Empirical and hierarchical Bayes rules, cross-validation (or leaving-one-
out), bootstrap and penalized methods and Wavelet analysis are standard techniques useful
for giving appropriate extents of the shrinkage or modification. In the decision-theoretic sense,
it may be reasonable to provide the extent of shrinkage such that the shrinkage estimator has
a uniformly smaller risk than the usual plain estimator. The IIERD method may be expected
as one of tools useful for the purpose. We here enumerate several problems where the usual
estimators should be shrunken or modified, and for a few issues, we present reasonable shrinkage
procedures derived through the IERD method.

3.1 Estimation of variance components

13



Mixed linear models or variance components models have been effectively and extensively
employed in practical data-analysis. When the statistical inference for regression coefficients is
implemented, estimators of the variance components are used to get two-stage procedures such
that two-stage generalized least squares (2GLS) estimators and 2GLS tests.

For simplicity, consider the one-way random effects model with equal replications:

Yig = M+ai+€ij7 i:],?,,_’k’)j:l,...,n
a; ~ N(0,0'ﬁ), eijNN(()?aZ)

where {a;} and {e;;} are mutuaﬂy independent and u, 0%, o are unknown parameterb Let
=Y, Yy/n, Y = S5 57 Vi /(nk), Sy = SE Y (Vi —Yi)? and S, = nSk_ (Vi - Y)2
Sy a,nd Sy are mutually independent and the minimal sufficient statistics havmg

¥ o~ Nl (0 4 nod)/(nk)),

Sy o~ azxil, n =k(n—1),

Y;
Y,

Sy o~ (o*+ nai)xﬁz, vy =k — 1.

The UMVU(ANOVA) estimators of 0% and o is, respectively, given by

(Y
52U — <§ﬁ - Ei)
A n \lVy y

and 62V = u71S,, 6% possessing a critical drawback of taking negative values with a positive
probability. Much effort has been devoted to this issue and reasonable procedures eliminating
this undesirable property have been proposed. Of these, LaMotte (1973) showed that unbiased
nonnegative quadratic estimators of %4 do not exist. Kleffe and Rao {1986) demonstrated that
nonnegative biased quadratic estimators of % fail the minimum condition of consistency as n
remains fixed, but k& — oo. These persuade us to pay our attention to nonnegative estimators
other than Lhe quadratic ones.

The Kullback-Leibler loss function in estimating (0?, 0%) simultaneously is given by

A‘2 A2 Ar ,..» A2 A2
R o o ) 6% + no? o° +no
](0'2 0'?4,0'2 O'A)‘—“—'l/l{;a*"‘“log}—i"—l}‘1"1/2{ "““M"A '—10 ) e A—l}

g
0% 4 noi 0%+ no?

Using the IERD method, Kubokawa et al. (1996) proved that estimators of the forms
A (S
20 = s ($)
D1

o 11, S , S.
o i) = {bm (—g—) S (5—)}

improve on 6%, 52V relative to the Kullback-Leibler loss if the following conditions hold:

(a) P(w) is nondemeasmg and lim,, o (w) = v,

(b) ¥(w) > bo(w) where

i

L et
vy Jol a2 (L4 )ttt 2 dy

1/)0(’!1)) =

(c) #(w) is nondecreasing and ¢(0) = v3',

(d) Pp(w) < ¢o{w) where
1 f;jo :1;1/1/2"'1/(1 + w)(l/l"l'l/z)/de
gbo(w): % ] ST
1/1+V2fw o/ /(1—}.1)( 14242} /2y
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Ia . . . . A9k A9 A Y ~ o} e ~2F
I'his class includes improved estimators (5268, 5498 (627 63T and (6%9F, 65°F), where

