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TOWARDS A DISEQUILIBRIUM THEORY OF LONG-RUN PROFITS:
SCHUMPETERIAN PERSPECTIVE
by Katsuhito Iwai
Faculty of Economics, The University of Tokyo

<ABSTRACT>

In the traditional economic theory, whether classical or neoclassical, the
long-run state of the economy is an equilibrium state in which all profits in
excess of normal rate vanish completely. If there is a theory of long-run
profits, it is a theory about the determination of the normal rate of profit.
This paper challenges this long-held tradition in economics. It introduces a
series of new evolutionary models which are capable of studying the
evolutionary process of an industry’s technology as a dynamic interplay
among many a firm’s growth, imitation and innovation activities. It
demonstrates that the economy will never dissipate positive profits even in
the long-run, because what it will approach over a long passage of time is not
a classical or neoclassical equilibrium of uniform technology but a statistical
equilibrium of technological disequilibria which reproduces a relative
dispersion of efficiencies in a statistically balanced form. As Joseph
Schumpeter once remarked, “surplus values may be impossible in perfect
equilibrium, but can be ever present because that equilibrium is never
allowed to establish itself.”

The paper also shows that our evolutionary models behave like a well-
behaved neoclassical growth model if we ignore all the complexity of the
evolutionary processes working at the microscopic level and look only at the
microscopic performance. It thus provides a critique of the growth
accounting technique which decomposes the overall growth process into a
movement along an aggregate production function and an autonomous shift

of that function.



0. Introduction.

The title of this paper may sound a contradiction in terms. In the
traditional economic theory, by which I include both classical and
neoclassical economics, the long-run state of an economy is an equilibrium
state and the long-run profits (if they ever exist) are equilibrium phenomena.
Fig.1 illustrates this by drawing two supply curves that can be found in any
textbook of economics. In the upper panel is an upward-sloping supply curve
which aggregates diverse cost conditions of the existing firms in an industry.
Its intersection with a downward-sloping demand curve determines an
equilibrium price, which in turn determines the amount of profits
(represented by the shaded triangle) accruing to the industry as a whole. As
long as the supply curve is upward-sloping, an industry is able to generate
positive profits.

<Insert Fig.1 around here.>

In traditional theory, however, this is merely a description of the ‘short-
run’ state of an industry. Whenever there are positive profits, existing firms
are encouraged to expand their productive capacities and potential firms are
induced to enter the industry, both making the supply curve flatter and
flatter. This process will continue until the industry supply curve becomes
totally horizontal, thereby wiping out any opportunity for positive profits.
The lower panel of Fig.I describes this ‘long-run’ state of the industry.

This implies that if there are any profits in the long-run, it must be the
‘normal’ profits which have already been incorporated into cost calculations.
In fact, it is how to explain the fundamental determinants of these normal
profits which divides the traditional economic theory into classical and
neoclassical approaches. Classical economics (as well as Marxian economics)
has highlighted an inverse relationship between the normal profit rate and
the real wage rate, and reduced the problem of determining the former to
that of determining the latter and ultimately to that of distributional conflicts
between classes. Neoclassical economics has identified the normal profit rate

with the interest rate plus a risk premium and reduced the problem of its



determination to that of characterizing equilibrium conditions for
intertemporal resource allocation under uncertainty. But no matter how
opposed their views might appear over the ultimate determinants of normal
profits, they share the same ‘equilibrium’ perspective on long-run profits --
any profits in excess of the normal rate are ‘disequilibrium’ phenomena
which are bound to disappear in the long-run.

It is Joseph Schumpeter who gave us a powerful alternative to this deep-
rooted ‘equilibrium’ tradition in the theory of long-run profits. According to
Schumpeter, it is through an “innovation” or “doing things differently” that
positive profits emerge in the capitalist economy. “The introduction of new
commodities..., the technological change in the production of commodities
already in use, the opening-up of new markets or of new sources of supply,
Taylorization of work, improved handling of material, the setting-up of new
business organizations”' etc. allow the innovators to charge prices much
higher than costs of production. Profits are thus the premium put upon
innovation. Of course, the innovator’s cost advantage does not last long.
Once an innovation is successfully introduced into the economy, “it becomes
much easier for other people to do the same thing.”> A subsequent wave of
imitations soon renders the original innovation obsolete and gradually wears
out the innovator’s profit rate. In the long-run, there is therefore an
inevitable tendency towards classical or neoclassical equilibrium which does
not allow any positive profits in excess of the normal rate. And yet
Schumpeter argued that positive profits will never disappear from the
economy because capitalism is “not only never but never can be stationary.”
It is an “evolutionary process” that “incessantly revolutionalizes the
economic structure from within, incessantly destroying an old one, incessantly

creating a new one.”’ Indeed, it is to destroy the tendency towards classical

f Schumpeter {1939], p.84.
*> Schumpeter [1939), p.100.
? Schumpeter {1950], p. 83.



or neoclassical equilibrium and to create a new industrial disequilibrium that
is the function the capitalist economy has assigned to those who carry out
innovations. “Surplus values [i.e., profits in excess of normal rate] may be
impossible in perfect equilibrium, but can be ever present because that
equilibrium is never allowed to establish itself. They may always tend to
vanish and yet be always there because they are incessantly recreated.””

The main purpose of this paper is to formalize this grand vision of Joseph
Schumpeter from the perspective of evolutionary economics.” Indeed, in my
previous papers [1984a] and [1984b], I developed a mathematically tractable
evolutionary model of industrial dynamics that is capable of analyzing the
evolutionary process of an industry’s technology as an aggregate outcome of
dynamic interactions among innovations, imitations and growth at the micro
level of firms. The present paper continues the task of these papers by
presenting new evolutionary models of industrial dynamics which are again
capable of analyzing (only with pencils and paper) the evolutionary process
of an industry’s technology as an aggregate outcome of dynamic interactions
among innovation, imitation and growth at the micro level of firms. What
differentiate these new models from the previous one is their assumption of
the step-by-step nature of innovations. In addition, two of these models also
deal with embodied type technological progress. But, as far as the general
features are concerned, they all can be regarded as variations of the previous
evolutionary model. In any case, mathematically tractable evolutionary
models are very scarce because of the intrinsic difficulty in developing
dynamic models without the help of optimization technique and equilibrium
concept. It is hoped that just to present a series of mathematically tractable
new models will in itself be a positive contribution to evolutionary economic

theory.

* Schumpeter [1950], p. 28.
* See, for instance, Nelson and Winter [1982], Dossi, Freeman, Nelson, Silverberg and Soete
[1988] and Anderson [1994] for the exposition of “evolutionary perspective” in economics.



However, this paper’s main objective lies in its use of these evolutionary
models for the purpose of formally demonstrating the Schumpeterian thesis
that profits in excess of normal rate never disappear from the economy no
matter how long it is run.® Indeed, the paper will show that what the
economy approaches over a long passage of time is not a classical or
neoclassical equilibrium of uniform technology but (at best) a statistical
equilibrium of technological disequilibria which reproduces a relative
dispersion of efficiencies among firms or capitals in a statistically balanced
form. Although positive profits are impossible in perfect equilibrium, they
can be ever present because that equilibrium is never allowed to establish
itself.

This paper is organized as follows. It is divided into two Parts. Part I
presents the basics of our evolutionary models. After setting up the static
structure of the industry’s technology in section I-1, the following two
sections (I-2 and 3) examine how firms’ imitative and innovative activities
evolve the state of technology over time. It is argued that while swarm-like
appearance of imitations pushes the state of technology towards uniformity
(hence, the economic evolution has a Lamarckian feature), punctuated
appearance of innovations disrupts the imitation’s equilibriating tendency.
Section I-4 then turns to the long-run of the industry’s state of technology. It
is shown that over a long passage of time these conflicting microscopic forces
will balance each other in a statistical sense and give rise to the long-run
average distributions of efficiencies across firms.

Now, the central core of any evolutionary theory worthy of the name is the
Darwinian selection mechanism - the fittest survives and spreads its favored
traits through higher reproduction rate. In the case of economic evolutionary
models, this selection mechanism works itself out through differential growth

rates between efficient and inefficient firms (or, more precisely, between

% In Iwai [1998] I have presented the same thesis, using an evolutionary model developed
in Iwai [1984b].



efficient and inefficient capitais). In order to incorporate this Darwinian
mechanism, Part II of the paper superimposes the process of capital growth
upon the evolutionary models of Part I. Section II-1 sets up two alternative
models of capital growth — one for disembodied technology and the other for
embodied technology — and works out the economic selection mechanism.
Then, the following two sections (II-2 and 3) analyze the dynamic interactions
between capital growth on the one hand and technolegical imitations and
innovations on the other and derive the long-run average efficiency
distributions of capital stocks. This long-run average distribution in turn
allows us to deduce in section II-4 the long-run average supply curves.
Indeed, it is shown that they are all upward-sloping and thereby capable of
generating positive profits even in the long-run. Hence, the title of this paper
— “disequilibrium theory of long-run profits”.

