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Abstract

This paper investigate a Bandit problem in which a decision maker chooses between
the safe action and the uncertain action infinitely many times. She does not know the
expected payoff for the uncertain action. Her decision on whether to experiment is
influenced by the atmosphere in the society. An adaptive learning rule is introduced
which regulates her unconscious dynamics of emotions. We argue that realistic decision
makers mostly fail to choose the efficient action in the long run, even though they
experiment infinitely often. We present a necessary and sufficient condition for
efficient learning which requires a very restrictive psychological nature that the
confidence which a decision maker has in the uncertain action being better is the
strongest.
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1. Introduction

This paper investigates a Bandit problem in which a decision maker chooses
between the safe action and the uncertain action infinitely many times. She knows the
payoff for the safe action, but does not know the expected payoff for the uncertain
action. The purpose of this paper is to clarify the possibility that the decision maker
comes to choose the efficient action in the long run. We argue that realistic decision
makers mostly fail to choose the efficient action in the long run, even though they
experiment infinitely often.

In a daily life, a person sometimes encounters into the opportunity to decide
whether to challenge something special. A scientist bothers deciding whether to try to
discover a breakthrough or be engaged in a follow-up. An entrepreneur decides whether
to devote herself to a routine work or look for a new enterprise whose consequence can
not be anticipated. As Knight (1921) has emphasized, whenever an entrepreneur looks
for a profitable enterprise then it is inevitable that she faces “radical uncertainty” in
which probabilities are unknown and not well-estimated.

When radical uncertainty is present, the basis of rational calculation for decision is
greatly weakened. Instead, psychological forces play the central role. Of particular
importance, a decision maker is influenced by the atmosphere in the society. The more
merry the atmosphere is, the more likely it is in the decision maker's mind that the
uncertain action yields the higher payoff. The atmosphere emerges from the mass
psychology as being outside her control, and randomly fluctuates due to payoff-
irrelevant factors.'

Based on these observations, we model a decision maker by an adaptive learning
rule which regulates the decision maker's unconscious dynamics of emotions. The
decision maker decides to choose the uncertain action if and only if her “state of mind”
suggests that the atmosphere is merry enough to make her optimistic. The higher the
state of mind is, the wider the range of atmosphere which urges the decision maker to
choose or experiment with the uncertain action extends. Because of the dissonance
between her subjective belief and the experiences, the state of mind is updated in ways
that the state of mind becomes higher (respectively, lower) when she obtains a higher

! Keynes (1936, p.154) has argued: “The market will be subject to waves of optimistic and
pessimistic sentiment, which are unreasoning and yet in a sense legitimate where no solid basis

exists for a reasonable calculation”.



(respectively, lower) payoff than the payoff for the safe action.

We characterize learning rules according to which the decision maker always comes
to choose the efficient action in the long run. When the likelihood that the merry
atmosphere occurs is the highest, the decision maker is always urged to experiment with
the uncertain action most often, and therefore, comes to choose the efficient action in
the long run irrespective of how to specify a learning rule.

It is, however, very rare in real environments that this likelihood is the highest.
When this likelihood is not the highest, the consequences change drastically: We
introduce an index accompanied with a learning rule which expresses the confidence
that the decision maker has in the uncertain action being better than the safe action.
Roughly speaking, this index is the proportion of the number of possible states of mind
which urge the decision maker to choose the uncertain action to the number of all
possible states of mind. The larger this index is, the stronger this confidence is. We
show as the main statement of this paper that a learning rule is efficient if and only if
this confidence is the strongest. This necessary and sufficient condition for efficient
learning implies the very restrictive psychological nature of human being. Typical
learning rules do not satisfy this condition, and therefore, are never efficient.

We also shows that the set of efficient learning rules is not empty, though it 1s
indeed very narrow. Importantly, such special learning rules always lead the decision
maker to choose the efficient action irrespective of how often the merry atmosphere
occurs,

The previous works related to this paper are Sarin and Vahid (1997) and
Matsushima (1997,1998a), which showed that a decision maker never chooses the
uncertain action in the long run. They assumed that the decision maker is not influenced
by the atmosphere, and never experiments with the uncertain action once she believes it
less profitable than the safe action. In the present paper, on the contrary to these works,
decision makers always experiment infinitely often, but, nevertheless, mostly fail to
achieve long-run efficiency except the decision makers who have a very special
psychological nature such as the strongest confidence.