~92k . Sl Sl + 52
B = mm{ },

o |
vy M+
Y 1 32 xSII
O'iEB = -ma,x{ - —, 0},
n Vy 141
Sy Sy 4+ 15y /(vg + 2
"o PT . 1 01 22/ (V2
Y fnt2))
121 1+ vy

ot = H [max {§3, —f—li—é—%w} ~ &% T] ;

n Vo 1 F 19— 2
5208 Si Jo et (14 a)re) e
141 “}" Va f(;SZ/Sl (Kl/g/?—l/(l + {L’)(Vl’{"VZ)/de

y m /2-1 P vitv 20
&2(}'3 — (3'2 (q5 w .n) — l »52 fgi)/Sz ZT 1/ /(1 -+ 17)( 1+r2)/ dz _ (A)_ZGB
A ANYO F0) v+ v [5 s, a0 P71+ )bt 2dy

n
[t is interesting to note that the estimator (62#8, 5%F%) is not only given as a restricted (residual )
maximum likelihood estimator but also obtained as an empirical Bayes rule from a Bayesian
aspect. Also (5298 529B) is derived as a generalized Bayes rule. 64°% and 6577 are improved
procedures taking positive values almost everywhere. Although the above results are limited to
the cases of equal replications, they can be extended to general unbalanced cases (Kubokawa

et al.(1996)).

When the mean squared error is taken as a criterion for comparing estimators, Kubokawa
et al.(1993d) and Kubokawa(1995) applied the IERD method to get improved and positive esti-
mators of o4 in the balanced and unbalanced cases. Especially the conjecture of Portnoy(1971)
concerning the estimation of o was resolved in Kubokawa et al.(1993d).

An analogized problem is arisen in estimation of a covariance component in a multivariate
mixed linear model, and non-negative definite estimators of the covariance component have been
derived by Amemiya(1985), Mathew et al.(1994) and Remadi and Amemiya(1994). Calvin and
Dykstra(1991) gave an algorithm for computing the restricted MLE. However a lot of problems
remain to be settled from the decision-theoretic view point.

3.2 Estimation of the noncentrality parameter or the SN ratio

The SN(Signal-Noise) ratio is a criterion for comparing measuring instruments or measure-
ment techniques in quality control. When the normality of error terms and the homogeneity
of variances can be supposed, Miwa(1979) indicated that the estimation of the SN ratio is es-
sentially equivalent to estimation of the noncentrality parameter, which is A = [|0]|*/¢? in the
mode (2.1). The UMVU estimator is & = (n — 2)|| X [|*/S — p, having a drawback of taking
negative values similar to the previous subsection. Some devises for this issue have been made
in the literature (Neff and Strawderman(1976)). As shown by Kubokawa et al.(1993), using
the [ERD method gives that a shrinkage estimator of the form

5o = tn - IXI __(b(ll)gn )

improves on dg if

(a) ¢(w) is nondecreasing and lim, e d(w) = p,

(b) ¢p(w) > ¢o(w), where

o Jotfo(vt) ful(v)dodt
f&u j 'Ufp(vt)fn(v)d'vdt ‘

15

¢o(w) = (n - 2)



This class includes the positive and improved estimator

. - 2(n - 2) || X|)?
5prmmax{ég, (p+2)” bH }

When the variance o2 is known, the object is to estimate the noncentrality of a noncentral
chi square distribution. Some topics have been studied by Perlman and Rasmussen(1975) for
an empirical Bayes approach, by Chow(1987) for a complete class theorem, by Saxena and
Alam(1982) for inadmissibility of the MLE. Kubokawa et al.(1993¢) provided the improved
and positive estimator max{dy, 2(p+2)7 | X||?*0~?} through the IERD method. Recently Shao
and Strawderman(1995) succeeded in derivation of an estimator dominating max(dg,0) by using
the same arguments as in the proof of improvement on the positive-part Stein estimator. A
related issue is an estimation of the multiple correlation coefficient and it was studied by

Muirhead(1985), Leung and Muirhead(1987) and others.

3.3 The linear calibration and statistical control problems

The linear calibration is the problem of inverse estimation in regression and one of useful
statistical procedures. It is supposed that explanatory variable  and explained variable y have
the linear relationship such that Ely|r] = « + Bx. First, data y,,...,y, are observed for
known scalar values z, ..., z, with the linear regression model

y,=a+ Bz, +e, 1=1,...,n
Next for unknown scalar value zg, let us get k observations as
Yo; =+ Bro+eo, j=1L,... .k

Here e; and eg; are mutually independent and have N,(0,0%I,) with unknown error variance
o, a and B are p-dimensional unknown vectors and y; and y,. are p-dimensional vectors.
Then the linear calibration is to estimate zq inversely from the data y; and y,;. The problem
of estimating z¢ in the above model can be reduced to that of estimating = in the followings:

Let y, z and T be mutually independent random variables having
y~N,(8,0°1,), z~N,(82,6°1,), T ~W,(n+k-3,01,),

where €, = and ¢? are unknown parameters. Further T can be reduced to s = trT with
s~y qg=p(n+k-3).