The present paper will adopt the ‘satisficing’ principle for the description
of firms’ behaviors - firms do not optimize a well-defined objective function
but simply follow organizational routines in deciding their growth, imitation
and innovation policies.” Indeed, the purpose of the penultimate section
(section II-5) is to show that our evolutionary model is able to “simulate” all
the macroscopic characteristics of neoclassical growth model without having
recourse to the neoclassical assumption of full individual rationality. If we
look only at the aggregative performance of our evolutionary economy, it is
as if aggregate labor and aggregate capital together produce aggregate output
in accordance with a well-defined aggregate production function with
Harrod-neutral technological progress. Yet, if we zoomed into the
microscopic level of the economy, what we would find is the complex and
dynamic interactions among many a firm’s growth, imitations and

innovations. It is simply impossible to group these microscopic forces into a

” The term “satisficing” was first coined by Simon [1957] to designate the behavior of a
decision maker who does not care to optimize but simply wants to obtain a satisfactory

utility or return. The notion of “organizational routines” owes to Nelson and Winter
[1982].



movement along an aggregate production function and an autonomous shift
of that function itself. The so-called growth accounting method in
neoclassical growth theory is thus seen to have no empirical content in our
Schumpeterian world.

Section II-6 concludes the paper.

Part I: An evolutionary model of Imitation and innovation
I-1. The state of technology in the short-run

Consider an industry which consists of a large number of firms competing
with each other. Some firms are active participants of the industry, busy
turning out products; others are temporarily staying away from production
but are ready to start it when the right time comes. In order to make our
description of the industry as general as possible at this stage of analysis, I
will not specify the market structure until section II-1; the industry may face
a perfectly competitive market or a monopolistically competitive market or
other form of market for its products.

The starting point of our evolutionary model is an observation that
knowledge is not a public good freely available among firms and that
technologies with a wide range of efficiency coexist even in the same industry.
And one of the end points of our evolutionary model is to demonstrate that in
most industries a wide range of efficiency will indeed coexist among firms
even in the long-run. Let F stand for the total number of firms, both active
and inactive, and assume it to be constant over time. Let us suppose that at
time ¢ there are NV, distinct technologies in an industry which can be labeled
as 1, 2, ..., Ni-1, N;. Let us also suppose that their efficiency can be ordered
linearly from the worst to the best, so that we can identify the index I as the
least efficient and the index N, as the most efficient technology in an industry
at time ¢. In section I-3 I will indeed specify that the ith technology has labor

An

productivity equal to ¢ with A > 0, but we do not have to commit to this

particular specification in the meantime. Note that the index of the best
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technology has a time subscript ¢, because firms’ innovative activities are
bringing in new technologies into the industry every now and then, as we will
see soon.

Let me describe how these technologies are distributed over firms, or it
comes to the same thing, how firms are distributed over these technologies.
For this purpose, let f;(n) stand for the reiative share of firms having access
to the nth technology at time ¢. (Their total number is then equal to Ffi(n).)
It of course satisfies an adding-up equation: f,(1)+...+fi(n)+...+ fy(Ny) = 1. 1
will call the set of these shares, {fi(n)}, the ‘efficiency distribution of firms’ at
time f. As is illustrated in Fig. 2, this gives us a snap-shot picture of the
distribution of firms over a spectrum of technologies from the best to the
worst. Unlike the paradigm of classical and neoclassical economics,
however, the state of technology is never static in a capitalist economy. As
time goes by, dynamic competition among firms over technological
superiority constantly changes the efficiency distribution of firms from one
configuration to another.

<Insert Fig. 2 around here.>
I will now turn to the evolutionary process of the efficiency distribution of

firms in our Schumpeterian industry.

I-2. Imitations and the evolution of the state of technology

There are basically two means by which a firm can advance its technology
-~ by innovation and by imitation. A firm may succeed in putting a new and
better technology into practice by its own R&D efforts. A firm may increase
its efficiency by successfully copying another firm’s technology. The
evolution of the state of technology is then determined by the dynamic
interaction of innovations and imitations. We take up the process of

imitations first.



In the present paper I will hypothesize the process of imitations as
follows®:

Hypothesis (IM-b): Firms seek to imitate only the best technology N, and the
probability that one of the firms imitates the best technology during a
small time interval dt is equal to uFf,(N,)dt; where Ff,(N,) is the number of
the firms currently using the best technology and g (> 0) is a small
constant uniform across firms. ¢
One of the characteristic features of technology as a commodity is its non-

excludability. It may be legally possible to assign property rights to the

owners of technology. But, as Arrow has remarked in his classic paper

[1962], “no amount of legal protection can make a thoroughly appropriable

commodity of something so intangible as information,” because “the very use

of the information in any productive way is bound to reveal it, at least in
part.”9 The above hypothesis captures such spill-over effects of new
technology in the simplest possible way.

The imitation parameter U in the above hypothesis represents the
effectiveness of each firm’s imitative activity. As was indicated in section I-1,
the present paper follows the strict evolutionary perspective in supposing
that firms do not optimize but only “satisfice” in the sense that they simply
follow organizational routines in deciding their imitative, innovative and
growth policies. Indeed, one of the purposes of this paper is to see how far
we can go in our description of the economy’s dynamic performances without
the assumptions of individual optimality. We thus assume y is an

exogenously given parameter.

* Both Hypothesis (IM') and (IM) in Iwai [1984a and b, 1998] suppose that firms imitate not
only the best technology but also any of the technologies better than the ones currently used.
Hypothesis (IM’} then assumed that the probability of imitating the nth technology is equal to
Hfi(n) per unit of time and Hypothesis (IM) then assumed that probability equal to us,(n), where
si{(n) represents the capital share of the nth technology. Note that F in our Hypothesis (IM-b)
gorresponds i in Hypotheses (IM’) and (IM) in those papers.

p. 615.



Now, the hypothesis (IM-b) allows us to analyze the evolution of the
efficiency distribution of firms in the following manner. First, consider the
evolution of the share of the best technology firms f,(N;). Its value increases
whenever one of the firms using a lesser technology succeeds in imitating the
best technology N,. Since the relative share of those firms is 7-f;(N,;) and the
probability of such a success for each firm is uFf,(N,)dt during a small
interval dt, we can calculate the expected increase in f,(N;) during dt as
(UFf(Ny)de)(1-f:(N,)). If the number of firms F is sufficiently large, we can
apply the law of large numbers and deduce the following differential
equation (as a good approximation) for the actual rate of change in f,(N,):
(1) f(Ne) =pFf(N)(1-fi(N0) .

This is of course a well-known ‘logistic differential equation’ with a
logistic parameter uF. It is not hard to solve it to obtain the following
explicit formulae for its evolutionary process over time.'® Setting T as an

initial time, we have for¢t 2 T:

. 1
(2) fi(Ny) = )
) SN I+ (1/fr( No)-1)eHE(ET)

where ¢ stands for the exponential. This is nothing but a ‘logistic growth
curve’ which frequently appears in population biology and mathematical
ecology.

Next, consider the evolution of the relative share of the firms employing
one of the less efficient technologies or of fi(n) for n=N,-1, N,-2, ..., I. This
share never increases but decreases whenever one of those firms succeeds in
imitating the best technology. Since the relative share of those firms is fi(n)
and the probability of such a success for each firm is uFf,(N;)dt during a time

interval dt, we can calculate the expected decrease in fi(n) as (UFf(N,)dt)f:(n).

' A logistic differential equation: x = ax(I-x) can be solved as follows. Rewrite it as:
x 7x-(1-x)7(1-x) and integrate it with respect to ¢, we obtain: log(x)-log(1-x) = log(xy)-
log(1-xg)+at, or x/(I-x) = e“x4/(1-xy). This can be rewritten as: x = I/(I1+(1/xy-1)e™™),
which is nothing but a logistic equation given by (2).
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The law of large numbers then enables us to deduce the following differential
equation (as a good approximation) for the actual rate of change in fi(n):
(3) f(n) = -uFf(N)fi(n) (n=1,2, .. Ne-I).
We can also solve this to obtain the following formula:
fr(n)(1- f(N.))

(4) fiun) = - (N (n=1,2, .., N-1);

for t 2 T. This equation describes the way the share of the lesser technologies

decays over time.

“If one or a few have advanced with success many of the difficulties
disappear,” so wrote Schumpeter, “others can then follow these pioneers, as
they will clearly do under the stimulus of the success new attainable. Their
success again makes it easier, through the increasingly complete removal of
the obstacles ..., for more people follow suit, until finally the innovation
becomes familiar and the acceptance of it a matter of free choice.”'' The set
of growth equation (2) and decay equations (4) describes this swarm-like
process of technological imitation in one of the simplest possible
mathematical forms.