This paper assumes that the decision maker is well-motivated and never “mistakes”.
By contrast, if a decision maker always makes a mistake to choose the uncertain action
with at least some positive probability, any perturbation would avoid the safe action
being “absorbing” and make it possible to achieve long-run efficiency. Needless to say,
such an analogy to a “mutation” is not compelling when a decision is a well-laid plan
and divides into several sub-decisions which are carefully made step by step.

At the present time of academic circumstance, it must be admitted that we still have



a serious lack of a theoretical foundation on how a real individual learns from past
experiences and makes a decision under uncertainty.” Hence, it might be inevitable to
ask ad hoc assumptions for help to a certain extent, such as the assumptions that a
learning rule is a Markov chain with reflecting barriers, there are only two alternative
actions, the rule of updating is time-independent, and so on. Despite of this difficulty,
we should make our best endeavors to bring in a “reality” into a model of learning. This
paper shows that long-run efficiency may be trivially achieved by an artificially
designed learning rule, but, once such unrealistic learning rules are excluded, it would
turn out to be far from triviality.

Finally, we must mention that this paper stands against Bayesian learning, which is
at present regarded as a well-developed theory with the solid foundation of Bayesian
statistical methods. A Bayesian learner summarizes her uncertainty with some
simplified subjective prior distribution, and makes her view of the world more accurate
according to a process of Bayesian updating on the presumption that the experiences
can never contradict her fixing subjective prior. Rothschild (1974), for example, is a
related paper on the basis of the Bayesian framework. The present paper will not follow
the Bayesian framework, because when radical uncertainty are present Bayesian
learning is quite unrealistic and even has little ability to converge to the right
predictions.’

The organization of this paper is as follows. Section 2 presents the model of Bandit
problem. Section 3 introduces a learning rule defined by a Markov chain with reflecting
barriers. We will investigate a learning rule which is not restricted by the reflecting
barriers too much, and therefore, is approximated by the limit of an infinite sequence of
learning rules. Section 4 presents the main theorem, and section 5 gives the complete
proof of it. Finally, section 6 generalizes learning rules and investigates sophisticated
learners.

? For the recent progress of learning theory, see Marimon (1997) and its references.

? For more detailed discussions, see Marimon (1997) and its references again.



2. Bandit Problem

We consider a Bandit problem in which a decision maker chooses between the safe
action and the uncertain action infinitely many times. At the beginning of every period
t > 1, the decision maker observes a context denoted by an integer ¢(¢). The decision
maker interprets:

The smaller the context is, the more merry the atmosphere in the society is.
The decision maker then chooses an action a(¢) and obtains a payoff v(¢). The payoff
for the safe action is equal to O and she a priori knows this payoff. The payoff for the
uncertain action is randomly determined. It is equal to 1 with probability p €(0,1),
whereas it is equal to —1 with probability 1- p. Hence, the uncertain action is more

(respectively, less) profitable than the safe action if p >~;~ (respectively, p < %). We

assume that the decision maker does not know this probability p.
The context is randomly determined according to a probability function f on the
set of all integers: For every integer ¢, context ¢ occurs with probability f(c). The

context is payoff-irrelevant in the sense that the payoff for the uncertain action is

determined independently of the context.
Define the cumulative distribution by F(c) = Z f(c"). We assume

'se

f(c)> 0 for all integers c,

which guarantees that the decision maker always experiments with the uncertain action
infinitely often.



3. Learning Rule

A learning rule is defined by a Markov chain with reflecting barriers I' = (x,X),
where x and x are integers and x <0< x. In every period ¢, the decision maker’s
state of mind is denoted by an integer x(¢) in the set {x,...,x} which is regarded as
being the maximal context in which she chooses the uncertain action. The decision
maker chooses the uncertain action if and only if

c(t) £ x(t),
i.e,, if and only if the current atmosphere is at least as merry as the atmosphere in the
context ¢ = x(¢). Given a state of mind x, the probability that the decision maker
chooses the uncertain action is equal to the cumulative distribution F(x).

