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Abstract

Let Z bea k-way array whose ¢q; x---xq elements are independent standard
normal variables. For ¢;-dimensional vector h;, 1= 1,... k, define a multilinear
form of degree k by (h) ® --- ® hi)Yvec(Z) . We derive formulas for upper tail
probabilities of the maximum of multilinear form with respect to h;’s under the
condition [|A;|| = I for any i, and of its standardized statistic obtained by dividing
by |lvec(Z)|| . We also give formulas for the maximum of symmetric multilinear
form (hy ® --- ® hy,)'vec(sym(Z)), where sym(Z) denotes the symmetrization of
Z with respect to indices. These classes of statistics have important applications
in testing hypotheses of multivariate analysis such as the analysis of variance of
multiway layout data or testing multivariate normality. In order to derive the tail
probabilities we employ a geometric approach developed by H. Weyl and J. Sun.
Upper and lower bounds for the tail probabilities are given by reexamining the Sun’s
results. Some numerical examples are given to illustrate the practical usefulness of
the obtained formulas including the upper and lower bounds.
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1 Introduction

Let Z = (2,.5,), 7 = 1,...,q;, 1 = 1,... k, be a k-way random array whose com-
ponents are distributed independently according to the standard normal distribution
N(0,1). Let h; = (ha,...,hig) € R% i =1,...,k, be coefficient vectors and con-
sider a multilinear form of degree k, or k-form, defined by

q1 9k

gk(hla ey hk, Z) = Z coe z h’1j1 s hkjk,zj.lmjlq‘

=1l ge=l

In matrix notation
gelhi, . his Z) = (@ - - @ hy)'z,

where ©@ denotes the Kronecker product and
r; /
Z = VGBC(J) = (anh 2112y v - 7’2(1|q2,.4(1k.)

is the ([I*., ¢;)-dimensional column vector consisting of the components of Z by the
lexicographic ordering. We consider the maximum of the k-form under the condition
|hi]l = 1 for any 4, i.ec.,

T, = max hiso.. hy Z), 1.1
k M ng( Ls K Z) ( )

and its standardized statistic

Uy = Te /121 (1.2)
Here || - || denotes the usual Euclidean norm. Note that Ty, > 0 and 0 < U, <1 since
By imposing the additional condition that ¢, = --- = ¢ (= ¢, say), we also consider

the symmetric multilinear form of degree k, or symmetric k-form, gi(hy,..., hyg;sym(Z)).
Here sym(Z) is the k-way array with (ji,...,Jx)-th component

1
E] Z L1y T (k)

CreP({1, ..k}

and P({1,...,k}) denotes the set of permutations of {1,... k}. The corresponding
maxima are

T = max  g(hn,.o s sym(Z)), (1.3)
and

Uk = Ti/ 2] (14
It can be easily proved that the maximum in (1.3) is attained when hy = - = hy (= h,

say) holds. Therefore we can write

Ty = max gi(h, ..., hisym(2)) = max gi(h: Z),
L= Li:



where h = (hy,...,h;) € R and

ah; Z)y=(h® - @h)z
k

Note that T, >0 and 0< U, <1 for k odd, and that —1 < U/, <1 for k even. The
primary purpose of this paper is to give some explicit formulas for the tail probabilities
for Ty, Uy, ’f}m and U, . More precisely, we shall give asymptotic series for P(Ty > a)
and P(T}, > a) when a is large, and expressions for P(U, > a) and P(Uy > a) for a
greater than a suitable constant.

When k = 2 the k-way array becomes a ¢ X ¢o random matrix Z = (2;,,),
and Ty = maxh)Zhy is the largest singular value of Z. Therefore 77 is the largest
eigenvalue A\ (ZZ') of the ¢ x 1 matrix ZZ', or \(Z'Z) of the gy x go matrix Z'Z,
where ZZ' or Z'Z are distributed according to the Wishart distributions W, (g2, I5,)
or Wi, (q1,1,,), and I; denotes the identity matrix of order d. The distribution of
the largest cigenvalue of the Wishart matrix was extensively studied because of its both
practical and theoretical importance. When the expectation parameter matrix is the
identity (i.e., the null case), the distribution of the largest eigenvalue can be obtained
in principle by integrating out the other eigenvalues in the joint density of eigenvalues
(e.g., Chapter 13 of Anderson (1984}). Along this line, some algorithms for evaluating the
distribution function were devised. See a survey paper by Pillai (1976). Although this
approach enables us to numerically evaluate the distribution functions, it does not yield
explicit formula for the marginal distribution of the largest eigenvalue unless min(gqy, ga)
is small.

The distribution of UZ = \(ZZ2")/tx(ZZ') = M(Z2'Z)/tx(Z'Z), the largest eigen-
value divided by the trace of the same Wishart matrix, has an important application
in the analysis of variance. In the analysis of two-way layout data without replication,
Johnson and Graybill (1972) proposed a test statistic for interaction effects, where the
null distribution coincides with that of U . Similarly when we extend their method to
three-way layout, or multiway layout of higher order, the distribution of U2, k& > 3,
are needed. We summarize these applications in the analysis of multiway layout data in
Section 2.1. Davis (1972) gave an algorithm to evaluate the distribution function for U
numerically, as well as the explicit expressions for min(qy, ¢2) = 2,3 . Using the method
by Davis (1972), Schuurmann et al. (1973) provided a table of quantiles.

The maximum of the symmetric 2-form T is the largest eigenvalue of the symmetric
matrix

A=sym(Z) = (Z+2Z")/2, (1.5)

whose each diagonal element and upper off-diagonal element are independently distributed
as the normal distributions N(0,1) and N(0,1/2), respectively. It is to be noted that
the distribution of A is multivariate symmetric normal distribution, which is the limiting
distribution of standardized Wishart matrix as degrees of freedom go to infinity. In Section



2.2 we show that the statistics 73 and 7T} arise as the limits of the test statistics for
multivariate normality proposed by Malkovich and Afifi (1973).

In order to derive the tail probabilities of the maxima introduced above, we employ a
geometric approach. Around sixty years ago, motivated by the work by Hotelling (1939),
Weyl (1939) defined the tube in the Euclidean space as well as the unit sphere of general
dimension, and derived a formula for the volume of tube. For the history and applications
to statistics, see Knowles and Siegmund (1989). More recently, Sun (1993) has developed
a general theory of the tail probability of the maximum of Gaussian random field with
finite Karhunen-Loéve expansion. Sun’s theory states that the tail probability is expressed
in terms of the geometric quantities which appear as the coefficients of Weyl’s tube formula
for a manifold defined by the Karhunen-Loéve expansion. As we shall see later, evaluation
of the tail probabilities for U, and U, can be reduced to the evaluation of the volume
of tubes. Derivation of the tail probabilities for 7} and 7T} are within the scope of
Sun (1993). However it is in general difficult to determine the coeflicients in Weyl’s tube
formula. For example, although Sun (1991) discussed the tail probability of pursuit index
in exploratory projection pursuit, she could not evaluate the corresponding geometric
characteristics explicitly. In our paper, we elucidate the differential geometric structure
of corresponding manifolds and determine the geometric characteristics in explicit forms.

Outline of this paper is as follows. In Section 2, applications of the distributions of
the maxima introduced in Section 1 are explained. In the testing problems described
in Sections 2.1 and 2.2, the distributions for U, and T) are required to calculate -
values, respectively. In Section 3, we prepare geometric tools. In our recent paper,
Takemura and Kuriki (1997) have developed the distribution theory for the projection
onto convex cone. The maximum of Gaussian random field with finite Karhunen-Lo¢ve
expansion can be regarded as the projection onto nonconvex smooth cone. We summa-
rize the theory by Weyl (1939) and Sun (1993) in a form comparable to Takemura and
Kuriki (1997). We also give a theorem to calculate the critical radius, the extreme radius
for which Weyl’s tube formula is valid. Sections 4 and 5 are devoted to the statistics
Ty, Uy, Tk, and U, . We elucidate the geometric structures of corresponding manifolds,
determine the geometric quantities, and then obtain the formula for the tail probabilities.
By giving some numerical examples we also demonstrate that the obtained expressions
are practical enough for calculating p-values.

2 Applications to testing hypotheses

In this section we discuss testing problems where the distributions of the maxima intro-
duced in Section 1 are required in calculating their p-values.



2.1 Tests for interaction in multiway layout without replication

Let my;, i=1,...,1, j=1,...,J, be observed as two-way layout data without replica-
tion. For such data Johnson and Graybill (1972) assumed a model:

Tij = oy + O + guiv; + €4, 21)

where oy, 3, g, u;, and v; are unknown parameters and €;; 1s a random error dis-
tributed independently as N(0,0°) with ¢ unknown. They proposed a test for inter-
action effects, or non-additivity, as a likelihood ratio test for testing Hy : ¢ = 0. They
showed that the critical region of the likelihood ratio test is given by

AMYY)/te(YY') > e (2.2)
for some constant ¢, where Y = (y;;) isa [ x J matrix with (7, 7)-th element
Yij = Loy — Li. — T + T,

and A\ (YY”) is the largest eigenvalue of Y'Y’ . Here the dot means the arithmetic mean
with respect to the corresponding subscript, e.g., ;. = (1/.J) Z'f:ﬂ z;; . Under the null
hypothesis H, : g = 0, the distribution of the likelihood ratio test statistic in (2.2) is
shown to be that of U in (1.2) with ¢y =11, gg=J—1.