<Insert Fig. 3 around here.>

Fig. 3 illustrates all these curves into a three-dimensional diagram. Its x-
axis measures time, y-axis technology index, and z-axis the share of firms.
The S-shaped curve in the front traces the growth pattern of the share of the
best technology firms. Every other curve traces the decaying pattern of the
share of each of the lesser technology firms. These curves give us a motion
picture of the evolution of the state of technology under the pressure of
imitative activities. When only a small fraction of firms use the best
technology, imitation is difficult and the growth of its users is slow. But one
imitation breeds another and a bandwagon soon sets in motion. The growth of
the share of the best technology accelerates until a half of the firms come to

adopt it. Then, the growth starts decelerating, while the share itself

" Schumpeter [1934], p. 228.
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continues to grow until it absorbs the whole population in the industry. In
the long-run, therefore, the best technology will dominate the entire indusiry.
This technological diffusion process is nothing but an economic analogue of

the “Lamarkian” evolutionary process.

I-3. Innovations and the evolution of the state of technology

Does this mean that the industry’s long-run state is no more than the
paradigm of classical and neoclassical economics where every market
participant has complete access to the best technology available in the
industry?

The answer is, however, a “No”. And the key to this answer lies in the
innovation -- the carrying out of what Schumpeter called a “new
combination”. Indeed, the function of firms’ innovative activities is precisely
to destroy this evolutionary tendency towards a static equilibrium.

Suppose that at some point in time one of the firms succeeds in introducing
a new and better technology into the industry. From that time on this new
technology takes over the best technology index N, and the former best
technology is demoted to the lesser index N,-1. Let T(N,) stand for this epoch
and call it the ‘innovation time’ for N,. Since the total number of firms is F,
this means that at t = T(N,) a new share f;(N,) emerges out of nothing and
takes the value of I/F.

No sooner does this innovation take place than do all the lesser technology
firms start to seek the opportunities to imitate it. Under Hypothesis (IM-b),
this sets in motion a new logistic growth curve (2) of f;(N;) from an initial
share I/F from t = T(N,) on. Hence, we have:

1
(5) [fi(N,) = I+(F-1)e'”F(t'T) for ¢t 2 T(N,) .

As for the lesser technologies (including the former best technology which
now has the index of N,-1), each of their shares follows a decay curve which

has the same mathematical form as (4). We thus have:



_ Jrow(n)(1 - fi(N)) .
(6) fi(n) = 1-1F (n=1,2, ..., N-1).

Note here that if the innovator used technology m just before the innovation,
the share f,(m) loses I/F at t = T(N,). But all the other shares traverse the
innovation time T(N,) without any discontinuity.

Fig. 4 squeezes all these processes (and more) into a three-dimensional
diagram.

<Insert Fig. 4 around here.>

Innovation is not a single-shot phenomenon, however. No sooner than an
innovation takes place, a new round of competition for a better technology
begins. And no sooner than a new winner of this game is named, another
round of technological competition is set out. The whole picture of Fig.4
exhibits how the industry’s state of technology evolves over time as a dynamic
interplay between two opposing technological forces -- swarm-like
appearance of imitations and creative destruction of innovations. While the
former works as an equilibriating force which tends the state of technology
towards uniformity, the latter works as a disequilibriating force which
destroys this leveling tendency.

A new question then arises: is it possible to derive any law-like properties
about the industry’s state of technology out of this seemingly erratic
movement?

In order to give an answer to this question, we need to characterize the
nature of technological innovations in more detail. The first hypothesis
concerning the nature of innovations is about its effect on labor productivity.
Hypothesis (PG): Each innovation causes the productivity of the industry’s

best technology N, to grow by a fixed rate of A (> 0). If we denote by a(n)

the labor productivity of the nth innovation, then it is given by e/'\n .0

The next assumption is concerned with the stochastic nature of the way
innovations take place over time. Indeed, in this paper we present two

alternative hypotheses.



Hypothesis (IN-a): All the firms have an equal chance for an innovation. The
probability that each firm succeeds in an innovation during a small time
interval dt is vdt; wherev (> 0) is a very small constant uniform across
firms. ¢

Hypothesis (IN-b): Only the firms using the best technology are able to carry
out a next innovation. The probability that each of the best technology
firms succeeds in an innovation during a small time interval dt is &dt;
where & (> 0) is a very small constant uniform across firms. ¢
The above two hypotheses constitute two polar cases about the pool of

potential innovators from which a next innovator is drawn. Hypothesis (IN-a)

insists that there is no prerequisite knowledge for a firm to become an
innovator, whereas Hypothesis (IN-b) insists that one has to practice the most
advanced technology in order to make a further progress on it. The reality
seems to lie somewhere in between.

The innovation parameter, v or £, represents the effectiveness of each
firm’s innovative activity in the industry. In the present paper which has
adopted en evolutionary perspective, their values are taken as exogenously
given. Note that since the total number of firms is F, what Hypothesis (IN-a)
implies is that the probability that an innovation occurs during a small time
interval dt is vFdt. Note also that the total number of the best technology
firms is given by Ff:(N,), what Hypothesis (IN-b) implies is that the
probability that an innovation occurs during a small time interval dt is
EFf(N,)dt.

We have already defined T(N,) as the time at which a technology »; is
introduced for the first time into an industry. A difference between two
adjacent innovation times, T(N,+1)-T(N,), thus defines a ‘waiting period’ for
the next innovation. Let W(¢) denote its probability distribution, or W(¢) =
Pr{T(N+1)-T(N,) £t}. Then, Appendix A shows that it can be expressed as:
(7a) W(t) = I-evF* fort 20,
under Hypothesis (IN-a) and as:
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= urt
(7b) W(t) = 1-(@—1—);,"8

y9* fort >0,

under Hypothesis (IN-b). Let @ denote the ‘expected waiting time’ of the next
innovation, or @ = E(T(N,+1)-T(N,;)) = j0°°tdW(t). Then, Appendix A also

shows that it can be calculated as:

1
8a) o = ,
(8a) vF
under Hypothesis (IN-a), and the value of:
w (I-1/F)
(8b) @ = Zi—_-o(*“‘—.—i“ )
(§+pi)F

under Hypothesis (IN-a). Note that an increase in v decreases @ of (8a) and

an increase in £ and u decreases o of (8b).

I-4. The efficiency distribution of firms in the long-run.

The state of technology given by {f,(n)} is a historical outcome of the
dynamic interaction between imitations and innovations. A swarm-like
appearance of imitations is an equilibriating force which pushes the
industry’s state of technology towards uniformity, whereas the intermittent
arrival of an innovation is a disequilibrium force which destroys such
tendency towards technological uniformity. Every time an innovation has
taken place, a new round of imitative activities starts from scratch and
resumes their pressure towards technological uniformity. As time goes by,
however, innovations turn up over and over again and reset the process of
imitations over and over again. In fact, under both Hypothesis (IN-a) and
Hypothesis (IN-b), the sequence of the waiting periods for the next innovation
are mutually independent random variables having the same probability
distribution W(¢), and the whole movement of the shares of technologies
within each waiting period becomes a statistical replica of each other. This
means that the entire evolutionary process of the state of technology now

constitutes what is called a ‘renewal process’ in the probability theory.'? (As

12 L . . . .
A process E is called a ‘renewal process’ if after each occurrence of E the trials



a matter of fact, under Hypothesis (IN-a) it constitutes the simplest of all
renewal processes -- a ‘Poisson process’.) We can thus expect that over a
long passage of time a certain statistical regularity will emerge out of its
seemingly irregular patterns.

The first regularity we want to examine is about the productivity growth
rate of the best technology. For this purpose let us note that N, the index of
the best technology at time ¢, can also be identified with the number of
innovations occurring from time 0 to time . Then, the so-called ‘renewal
theorem’ in the probability theory says that as ¢ becomes very large, the
random occurrence of innovations will be gradually averaged out and the
expected rate of innovations E(N,)/t will approach the inverse of the expected
waiting period I/@." Since by Hypothesis (PG) each innovation raises the
productivity by a rate A, the productivity of the industry’s best technology is
expected to grow at the rate of A/® in the long-run. Or, by (8a) we have
(9a) E(—lf’-g—(%(—]—v—'ﬁ) —VFA

when every firm can innovate (i.e. under Hypothesis (IN-a)), and by (8b) we

have:

FA
S (1-1/F ) /(E+ i)

when only the best technology firm can innovate (i.e. under Hypothesis (IN-

(o) BEARD)

b)). It is not hard to show that an increase in v and A increases the long-run
growth rate of the best technology under Hypothesis (IN-a) and that an
increase in &, u and A increases the long-run growth rate of the best
technology under Hypothesis (IN-b). The industry’s productivity growth rate

is thus endogenously determined in the present evolutionary model."

start from scratch in the sense that the trials following an occurrence of E form a
replica of the whole experiment, or if the waiting times W(f) between successive
events are mutually independent random variables having the same distribution.
See, for instance, Feller [1966] Chap. 11 and Cox and Miller [1965], Chap. 9 for the general
discussion on the renewal process.