The state of mind x(¢) is updated in ways that the state of mind becomes higher
(respectively, lower) when she obtains the positive (respectively, negative) payoff.
When the decision maker chooses the uncertain action in period ¢,

x(t+1)=x(t)+1if v(t)=1and x(1)<x,

x(t+D)=x(t)-11if v(t)=-1and x(t)>x,
and

x(t+1)= x(¢) otherwise.
When she chooses the safe action, the state of mind does not change, ie.,
x(¢t+1)=x(¢). Hence, the probability that the state of mind changes from x # x into
x+1 is pF(x), and the probability that the state of mind changes from x # x into
x-1is (1-p)F(x).

The stationary distribution of state of mind in the long run, g(x)= g(x,p, f,I'), 1s

defined by the following inequalities:
gx)={1-F(x)}g(x)+ pF(x-g(x -1)

+(1-p)F(x+1)g(x +1) forall x e{x,x}, (1)
g(x)={1-F(x)+(1- p)F(x)}g(x)
+(A-p)F(x+Dglx+1), (2)

and
g(x)= {1 F(x)+ pF(Z)}g(X)+ pF(x~1)g(x - 1).
Here, g(x) is the stationary probability that the state of mind is equal to x in the long

run. Finally, the stationary probability that the deciston maker chooses the uncertain
action in the long run is defined by

A=Ap, f,T)= 3 Flx)g(x).



Our purpose is to clarify the possibility that a learning rule is (approximately)

efficient in the sense that A iscloseto 1 if p> —;—, whereas A iscloseto 0 if p< —;—

In order for a learning rule to be efficient, it is necessary that the transition of state of
mind is not restricted by the reflecting barriers too much. Hence, we shall confine our

attention to a learning rule which is approximated by the limit of a sequence of learning
rules T° =(T,),~, such that

1—*m = (imax’")a
lim x,, = —o0 and lim X, = +o0.
m—>+ m-»400

The stationary probability that the decision maker chooses the uncertain action in the
long run is approximated by

A =AN(p, f,T")= lim A(p, f,T,,).

Definition: A sequence of learning rules I'” is efficient with respect to f if for every
p €(0.0),

AN(p, f,I")=11f p>—;j,
and

A*(p, f,T°)=0 if p<-;-.



4. The Main Theorem

We introduce two indices y and S which are relevant to a sequence of learning
rule T'” and a probability distribution of context f , respectively.

First, we define

Xm

y=y(I7)= lim( )-

Xm— X

The index y expresses the proportion of the number of states of mind which urge the

decision maker to choose the uncertain action to the number of possible states of mind

in the following sense. Fix ¢ and m arbitrarily. When the decision maker conforms to

I, , she chooses the uncertain action in context ¢ if and only if the state of mind x is

larger than or equal to ¢. Hence, the number of states of mind which urge the decision

maker to choose the uncertain action is x. — ¢ +1. The proportion of it to the number
Xm—cC+1

of possible states of mind x» — x,, is ==——— which converges to y as m increases,
.xm - _&

whichever context ¢ is fixed.

The index y implies the strength of confidence that the decision maker has in the
uncertain action being better than the safe action: The higher the index y is, the
stronger the confidence is. The confidence is the strongest when y =1, whereas it is the
weakest when y =0.

Next, we define

_ Y F(c-1)
p=pf)= lim e

Lemma 1: If A(f)> ﬁ(_?), then for every small enough c,
F(c)> 1?(0),

where F(c) is the cumulative distribution associated with /7 .

Proof: Choose positive real numbers 5 and b such that
B)>b>b>p(f).
From the definition of p(-), there exists an integer ¢ such that
Fe-1) > b and ———*~—-F(~_C =D
F(c) F(c)

<b forall c<é.

Hence,
F(c)> b7 F(é) and F(c)< (b)Y F(¢) forall ¢c<é.



Since bCF(E)> (5 ye-e F (¢) for every small enough c, one gets
F(c)> F (¢) for every small enough c.
Q.E.D.

From Lemma 1, we can regard the index S as expressing the /ikelihood that the
merry atmosphere occurs. The higher S is, the more likely it is that the merry
atmosphere occurs. This likelihood is the highest when [ =1, whereas it is the lowest
when £=0.

Based on these indices, we present the main theorem of this paper as follows.

Theorem 2:
(i) Suppose PB(f)=1. Then, any sequence of learning rules T'" is efficient with
respect to f .
(i1) Suppose 0< B(f)<1. Then, a sequence of learning rules T'" is efficient if and
only if
y(I'*)=1.