As an extension of Johnson and Graybill (1972), Kawasaki and Miyakawa (1996) con-
sidered the following model in the analysis of three-way layout without replication:

Ty = (af)ij + (@) + (B7)j + GUVWE + €4k,

where £y, is distributed independently as N(0,0%), i =1,....1, j =1,...,J, k =
L,..., K. Here as in (2.1) the parameters (af3):;, (o), (BY)jks 9, wiy v, wyg, and o?
are unknown. Using this model they proposed a test for the null hypothesis Hy: g = 0.
The critical region of the likelihood ratio test is of the form

= 2 ) :
max ( UV WY k) / YL, > (2.3
o sttt ) /30 e > 23)

where w=(u;,...,u;)', v=(v;,...,0;), and w = (w,..., wg) are unit vectors, and
Yijk = Tijk — Lij. — T — Tjk T T + 25 + Togp — 2

is the residual under H,. The distribution of the test statistic in (2.3) under Hy is
shown to be that of U} in (1.2) with ¢; =T —1, ga=J 1, ¢ =K — 1.

In a similar fashion, one can extend this method to multiway layout of higher order.
For the k-way layout data without replication we can propose the likelihood ratio test
statistics as in (2.3), whose distribution under Hy is that of UE.



2.2  Tests for multivariate normality

Let zy,...,2, € R? be n independently and identically distributed random vectors.
Define the third and fourth sample cumulants with respect to the direction u € R4, u # 0,
by

(1/n) S0, (W, — u'z)?

", s ~i=]
ks (u) (1w Su)3/2
and ) W L
k4(u) - ( /I’L) Zi:l(u L Mu‘[") ~ 3,

(w' Su)?
where @ = (1/n)¥ 7 z; and S = (1/n)>0 (x; — Z)(x; — T) . Motivated by Roy’s
union intersection principle, Malkovich and Afifi (1973) proposed tests for multivariate
normality. The proposed test statistics are

by = max ks (u), bf = max ka(u), and by = min kea(u).

The hypothesis is rejected when b3, b, or —b; are greater than some critical points.
Let y;(u) (i = 3,4) be real-valued continuous Gaussian fields on S%°' (the unit sphere
in R?) having the mean zero and the covariance function Ely;(u)y;(v)] = 6(u'v)? (i = 3),
24(u'v)* (i = 4) . Machado (1983) and Baringhaus and Henze (1991) proved that, under
the null hypothesis that the distribution of x; is g-variate normal, /nbsy converges in
distribution to maxy,cge-1 y3(u), and both /nbf and —/nb; converge in distribution
to the common limit max,ecge-1 ya(u), as n goes to infinity.

Let 2z be a ¢ or g¢*-dimensional random column vector whose each component is
distributed independently as N(0,1) . Then it can easily be seen that the Gaussian fields
ys3(u) and y4(u) have representations

ys(u) = VBu®@u@u)'z

and

ya(u) = vV24(u @ u® u R u) 2.
This means that +/nbs converges in distribution to 673, and /nbf and —/nb]
converge in distribution to /24 T} .

3 Distribution of the projection onto nonconvex
smooth cone

In this section we summarize geometric tools mainly from Weyl (1939), Sun (1993), and
Johansen and Johnstone (1990) in a form suitable for our development. Furthermore by
reexamining Sun’s derivation of the asymptotic expansion of the tail probability, we give
upper and lower bounds for the tail probability P(T > a) for the non-standardized



maximum (such as Tj, or T} in (1.1) or (1.3)), which are valid for each a > 0. We
provide our own simplified proofs of these results in Appendix B.

Let {z(t) € R|t €I} be a Gaussian random field such that E[z(t)] = 0, E[z(t)?] =
1 with the index set I . We assume that «(t) has a finite Karhunen-Loéve expansion:

P

i=1

where &(t) = (¢1(t),...,¢,(t)), z = (21,...,2,) and 2, i = 1,...,p, are indepen-
dent standard normal random variables. Note that Elz(s)z(t)] = ¢(s)¢(t), and that
llo(t)|] = 1 since Elx(t)?]=1. Let

M= ¢(I)={o(t) |teI}c S
We put some assumptions on M .

Assumption 3.1 M is a non-bordered compact C?-submanifold of dimension d in
St

Define a closed cone K C RP associated with M by

K=\JeM={cp(t)|c>0, tel} (3.2)

cz0

which is smooth except for the origin. For z € R? let 2x € K denote the projection of
r onto K :

o~ el = g e — ol
Then
P ‘] == , l,., o €T
ey et = gy ez = ol
unless ||zg| = 0. Note that zx exists since K is closed. zx may not be unique
but [|zk|l and |z — zk|| are uniquely determined. In Takemura and Kuriki (1997) we

investigated properties of projection onto a convex cone K . In the case of the convex
cone zy is always uniquely determined and its distribution is nicely characterized as Y2
distribution. By introducing a cone K in (3.2) it becomes clear that the results in this
section are closely related to those in Takemura and Kuriki (1997).

For nonconvex K we need to be concerned with the uniqueness of projection zg .
The essential notions are the tube around M and critical radius (critical angle) of M
with respect to the geodesic distance of SP~!. Here the geodesic distance between two
points wu,v € SP7! is given by arccos(uw'v), which is the lengths of the part of the great
circle joining w and wv .

For 0 < @ < 7 the tube of geodesic distance 6 around M on SP~' is defined by

My = {v €SP | maxu'v > cos ).
ue M X

7



For each w € M let T,(M) denote the tangent space of M at u and T,(M)* denote
its orthogonal complement in RP . Define a set Cy(u) C SP~' by

Co(u) = {v e S* ! | uv > cos} NT,(M)*.

Cy(u) is the set of points v with the geodesic distance less than 6 from wu and such
p

that the geodesic from w to v is orthogonal to T,(M) at u. Since M is a closed

non-bordered submanifold of SP~! we obviously have

Mg = U C()(’U,),
ueM
It is said that My does not have self-overlap it Cy(u), v € M, are disjoint. The
supremum ¢, of 6 for which M, does not have self-overlap is called the critical radius
(or critical angle) of M :

0. = sup{f | My does not have self-overlap}.

Note that the critical radius never exceeds 7/2, which is attained when M = S¢~1 C
Sl d < p.

For determining the critical radius of M the following lemma (Proposition 4.3 of
Johansen and Johnstone (1990)) is very useful. Although Johansen and Johnstone (1990)
stated their Proposition 4.3 for the case dim M = 1 only, its statement and proof hold
for dim M = d > 1 almost verbatim and we omit the proof.

Lemma 3.1 The critical radius 6, of M is given by

1 —uPyu
cot?0, = sup ———n 3.3
‘ u,vEM (1 - u/’U)}” < )
where P, s the orthogonal projection onto the tangent space T,(K) of K of (3.2) at
V.

Remark 3.1 Let

h(u,v) = ————— (3.4)

be the square root of the argument of the supremum in (3.3). In Appendiz A we show that
h(u,v) can be defined also for u = v by taking appropriate supremum as u — v, and
the maximum over the compact set M x M exists and is finite. This implies that the
critical radius 6, 1s positive under our Assumption 3.1.

Let Ky denote the cone associated with My :

K@ = U (’,’Mg.

c>0



As before K denotes the cone associated with M . If = € K, then the projection xg
of z onto K isunique. For = € Kp,  write

r=xg+ (z — zg) = ru+ sv,
Where o= ||’L'KH’ 8§ = ”ZII — -’EK”, &nd
u=ak/reM, v=(r—ag)/s€ T(K)nsr .

The one-to-one correspondence
z « (ryu,s,v)
is of class C' and Weyl (1939) derived its Jacobian. We state the Jacobian in the

following lemma.

Lemma 3.2 Let H(u,v) denote the second fundamental form of K at u with respect
to the direction v € T,(K)* N SP™' . Then

dr =

s det ;
Iypr + - H(u, b)‘ rldr du s ds do (3.5)
T

where du denotes the volume element of M and dv denotes the volume element of
TAK)ENSP=t (the (p-d—2)-dimensional unit sphere restricted to the space T, (K)* ).

A simple proof of this Lemma 3.2 is given in Appendix A of Kuriki and Takemura (1997).