" See Feller [1966].

"In contrast to the models in Iwai [1984a, 1984b, 1998] which have assumed that the



Indeed, not merely the process of innovations but also the entire evolution
of the efficiency distribution of firms is expected to exhibit a statistical
regularity in the long run. Of course, we cannot hope to detect any regularity
just by tracking the motion of the efficiency distribution as it is, for it is
incessantly shifted in the direction of higher productivity. If there is any
statistical regularity at all, it must come out from the recurrent pattern of
their relative structure over a long passage of time.

Accordingly, let us focus on the sequence of technology indices arranged in
reverse order, N;, Ni-1, ...,N;-i, .... Ast moves forward, a technology
occupying each of these indices becomes better and better. But the best
technology N, is always the best technology, the second-best technology N,-1
the second-best, ..., the i+1°'-best technology N,-i the i+I*'-best, and so on,
independently of their actual occupants. The set of the technology shares,
{ft(N¢), fy(Ne-1), ..., ft(Ni), ...}, thus represents the relative form of the
efficiency distribution of firms. Let us now determine their long-run average
configuration.

Here, I am omitting all the mathematical details and only reporting the
results obtained in Appendix B first in the form of geometry and then in the
form of algebraic equations.

<Insert Fig.5a and Fig.5b around here.>

Fig.5a above illustrates the relative form of long-run average efficiency
distribution when every firm can innovate, and Fig. 5b the relative form of
the long-run average state of technology when only the best technology firm’s
can innovate. The former has the form of geometric distribution, and the
latter usually has a peak at the second-best technology and assumes the form

of geometric distribution from that point on.

productivity growth rate of the best possible technology is determined exogenously by the
inventive activities of academic institutions, private firms, government agencies
and amateur inventors outside of the industry.
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The mathematical formulae for these curves are given as follows. Under
Hypothesis (IN-a), we have:
(10a) E{f(N)} - @,

E{fi(Nr-i)} — @(1-®)' (i=1,2, .., Nel),
where
o0 -vFz 1 i
(11 o= e dr = | (Xt A g,

01+(F-1)e'”FZ 1 VF 1-1/F

(Note that 0 < P < V(F-I)""/“/Z < vF/2. This is of course much smaller than
unity.) It is not hard to show that d®/dv > 0 and d®/du < 0. Under
Hypothesis (IN-b), we have:

(10b) E{f(N)) > o = E—
SFo  S(1-1/F ) /(1+i(wE))
. 1 U E  i-1 .
E - 11—~ =1,2,...Ns-1).
FNED) = (1= N e ) (i=1,2,..Ne-lI)

It is again not hard to show that JE{f.(N,)}/d& < 0 and JE{f«(N.)}/du > 0.

We have thus seen that what our Schumpeterian industry approaches over
a long passage of time is not a classical or neoclassical equilibrium of uniform
technology but a statistical equilibrium of technological disequilibria which
reproduces a relative dispersion of efficiencies among firms or capitals in a

statistically balanced form.



Part II: Process of capital accumulation and the long-run industry supply
curve
II-1. The mechanism of economic selection.

One of the main pillars of any evolutionary theory worthy of the name is
the Darwinian selection mechanism - the fittest survives and spreads their
traits through higher reproduction rates. In the case of economic
evolutionary process, this Darwinian mechanism works through differential
growth rates between efficient and inefficient capitals. If technology is not
embodied in capital stock those firms which carry better technology generate
higher profits and accumulate their capitals more rapidly than others, and if
technology is embodied in capital stock those capital stocks which embody
better technology generate higher profits and are accumulated more rapidly
than others. Let us now introduce the process of capital accumulation into
our evolutionary models.

Let k,(n) denote the total capital stock carrying technology n at time ¢ and
by K, the total capital stock accumulated in the entire industry at time . We
of course have: K, = k,(N;)+k(N-1)+...+k(1). We can then define the ‘capital
share’ of the n'" technology by k.(n)/K; and denote it by s,(n). We call the set
of capital shares, {s,(n)}, the ‘efficiency distribution of capitals.” As is
illustrated in Fig. 6, it gives us a snapshot picture of the way the industry’s
total capital stock is distributed over a spectrum of technologies ranging
from the most to the least efficient.

<Insert Fig. 6 around here>

As is the case of efficiency distribution of firms {f,(n)}, the efficiency
distribution of capital stocks {s,(n)} is never static in a capitalistic economy.
Differential growth rates between efficient and inefficient capitals as well as
technological competition among firms constantly change its configuration

over time. In order to analyze this process, we now have to specify the



structure of the markets as well as the structure of each technology much
more concretely than in Part I. '

First, let us assume that each technology is of Leontief-type fixed
proportion technology with labor service as the sole variable input and
capital stock as the sole fixed input. Let us also assume that only the labor
productivity varies across technologies, so that the n'" technology can be
written as:

(12) y = Min[a(n)l, bk],

where y, / and k denote output, labor and capital, respectively, and a(n) and b
denote labor productivity and capital productivity, respectively. Because of
Hypothesis (PG) we have a(n) = eA”, but b is assumed to be constant over time
and uniform across technologies.

Next, let us suppose also that every firm in the industry produces the same
product and hires homogeneous workers. They thus face the same price for
the products they produce and the same money wage rate for workers they
hire. Let P, and W, denote the product price and money wage rate at time ¢
and let r,(n) denote the real rate of profit (in terms of product price) accruing
from the use of the n'" technology at time ¢. If the price of capital equipment
is equal to the price of product, the latter can be calculated as r/(n) = (P.y-
W.l)/Pk = b(1-(W,/P;)a(n)). For analytical convenience, we approximate this
as b(log(a(n))-log(W,/P,)). This is not a bad approximation, as long as the
labor productivity a(n) and the real wage rate W,/P, are not so wide apart.
Since a(n) = e}‘”, this can be further rewritten as b(An-log(W/P,)).

“Without development there is no profit, without profit no development,”
so said our Schumpeter. “For the capitalist system ... without profit there
would be no accumulation of wealth.”® Qur next step is to relate the firms’
capital growth policy to the rate of profit it is earning. Here, I would like to

introduce two alternative hypotheses --- one for the case of disembodied

'* Schumpeter [1961], p. 154.



technology and the other for the case of embodied technology. In the case of

disembodied technology all the capital stocks accumulated in a firm have the

same productivity, whereas in the case of embodied technology different
capital stocks may carry different technologies even in the same firm. We
have:

Hypothesis (CG-d): Technology is not embodied in capital goods, and the
growth rate of a firm possessing n'" technology is linearly dependent on its
rate of profit, or it is given by: yr(n) - ¥ , where y (> 0) and % (> 0) are
given positive constants uniform across firms. ¢

Hypothesis (CG-e): technology is embodied in capital goods, and the growth
rate of capital stocks embodying n'" technology is linearly dependent on
their rate of profit, or it is given by: yr(n)- ¥y , where y(> 0) and % (> 0)
are given positive constants uniform across both technologies and firms. ¢
Each of the above hypotheses tries to capture the Darwinian mechanism of

economic selection in the simplest possible manner — the capital stock earning

higher profit rates are expected to grow faster than the others and enlarge
the shares of the technology they use. The parameter y represents the
sensitivity of the firm’s growth rate to the rate of profits, and the parameter

7» represents the rate of capital depreciation of the break-even firm or break-

even capital stock. As was remarked in section I-2, their values are taken as

exogenously given in the present paper.

Now, all the hypotheses in my evolutionary models are finally laid out.
First, Hypothesis (IM-b) concerning the spill-over effects of the best
technology through imitations. Second, Hypothesis (PG) concerning the step-
by-step nature of innovations. Third, Hypotheses (IN-a) and (IN-b)
concerning the nature of potential innovators and their success probability -
the one supposing that every firm has an equal chance for innovation and the
other supposing that only the best technology firms can innovate. And
finally, Hypotheses (CG-d) and (CG-¢) concerning firms’ capital accumulation

process — the one for the case of disembodied technology and the other for the



case of embodied technology. We are now in a position of analyzing how do
these microscopic forces combine with each other and move the entirety of
the efficiency distribution of capitals {s,(n)} over time. It is necessary to
proceed step by step.

In the first step, let us ignore the existence of both technological imitations
and technological innovations for the time being so as to place the process of
economic selection in full relief. To begin with, let us note that both
Hypothesis (CG-d) and Hypothesis (CG-e) imply that the growth rate of

capital stock with technology n can be expressed as:
kt(n)
kie(n)

(13) = Y An-log(W/Py))-7o (n=12, .. N-I, Ny.