The implication of part (i) is as follows: Equality B(f)=1 implies the highest
likelihood that the merry atmosphere occurs, which guarantees that the decision maker
experiments with the uncertain action most often, and therefore, succeeds to choose the
efficient action in the long run, irrespective of how a sequence of learning rules is
specified.

The drawback of part (i) is that it is very rare that the exogenous distribution f
possesses the highest likelihood, and it is rather typical that this likelthood is neither the
highest nor the lowest, i.e., 0 < £(f)<1. Part (ii) of Theorem 2 says that in this typical
case, the consequences change drastically: A sequence of learning rules is efficient if
and only if it possesses the strongest confidence that the decision maker has in the
uncertain action being better than the safe action. This necessary and sufficient
condition implies the very restrictive psychological nature of human being. Most
sequences of learning rules do not satisfy this condition, and therefore, are never
efficient.

Part (i1) of Theorem 2 also says that the set of efficient sequences of learning rules

1s non-empty, though it is very narrow. The following corollary is straightforward from
Theorem 2.

Corollary 3: If a sequence of learning rules is efficient with respect to some [ such

10



that 0 < B(f) <1, then it is efficient with respect to every f' suchthat 0< p(f")<L.

Corollary 3 says that any sequence of learning rule I'” such that the confidence is
the strongest is efficient with respect to almost all /. According to such a sequence of
learning rule, the decision maker always comes to choose the efficient action
irrespective of how often the merry atmosphere occurs, as well as irrespective of how
often payoff 1 is realized.

In the next section, we present the complete proof of Theorem 2.

11



5. Proof of the Main Theorem

We denote by A(x)= A(x, p, /) the proportion of the probability of transiting from

state of mind x —1 into x to the probability of transiting from x into x-—1. We must
note
A= PFG=D.
(1-p)F(x)
The proportion of the probability of transiting from the lowest state of mind x,, into the
highest state of mind X, during Xm— X, periods to the probability of transiting from

X, into x,, during Xm — x,, periods is equal to I_I/?,(x)

x=x,+1

Lemma 4:
mw—fﬁ»ﬁ, ®
lim A(x)=—— (4)
X340 l_p

and
Tim ( qux))*" == (= L )ﬁ‘ 4 (5)

x=x,+1

Proof: It is straightforward from the definition of A(-) that equalities (3) and (4) hold.
Equalities (3) and (4) say
lim ( H,ux)) (——-—),B and lim (1‘] A(x)) = -i’m
x=x, +1 p
and therefore, one gets

lim ( H A(x))

x=x, +1

1 xm

= lim {( Hﬂ(X)) =r lim {(Hﬂ(x))‘”‘}’”‘ "

x=x,+1 x=1

=Ly g Ly = (Lo
-p 1-p I-p

Hence, equality (5) holds.
Q.E.D.

12



The following proposition is substantial for the proof of Theorem 2.

Proposition 5: For every p €(0,1),

(iii) A =1if (L >1,
1-p

and

(iv) A =0 if (<Lp <1.
l-p

Proposition 5 says that:

(ii1) The decision maker chooses the uncertain action in the long run, if the probability
of transiting from the lowest state of mind into the highest during Xm — X, periods
is larger than the probability of transiting from the highest into the lowest during
Xm — X,, periods.

(iv) She chooses the safe action in the long run, if the probability of transiting from the
lowest into the highest during Xm— X, periods is smaller than the probability of
transiting from the highest into the lowest during Xm — X, periods.

Proposition 5 implies that:

w . . 1
(lll) AN =11f p)_lTT;—,
whereas
‘ : 1
v N=0if p<—r—r.
(iv) P<77 5
Hence, a sequence of learning rules T is efficient with respect to f if and only if
AT =1,

This equality holds if and only 1f

either B(f)=1,0r, y(I'")=1and B(f)>0.
Hence, we have completed the proof of Theorem 2.

All we have to do is to prove Proposition 5. We denote

gm(x) = glx, p,T,).
The following lemma says that the proportion of the probability of emergence of state
of mind x to the probability of emergence of state of mind x +1 is approximated by
the proportion of the probability of transiting from state of mind x-1 into x to the
probability of transiting from x into x-—1.