Let tr;H denote the j-th trace, i.e., the j-th elementary symmetric function of the
eigenvalues of H = H(u,v). Let troH = 1. Although T,(K) is of dimension d + 1,
rank H(u,v) < d since H(u,v) has at least one eigenvalue (principal curvature) equal
to 0 with the eigenvector (principal direction) u . Therefore

}Jd* St H

l]d“ + H(u v)

and (3.5) can alternatively be written as

d
do =" rdesP= =24 g sty H (u, v) du dv. (3.6)

e=0
Moreover as shall be explained in Appendix A, the principal curvatures of K at
u with respect to the principal directions orthogonal to w coincide with the principal
curvatures of M at w. In other words H(u,v) appearing in (3.5) and (3.6) can be
replaced with the second fundamental form of M at w with respect to v .
From Lemma 3.2 the volume of My, 8 < 4., is obtained as {ollows. Let

Q4= Vol(841) = ==

denote the total volume of S9! and let B,,,(a) denote the upper tail probability of

the beta distribution with parameter (m,n)
_ I |

— e m--1 . n—1
Brnle) = | gomt (L= g tde.

9



Lemma 3.3 Let z € RP be distributed according to the standard multivariate normal
distribution N,(0,1,) . For 0 <6 <4,

d
VOI(M@) = glp . P(Z S I(g) == Qp Z 'wd-%l—eBéu(d+]-‘e),%(pﬂjﬁl+e)(COSQ 9),

e=x()
where
1 .
Wdt1-e = tre H (u, v) dv| du. 3.7
d+1~e Qd+]--~er—d~—]+c /M [/TU(K)lHSVJ : ( )( ] ( )

This formula was given by Weyl (1939). A simple proof is given in Appendix B. Note that
Wgy1-. corresponds to the weight of ¥? distribution for piecewise smooth cone given in
Theorem 2.4 of Takemura and Kuriki (1997).

Now consider the tail probability of standardized maximum statistic. Let x(t) be
given as in (3.1) and consider

U =max o(t)'z/||z]| = maxw'z/|[z]]. (3.8)
Because z/[|z|| has the uniform distribution over SP~! for —1<a <1

1
P(U>a)= a Vol(My), 6= 6(a) = arccos(a).
p
If a > cosf. then Vol(Mpyg) is given by Lemma 3.3, For convenience we state this as
a lemma.

Lemma 3.4 For a > cosf,

d
P(U > a) = Z U)d+1»—€B%(d+J~e),%(p~d~~l+e)(az)'

e::0
e.even

Now we consider the non-standardized statistic. Let

T = )z = maxu'z. 3.9

e o) = e (39)
Denote the density and the upper tail probability of x? distribution with m degrees of
freedom by g.(a) and G,,(a), respectively. Furthermore for a,b > 0 define

Qnlab) = [

a

" 0m(©) (1= Ga(b)) € = Gunla) — [ gnl€) (o) de.

a

Qmn(a,b) can be evaluated by numerical integration. It is also easy to obtain recurrence
relations among (, ,(a,b)’s.
Now we can state the following theorem.

10



Theorem 3.1 Let wgyy1_. be given in (8.7). For a >0

Qr(a) < P(T > a) < Qu(a)

where ;
QL(()‘) = Z u}d«+1~eQd+l—e‘p—d—~]+e(a2> tan” ec) (3]0)
and Vol( M,
Qo) = Qula) + Gy(a?(1 + tan?6,)) (1~ YOIy, 3.11)
P

Proof is given in Appendix B. Furthermore it is easy to see that

Qula) — Qpla) < Gy(a®*(1 + tan®6,)) = o(G1(a?))

and
d B d 00 -
IQL(Q) - L wd+]-ch+1~e(a2)‘ < Z lwd-H«—eI /2 gd+l»w-e(‘€) Gp ~d——1+e(€ t&nQ 90) dg
e=0 e=0 a
‘eve : ) ) | | ) |
<D wari—e] Gpla®(1 4+ tan?6,)) = o(Gy(a?)).
e=0

As a corollary to Theorem 3.1 we have the following result by Sun (1993):

Corollary 3.1

d
P(T > a) = }: Was1-eGapr-e(a?) + o(G1(a?)) as 0 — 00 . (3.12)

e=0
eieven

Remark 3.2 Let lin K be the intersection of all linear subspaces containing the cone
K . When linK is a proper subset of RP, there exists a Karhunen-Loéve expansion of
dimension p' = dim(lin K) < p, and p in Theorem 3.1 should be replaced with P oso as
to wunprove the lower and upper bounds.

4 The maximum of multilinear form

In this section we derive tail probabilities for the maximum T}, (1.1) of multilinear form
of degree k as well as its standardized statistic U, (1.2) defined in Section 1. Let

My={h® - Q@h|h €81 i=1. k} (4.1)
be a manifold of dimension

k
d=3 (¢—1)
i=1

11



in R? with p=T[f, ¢ . Since |h@---@hg|l = [15, ]l = 1, it holds that My ¢ SP~1 .
It is easy to check that Mj is a submanifold of SP! satisfying Assumption 3.1. The
statistics 1), and U, are written as

— ! e ans /
Te=maxu'z, Uy = maxu'z/||2]],

respectively, where z is a p-dimensional column vector distributed as N,(0, ) . Then
1y and Uy are of the form of the random variables 7" and U in (3.9) and (3.8) whose
tail probabilities can be derived by virtue of Lemma 3.4, and Theorem 3.1 or Corollary
3.1 of Section 3.

In Section 4.1 we determine the geometric quantities of M, . We Hrst determine the
tangent space T, (M) of the manifold M, at each point u € M,, and obtain the
metric (first fundamental form) G(u) = (gi;(v)) and the volume element du at w .
Second we determine the orthogonal complement T+ = T,(K),)* of the tangent space
of Ky = U.socMy at v € My . Then the second fundamental form H(u,v) of M, at
u € My, with respect to the direction v € T,,(Ky)* is obtained.

In Section 4.2 the coefficient wy1-. in (3.7) for M, shall be given. We perform
double integration of the generalized trace tr,H(u,v) of the second fundamental form
with respect to the volume element measure dv over T,(K;)* N SP~! followed by the
integration with respect to the volume element du over M, . By dividing the result by
Qay1-ep_g-14c we obtain wg,i_, .

In addition to w4y .., we have to know the critical radius 6. of M, which is required
by Lemma 3.4 and Theorem 3.1. Calculation of 6, by virtue of Lemma 3.1 is given in
Section 4.3.

We present some numerical examples in Section 4.4 to show the accuracy of the ob-
tained formulas.

4.1 Volume element and second fundamental form

We begin by determining the geometric quantities of M . We introduce a local coordinate
system to make calculations simple. Let t; = (t;1,...,t;, 1) bealocal coordinate system
of 5971 sothat h; € S%~! has a representation h; = hi(t;). Then u=hy® - -®Qhy €
My, has a local representation u = ¢(t), where

¢(?L) == hl (fl) & hk(tk)

with parameter ¢ = (t],...,¢,) of dimension d =% (¢, — 1).
Taking a derivative of ¢(t) with respect to t;,, we have

8¢> , a/li

=@ O @ = @ hi © e Ay

atia e 1 atia e g
The tangent space T, (M) at u = ¢(t) is spanned by

dq
{—3 €R|i=1,.. k a=1.4~1},

12



and T,(Ky) is spanned by T,(M;) and w. The (ia,jb)-th element of the metric
G =G(u) at u is given by

AP N\ dzﬁ Oh; ' Ol _
) 2 Gsan 1.2
<dt,«a) Ot ’(dtw) Oty 3dhab (4.2)
where ¢;; is the Kronecker’s delta and
()h / C)hl
gz ab = <5tm> btib

is the (a,b)-th element of the metric G; of S%~ at fy; == hy(t;) . Thercfore the metric
of My, is given by G = diag(G,,. ... Gy) with G; = (Giav) a (¢ —1) % (¢; —1) matrix.
The volume element at u is

k g—1 qi—1
du = GI’ H H dtm - II {’67 I‘I dfm}
i=1 g==1 a=1

which is a product of the volume elements of S%~ 1 ¢ =1, ... k.

Lemma 4.1 The volume element of My at u = h, & --- @ hg is given by du =
HZwl dS%=1 where dS%=1 denotes the volume element of S%v at h, .

We need to be careful about the fact that M, and ST x...x S%"' are not one-to-
one. Indeed Ay ®-.-® hy is invariant under an even number of sign changes h; +— —h; .
The multiplicity of the map g, : S?~! x .. x S%™1 — M, is 2¥1 since the signs of
hi,...,hg_1 can be arbitrarily chosen.

Noting this fact, we have the following.