Two opposed procedures have been in the controversy in the inverse estimation of . One
is given by & minimizing ||z — yz||?, that is,

/
5. = -JZ2

© ol
called the classical estimator. Although this is consistent, it has the undesirable property that
there does not exist its mean squared error for p = 1,2. Against this estimator, Krutchkoff(1967)
considered to derive 4 minimizing X7 {v'(y, — ) — (2; — )}* in the inverse regression and
proposed
Y T 'z
14y T 'y’
called the inverse regression estimator. However, é; is not consistent while its moments are
finite. Hoadley(1970) verified the generalized Bayesness of §; for p = 1, and for p > 1, Kubokawa
and Robert(1994) showed

dr

_ Yz

0p = — 71—
s+ [lyll?
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is proper Bayes, so that admissible. For eliminating the inconsistency of dg, Miwa(1985)
proposed the generalized inverse regression estimator

(SMW(d) y/z

ds/q Iyl
satisfying the consistency, and gave the best d when the SN ratio ||0]|*/c? is large.

It is interesting to point out the relationship between the linear calibration and the statistical
control problems. Note that a mean squared error of the estimator of the general form ¢, =

g(llyl|*/s)y'z/s for nonnegative function g(-) is written as
Pyye O\’
s s

El(§,—2)"]=E [g2 (ME) M'—Z—JQ] + 22k

$ 52

so that the problem is decomposed into two parts:

(I) minimizing g(t),

(II) minimizing £ [{g(Hsz/s) y'0/s — 1}2].
The part (II) is called the statistical control problem, which has been studied by Takeuchi(1968),
Zaman(1981), Berliner(1983), Berger et al.(1982) and others.

When y is near 0, the classical estimator is unstable and should be modified. Kubokawa
and Robert(1994) treated the shrinkage estimator

)

and provided the conditions for é, improving on ¢ through the IKERD method. The resulting
improved estimator is given by

5[‘,R::min{ ! q—{_pug}y/z
yl?" s+ ||yl ’

which possesses the finite moments and the consistency even for p > 1.

A multivariate linear calibration has been studied by Brown(1982), Nishii and Krishna-
1ah(1988), Fujikoshi and Nishii(1986) and others. Many issues in a small sample remain to be
resolved from a decision-theoretic viewpoint. For a good survey concerning the linear calibra-
tion, see Osborne(1991).

3.4 Estimation of restricted parameters
When a parameter space is restricted, unrestricted procedures such as unbiased estimators
are needed to be modified. A simple situation illustrating the problem is to estimate the
positive mean g > 0 by X, having AM(u,1). The unrestricted estimator X is minimax, but
unreasonable, and this is why the shrinkage estimator d; = X — ¢(X) is considered. Applying
the IERD method gives that §, is better than X if
(a) ¢(w) is nondecreasing and limy,—..d(w) = 0,
(b) ¢(w) > ¢o(w), where
v ze*?dz
¢0(w) = _____1;)0_0___:_:_2/2 .
e dz
The conditions {a), (b) are satisfied by ¢r(w) = min(0,w) and ¢o(w), respectively, which yields
the Stein type estimator 6°7 = max(X,0) and the BBZ type estimator 677 = X — ¢,(X). 687
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is generalized Bayes against the non-informative prior distribution dpfj,s¢. Rukhin(1992b)
showed the interesting relationship that the improvement on the James-5Stein estimator and the
estimation of variance discussed in Section 2 are equivalent to the estimation of the positive
mean in the asymptotic theory as n — oo, ||01]*/(pc*) — p and p — .

In the case where the parameter space is restricted from both sides, namely p € [—m,m]
for m > 0, the unrestricted estimator X fails the minimaxity. Casella and Strawderman(1981)
showed that the Bayes estimator against a prior distribution with probabilities at the endpoints
—m, m, given by
6mX - 6——mX

sp(m) = m tanh(mX) = s e

is minimax for m < 1.05 and better than the MLE
5N[L = X][|X|<m] - m[[XS—»m] + nl][XZm]

and X. Other topics were studied by Bickel(1981) for second order minimaxity about m,
by Iwasa and Moritani (1996) for the proper Bayesness of the MLE, and by Johnstone and
MacGibbon(1992) for discussions in a Poisson distribution.