Lemma 6: For every m and every x e{x,, + 1,...,;,"} ,

13



gm(‘x) =/1(.X), ' (6)

gn(x~-1)

and
hm(g,,.(xm))m - ( p )ﬁ—y (7)
e g (X))

Proof: Equality (2) says
&nlx*tD) _Gixe),
gm(X)
which, together with equality (1), means that for every x' €{x, +2,...,X,}, if equality
(6) holds for all x < x’, then
F(x'=1g,(x' =)= pF(x" = 2)g,(x' = 2) + (1 - p)F(x')g,(x")
=F(x'-1)g,(x' -1)- (- p)F(x' -1)g,(x' - 1)
+(1- p)F(x")g,(x")
=-pF(x'-1)g,(x' -+~ p)F(x')g,(x")
=0,
that is,
gu(x") _ pF(x'-1)
gn(x'=1) (1= p)F(x")
Hence, we have proved that equality (6) holds. Moreover, it is straightforward from
equalities (5) and (6) that

= A(x").

nm(gm(x'")) "o = lim ( Hzl(x))’“ ” -( 4 )ﬂ"

e gm(__m x=x,,+1

Q.E.D.

The following lemma says that the probability of emergence of low states of mind is
near zero, provided that the uncertain action is more profitable than the safe action and
the inequality in part (iii) holds.

Lemma 7: [f ( P ),8l ">1 and Tg—-— > 1, then for every large enough positive
p
integer x and every small enough negative integer X,

Z gn(x")

lim 2224 — 40,

X1

m—>+e0 Z gm(x )

—x

14



Proof: We can choose positive real numbers & and £ such that

P >£, (-————),B>e
1-p 1-p

e#l, £<1,

and

e (g)7 >1.
Equalities (3) and (4) say that for every large enough positive integer x and every small
enough negative integer X,

A(x")z € forall x'2x,

and

A(x)2 ¢ forall x'<X
Equality (6) says

ga.(x)={ [JA("}g.(x) 2 g, (x) forall x'>x,

x"=x+1

and therefore, )

ng(x') 2 o E—L)g,(x).

r=x+l
Equality (6) says also

g.(x")= {HA( ~ }g,,, ()< (EYT™ g (%) forall x' <X,
and therefore,

x~-1 ( )x -X

gm(X") S (= — )gm(x)

Hence, one gets

Zg,,,(x> 8(1 8)

s (X
ng<x>
HE ) (F) o e e gy
£~ £ g T YT ()
= Alx”
(=X 1_@4 = )I_]ﬂ( ),
which approaches + o as m — +o, because _
lim (£)*"™ =0, lim —-_———i.-l—y, lim =~~~ =y,
e e Xm =X, ”me'”—xm
and
hm((f:)1 7 Y = o0
Q.E.D.

15



The following lemma says that the probability of emergence of medium states of
mind is near zero, provided that the uncertain action is more profitable than the safe
action.

Lemma 8: If I—p——~>1, then for every large enough positive integer x and every
-p

integer X <x,

Zg,,,(x')

lim *=2 = 400,

— Zg,,.(x )

Proof: Choose & such that
P
I-p
Equality (4) says that for every large enough positive integer x,
AMx')2 e forall x'2x.

>e>1.

In the same way as Lemma 7, one gets

Zg,,,<x)>s(

x'=x+]

Fix an integer X < x arbltrarily Equality (6) says

Zg,,.(x )= Z{ H g0,

xm'x

1)g,,,(x>.

x'=¥ x"=x"+l 2’( ”)
and therefore,
ng(x) gxm_x _
xox g Z{ H ﬂ/( Il)}]~
ng(x) =X x"=x'+l
which approaches +o as m-> +o, because lim £ = 40

m—r+oo

Q.E.D.