Corollary 4.1 The total volume of M, 1is

1 k
— i1
VOI(MI") = >/A4k; d?L - 2k ] H/q 1 Sq - ;‘Z—IJT 1_[11 Q’]@‘

Let H; bea ¢ x (¢; — 1) matrix such that (h;, H;) is ¢; x ¢; orthogonal. Let

§£m<5¢ 0¢ )
Ot: — N0ty Oty gy

be a p x (¢; — 1) matrix, and let

ahi N <0h, 8’&{
Oty Nty Oty
be a ¢; X (g; — 1) matrix. Then the columus of two p x (¢; — 1) matrices

Bz;hl(}g’)(g@hl,l@HﬂX)hq.,_lM@hk
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and

9 dh 7
a;i::h](}z) ®}L/L ]@)gtf ®hz+l® ®h’/€

span the same space, since h(0h;/0t;) = 0 and rank (Oh;/Ot;) = ¢ — 1.
Any vector orthogonal to u = hy®---®h; and the column spaces of B;, 1 =1,...,k,

can be written as

v = (HHQH Qhy® - - Qhg)ep+ (H Qhy @ Hy® hy @@ hg) ers
+o At (@ @by @ Hyy @ Hy) ek
+ (Hy @ Hy@ Hy @ hy @ -+ - @ hy) €103 + -+
+ PR
+ (Hy @ Hy® -+ - @ Hy) e1g..4, (4.3)

where e’s are column vectors of appropriate sizes, e.g., 1o is {g—=1)(ga—1) X 1, eqo3 is

(1—1) (g2~ 1)(gz—1)x1, ey is [IF;(g;—1)x1. Then the set of vectors v in (4.3) form

the linear subspace T,(K})* whose dimensionis p—d—1=11",¢ -3¢ (¢ -1 —1.
Now taking a second derivative we have

0
h - F & Oh & F ®K---Qh if ]
= b Y- i : =17,
1 ® 1 0t Vi1 k ni=7J
oh; Oh; e
=hy @ - ®h,1®(—j{“®ht+1® - @ hy- 1(}@& @ hjp @ @ hy iti<y
Then for v in (4.3)
P*¢
g9y TR
Otig Oty e

Oh; Oh;

N o g & if i < j.

( ’81‘ ()tﬂ) J

For i < j let Ei bethe (¢, —1) x (g; —1) matrix defined by vec(Ej;) = e;; . There
exists a (g; — 1) x (¢; — 1) nonsingular matrix F; such that

Oh;
— = H;}.
ot;
Then the d xd (d=YF (¢ —1)) matrix with (ia, jb)-th element v/(9%¢/0t;,0t;) is
written as a block matrix with (4, 7)-th block
0) if =,
E’E{j}:}' ifi<yg,
FlELF;, ili>jg,
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ii=1,... k.

On the other hand, as we have seen in (4.2), the metric G of M is written as a
diagonal block matrix with (¢,4)-th block F/F;, i =1,..., k. This implies the following
lemma.

Lemma 4.2 In an appropriate coordinate system, the second fundamental form of My
at w with respect to the direction v in (4.3) is written as

O En Ey - Ey
By O Ey - Ey

H(u,v) = — | £ }'st O - By |, (4.4)
El E2k oy - O

4.2 Derivation of the coeflicient wgi_.
For fixed u € M, we evaluate the integral

/ tro H (u, v) dv, (4.5)
Tu(K)tnop-1

where dv is the volume element of T,(Kj)* N SP~! the unit sphere restricted to
T.(Kp)t . We introduce a random variable and replace the integration with an expecta-
tion.

Let y € RP be a singular Gaussian vector distributed as N, (0, Py), where P is
the orthogonal projection matrix outo the linear subspace T,(Ky)* . Then r = |ly|| and
v =1/|ly|]| areindependently distributed. r? has x? distribution with p—d—1 degrees
of freedom and v has the uniform distribution over T,(Ky)" N SP~' . Since H(u,v) is
linear in v, we have

EltreH(u,y)] = EtreH(u,rv)] = E[r¢tr. H(u, v)]
= E[r‘]- EltroH (u, 1))]

= E[(ij_d_])ep] P — /tx H(u,v)dv,
va—d-»—l
where (X )
T(ip—d—1+e
E 2~ B e/21 __ 26/2 2 :

Hence we have a representation of the integral (4.5) as

/ treH (v, v) dv = ~~——~—§—2—Ei—i~ - Eltre H(u, y)]. (4.6)

Tu(Kp)+nsp—1 El(x 12) a1

Note that the random vector y can be written as Q,3, where @, isa px (p—d-—1)
matrix such that Q,Q, = P} and ¢ is a (p — d — 1)-dimensional random vector

distributed as Np_q_1(0, Ip-4-1) -



Now we return to our problem of multilinear from of degree k. As we saw, T.(Kp)*t
is spanned by the vectors of the form of » in (4.3). In this parameterization

I =22 llegl®+ >0 leql®+--- +]

1<i<j<k 1<i<j<l<k

€12k HQ?

which means that elements of the vectors
€5 (Z < ]), €ijl (Z <j< l), oy €190k

form an orthonormal basis of T,(Kx)* . If we assume that every element of these vectors
€ijs Cijly - - -, €12..¢ 18 independently distributed as N(0,1), then » has the distribution
Np(0, P') . Therefore the problem is reduced to evaluating the expectation F [treH] with
H = H(u,v) in (4.4), where cach component of Ej; (i < 5) is independently distributed
as N(0,1).

The expectation Eltr,H] can be represented in terms of the following combinatorial
quantities. Put d; =¢ —1, i=1,...,k, and d=3"F d; =% (¢ —1). Let

T La=1

i—-1 i—1 i
A ={ JZ_);dJ + 1,;@ +2]}1d, booi= Lk (4.7)

Ay, ..., A form a partition of {1,2,...,d}. The cardinality of A4; is d; = card(A4,) .
Let a map 7 :{L,....d} — {1,...,k} be defined by 7(a) =i for a € A;, ie., 7(a)
indicates the set which contains « .

Consider a set of m pairings

{(a1,02), ..., (@2m-1,02m) | a1 < ag < -+ < agm-1, a1 < ag, ..., Qg1 < Gom}  (4.8)
such that
() 2m indices ay,as,...,as, are distinct elements of {1,2, ... ,d} .

(ii) For each pairing in (4.8), say (a1, ay), ay_1 and ay do not belong to the same
set of (4.7), ie., 7(ag_;) # 7(ay), l=1,...,m.

Farthermore let ng(dy,ds, ..., dy;m) denote the total number of sets of m pairings
satisfying (i) and (ii). Now we can state the following lemma.

Lemma 4.3 Let y be distributed as N,(0, PX) . Then

EBltreHu,y)] = (~1)*nu(dy, do, ..., ds; e/2) for e even,
= { for e odd.

Proof. Note first that the generalized trace tr,Hd of H is written as

tr.H = > det H[A],

AC{1,...,d}
card(A)=e
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where H[A] with A = {1 < qa; < -+ < q, <

H formed by deleting all but columns and rows of H numbered ay, ..., a. (Muirhead
(1982), Appendix A7). Consider the termwise expectation

E[det H[A” = Z Sgn(ﬂ-) E[h’ﬂrlﬂ(arl) T h’ae'ﬁ(ae)] (4'9>
TEP(A)

where P(A) is the set of permutations of the elements of A .
Since H = (hgy)i<ap<q 1S a symmetric random matrix whose diagonal and upper
ab/1<a,b<d Yy ) -
off-diagonal elements are zero mean independent random variables (maybe a constant 0),
Eh “hgray] =0 unless e is even and w(a) # a, w(w(a)) = a, Va . In this case
arm(al) e (e ) ) >
sgn(m) = (~1)¥2, and by relabeling the indices of «’s, non-vanishing terms in (4.9) can
be written uniquely in the form of

(~1)2ER2 W2 B2 ]

aya2'"a3as Qe—10e

with a; < a3 < -+ < ap.(, &1 < a9,...,08..; < a.. Moreover hay ray = 0 for
T(az-1) = 7(axn), since H[A;]= 0O (d; x d; matrix consisting of 0’s), i =1,... k.

Therefore for e even we have

E[t[‘ef{(u, 3/)] - (_1)6/2 Z Z E[hzlazh’zgcm T ]L(Qle,,lae]‘

Ac{1,..., d} aj<ag<-<ag.q
card(A)=e a1<agz,...,ae..1<age
T(agy)#T(agy), Vi

Since the expectation in the right hand side is 1, and the summation is taken over all sets
of m = e/2 pairings (4.8) satisfying (i) and (ii), we prove the lemma. ]

For k=2 and 3, ng can be written as follows.

Lemma 4.4 For d; > 0, m > 0,

dy! dy!

no(dy, do;m) = = (o — i if m < min(dy, dy),
= 0 otherwise, (4.10)
and S
7L3(d1,d2,(j3;7n) = Z (411)

liHgtlg=m =1 l;! (li —m+ di)! f

Iy zmax(m-d; 0), Vi
where the summation is taken over triplets (11,1, l3) of integers such that l; +ly+15 = m
and 1; >0, l; =m+d; 20, i =1,2,3. Put n3(dy,dy, ds;m) = 0 if there does not exist
a feasible triplet (Iy,1y,15) .