If we substitute this relation into the right-hand-side of an identity:
s(n)/si(n)= ke(n)/ki(n)- K/K: and rewrite the resulting expression as y(An-
log(Wi/Py))-NAXn ns(n)-log(W/P)) = YA(n-Xunsi(n))= YA(n-Nis((Ny)-Xnzne
nsen)) = YAN-Ne+(1-5:(N¢))Ne=(1-5¢(Nt)) Dnzne nse(n)/(1-s¢((N;))), we can deduce
the following set of differential equations for the capital shares {s,(n)}:
(14) $«(Nt) = (YAL)s«(N)(1-s«(Ny)) ,

(15) S{N.-i) = -(YA)(Es(N)+(i-81))si(N-i) (i=1,2,....Ni-1);

where §, represents the gap between the best technology index and the

average index of all the rest and is defined by:

_ _N"‘I nst( Nt )
(16) & =N, % T—s(N)’

The value of §; in general depends on . But we can also expect it to move
only slowly over time.'® Indeed, for the sake of simplicity, we will from now
on proceed our exposition as if it were actually an exogenously given constant
§. Then, (14) takes the same logistic form as (1), and (15) the same
mathematical form as (2) except for an additional term -(YA)(i-{)s(N.-i). We

can thus solve them to obtain:

* ¥t would be useful to approximate the value of ¢ explicitly by using a fixed-point method
recently proposed by Franke [1998] for the model of Iwai [1984b].



1

(17) s(N;) =
1+ (1/stine)-1)e WEF(ET(NL)

y

(18) sdNi-i) = e'Yl(i-C)(x-T(Nt))_{.'fi@_‘_)__sr(N)(Nt-i) (i=1,2,..,N¢-1),
I1-sT(Ne)( Nt)

for T(N,) <t.
<Insert Fig. 7 around here.>

Fig. 7 illustrates the movement of the whole set of capital shares {s/(Ni)}
under the sole pressure of economic selection in a three-dimensional diagram
whose x-axis measures time, z-axis technology index, y-axis capital shares. It
looks very much like Fig. 3 of section I-2 which illustrated the diffusion
process of the best technology among firms. In fact, we have again
encountered a now familiar S-shaped logistic growth curve, this time tracing
out the motion of the best technology’s capital share s,(N,). Yet, the logic
behind Fig. 7 is entirely different from that of Fig. 3. In contrast to the
Lamarkian evolutionary process depicted in Fig. 3, what Fig. 7 illustrates is a
Darwinian evolutinary process which constantly shifts the distribution of
capital shares from the lesser technology to the best technology through the
relative difference in their capital growth rates. When the capital share of
the best technology is very small, that share can grow almost exponentially by
constantly absorbing the shares of the lesser technologies. But, as the best
technology begins to occupy a larger and larger capital share, the shares of
the lesser technologies it absorbs become smaller and smaller. It gradually
loses its growth momentum, but keeps growing nevertheless until it finally
swallows the whole industry. If there is neither technological imitation nor
technological innovation, only the fittest will survive in the long-run state of
the industry, and this of course reproduces the mechanism of natural

selection in the world of economics.

[I-2. Capital growth and technological diffusion.



In our Schumpeterian industry, there is a continuous wave of technological
imitations as well as an intermittent arrival of technological innovations,
incessantly interfering the way capital stocks are accumulated over time. We
thus have to modify the economic selection process discussed in the preceding
section in order to take account of such technological interference. In the
present section I will re-introduce the process of technological diffusion,
leaving the re-introduction of technological innovations to the next section.

As we will now see, the impact of technological imitation on capital
accumulation process is different between when it is embodied in capital
goods and when it is not. Let me examine the case of disembodied technology
first.

Now, we know from (1) that under Hypothesis (IM-b) during Fdf,(N)/dt =
quf,(N,)(I-f,(N,)) firms come to use the best technology N, by imitation each
time unit. In the case of disembodied technology, these firms can transform
all their capital stocks into the most efficient ones. Since their average
capital share is (1-s,(N,))/(F(1-f«(N:))), their successful imitations on average
increase the best technology’s capital share s(N,;) by ((1-s,(N.))/(F(1-
f,(N,))))quf,(N,)(I-f,(N,)) = UFf(N:)(1-5((N;)). Adding this to the right-hand-
side of (14), we have:

(19d) s(Nt) = ((YAL)s«(N)+UFfu(N))(1-5«(N1)) ,

for T(N;) <t < T(N+1). By the same token, we know from (2) that -Fﬁ(N,-i)
= -,uF‘?f,(N,)f,(N,-i) firms abandon technology N,-i by imitating the best
technology N, during each time unit. Since the average capital share of these
firms is equal to s,(N-i)/(Ffi(Ni)), they on average subtract quf,(N,)f,(N,-
[)S{(N-i)/(Ff(Ns-i)) = WEf(N:)si(N~i) from the right-hand-side of (15). Hence,
undekr both Hypothesis (CG-d) and Hypothesis (IM-b) we have:

(20d)  si(Ni-i) = -((YAL)s«(N)+(YA)(i-E)+UFfi(N1))s(N-i) (i=1,2,....,Nw-1),
for T(N;) £t < T(N+1). As will be shown in Appendix C, it is possible to solve
these two differential equations and derive (after some hard work) the

following rather formidable expressions:
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f‘( Nt ) _AYuF 1 f’( N‘) 1+YAL/uF
- I F ) (- 1-1/F Tk
(21d) s(N,) = I- /
1 ft(Nt) -AguF , 1% 1+ guF
- )I; ( ) (——) dx
I-ST(Nt) ,uI« 1-1/F
where fi(N,) is a logistic curve I/(]+(F-I)e”F("T)) defined by (5); and
1-st( Nt )

]-sr( Ne)( Nt )

(22d) si(Np-i) = e P(FENET(N)) stNANei) (=1, 2, ..., Ne-1),

for T(N,) <t < T(N+1).

Let us next examine the case of embodied technology. Again under
Hypothesis (IM-b) during each time unit Fdf,(N,)/dt firms come to imitate the
best technology N,. In the case of disembodied technology, however, these
firms have to invest in new capital stocks in order to be able to use the newly
adopted technology. Let us denote by 0K, the minimum capital stock that is
necessary to start a new production process and assume that the coefficient o
is invariant over time. (This initial capital share is assumed to be financed
by bank credit.) Then, the firms’ successful imitations increase the best
technology capital stock k,(N,) by oFfi(N:). If we note that they also increase
the total quantity of capital stock K, by the same magnitude, we can calculate
the contribution of these embodied imitations to the rate of change in the best
technology’s capital share as: s«(N:t) = kt(N:)/Kr—s:(Nt)K:/Kt =
O'Fﬁ(Nt)(I-St(Nt)). If we add this to (15), we have:

(19¢) S Ni) = ((YAG)s(N)+OFfi Ni))(1-5:(N1)) ,

for T(N,) <t < T(N,+1). By the same token, we can calculate the rate of
change in the lesser technology’s capital share as:

(20e) S$i(Ni-i) = -((YAL)s(N)+(YA)(i-&)+ OFfi( Nt ) )s((Ni-i) (i =1, 2,...,N;-1)
for T(N,) <t < T(N+1). As will be seen in Appendix C, it is again possible to
solve these two differential equations and deduce the following expressions

for the motion of capacity shares:
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VF e YA (-T(Ne)-F ( fi( Nt )-1/F )

(1+0)-(AE)I5T Ni) g-YALs-OF ( fs( Ns)-1/F ) 4 *

(21e) s«(N,) =

(22) s(Np-i) = e PHENET(ND) Lf@'—)sw( Nei) (i=1,2, ., NeD),
+ 0

for T(N,) £t < T(N+1). (Here we have used the fact that szn:.;)(N.-i) =
o/(1+0) and syn(Ne-i) = Star)-0o(Ne-i) /(1+0), because at each innovation time
not only the capital stock of the best technology jumps from 0 to oK, but also
the total capital stock increases from K; to (/+0)K,.)
<Insert Fig. 8d and Fig. 8¢ around here.>

Fig. 8d illustrates the motion of the capital shares in the case of
disembodied technology (i.e., under Hypothesis (CG-d)), given by (21d) and
(22d), and Fig. 8e in the case of embodied technology (i.e., under Hypothesis
(CG-e)), given by (21¢) and (22¢). In particular, the left-most portions of
these two diagrams show how the Darwinian mechanism of economic selection
and the Lamarkian process of technological diffusion jointly contribute to the
logistic-like growth process of the best technology’s capital share -- the
former by growing the most efficient capital stocks relative to the other and
the latter by diffusing the best technology throughout the industry. While
the Darwinian mechanism of economic selection represents a centralizing
force, the Lamarkian process of technological diffusion represents a
decentralizing force in the industry. But, no matter how opposed the
underlying logic might be, their effects upon the efficiency distribution of
capital stocks are the same — the best technology tends to dominate the
industry’s entire capital stocks in the long-run, other things being equal.