Moors(1981) indicated that, in estimation of a restricted parameter, taking the symmetry
into account gives a further improvement. For instance, consider a coin tossing with probability
p of the head (H) and let us suppose that 0.2 < p < 0.8. Let us consider the simple case where
p is estimated with one trial. When the head appears, we consider the estimator p(H) = z and
otherwise, we take the estimator p(T) = 1 — p(H) = | — z by the symmetry consideration. The
mean squared error E[(p — p)?] is then calculated as

E[(p—p)] = plz—p)"+ (1 =p)((1 —2)~p)°
= 22 4+202p(1 —p) = 1)z +1=3p(L — p),

so that when we choose z such as

z > 0.21?;?2(0.8{1 —2p(1 — p)} = 0.68,

the MSE is increasing in z for all p. If the head appears, p(H) = 0.8 may be taken as the
usual estimate since p < 0.8. The above symmetry consideration implies that the truncated
procedure min(p( H ), 0.68) = 0.68 can reduce the MSE. Moors(1981) applied such a discussion
to estimate parameters in a linear regression model y; = o + fz; +¢;, 0 < 3 < 1.

In some applications, one can suppose an order restriction among means or variances. Let
Yi,..., Y, be mutually independent random variables having Y; ~ N (y;, 0?/n;), and consider
the case where the simple order restriction p; < py < ... < iy is supposed. In this case, the

unrestricted estimator Y; of y; is inadmissible. Lee(1981) demonstrated that Y; has a uniformly
larger MSE than the MLE, which is given by

and it is derived as an isotonic regression estimator with minimizing X5, (V; — 0;)?n; under the
order restriction §; < 6, < ... < §,. Hwang and Peddada(1994) recently provided decision-
theoretic results concerning confidence intervals under the simple order. In the case of the
simple tree order pu; < p;, 1 = 2,...,k, the generalized Bayes estimator of 1, improving on
Y; was obtained by Kubokawa and Saleh(1994) through the IERD method. For the statistical
inference in the restricted parameter space, see Barlow et al.(1972) and Robertson et al.(1988).
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Other topics have been studied by Chang(1982), Sengupta and Sen(1991) for the Stein problem
in order restrictions of means, by Blumenthal and Cohen{1968a,b), Cohen and Sackrowitz(1970)
for decision-theoretic researches in the case of k = 2.

When functional equality constraints are embedded in a parameter space, the differential
geometric structures in the statistical inference have been studied by Amari(1982) and others.
The Nile problem and the estimation with a known coeflicient of variation are representative
examples. Appropriate group structures can be embedded in the both examples, ancillary
statistics are maximal invariant and the best equivariant estimators improving on the MLE are
obtained (Kariya(1989)). The latter is the issue of estimating 8 under the constraint 80 /o* =
const. in the model (2.1), and the details of derivation of the best equivariant estimator and
the extensions to more general models are discussed in Kariya et al.(1988), Marchand(1994)
and others.

The estimation of a common mean of several normal distributions with possibly different
variances is interpreted as one of the above problems with equality constraints. For instance,
the two sample case has the canonical form

NN(/L»Uf/”l)a Sy~ OfX;znwl

=) >

~ N(Maag/n”a Sy~ nggbzwl‘

The MLE of the common mean p is not written in an explicit form, and so a combined procedure

of X and Y of the form o o1

~GD €2y < P2 £

TS Ty Si—lX + STy 5.;1)/

may be taken as a natural choice. This two-stage GLS procedure is especially referred to as
the Graybill-Deal(1959) estimator. The conditions for 2% improving on X and Y and their
extensions have been studied by Brown and Cohen(1974), Cohen and Sackrowitz(1974), Bhat-
tacharya(1984) and others. This is related to the classical probler of recovery of interblock
information in incomplete block designs with random effects (Yates(1940), Seshadri(1963),
Shah(1964), Stein(1966)). Although Kubokawa(1987) developed one of admissible minimax
estimators, the admissibility of 4“P remained as an open problem. Recently it was partly re-
solved by Kubokawa(1997b), who established the inadmissibility in the linear regression model
by finding an unbiased improved estimator when the dimension is at least three.

3.5 Other problems

Besides the problems stated above, there are lots of estimation problems where the shrinkage
or modification is required.