Proof. Consider the case k= 2. mny(dy,do;m) is the total nunber of m pairings of
the form

{(bla Cl); ceey (b7nvc77b>}7 bla ey bm € A]a Cly .oy Cpp € AQ'
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There are (‘fr’l) ways of choosing m eclements from A; = {1,...,d;} and there are (iﬁ)
ways of choosing m elements from A; = {d; +1,...,d}. Furthermore there are m!
ways of forming pairs of the 2m chosen elements. Therefore

dy\ (d;
no(dy, do;m) = <ni> (g) ml.
This proves (4.10).

Consider the case k& = 3. Fix [y, lo, I3 > 0 such that [; + Iy + I3 = m . Choose
two subsets Bio and Bz of A; = {1,...,d;} such that card(B,) = I3, card(B3) =
la, Bip N Byz = (. Similarly choose By C Ay = {d, +1,...,d; +dy} and By C A,
such that card(By) = I3, card(Bas) = l;, By N Byy = 0; choose By C Az = {d) +
dy +1,...,d} and Bsy C Az such that card(Bs;) = I, card(Bsy) = Iy, By N B3y = 0.
There are 3! ways of making I3 pairings between By, and By . Similarly there are !
ways of making Iy pairings between Bz and Bsj, and ;! ways of making [, pairings
between Bys and Bsy . Then for fixed {4, Iy, I35 there are

" v & I Il !
lg, 13, d] — Iy — lg ll, l37 dy — I, — [3 L, l2, dy — 1y — Iy SREINAT

ways of making m pairings of the form (4.8) satisfying (i) and (ii). Taking summation
for feasible triplets (I1, Iy, I3) proves (4.11). ]

For k # 2,3, the following recurrence formula is useful for calculating ny(dy, ..., dg; m) .
Since ny(dy,...,dg;m) is symmetric in dy,...,ds, we can restrict our attention to
diy > > dp.

Lemma 4.5 For k> 2 d, > --->d, >0, and m >0, it holds

nk(dy, ..., dg;m)

=1 ifm=20,
=0 ifm >0, dg =0, k=2,
=Ny (dr,...,dg_1;m) fm >0, dp. =0, k>3,

:nk(dl—l,dg,.‘.,dk;m)

k
+Zd] (1 (d1 - 1,d2, . 7dj~1adj - Ldj_H}, .o .,dk-;Tn - ].)

=2
otherunse.

Here in the last expression the arguments of ny should be reordered so that di > dy >
o2 dy > 0 (if necessary). For evample, if dy >dy — 1> dy, m(dy — 1, dy, ..., dp;m)
should be replaced with ni(ds, dy — 1,ds, ..., dp;m) .

<
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Proof. Consider the first element ‘1" of Ay = {1,....d;}. Among ny(ds,...,dg;m)
possible ways of m pairings, there are ny(dy — 1,ds, ..., dg;m) ways where ‘17 does not
appear in the m pairings; while there are

dj X N (dl - l,dg,...,dj_l,dj - 1,dj+1,.. .,dk;'ﬂl“ 1)

ways where ‘1”7 makes a pairing with one element of A; . Then the last equation of the
recurrence formula follows when m > 1 and d, > 1. The other three equations are
obvious boundary conditions for the recursion. [

Now we proceed to integrating (4.5) with respect to du :
: g

/ [/ tr. H(u, v) dv] du.
My, VT (k) nse—t

As we already saw, the integrand does not depend on wu . Therefore the integration with
respect to du over Mj, reduces to multiplying by a constant [y, du = Vol(M) obtained
in Corollary 4.1.

Then from (4.6) the coefficient in (3.7) for My is

1 _ QO gs
Vol(My) + s
El(Xp-a1)"]

Eltre H(u,y)].

W 1-e EltroH(u,y)]

Qd~1—1—--eﬂp~~d»—1+c
Vol(My) T(i(d+1—e))
Quri 2PT(5(d+1))

Summarizing the above calculations, we obtain the following theorem.

Theorem 4.1 The nonzero coefficient wgyi1-e in (3.7) for the tail probabilities of Ty in
(1.1) and U in (1.2) is given by

(k—1)/2 ‘
" Tye/2 1 .
wieiee = s (= 5) PG =) mla = Lo Lie/2)

e=0,2,....[d/2] x 2, where d=Y*_ (¢ —1), and nylg, —1,... qu —1; e/2) is given
by Lemmas 4.4 or 4.5.

Corollary 4.2 Let W be a qxq matriz distributed according to the Wishart distribution
Wolv, 1,), and let M\(W) be the largest eigenvalue of W . Then the tail probability
P(M(W) > z) is given by (3.12) with a = \/z,

Witi-e = Wgpp—1l-e
VL) L(v) (- )" PGlg+v—1)—ef2)
P Iy V72 Tla= /2T = e/2) (e/2)!

for €/2=0,1,... ,min(q,v) — 1 ; the other wqy1_. s are 0.

(4.12)
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Note that we can assume v > ¢ without loss of generality. Indeed (4.12) is symmetric in
v and ¢ .

Remark 4.1 It can be proved that there is a relation on the coefficients wgiy_1-c in
(4.12): For v >q—1 (v is not necessarily integer)

1 ifq is odd,

g—1
D Worpo1-2; = { 0
j=0

4.13
if q is even. ( )

Noting this relation and that G (1) = 2gm(z) + Gpm_o(z), we can rewrite the formula
for the tail probability of \i(W) given by Corollary 4.2 as

0‘2 = / . .
: . Googri(z) if qis odd
PNW)>2) ~ Ew,v,.-w( ve1-2i(x) + vl
( 1( )_,:1") = g+v—1-25 9q+v-1 2]( ) {() ifq is even
(4.14)
where

j
Wygp—1-25 = 2 Z Wy py—1-2i-
i=0

This 1s another expression of the formula by Hanumara and Thompson (1968). They

concluded that this formula 1s accurate enough for calculating swgnificance levels and made

a table of quantiles based on it. Although they did not state any mathematical properties,

we now know that (4.14) is justified as an asymptotic expansion as x goes to infinity.
A proof of (4.13) shall be given in Appendix D.

4.3 Critical radius

In this subsection we obtain the concrete value of the critical radius #,. of the manifold
My in (4.1) by virtue of Lemma 3.1.

Fix a point v = by ® ---® hy € M, with h; € S% ' Let H;,, i = 1,...,k, be
g < (q;—1) matrices such that (hy, H;) is ¢ x¢; orthogonal. Let Ky = U.>ocMy be the
cone associated with M), . The tangent space T,(K}) at v isspanned by v = h;®- - -&hy
and the column spaces of

Bi=h® - Qh_ 1 QH,Qhip1®---@hy, i=1,..., k.

Then the orthogonal projection matrix onto T,(K}y) is given by

k
P, = w'+> BB

t==1
k
=1
—(k = 1Dhyhy &+ R hih,.
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Let 9=h;® - ®h € M, . Then 9'v = Hle(;z;hi) and

k

' Pyo = y [T(RSRs)? — (k= 1) TT(Riha)*.

i=1j#i i=1

Note that both o'P, 0 and ¥'v depend on © and v through iz;hi = x; (say) which
takes values —1 < z; < 1. Then by Lemma 3.1
1**UP’U >ﬂ41[177‘zag~+( )HZ

cot?f. = sup ————" = su
vvelz/f (1 — v U) —~1<3c,£)1, Vi (1 '"‘ [L 731)

Here we take the supremum by two steps: First, take the supremum under the re-
striction that [[;z; (= vy, say) is fixed. Second, take the supremum with respect to
—1 <y < 1. By the relation between the arithmetic and geometric means, we have

k k
> i = k(H Ha;;%)l/k = J; |y |2k 1/

i=1j#i i=1j#i
where the equality holds if and only if 2% = -+ = 22 . Then we have
11—k 2(k-1)/k b — 1 ,12
cot?#, = sup 1y t( Jy . (4.15)
~1<y<l (1—1v)

Note that in (4.15) we can restrict y to be nonnegative. Here we give a lemma, whose
proof is given in Appendix C.

Lemma 4.6 2(6-1) 2k
1 — kz=\f- k—12z% 2k -1
sup : + ( fi = ( )7 (4.16)
0<z<1 (1 — 2k)2 k

where the supremum is attained when z 1T 1.

Then by making a change of variable y = 2% in (4.15), we have by Lemma 4.6 that

cot?f, = 2(k — 1) /k .

Theorem 4.2 The critical radius 0. of M in (4.1) is giwen by

2 c
0520, = ot k22,
steT gy TE

4.4 Examples

4.4.1 The maximum of 2-form (3 x 3)

Consider the statistic 75 in (1.1) with ¢; = 3, ¢, = 3. Then 7} is the square root
of the largest eigenvalue of the Wishart matrix W;5(3,/73). Then p = q1¢p = 9 and
d=q +q2—2=4. The approximate tail probability for T5 is given by

- P(Ty > x) ~ 3G5(x?) — 4G5(x?) + 2G4 (2?). (4.17)
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Since the critical radius 6, is given by tan®?, = 1, the lower bound is
Qr(z) = 3Qs.4(x*, 1) — 4Q36(2°, 1) + 20, g(a, 1). (4.18)
Let M, denote the tube of distance 6, around M, . The upper bound is
Qulz) = Qr(x) + Co(227) (1 — Vol(M,)/Qy), (4.19)

where Vol(M.)/Qg = 0.990.