But, of course, other things will not be equal in the long-run.

I1-3. Growth, imitation and innovation in the long-run.
Finally, let me re-introduce the process of technological innovations into
our picture. As is seen by simply tracing out the evolutionary curves of

various capital shares from left to right in Fig. 8d and Fig. 8¢ of the
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preceding section, it is again the recurrence of innovations that destroys the
joint force of economic selection and technological diffusion that moves the
efficiency distribution of industry’s capital shares or capitals towards
uniformity. Innovation is a disequilibrium force of the industry structure.

As time goes by, however, innovations turn up over and over again and
reset the processes of economic selection and technological diffusion over and
over again. We have already shown in section I-4 how the efficiency
distribution of firms will in the long-run exhibit a certain statistical
regularity. It is the task of the present section to examine whether the
efficient distribution of capitals will also exhibit some statistical regularity
over a long passage of time. We are thus concerned with the long-run
average configuration of {s,(N;), s¢{(Ns-1), ..., s:(Ni), ...}.

Since before us are four different versions of evolutionary models as 2x2
combinations of Hypotheses (IN-a) and (IN-b) on the one hand and Hypotheses
(CG-d) and (CG-e) on the other, and since the required calculations are
rather lengthy, we only report here the results obtained for each model in
Appendix D.

(i): The case where technology is disembodied and every firm can innovate,
i.e., where Hypotheses (IN-a) and (CG-d) hold.

Ast — oo, we have:

(23ad) E{s(N:)} — I-T¢;
E{s(N¢-i)} = (1-T'¢)Iy... T; (i=1,2, .., N-1I),
where

(24ad) T= | (P 1/E) PR (1-(2))/( 1-1/F ) HPIRE ypg-(PMI-C)+VE )z gy

0 F/(F-1)-(AGWF )P (x/ (1/F )y PIHE (1ox )/ (1-1/F ) ¥ PIRE g

and @(z) = 1/(1+(F-1)e™7%). Note that I > T, > Io> ... > T > I > 0.
(ii): The case where technology is embodied and every firm can strike an
innovation, i.e., where Hypotheses (IN-a) and (CG-¢) hold.

As t — oo, we have:
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(23ae) E{s(N.)} — 1-A¢;
E{s{(N-i)} = (1-Ag)Aj... A; (i=1,2, ., Nel),

where
00 -y).(i-C+Cz)-0'F(qJ(z)-I/F)-szd
(24ae) Ai = | vie AT oF (ol )-1/Fz) .
01/(1-0)-(YAL)f5e™ ety dy

Note that I >A; > A;> ... > Ai.p> A > 0.
(iii): The case where technology is embodied and only the best technology
firms can strike an innovation, i.e., where Hypotheses (IN-b) and (CG-¢) hold.

As t — oo, we have:
(23be) E{s/(N)} — 1-82¢;
E{s(Ne-1)} — (1-¥)S2 ;
E{si(Np-i)} = (1-¥)¥;.... Vi 182 (i =2, ..., Ne-1);
where
¢ M -C+82)-0F (@(2)-1IF ) 1 /6y y(( 1-( 7))/ ( 1-1/F ))FH
(1+0)-(1AL )ffe H-oF (P03 1/ gy
o MGG oF(0(2) 1P Ep g2 )((1-9(2))/ (1-1/F ) ¥
(1+0)-(YAG)[5e PO o (9011 )gy

(24be) Q; = | dz
0

(24be’) Wi = | dz
0

Notethat I > 2, >...>Q;>0and I > ¥;>...> ¥, > 0.

(iv): Unfortunately, I have not been able to deduce any explicit formulae
for the long-run average efficiéncy distribution of capitals for the case where
technology is disembodied and only the best technology firms can strike an
innovation, i.e., where Hypotheses (IN-a) and (CG-e) hold.

Note in passing that what is important about these mathematical formulae
is not that they have these particular forms but that they can be obtained by
pencils and paper without having recourse to computer simulation.

<Insert Figs. 9ad, 9ae and 9be around here.>

Fig. 9ad, Fig. 9ae and Fig. 9be illustrate the long-run average efficiency
distribution of capital stocks for the first three cases above -- (i) the case
where technology is disembodied and every firm can strike an innovation; (ii)

the case where technology is embodied and every firm can strike an
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innovation; and (iii) the case where technology is embodied and only the best
technology firms can strike an innovation. The first and the second cases
have monotonically declining distributions, with the declining rates initially
slower than but later getting faster than that of geometric distribution. The
third case has a distribution which peaks at the second-best technology and
then declines at the rate initially slower but later faster than that of

geometric distribution.

I1-4. The long-run average supply curve.

The efficiency distribution of capital stocks we have so far been concerned
with represents only the technological “possibility” of the industry.
However, not every firm is actually engaged in production, and some of the
existing capital stocks are left idle or simply discarded. Since money wage
rate divided by labor productivity W/a(N-i) = W, e MNH) represents the unit
cost of production of each technology, the firm operates the capital stocks of
technology N,-i at its full capacity only if they generate a surplus, or only if P;
> Wte"VN'i), and the firm operates a portion of those capital stocks, depending
on demand, if they are just break-even, or if P, = W, e’Z(N'i). (We have here
ignored the cost associated with shutting-down of a production line as well as
the cost associated with setting-up of a new production line.) Then, by
summing up all the profitable productive capacities and adding a portion of
the break-even productive capacities, we can determine the industry’s supply
curve (or the supply correspondence, to be precise) for each price P,. If we
let Y, denote the industry’s total product supply at time ¢, it can be given by:
(25) Y, = bk(No)+... +bki(Np-i) it eANDW, < p, < ANy,

€ [bk(N)+...+bk,(Ne-i), bk(No)+...+bk(Np-i-1)] it P, = XN Dy, |
with an understanding that Y, = 0 if P, < e ™' W,.

In a Schumpeterian industry, however, the above supply curve is

constantly shifting rightwards by capital accumulation and constantly

shifting downwards by technological progress. In order to neutralizes the
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effect of capital accumulation, let us divide the industry’s output Y, by its
maximum productive capacity bK,'” And in order to neutralize (at least a
part of) the effects of technological progress, let us divide both the product
price P, and the wage cost e'}(N"')W, by the efficiency money wage of the best

technology W,/ AN

. If we let y, =Y,/bK, denote the output-capacity ratio and
pe =P, e}‘N’/W, the product price-efficiency wage ratio, we get the following
“relative” form of industry supply curve: '
(26) yr = Si(Ns)+...+5(N-i) if e'u<p, < eMiH) ,
€ [N+ 48:(Ne-i), $e(Ni)+...48(Ni-i-1)]  if po = 1),
with an understanding thaty, =0 if p, £ M =1,
<Insert Fig. 10 around here.>

Fig. 10 depicts the relative form of industry supply curve in a Marshallian
diagram whose vertical axis measures the logarithm of price-efficiency wage
ratio logp, and horizontal axis output-capacity ratio y,. Indeed, it is nothing
but the left-hand cumulative distribution of capital shares — a partial sum of
capital shares depicted in Fig. 6 added from the best to the worst technology.
As long as a multitude of technologies with different efficiencies coexist
within the industry, it remains an upward-sloping curve. And as long as it is
upward-sloping, the industry is able to generate positive profits, as is
indicated by the shaded area in Fig. 10.

With the help of our analyses in sections I1I-2, 3 and 4 of the effects of
accumulation, imitations and innovations on the efficiency distribution of
capitals, a mere perusal of Fig. 10 allows us to discuss how each of these

three dynamic forces influences the industry’s profit rate in the short-run.

"1t is easy to show from (16) that: (dK/dt)/K, = y{AX,ns,(n)-log(W,/P,)}-7, . In other
words, the accumulation rate of the industry’s total capitals K, is linearly
dependent on the proportional gap between the average labor productivity and real
wage rate. If, on the one hand, (dK/dt)/K, is pre-determined (probably by the
growth rate of the demand for this industry’s products), this equation can be used
to determine W,/P,. If, on the other hand, W/P, is pre-determined (probably by the
labor market conditions in the economy as a whole), this equation can be used to
determine (dK,/dt)/K,. In either case, the forces governing the motion of K, are in
general of different nature from those governing the motion of {s.(n)}.
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For instance, the arrival of an innovation lowers the leftmost potion of the
supply curve and boosts the industry’s profit rate, and the subsequent growth
of the best technology capital stocks and the subsequent diffusion of the best
technology itself both expand the lowered portion of the supply curve
horizontally to the right, thereby further increasing the profit rate at first.
However, as the best technology capital stocks continue to grow either by
economic selection or by technological diffusion, the effect of the rightward
shift of the whole supply curve starts to take its effect on price. The industry
price declines rapidly and soon arrests the upward movement of the profit
rate. The profit rate then follows a downward path, until another innovation
again reverses this trend.