1] Estimation after a selection. The player having taken the first place in the pre-
liminary elimination round sometimes cannot get a good record in the final. This phenomenon
is related to a so-called estimation problem after a selection. For simplicity, let us consider a
k-sample problem, the i-th population having N,(6;,1) and the 6; being estimated by random
variable X;. We here call a population with the smallest mean 6; ‘the best population’, which
is usually selected as the ¢*-th population such that

X+ = max X;.
1<i<k

Then we want to estimate the mean 6+ of the selected population, being written by
k
Hi* = Z 0@ [(Xz = IT]&X]‘XJ')
=1
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and X;» is a natural estimator. In the case where 8, = --- = @, = #y, or #;« = 6,, there is some
> 0 such that
E[Xz*] == 60 -+ ¢,
so that Xi» has a bias above. Hence X,» is needed to be shrunken below. Some shrinkage

procedures were proposed by Dahiya(1974), Cohen and Sackrowitz(1982) and others. Of these,
Venter(1988) wrote the bias of X;+ as

E[Xi — 0] Z/ngzH@z 10— 0;)dz

J#

for standard normal distribution function ® and its density ¢, and estimated this bias with

b(X/\*/\L/w VTIO(: + MX, — X;)dz
JF

for X = (Xy,..., X)) and constant A, which yielded the shrinkage estimator
6l = X = b( X, N),

and its bias and risk performances were investigated. However, the derivation of an unbiased
estimator of #;» has not been resolved yet.
Hwang(1993) treated this issue in a framework of the mixed linear model 8; = u + a; where
a; ~ N(0,0%), and showed that the empirical Bayes estimator
k—3

+ k
5;'_28 — X + [1 - mg} (A’Yi" - X), X - p‘i ZX‘
j .

improves on X;».

For a similar problem in an exponential distribution, the UMVU and minimax estimators
are given in explicit forms (Sackrowitz and SamuelCahn(1984)). Vellaisamy(1992) provided
decision-theoretic results in a gamma distribution.

[2] Multicollinearity. It is well known that the least squared estimator (LSE) is unstable
when explanatory variables have multicollinearity in the linear regression model y = Z3 + e.
For stabilizing the estimator, Hoer] and Kennard(1970) proposed the ridge regression estimator

(k) (Z'Z +kI)"'Z'y, k > 0. Although ﬂR(k) stabilizes for some k, one is still faced with
the problems: the arbitrariness of k£ and no unlform improvement on the LSE. Substituting
estimator k for k, one Can gfet the estimator ,3 (A) dominating the LSE. As indicated by
Casella(1980), however, ﬁ ( ) falls unstable again by the influence of multicollinearity. This
means that one cannot get an estimator possessing both properties of the stability and the
uniform domination. Thus it is desirable to set up a criterion of balancing the two properties
and to derive a new estimator under the criterion. Hill and Judge(1990) proposed the method
for eliminating some of explanatory variables based on an unbiased estimator of a risk function
of a shrinkage estimator.

Jasella(1985) derived the condition on the design matrix Z for guaranteeing both of the
stability and the minimaxity. For p x p orthogonal matrix P such that

P'Z'ZP = D, =diag(A,...,A,), M >...>\,

the generalized ridge regression estimator

B K)= P(D,+ K)"'P'Z'y, K = diag(ky,..., k)
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is dealt with, and the Condition Number
w[BUE)] = max (A + ki)/ min (A + ki)
is defined as a criterion of measuring the stability. It is said that B(K ) improves on the LSE
N ] A At N ,
in terms of the condition number if k[3(K)] < A;/A,. Let k; = a;6*/8 Z'Z for the unbiased
estimator &° of o and constant a;. Then Casella(1985) proved that BER(K) is minimax and
the improvement in the condition number holds, namely, x[B(K)] < A1/, if and only if

p—-1
Z )\:2 > ()\1>\p)”1‘

=1

When the design matrix Z satisfies the above inequality, one thus gets a ridge regression
estimator possessing the stability and the minimaxity.

[3] Shrinkage toward a null hypothesis. Let X be a random variable having N (g, 0%)
for known variance o, and consider the situation where the mean p is expected to be near the
null hypothesis Hy : p = po. In this case, X should be shrunken toward o as

(k) = KX + (1= h(D)}po, T = (X ~ puo)/o.