In Figure 4.1 the approximate tail probability by (4.17) as well as the exact tail
probability calculated by the method of Pfaffian (e.g. Pillai (1976)) are plotted by solid
lines. (A monotonically decreasing curve corresponds to the exact value.) The lower and
upper bounds by (4.18) and (4.19) are plotted by broken lines. The exact valie and the
upper bound are too close to be distinguished. We can conclude in this case that the
approximation formula by asymptotic expansion is sufficiently accurate.

Also recalling that the value of Vol(M,)/€), is the maximum p-value which can be
calculated by Lemma 3.4, we can also conclude that Lemma 3.4 provides a practical
method for calculating p-values of UZ .

4.4.2 The maximum of 3-form (2 x 2 x 2)

As another example we consider the statistic 73 in (1.1) with ¢, = ¢» = g3 = 2. Then
p=1Lg =28 and d=3;(¢; — 1) = 3. Since n3(1,1,1;0) =1 and nz(1,1,1;2/2) = 3,
we have wyq =7, wy = —3w/2, and the other w’s are 0. Therefore we have

P(Ty > ) ~ wGy(z?) — (37/2)Ga(2?). (4.20)

By Theorem 4.2 the critical radius 6. of M in (4.1) is given by cos?6, = 4/7 . Then
tan® 6, = 3/4 and the lower and upper bounds for P(T3 > x) are given by

Qr(z) = 1Qq4(z%,3/4) — (37/2)Qa6(2”, 3/4) (4.21)
and
Qu(z) = Q) + Ge(7x*/4) (1 — Vol(M.,)/s), (4.22)
where

Vol(M..) /g = mBy5(4/7) — (37/2) By 3(4/7) = 0.866.

These three functions (4.20), (4.21), and (4.22) are plotted in Figure 4.2. A solid line
indicates the approximate value by (4.20), while two broken lines indicate the lower and
upper bounds by (4.21) and (4.22). Differently from the case of Wishart matrix, the exact
distribution of T3 is not known. However, we see that the asymptotic expansion (4.20)
gives a fairly good approximation because it is located in the narrow band between Qp
and Qp .

Also Vol(M,)/Qs is adequately large and in this case Lemma 3.4 is practical enough
for calculating p-values of U2 .
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5 The maximum of symmetric multilinear form

In this section we obtain tail probabilities for the maximum T, (1.3) of symmetric mul-
tilinear form of degree k and its standardized statistic U, (1.4) introduced in Section
1. The construction of this section is the same as that of Section 4. In Section 5.1 the
geometric quantities such as the volume element and the second fundamental form are
determined. The coefficient wgy1_ in (3.7) is given in Section 5.2. Section 5.3 is devoted
to the calculation of critical radius. A numerical example is illustrated in the last Section
5.4.

5.1 Volume element and second fundamental form

Let
Y = e X g quMl’
M, {h@k@hIhES } (5.1)
be a manifold of dimension
d=q—-1

in SP7! with p = ¢*¥. Throughout Section 5, we use d and ¢ — 1 interchangeably.
As is the manifold My in (4.1), it is easy to check that M; is a submanifold of SP~!
satistying Assumption 3.1. The statistics 7, and Uy are written as

T, = max 'z, Uy = max u'z/||z|],
ue My, ue My,
respectively, where z is a p-dimensional column vector distributed as N,(0,1,) . Here
it is to be noted that the representation (h®---®h)'z is not of minimal dimension. Mj
or its associated cone Ky = U.so cMy is degenerated. It is easily proved that

dim lin( /) = (q * IZ a 1)
(see, e.g., Takemura (1993)). As stated in Remark 3.2 we have to be careful that the
p = q® appearing in Theorem 3.1 should be replaced with 7' = (’“Zl> .

First of all, we introduce a local coordinate system for the sake of convenience of
calculation. Let ¢ = (¢),...,t,-1)" be alocal coordinate system of S9! sothat h € S9!
has a representation h = h(t). Then u=h® ---®h € M, has a local representation
u = @(t) where

(t) =h(t)®---®h(t).
k

Taking a derivative of @(t) with respect to t;, we have

oo X oh _
_A__zyhj(z@.,.@h@:———@h/@"@h’
O S W T
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The tangent space TH(MA:) at u = (t) is spanned by

{S%E}Z”'z':l,...,d}.

The tangent space T, (Kg) of Kj is spanned by T.(My) and «. The (4, 7)-th element
of the metric G = G(u) at w is given by

O\ Op Ohyioh
o) o, ~ "ar) gy, = Row 5.2
(aﬁi’ 0t k(f)t) o, "9 (5:2)
where _—

— (Y /__—

9= (Gg) o,

is the (z"7 j)-th element of the metric G of S9! at h = h(t). Therefore we have
G = kG, and hence the volume element at u is

] q—1 ; . q-—1
du = |G|z [] dt; = k="V|G|z [] dts.
i=1 =l

Lemma 5.1 The volume element of My, at u=h® ---®@h is given by
|
k
du = k2@ DdS9-1 where dST! denotes the volume element of STt at h.

As in the case of My, M; and SP~! are not necessarily one-to-one. When k is
even, h®--- @ h is invariant under the sign change h+ —h and hence the multiplicity
N e

k
of the map gy : S7' — M, is 2. On the other hand when % is odd, it is easy to show

that Mk and S9! are one-to-one.
Noting this fact, we have the following.

Corollary 5.1 The total volume of M, is

- k3(a=1) - k3la=1)
VOI(Mk) = i, du = jzm{)a-} ‘/Sq‘1 dsS = W Qq.

Here, (k—1) mod2 =1 uf k iseven, =0 if k s odd.

Let H bea gx(¢g—1) matrix such that (h, H) is qx ¢ orthogonal. Using H any
vector v € R? orthogonal to u = p(t) is written as

v = (HRp® - @hler+(h@ HOh® - ®h)e

) k-2
+...+(h®...®h®f{)6k
k-1
+HOHOI® - Qh)en+(HRh@HOhQ - Qh) ey
k-2 k-3
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+o A+ (h®---@h®@H Q@ H) ey

k-2
+(HIHXHRh®---@h)epz+---
k-3
4o
k

where e;..;, (1 <i3 <---<4<k)isa (g—1) x1 column vector.
Suppose that v € T,(Ky)* . Then it has to be

oh
ot

v/?ﬁ . L /H/

=1

= 0.

Since the columns of a ¢ % (¢ — 1) matrix
Oh ((9h Oh )
ot oty Oty
is of rank ¢ — 1 whose columns are orthogonal to h, it holds that F_ ¢, = 0.
Conversely, v in (5.3) with 3°F_, e; = 0 belongs to the linear subspace T.(Kp)t of
dimension p—d—1=¢"—¢.
Now taking a second derivative we have
0% 5*h

. h h&@ e ) | h
S, ZZI ® - ®L®6td ®l®k~l®

oh o
+ Z h® ®h®—‘—®h®- ®}Q®T¥‘L‘®h®‘”®h

1<lgm&k 0 0’]’

m-—Il—1 k—m

oh oh
+ Y AR R RhD - OhB e @ h® @ h
e O e O e

Then for v in (5.3) with SF e, =0
dz
8t ot

- h oh F h
3 lm<H,c3 o 1ot H,@z H'd >
L<lm<k ot; ot; ot; ot
For I <m let Ep, bethe (¢—1)x (¢—1) matrix defined by vec(Ep,) = e, . There
exists a (¢ — 1) x (¢ — 1) nonsingular matrix F such that
Oh
ot
Then v'(9%¢/0t;0¢;) is shown to be the (i, 7)-th element of

F/{ Z ( im t flm) }[

1<li<m<k

= HF.

On the other hand, as we have seen in (5.2), the metric G of M, is written as k F'F .
Therefore we have the following lemma.