Fig. 10 also allows us to say something interesting about the impact of an
increase in demand on the rate of profit. Of course, everybody knows that an
increase in output raises the industry’s profit rate. But, what I would like to
suggest here is not merely that an increase in output raises the profit but that
an increase in output raises the profit roughly by the order of its square.

This is most easily seen by approximating the industry supply curve in Fig.
10 by a linear curve. Then, the shaded area representing profits can be
identified as a triangle, and the elementary school arithmetic tells us that the
magnitude of the industry’s profit given by that triangle becomes
proportional to the square of the level of output. This simple fact implies
that if the firms’ fixed investment is linearly dependent on the rate of profit,
as we have supposed in Hypothesis (CG-d) or (CG-e), the so-called investment
function becomes an increasing and quadratic (more generally convex)
function of output level. If this is so, it is very likely to violate the short-run
stability condition for investment-saving equilibrium of the economy as a
whole, suggesting its instability at least in the short-run. This would
certainly connect our models to the recent works on non-linear economic

dynamics. In the present paper, however, I only mention this possibility in
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passing and must resume our analysis of the long-run performance of the
Schumpeterian industry.

Indeed, the fact that the industry’s state of technology will retain features
of disequilibrium even in the long-run does have an important implication for
the nature of the industry’s supply curve in the long-run. For, as is seen
from (26), the relative form of industry supply curve is a partial sum of the
capital shares s,(n) added from the best technology to the break-even
technology. Hence, if each of the capital shares tends to exhibit a statistical
regularity in the long-run, the relative form of the industry supply curve
should also exhibit a statistical regularity in the long-run.

Now, it is possible to express the expectation of the relative supply curve of
the industry as:

(27) lim E(yt) = lim (E(ss( N+ +E(si(Ne-i)))  if Ai < logp, < A(i+1),
{—>o0 {—>oo

€ lim [E(s((Nt))+..+E(se(Ne-i)), E(si( NO))+..4+E(si( Ne-i-1))]

t—>o0
if logp: = A(i+1).
Then, in view of (23ad), we can indeed calculate the long-run average

industry supply curve under Hypotheses (IN-a) and (CG-d) as:
(28ad) lim E(y:)

t—>o0
=0 if logp, < A0 =0,
€ [0, I-T'¢] if logp: =0,

= (1-T'g)(il+(i-1)Ia+...+17) if A(i-1) < logp: < Ai,
€ [(I-Tg)(il+...+13), (1-T'g)((i+1)T+...+1541)] if logp, =Ai .
In view of (23ae), we can also calculate the long-run average industry supply

curve under Hypotheses (IN-a) and (CG-¢) as:
(28ae) lim E(y:)

t—oo
=0 if logp, < A0 =0,
e [0, I-A] if logp: =0,
= (1-A(IA+(i-1)Ar+... +Aj) if A(i-1) <logp, < Ai,

€ [(I-Ag)(iA;+...+Ay), (1-A)((i+1)Ar+...+Aip)]  if logp, = Ai .



Finally, in view of (23be) the long-run average industry supply curve becomes

under Hypotheses (IN-b) and (CG-¢) as:
(28be) lim E( yr)

t—3o0

=0 if logp, < A0 =0,
€ [0, 1-82¢] if logp, =0,
=1-8r if 0 <logp, <A,
€ [1-Q¢, (1-yr)$2;] if logp:=A,

= 1-Qe+(1- W) (21 + Wi (22+ Yo (23+...+ Wi 1£2)...)) if Ai <logp, < A(i+1),
€ [1-Q¢+(1-w) (21 + Y1 (L2+.. + Wi £2i)..), 1-Qr+(1-wo) (821 + Wi ($22+..+WiL2i11)..)]
if logp, = A(i+1) .
<Insert Figs. 11 ad, ae and be around here.>

Each of Figs. 11ab, 11ae and 11be exhibits the relative form of the
industry’s long-run average supply curve for each of the above three versions
of our evolutionary model. As in the case of short-run industry supply curve,
the horizontal axis measures output-capacity ratio y, and the vertical axis
measures the logarithm of price-efficiency wage ratio logp,. What is most
striking about the three long-run average supply curves in Figs. 11ad, ae and
be is that they are all upward-sloping!

Let us now recall the lower panel of Fig. I of the introductory section. It
has reproduced a tybical shape of the long-run supply curve which can be
found in any textbook of economics. This horizontal curve is supposed to
describe the long-run state of the industry in which the least cost technology
is available to every firm in the industry and all the opportunities for positive
profits are completely wiped out by competition among firms. However, the
long-run average supply curves we have drawn in Fig. 11 have nothing to do
with such traditional picture. There will always be a multitude of diverse
technologies with different productivity conditions and the industry supply
curve will never lose its upward-sloping tendency. There will, therefore,

always be some firms which are capable of earning positive profits, no matter
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how competitive the industry is and no matter how long it is run, as long as
there will be enough demand for the industry’s product.

I will thus conclude that positive profits are not only the short-run
phenomenon but also the long-run phenomenon of the industry. Itis true
that the positivity of profits is a symptom of disequilibrium. But, if what the
industry will approach is at best a statistical equilibrium of technological
disequilibria, it will never stop generating positive profits from within even

in the never-never-land of the long-run.

I1-5. Pseudo aggregate production functions.

Since the publication of Robert Solow’s “Technical Change and the
Aggregate Production Function” in 1957, it has become a standard technique
in neoclassical growth theory to decompose the growth rate of an economy’s
per capita GNP into the effect of capital/laber substitution along an
aggregate production function due to capital accumulation and the effect of
continuous shift in the aggregate production function itself due to
technological progress. Solow found that more than 80 % of per capital GNP
growth rate in the United States from 1909 to 1949 could be attributed to the
technological progress and less than 20 % to the capital deepening, and
opened the eyes of economists to the importance of technological progress in
understanding the economic growth process. At the same time it gave rise to
a well-known controversy — the so-called Cambridge-Cambridge controversy
— on the concepts of aggregate production function and aggregate capital
stocks, on which Solow’s technique of growth accounting relied heavily. This
controversy, however, has died out, perhaps because of its degeneration into
such esoteric problems as re-switching and all that. The purpose of this
section is to provide a new critique of the neoclassical growth theory. This
time, however, the critique is much more “constructive” than its predecessor.
Because what I am now showing is that our evolutionary models are capable

of “simulating” all the characteristics of neoclassical growth models.
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Let me begin our “simulation” of neoclassical aggregate production
functions by constructing the industry’s labor demand function. As is seen in
Fig. 10, when demand is small and the price (in terms of efficiency wage) just
covers the wage cost of the best technology or when logp, = 0, only the capital
stocks carrying the best technology N, are operated and output Y, is
determined by the level of demand. Because of the fixed proportion
technology (12), we can represent the level of total employment associated
with this output as L, = e*Y,. When the demand reaches the total capacity
of the best technology bk,(N;) = s,(N;)bK,, then a further increase in demand is
absorbed solely by an increase in price, while output is kept at the capacity
level. But when the price reaches the wage cost of the second-best technology
or when logp, = A, the second-best capital stocks start to join the production
and all the increase in demand is absorbed by a corresponding increase in
output. Then, the relation between output ¥, and employment L, can be given
by Ly = e s, (N)bK+e M1 (Y,-5,(N)bK,) until Y, reaches the total
productive capacity of the first- and second-best technology (s/(N¢)+s:(N:-
1))bK,. In general, when (s{(Ny)+...+s(N-i))bK,; S Y, < (Se(N)+...+5(N-i-1))bK,,
the relation between Y, and L, can be given by L, = (s,(N,)+...+e”S,(N,-

D)+ e (Y /bK - (so(Np)+..+5:(Ne=i))) )b K e MY . If we divide this relation by

bK;eM we can express the industry-wide efficiency labor-capacity ratio x,

I

e L/bK, as a function of the industry-wide output-capacity ratio y; = Y//bK;
as:
(29) x; = SN +...+eMs(N-i)+ A FD (3o (s (Ni)+..+5(No-i)))),
when s((N)+..+8(N-1)S y; < S((Np)+..+5,(N-i-1).
<Insert Fig. 12 around here.>
Fig.12 depicts the inverse of the above relation in a Cartesian diagram
which measures efficiency labor-capacity ratio x, along horizontal axis and
output-capacity ratio y, along a vertical axis. It is not hard to see that this

relation satisfies all the properties a neoclassical production function is
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supposed to satisfy.'® Y, is linearly homogeneous in L, and K,, because y, =
Y./bK, is a function only of x, = e L J/bK,. Though not smooth, this relation
also allows a substitution between K, and L, and satisfies the marginal
productivity principle: dy/dx, < 1/p, = e MV W./p: (= efficiency real wage rate)
< d'y/0x,. (Here, dy/dx and dy/dx represent left- and right-partial
differential, respectively.) Yet, the important point is that this is nof a
production function in the proper sense of the word! It is a mere theoretical
construct summarizing the production structure of the industry as a whole,
and has little to do with the actual technological conditions of the individual
firms working in the industry. As a matter of fact, the technology each firm
uses is a Leontief-type fixed proportion technology which does not allow any
capital/labor substitution. It is in this sense that we call the relation (32) a
‘short-run pseudo aggregate production function.’