Here several methods about how to determine the shrinkage function k(7') have been proposed.
Hirano(1977) treated it in a framework of a preliminary test estimation, set ky(t) = I(|t] > z4/2)
and proposed to determine the constant « such that the Akaike Information Criterion(AIC) is
minimized, where z,/, denotes the 100(1 — «/2)% point of the standard normal distribution.
Since the MSE of the estimator ¢X + (1 — ¢)u is minimized at ¢ = {(p — po)*/o?} /{1 + (1 —
to)*/a?}, Thompson(1968) considered to substitute an estimator for g and proposed to choose
ky(t) = £?/(1 + 1?). Combining both ideas, Inada(1984) considered

ko(t) = d*I(Jt] < zaya) + I(|t] = 24)2)

and proposed to determine (o, d*) through the minimax regret criterion. Another method was
given by Hawkins and Han(1989), and the case of the scale parameter was discussed by Kambo
et al.{1990). Theoretically X is admissible, and one cannot get any estimator fi(k) superior to
X. In some applications, however, it is expected that p is near g, or more generally that a
model is in the neighborhood of the supposed hypothesis. In such a situation, the above type
of shrinkage procedures may be effective and useful.

When the hypothesis Hy : B, = 0 is suspected in the linear regression model y = 2,3, +
Z,3, + €, Ghosh et al.(1989) gave the empirical Bayes estimator of 3, given by

B =pi+ (1-5) B - B

. . ~EB . .. . ~ P
and derived the conditions on ¢ for @, improving on the minimax estimator 3, where 3, is

the restricted LSE under Hy, (8, 3,) is unrestricted LSE of (3,,3,) and
_ B;Z/z(I - ZI(NZIIZI)_INZ’I)Z’Z/E2
ly — 2.8, — Z2,|?

which is a likelihood ratio test statistic for Hy : B, = 0 vs. Hus : B, # 0. The empirical
Bayes estimator is an intermediate between 8, and 8,, and if Hy is suspected, it approaches
B,; otherwise, it does 3,.

]TV

y
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[4] Estimation of the reliability. The problem of estimating the one-sided normal
probability § = P[X; > ¢] based on random sample Xy,..., X, from N (y,0?) is motivated
from quality control. For instance, in the case where measurement X, of a product is requested
to be less than or equal to upper bound ¢ of a standard, the one-sided propability § means the
inferior rate of the product and it is required to be estimated.

Brown and Rutemiller(1973) numerically compared performances of UMVUE and MLE,
and Fujino(1987) extended the issue to a linear regression model and revealed the efliciency
of a bias-corrected estimator derived through an asymptotic expansion of the MLE type es-
timator. Peszek and Rukhin(1993) gave a generalized Bayes rule of § and demonstrated the
admissibility. The estimation of P[Y < X] for mutually independent random variables X
and Y were discussed by Enis and Geisser(1971), Yu and Govindarajulu(1995), Guttman and
Papandonatos(1997) and others.

In the exponential distribution o~ lexp(—z /o), the estimation of the reliability P[X > t] =
exp(—1/o) has been discussed by Zacks and Even(1966), Chiou(1993) and others. Pierce(1973),
Varde(1969), Rukhin and Ananda(1989) studied Bayes estimators and their admissibility for
reliability in an exponential distribution with unknown location-scale parameters.

[5] Estimation of a quantile. The quantile of the normal distribution A'(p, 0?) is written
by a linear combination of x4 and o such as # = p + ao for constant a. Zidek(1969, 71) proved
that a usual minimax estimator of  is improved on by a truncated procedure. Some decision-
theoretical results in an exponential distribution with uriknown location-scale parameters have
been given by Rukhin and Strawderman(1982), Rukhin and Zidek(1985), Rukhin(1986) and
Sharma and Kumar(1994).