[N)
<t



Lemma 5.2 In an appropriate coordinate system, the second fundamental form of M,

Hwo)=—7 Y (Bt Ey). (5.4)

S 1<l<m<k

5.2 Derivation of the coefficient wg ;.

Now let us proceed to the evaluation of the integral

/’I;L(.f(k)«LnSP-l tre H (u, v) do. (5.5)

As in Section 4 we calculate this integral through taking an expectation.
Let R, bea k x (k—1) matrix such that

RyRy =1, and 1,Ry=0,

where 1; is a k x 1 vector consisting of 1's. Then ¢ x 1 vectors ey,...,e; satisfying
S¥ 1er =0 can be reparameterized as

(81, .. .,Gk) = (él, cey ék—l)R;Ca

where €; is (¢ — 1) x 1. Using this parameterization, the squared norm of v with
YK e =0 is written as

lol*=" > lellP+ > legl®+ > legl®+- + el
1<i<k-1 1<i<j<k 1<i<j<l<k
which means that elements of the vectors
€, €ij (Z < j), €ijl (Z <3< l), coy Bloag (56)

form an orthonormal basis of T“(f( )t . We consider that every element of these vectors
(5.6) is independent random variables distributed as N(0,1) and take the expectation
EltreH(u,v)] . Then the integral (5.5) can be evaluated by

Qp—-d-—l

treH(u,v)dv = —— — .« Fltr. H(u, v)].
-/Tu(mlnsr'l H (. ) El(Xp—4-1)"*] e (. v)]
Rewrite H(u,v) in (5.4) as
2k — 1)
) = T Tg,
k
where 1
CYd To e e Z (El‘m + El/’ln)'

2(k — Dk 1<icm<k
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We have assumed that each component of E, (I < m) is independently distributed as
N(0,1). Cy= (c;) is a d x d symmetric random matrix whose diagonal element ¢;
and upper off-diagonal element ¢;; (¢ < j) are distributed independently as N(0,1) and
N(0,1/2), respectively.
Consider
Eltr.H] = Z Eldet H[A]].

AC{1,...,d}
card(A)=e

For e odd Elftr.H] = 0 holds because any central moment of odd degrees is 0. Now
suppose that e is even. Since H[A] is equivalent in distribution to 4/2(k — 1)/kC., we
have

N » d\ (2(k — 1)yes2, .
Eltr H] = (e) {—mk-m} E[det C.,). (5.7)
Here for C, = (c;;)
Eldet C,] = > sgn(m) Elcin()Con) - Cente))- (5.8)
weP({1,....e})

The expectation of the right hand side of (5.8) above does not vanish if and only if 7(3) # ¢
and 7(mw(i)) =i for any . In this case sgn(m) = (—1)%/2
the right hand side of (5.8) can be written uniquely in the form

(=D)2B[2, 2, -2 ]

192 “igig le—1e

, and non-vanishing terms of

with 41 <z < -+ <1, 11 <1lg,...,%e_1 < 1, . Counting the number of ways of forming
e/2 pairings from {1,2,..., e}
{01, 12), (i3,84), - ooy (GemtyBie) | 01 <z <o ov <oy, by <lgy. .. lemt < e},

we have for e even that
el .
- (1/2)¢/,
26/2(6/2)!( /2)

E[det C,] = (—1)¢/?

Hence from (5.7)
k-1 d!

) (d—e)l (e/2)!"

Now it remains to evaluate the integral

/M ]i/l]-:u(f{k,)Lr']Sp"1 tr()H(u7 /U) dv} (,i'u.

As in the case of multilinear form in Section 4, the integrand does not depend on wu,
and the integration with respect to du over M, reduces to multiplying by a constant
Jyr, du = Vol(My) obtained in Corollary 5.1. Then the coefficient in (3.7) is given by

Eftr,H] = (-

1 ~ Qg ;
Wei1—e - Vol(M,,) - P — Fltr, H(u, v
(M) T(E(d+1-—
Vol(My) T(5(d 4 e))E[treH(u, v)].

Qupr 2972 T(5(d+1))
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Theorem 5.1 The nonzero coefficient wgyy1_. in (3.7) for the tail probabilities of Ty in
(1.3) and Uy in (1.4) is given by

B ko1en T o))
Wdt1-e = Wy—e = 9(k—1) mod 2 ‘ (M 4k ) (%q) (q - 8) (8/2)!’

e=0,2,...[(¢—-1)/2] x2.

5.3 Critical radius

In this subsection we obtain the concrete value of the (rmcal radius 6, of the manifold
M, in (5.1) by virtue of Lemma 3.1.

Fix a point v=h®---@he M, with he S9!, Let H bea gx (g — 1) matrix
such that (h,H) is ¢ x g orthogonal Let K = Uezo ¢M,, be the cone associated with
M, . Then the tangent space T,(K;) at v is spanned by v = h® --- ® h and the
column spaces of

k
B=Yh®  -QhoHRh@ --Qh.

et e S e’
l=1 -1 k-l

The orthogonal projection matrix onto ﬂ,(R’k) is easily shown to be
ro oy
Pv = U -+ 7€—B B'.

Let 9=h® - - ®h & M. Then v = (h'h)*, B0 =k(Kh)*'H'h, and

FPE = (i)’ g aY/(B'v)
= (R'h)* 4 (Mm%k”MHHh
= k(Wh)2 D — (k= 1)(Wh)*.

Put z = h'h. Then by Lemma 3.1 we have

cot? 0, = L - P — k51 (k- 1)1’% 2(k — 1)
= sup S0 = Su = )
vvell\z[k (1 — 1’)2 ~~1<f<1 (l - X ) k

The last equality follows from Lemma 4.6.
Theorem 5.2 The critical radius 6, of M, in (5.1) is gien by

~ 2k —2
08% 0, = ——n—r | k> 2.
cos” 6 SE >



5.4 An example: the largest eigenvalue of 4 x4 symmetric nor-
mal distribution

Let A be distributed as ¢ x ¢ multivariate symmetric normal distribution in (1.5). The
asymptotic series for the tail probability of the largest eigenvalue T, = \j(A) is given by
Theorem 5.1. For example, for ¢ =4 we have

2v/2

In this case the exact distribution function can be given by

P(Ty<z) = &(V22)* - —\%7?—(2rc2 + 1)o(z)®(2)D(V2z)
—V2z¢(V22)B(V2z) — %xqﬁ(\/‘gw)@(m) -------- ), (5.10)

where ®(x) and ¢(z) denote the cumulative distribution function and the density func-
tion of N(0,1), respectively (Kuriki (1993)).

In Figure 5.1 the approximate tail probability (5.9) as well as the corresponding exact
value by (5.10) are plotted by solid lines. (A monotonically decreasing curve corresponds
to the exact value.) We can conclude that the asymptotic formula (5.9) is accurate enough
when the tail probability is around 0.3 or less.

The lower and upper bounds @, and @Qp are also plotted by broken lines in Figure
5.1. Note that p’ = q(¢g+1)/2 = 10 is used instead of p = ¢* = 16. Unfortunately,
unlike Figures 4.1 and 4.2, the bounds given by @; and @y are not very satisfactory.

In this case Vol(M,)/$p = 0.376 is not close to 1 and

QU(Z) b QL(JT) = G10(2£L‘2) (1 - VOI(MC)/KZ’[Q)

are relatively large.

A Critical radius and local radius of curvature

Here we investigate the relation between the global critical radius and the local radius of
curvature. In Section 3 we considered the tube of M C SP~! with respect to the geodesic
distance of SP~!. For clarity and completeness of argument we first consider the tube
in [P with respect to the ordinary Euclidean distance. It will be shown that geodesic
curvature of M is closely related to the curvature of the cone K = J,qcM .

Let N be a non-bordered compact C?-submanifold of dimension d in RP. The
tube around N with radius p is defined as

N, ={y | lly —ynl < p},
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where yx is the projection of y onto N . As in Section 3 for x € N we define

Colz) ={z+y|ye TN |yl <p}

where T,(N)* denotes the orthogonal complement of the tangent space of N at .
Then N, = Ugen Co(z) - It is said that N, does not have self-overlap if C,(z), z € N,
are disjoint. The critical radius p. of N 1is defined as

pe = sup{p | N, does not have self-overlap}.

Note that if N ¢ SP~! then N,NSP~! is a tube of N with respect to the geodesic
distance of SP~!. The problem is that N, may have self-overlap in R? even if N,NSP~
does not have self-overlap in SP~! . For this reason we make distinction between tube
with respect to Euclidean distance and tube with respect to the geodesic distance on
Spt

The following lemma (Proposition 4.1 of Johansen and Johnstone (1990)) holds for
the case dim N =d > 1. We omit the proof because of the same reason as Lemia 3.1.

Lemma A.1 The critical radius p. of N is given by

: |z = yl?
_ “yl® Al
P = L AP - )l (&)

where PyL 15 the orthogonal projection onto the orthogonal complement of the tangent
space Ty(N) of N at y.

Here we discuss the property of

2| Py (z —y)ll

h(x,y) BTN TE (A2)

appearing in (A.1). Since P;- is continuous in ¥, h(z,y) is continuous on {(z,y) €
N x N |z # y}. Then we investigate the behavior of h(x,y) as ||z —y|| — 0. Since
we are considering local property of N we can take d-dimensional local coordinates
t=(t',...,t%) and express xz, y in terms of ¢. For the sake of convenience we use the
Einstein convention of indices.