The following lemma says that the probability of emergence of high states of mind

is near zero, provided that the inequality in part (iv) and inequality (1—£——)ﬂ <1 hold.
- P

16



Lemma 9: /f (1—2——),81“7 <1 and (l—p——)ﬂ <1, then for every large enough positive
-p -p

integer x and every small enough negative integer X,

ng(x)

lim ==z =0,

EYWHED

x =X,

Proof: We can choose positive real numbers & and £ such that

——p_—_ <¢g > (__p__”)ﬁS E B
e#1, £ <1,
and
g (g)7 <«1.
Equalities (3) and (4) say that for every large enough positive integer x and every small

enough negative integer X,
Ax")< e forall x' 2x,

and

Mx")<€ forall x'<X.
Equality (6) says

g.(x")={ H,l(x")}gm(x) <g g (x) forall x'>x,

x"=x+1

and therefore,

Zg,,,(x y<ol )gm(x)

x'=x+
Equality (6) says also

g, (x")= {H ( T el F)2(5) g, (%) forall x' <%,
and therefore,

SO )
Hence, one gets

ng(‘x ) 8(1 8) x..,—x

x=x+] ( )( bt _ )gm(.X)
2. 8a(x) @) -1 g, (¥)

17



X +X X -X

e ~1)X«e> Rl e C Nt ST

l - 1 (5 )~x = x"=x"+1

which approaches zero as m — +w0, because

lim (£)=% =0, lim ==X 1y gim ZnTE
e I Xm Xom MO Xm — Xom
and
lim ()7 ¢ ) =0.
Q.E.D.

The following lemma says that the probability of emergence of medium states of

mind is near zero, provided that inequality (rg——) B <1 holds.
-p

Lemma 10: [f (-l-g-—)ﬂ <1, then for every small enough negative integer X and every
4

integer x>X,

ng(x )

lim =22 = 400,

m->+0 Z gm(x )

Proof: Choose & such that
(L yp<e<l.
1-p
Equality (3) says that for every small enough negative integer x,
Ax")<¢e forall x'<X.

In the same way as Lemma 9, one gets
X-1 X,
S a2 e ),

Fix an integer x <X arbitrarily Equality (3) says

Zg,,,(x )= Z{ Hm")}gm(x)

X=X x"=X+

and therefore,

18



¥-1

,Zg"’("') (&

Z 2 (= =N Hi(x")}]
gm(x ) X=X x"=X+l

which approaches +o as m > +w, because lim (&) = +00.
m—»+c0

Q.E.D.
Based on these lemmata, we can complete the proof of Proposition 5 as follows.

P

>1.

Proof of Proposition 5: Suppose (I—E—-)ﬁl‘y >1. Since A7 <1, one gets "
-P

Lemmata 7 and 8 say that for every large enough positive integer x and every integer

X <x, ]
S (> 3 .()
”I‘H& x'§x+l = 40 and hjﬂg X'=x+l = 400 |
ng(x') ng(x )

Hence, the stationary probability that the state of mind is larger than x in the long run
converges to unity as m increases. Since we can choose x as large as possible, we have
proved A® =1, i.e., part (iii).

Suppose (»f—-)ﬂ"y <1.Since "7 > B, one gets (1 P_)B<1.Lemmata9 and 10

say that for every large enough positive integer x and every integer X < x,

Z g.(x") Z gn(x")

lim *—"—x—ﬂ————-—*" 0 and hm f—-———-—— +00 .

'"M ng(x ) Z (X"

Hence, the stationary probablhty that the state of mind is smaller than X in the long run
converges to unity as m increases. Since we can choose X as small as possible, we
have proved A* =0, i.e., part (iv).

Q.E.D.

19



6. Discussion: Sophisticated Learner

In the previous sections, we have shown that it is difficult for a decision maker to
choose the uncertain action in the long run, even though it is actually more profitable
than the safe action. Hence, it is natural as the next step to shed light on a wider class of
learning rules.

We generalize learning rules by modifying the rule of updating in ways that the state
of mind is less likely to decline: Fix ¢ €(0,1] arbitrarily. When the current state of mind
x(t) is smaller than O,

x(t+ 1) =x(0)+1if v(t)=1and x(t)<x,
and
t)—1 with probabili
w41y O with probability g ey and x(t)> x.
x(t) with probability 1 —q

Even if the decision maker obtains the positive payoff, the state of mind remains
unchanged with probability 1—g. On the other hand, when x(¢) is larger than or equal

to 0,
x(t+1)=x()+1if v(r)=1and x(¢)<x,
and
x(t+D)=x(6)-11f v(t)=~-1and x(t)>x.
Similarly to Section 5, the proportion of the probability of transiting from x -1 into
x to the probability of transiting from x into x —1 is given by

Ax )_ pF(x D forall x>0,
- p)(x)

and

ay=-LEXZD i k<o
(1= p)gF(x)

Similarly to Section 5 also, one gets
lim A(n) = (2x2),
P 1- P q
lim A(x)= —2—,
X340 1- P

and

im ( [T 400" = =T

x=x, +1

20



Proposition 11: Suppose q 2 3. Then, for every p e(0,1),

1
(v) AN =1if p>—p—,
1+(-’§)‘”’
q
and
(vi) A°=0 if pe——
1+(é)‘“7
q

Proof: By replacing B with L and using inequality L <1, we can prove parts (v) and
q q
(vi) in the same way as part (iii) and (iv), respectively.
Q.E.D.