[6] Discriminant Analysis. The aim in discriminant analysis is to assign an individual
to one of two or more distinct groups by means of an allocation rule. The allocation rule is
constructed based on training sample for which the group membership of each observation is
known. When the allocation rule in a multivariate discriminant analysis is performed on the
basis of the linear or quadratic discriminant function, it incorporates an estimator of the inverse
of the covariance matrix. This implies that it is quite sensitive to the smallest eigenvalue of
the estimator of the covariance matrix and is likely to be more unstable as the dimension gets
larger, resulting in a rise in the error rate in discriminant analysis (Peck and Van Ness(1982),
Friedman(1989) and Matsuda et al.(1990}). It is, for instance, supposed that an individual
with observation on a p-dimensional random vector is to be allocated into one of two p-variate
normal distributions with a common covariance:

IL‘ CXZ']‘NNp(ez‘,E), j:l,...,ni, 1 =1,2.
The linear discriminant function is given by
h(w;Yh—X—‘z, S) = {213 - 2_[(—.X—:1 + —XAQ)}/SMI(_X—l - :_X—Q)

where X is a sample mean of the i-th population and S is an unbiased estimator of ¥. When
h(z; X1, X2,8) >0 (resp. <0), @ is allocated into 11; (resp. II,). If the dimension p is large
in this function, the inverse matrix S~ is likely to be unstable. When p > ny+ny —2, 87" falls
into the ill condition. Haff(1986), Dey and Srinivasan(1991) considered the estimation of the
coefficient vector n = £71(8; — 6;) in this linear discriminant function by use of (X1, X,,S),

e S+up(u) I (X,—X ;) foru = 1/trS™" improves on ¢S~ (X — X ) under some conditions.
Rukhin(1992a) gave a condition on ¢ for admissibility of a usual procedure.

[7] Estimation of error rates in discriminant analysis. In discriminant analysis, it
is important to estimate the error rates in allocating a randomly selected future observation.
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The apparent error rates and MLE type estimators are known to be inclined to under-estimate
the actual error rates. In the notations stated above, for instance, the actual error rate of
misallocating @ from Il; into 1l is given by
AMO,,5. X1, X, 8) = Plh{e; X, X,,S) <0~ N,(6;,%)]
[ 16 X Xys (X, X))
- — pr— — R Y
VX - X,ys7'257 (X, - Xs)

where ® designates the standard normal distribution function. The issue is to estimate this
actual error rate based on X, X, and S. Substituting él = Xy, Y= S for 6, ¥ in
MOy, X, X1, X,,8) yields the MLE type estimator
MWE = o(-D/J2), D*=(X,—-X,)S (X, - X,),

which, however, has an undesirable property of under-estimating the actual rate. For elim-
inating it, McLachlan(1974) proposed a bias-corrected estimator on the basis of an asymp-
totic expansion of A\(8;, %, X1, X3, S) derived by Okamoto(1963). Efron(1979) introduced the
bootstrap method to provide a bias-corrected apparent error rate in a nonparametric model.
Theoretical and numerical comparisons of the proposed bias-corrected procedures involving the
cross-validation method were studied by Konishi and Honda(1990, 92).

[8] Coping with improper solutions in factor analysis. Consider the factor analysis
model with random common factor vector f, given by

z,=p+Af,+e, 1=1,....n

where &; € RP is an observed vector, u € R? and A (p x k) are unknown parameters, f. € RF
and e; € RP are mutually independent random variables having f, ~ Ni(0,I) and e; ~
N, (0, W) for unknown ¥ = diag(vy,...,¢,). Letting

S = 2" (¢ - @) (x —F),
=1
Y = Cov(e;)=AAN+ V¥,
the MLE of ¥ and A can be derived by minimizing

g(W,A) =tr(SY ) — log|SE .
)

Then it is known that improper (non-positive) solutions arc sometimes yielded for ¥. This
is related to the problem of estimating parameters that are subject to a set of inequality
and equality functional constraints in covariance structure analysis. For coping with this
drawback, Lee(1980, 81) proposed the penalty function and the Lagrange multiplier meth-
ods. Takeuchi(1986) showed the existence of the ML solutions, clarified the structure of the
MLE and gave in-depth studies of the case where M = 0. Akaike(1987) treated the above

factor model in a Bayesian framework with a similar prior distribution as in Martin and Mc-
Donald(1975), and based on the AIC, proposed to obtain solutions minimizing the equation

G (W, A) = tr(S(AN + )Y — log|S(AA + W)~ +§ tr AW A

The second term in the r.h.s. functions as a penalty so that improper solutions are not yielded,
since 1t gets large as one of ¢;’s approaches zero. It is thus noted that the proposed procedures
are modified to keep estimators far from zero rather than to shrink them towards somewhere.
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Since ¢ is a hyper-parameter adjusting the extent of the penalty, it may be needed to be
estimated from data through empirical Bayes rules. Further theoretical developments will be
desired.
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