Write y = ¢(t) and z = ¢(t + dt) . Then

lz = yll = 6t + dt) — ()| = gyydt'dt? + o([|dt]|*),

where o 8¢>
glj <8t2) 8t] i,j::l,...,d,
are the elements of the first fundamental form at y = ¢(t) . On the other hand
1ol0) 0%¢
pJ_ ) . — L i 1 1347
y (0(t + dt) — o(t)) Py povs ——dt' + = P,/ pYE, —dt'dt! + of]|dt||?)
52
¢
= lpe i
51y 8t’5’t~1dt ‘At + o(||dt||?)
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and

\ (
21| P ((t + dt) — o(t))]| = | P rry ? || + o|ldt]*).
Let 26
w* —PyL pYEYE dtidt’

such that ||w*|| = 1. (If the right hand side is the zero vector, let w* = 0.) Then

215 (o(t + dt) — ¢(t))|| = Hy(w*)dt'dt? + o(||dt||*),

where o
[{ij(w):""w 5—&—5{]‘7 Z',jzl,...’d.
Therefore we have H,(w)d ”
i (w*)dt' dt’ 5
C e e t .
hla,y) = L ol )

The d x d matrix with (i, 7)-th element H/ (w) = Hi,(w)g*’ is called the second funda-
mental form of N at y with respect to the direction w . The eigenvalues of the second
fundamental form are called the principal curvatures and their associated eigenvectors are

called principal directions. Note that w* depends on dt through the direction dt/||dt|| .
Fix dt. Then

Hy(w*)dt'dt! = —w* ¢ ———dt'dt! = */Pkgffﬂdtl dt?
” ) dﬁ@tﬂ Y otiots
¢
= max (—w' P ———di'dt/
mpx (=B g dtiat)
./ P
- it dt?
wETy(l{%%XHwH 1( Otiots )

= max Hj(w)dt'dt’.
weTy(N)LNsp-1

Taking maximum with respect to the direction dt/||d¢t|| we have

Hj(w*)dtdt?
limsup h(z,y) = max —1@,—)__(_
oy jl=1 gydtide
== max max U (lU )_F_l_fj_(ﬁi

weT,(N)Lnse= ldi=1 gy dtidtd
= max Amax(W)],
wETy(N)lﬁSP'*' mas ()]
where |Aynax(w)| denotes the principal curvature having the largest absolute value.
1/]Amax(w)] is the local radius of curvature at y with respect the direction 4w .
Write
h(y,y) = limsup h(z, y)

Ty
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so that h(z,y) is defined and finite for all (z,y) € N x N . By continuity of the radius
of curvature it is easy to see that as =,z — y
h(y,y) = limsup h(z, 2).
X, z—Y

Now by simple compactness argument h attains a finite maximum over N x N .
To prove this let (z;,v;), ¢ = 1,2,..., be a sequence of points of N x N such that
h(xi,4:) 1 h = sup, yey h(z,y) . By compactness we can assume without loss of generality
that (@i,v:) — (zo,y0). If 2o # yo then h(zg,yo) = h by continuity. If x4 = yo
then h(zo,y0) = lim SUD (1,)— (0.90) h(z,y) > lim;_o h(zs, ;) = h. However obviously
h(xo,y0) < h . This proves that h attains a finite maximum over N x N, and hence the
critical radius p,. is positive under our assumptions.

So far we considered the tube with respect to the Euclidean distance. We proceed to
discuss the tube in the unit sphere SP~! with respect to the geodesic distance. h(u,v)
n (3.4) can be written as

VI—uPu  2||Pf(u- )l

T—vv  flu—v|?

h(u,v) =

which is identical to h{z,y) in (A.2) with N replaced with K except that u is restricted
to M C SP~!. However as u — v, (u—v)/||u - v|| becomes orthogonal to v. On
the other hand since K is a cone, one of the principal direction of K at v is v itself
and other principal directions are orthogonal to v . Therefore the calculation involving
the second fundamental form of M at v € M can be replaced with the calculation of
second fundamental form of K at v € K . In particular h(v,v) = limsup,,_,, h(u,v) is
similarly defined and h(u,v) attains a finite maximum over M x M . This proves the
claims of Remark 3.1.

B Proof of Lemma 3.3 and Theorem 3.1

Let z be distributed as N,(0,1,), and let r = |jzk]||, s = ||z — 2k

. By (3.6)
P(z€ Ky) = P(s< r‘ran()

1

e=(0 O<s<rtan@
x/ [/ tro H (u, v) d’U] du.
M Y JT (K)+tnse-1 -

By a simple change of variables we obtain

e_%(rz+32)rd_esp~—d~2+e dr ds

0<s<rtané

d+]_--@> p—d—1+e
r( )

_ /22
Bz(d“ )L (p—d- He)(ms ) -2° T( 5 5
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Note that

/ treH (u,v) dv =0
Tu(K)+NSp-1

if e is odd since troH(u,v) is an odd degree polynomial in the elements of v. This
proves Lemma 3.3.
Now we proceed to the proof of Theorem 3.1.

P(T>a)=P(T>a z€Ky)+P(T>az¢Ky)

We bound the second term on the right hand side from above. Note that the projection
2y always exists and we can write

_ 2K +s Z— ZK
lzkll  llz — 2k

z

l

and z € Ky, if and only if
s < rtand,.

Since r = max(7,0), we have for z ¢ Ky, and T >0

Therefore for a > 0

2 =124 82 > r2(1+ tan?6,) > T2(1 + tan26,).

z

P(T >a,z¢ Ky,) < P(|z]|* > d*(1 +tan?h,), z ¢ Ky,)
= Gy(a*(1 +tan’0,)) P(z ¢ K,,)
and
P(T>a)< P(T>a,z€ Kp,)+G,(a*(1+tan0,)) P(z ¢ K,,).
Furthermore
P(T>a)>P(T >a,z€ Ky,).

Therefore it remains to show that P(T > a,z € Kp,) for a > 0 can be written as @(a)
of (3.10). Now

1 d : ,
PT2a0:€K) = s 3o [ [ edetvdmtew sy,
e=0

a<r<oo

CIOVER < s<rtan @

: /M [/Tu(K)inqu treH('lL’ 7.)) dv] du.

Integrating the right hand side with respect to s first we see that P(T > a,z € K),) =
@r(a) . This proves the theorem.
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C Proof of Lemma 4.6

Let f(z) = 1 — kz**D 4 (k — 1)z%* and g(z) = (1 — 2F)? be the numerator and
denominator of the argument of the supremum in (4.16). When k =2, f(z) = g(z) and
the statement holds trivially. Consider the case k& > 3. We claim that

d (f(z) ;
EE(g(z)) >0 for 0<z<1. (C.1)

In fact, simple calculation yields that

d f(z)\  2k(1—2F)+!

where

h(z) = ] - (k — 1)ka2 + (k. _ 1) ko sz—z
= (1= {1+2+ -+ ()= (k-1

By the convexity of the map £ +— (22)%, we have

1_{_22+_’.+(Z2)k‘~2
E—1

> ()T = 3

and the equality holds if and only if |z] = 1. Therefore h(z) > 0 for |z| < 1, which
implies (C.1). Therefore we have the supremum in (4.16) as

f2) o SR e f(e) 2k 1)

oz g(z) | g(z) o Lgz) K
D Proof of (4.13)
In order to prove (4.13) we prepare a lemma.
Lemma D.1 For a >0 and n=20,1,2,..., define
n I'4+k)(n
I —_ -1 n—k 2k 2 '
=3 ()
and ek )
. " (24 K+ n
- — -1 n—k 2k‘ 2 7/ .
Tnla) :/;O( ) D(a+k+1) (k)
Then,
cn(a) ifn is even
I,(a) = D.1
(a) {0 if n is odd (D-1)
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and

fea(a)  ifnis even .
_ )32t
Inla) = { scnyia) ifnis odd (D-2)
where n+l n+a n+l

Val(n+ay — 2e-10(mieddy

Proof. We use induction on n. The claims (D.1) and (D.2) are easily checked for
n =0,1. Assume that they are true for n —1 and n .

Making a use of the identity ("7:1) = (Z) + (kfl), we have

% g DGR ([
Lii(a) = 192—_:0 (=1ymihet f@—m{ <k> i (\k - ]>}
= —I(a) + 2J,(a)
0 if n is even
- { crny1(a) if nis odd. (b3

Similarly we have

" I'¢+k+4+2)/n
— _1\n—kok Z\2 T M T 2/
Jp1(a) = =Jy(a) + 2];:0( 2 Tla Tkt (k)

Noting that

%%%% (Z) N r(lz((ji?f)k) {a ;— : (Z) o (Z - 1) }

Jnyi(a) = —J(a)+(a+2)L(a+2)+4n J, 1(a+ 2)

we have

T Caso(a) if nis even

- { %C’n+l a) if n is odd. (D.4)

(
(D.3) and (D.4) imply that (D.1) and (D.2) hold for any a > 0 and n > 2. The
proof is completed. ]

The relation (4.13) is equivalent with (D.1) with n = ¢~ 1, kK =¢—1—j, and
a=v—q-+1.
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