BS)

Proposition 11 implies that given =*~=<1, a sequence of learning rules I'" is
q

efficient with respect to f if and only if
either g = B(f) or y(I'")=1.

Proposition 12: Suppose s > 1. Then, for every p €(0,1),
q

(vii) A =1 ifp>%,
(viil) AN=0if p< lﬁ.
1+ =
q
and
. ® . 1 1
(1x) 0< A <1if <p<-—.
1+ s 2
q
1 .. B, 1 .
Proof: Suppose p>—. Since (=) 21, one gets p > ————— . Hence, by replacing
2 q 1+ (é)l—y
q

p with _/Z we can prove part (vii) in the same way as part (iit).
q

Suppose p<—~l——. Since (—ﬂ—)“y sﬁ, one gets p<
q q

1+
q

. Hence, by

™

1+ (é)“f
q
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replacing £ with ﬁ» we can prove part (viil) in the same way as part (iv).
q

Finally, we prove part (ix) as follows. Suppose -l—e—- < 1. Choose ¢ such that
4
p
1-p
Equality (4) says that for every large enough positive integer x,
A(x")<¢g forall x'=2x.

<eg<l.

In the same way as Lemma 9, one gets

3 g <e(f

x'=x+}

)g,,,(X)

Fix an integer X <x arbltrarily Equality (6) says
ng(x )= Z{ H -,7~}gm( ),
x'=X x"=x"+} A( )
and therefore,

xzmgm(x') g;m-x _
=t < & )[Z{ H 7‘;‘;"}]
ng(xr) &- X=X x"=x'+] ( )

which approaches

8(""—“) [z{ H ‘/{(*—,,*5}]_1 < o0

x'=X x"=x"+l

as m-> +oo, because lim £ =0 Hence, one gets A” <1.

m-—»+0

. Choose ¢ such that

Next, suppose p < - ]
1+

L yg>e>1.
1-p

Equality (3) says that for every small enough negative integer x,
Mx")z e forall x'<X.

In the same way as Lemma 6, one gets
Zg,,,(x )< (B e ),

Fix an integer x <X arbltranly Fquahty (6) says

ng(x )= Z{ H/l(x")}gm(x)

X=X x"=X+1

and therefore,
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: ((8)1—:_5-1) [i{ f]/ux")}r‘,
Z gm(x,) X=X x"=X+1

which approaches

(A I [T A < oo

as m—» +o, because lim ()™ = 4. Hence, one gets A” > 0.
m>+xR

From these arguments, we have completed the proof of part (ix), and therefore, the
proof of Proposition 12.

Q.E.D.

B

Proposition 12 implies that given ~—==>1, there exists no sequence of learning
q

rules which is efficient with respectto 1.
From the above arguments, one gets that a sequence of learning rules I'* is efficient
with respect to every f such that S(f) €(0,1], if and only if
g=1and y(I'")=1.
Hence, even if the class of possible learning rules extends wider, we can not find
another sequence of learning rules which is efficient with respect to every f such that

() (0]
We will devote the rest of this section to seeking furthermore for another possibility

of efficient learning, by investigating a decision maker who is so sophisticated as to
control the probability g deliberately. Assume that at the very beginning of the Bandit

problem, a decision maker is informed of f, and then equalizes g to B(f).
Straightforwardly from the above arguments, such a sophisticated learner succeeds to
achieve long-run efficiency, irrespective of how f is given.

I think, however, it is quite implausible in most real environments that a decision
maker is sophisticated in this way. Learning rules are for the most parts regarded as
being exogenous like preferences, technological conditions, initial endowments, and so
on. Many substantial elements of a learning rule such as the probability g belong to the
realm of the unconsciousness, and therefore, should not be treated indiscriminately as
the decision maker’s control variables.
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