The shape of this function is determined by the efficiency distribution of
capital shares {s,(n)}. Hence, as this distribution changes, the shape of the
pseudo production function also changes. And in our Schumpeterian
industry, the efficiency distribution of capitals is incessantly changing over
time as the result of dynamic interplay among technological innovatiens,
technological imitations and capital accumulation. The most conspicuous
feature of the short-run pseudo aggregate production function is, therefore,
its instability.

In the long-run, however, we know we can detect a certain statistical
regularity in the relative form of capital share distribution out of its
seemingly unpredictable movement. We can thus expect to detect a certain
statistical regularity in the relative form of pseudo aggregate production
function out of its seemingly unpredictable movement as well.

To see this, let us first note that by (29) we havex, = ¢*’s,(N)+ ... +e¥s/(N,-
i) when y, = s,(N;)+..+s,(N,-i). Taking expectation, we then have:

(30) E(x;) = Efsi(N)+ ...+ e¥s(N-i)} when E(y:) = E{si(Ni)+..+s:(Ne-i)}.

" See Sato [1975] for the general discussion on the aggregation of micro production functions.
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Thus, under Hypotheses (IN-a) and (CG-d), if we let > o, we obtain by
(23ad):
(31ad) E(x;) — (1-T')(1+eM Ti+...+ ¥ 1)
when E(y)) —» 1-Iy fori =0,
— (1-T)(il+(i-1)Ia+...+13) fori=1,2, ... N1,
with an understanding that E(x,) = 0 when E(y,) = 0. Next, under Hypotheses
(IN-a) and (CG-e), if we let t —co we obtain by (23ae):
(31ae) E(x;) — (I-Ag)(1+eM Ap+...+ M Ay)
when E(y) — I1-A¢ fori =0,
— (1-Ap)(iA;+(i-1)Az+...+A;)  fori=1,2,... N1,
with an understanding that E(x,) = 0 when E(y;) = 0. Finally, under
Hypotheses (IN-b) and (CG-e), if we let t— oo we obtain by (23be):
(31ae) E(x;) — 1-Qu+(1-¥e) (M Q4.+ M W) W18,
when E(y,)— 1-L fori =0,
= 1-Qe+(1-we)(1+ Y1 (822+...+ Wiy £2i)...)) fori=1,2, ... N1,
with an understanding that E(x,) = 0 when E(y,) = 0. If we span a convex
hull of the points (E(x,), E(y,;)) defined by each of the above long-run relations
respectively, we are able to generate the “long-run average pseudo aggregate
production functions” for the three versions of our evolutionary model.
<Insert Fig. [3ad, I13ae and 13be around here.>
Fig. 13ad, 13ae and 13be illustrate these curves in a Cartesian diagram
which measures the expected efficiency labor-capacity ratio E(x,) along
abscissa and the expected output-capacity ratio E(y,) along ordinate. Now,
these long-run average pseudo aggregate production functions exhibit all the
properties that neoclassical production functions should have! Indeed, they
show that the long-run average output-capacity ratio E(Y,/bK,) is an
increasing and concave function of the long-run average efficiency labor-
capacity E(e* L/K,). Thus, it is as if the total work force L, and total capital
stock K; were jointly producing the total output Y, subject to an aggregate

neoclassical production function: Y = be(eM’UK) under Harrod-neutral (or



ANt Yt is as if we had

pure labor augmenting) technological progress:e
entered the Solovian world of neoclassical economic growth in which the
growth process of the economy could be decomposed into the capital-labor
substitution along an aggregate neoclassical production function due to
capital accumulation and the constant outward shift of the aggregate
neoclassical production function itself due to the manna-like technological
progress. This is, however, a mere macroscopic illusion! If we zoomed in the
microscopic level of the industry, the picture we would get is entirely
different. What we would find out is the complex and dynamic interplay of
many a firm’s innovation, imitation and accumulation activities. It is just
impossible to disentangle these microscopic forces and decompose the overall
growth process into a movement along a well-defined aggregate productio
function and an outward shift of the function itself. As a matter of fact, the
basic parameters, A, £ andVv or &, which determine the rate of pseudo Harrod-

neutral technical progress ™"

, are also the parameters that determine the
very shape of the pseudo aggregate production function. (We already know
from (9a) and (9b) that the long-run average rate of technological change is
equal to AVF under Hypothesis (IN-a) and AF/X;((1-1/F)"/(E+ji)) under
Hypothesis (IN-b).) We are after all living in a Schumpeterian world where
the incessant reproduction of technological disequilibrium prevents the
pseudo aggregate production function from collapsing into the fixed
proportion technology of individual firms. It is, in other words, its non-
neoclassical features that give rise to the illusion that the industry is

behaving like a neoclassical growth model. Neoclassical growth accounting

thus has no empirical content in our Schumpeterian world.
I1-6. Concluding Remarks.

In the traditional economic theory, whether classical or neoclassical, the

long-run state of the economy is an equilibrium state and the long-run profits
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are equilibrium phenomena. If there is a theory of long-run profits, it must
be a theory about the determination of the normal rate of profit.

This paper has challenged this long-held tradition in economics. It has
introduced a series of new simple evolutionary models which are capable of
analyzing (without having recourse to computer simulation) the evolutionary
process of the state of technology as a dynamic interplay among many a
firm’s growth, imitation and innovation activities. And it has used these
models to demonstrate that what the economy will approach over a long
passage of time is not a classical or neoclassical equilibrium of uniform
technology but a statistical equilibrium of technological disequilibria which
maintains a relative dispersion of efficiencies in a statistically balanced form.
Positive profits will never disappear from the economy no matter how long it
is run. ‘Disequilibrium’ theory of ‘long-run profits’ is by no means a
contradiction in terms.

Not only is a disequilibrium theory of long-run profits possible, but it is
also ‘operational.” Indeed, our evolutionary model would allow us to
calculate (only with pencils an paper) the economy’s long-run profit rate as
an explicit function of the model’s basic parameters which represent the
forces of economic selection, technological diffusion and recurrent
innovations. “Without development there is no profit, without profit no
development,” to quote Joseph Schumpeter once more.'”” The model we have
presented in this paper can thus serve as a foundation, or at least as a
building block, of the theory of ‘long-run development through short-run
fluctuations’ or ‘growth through cycles.” To work out such a theory in more
detail is of course an agenda for the future research.

The present paper has adopted the so-called ‘satisficing’ principle in its
description of the firms’ behaviors — firms do not optimize a well-defined
objective function but simply follow fixed organizational routines in deciding

their growth, imitation and innovation policies. Indeed, one of the purposes

¥ Schumpeter [1961], p. 154.
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of this paper was to see how far we could go in our representation of the
economy’s dynamic performance without relying on the neoclassical
assumption of full individual rationality. And it has even succeeded in
‘simulating’ all the macroscopic characteristics of neoclassical growth model.
And yet, there is no denying that our strict evolutionary assumption of fixed
organizational routines is as unrealistic as the neoclassical assumption of
fully rational decision-making is. Where have all these organizational
routines come from? What are their determinants? How will they change
over time? Another important agenda for the future research is to study the
very evolutionary process of these routines by injecting at least a modicum of
rationality into our firms’ head-quarters. This will not turn our evolutionary
model into a neoclassical model. But it will, I hope, furnish us with a
common ground with the recently emerged and rapidly growing literature on

endogenous growth in neoclassical economics.”

** On endogenous growth literature, see Aghion and Howitt [1992, 1997],
Grossman and Helpman [1993], Romer [1990] and Segerstrom [1991]. They
are all based on the assumption of individual rationality which extends over
an infinite horizon.

40



<Appendix A>

The purpose of this Appendix is to indicate how (7a) and (75) in the main
text can be obtained.

Let W(t) denote the probability distribution of a “waiting period” for the
next innovation T(N,+1)-T(N,), oxr W(t) = Pr{T(N+1)-T(N,) <t}. Then, the
probability that an innovation takes place during a small interval [¢, t+dt] for
the first time since time 0 can be written as W(t+dt)-W(t) = dW(t). This is also
the probability that no innovation has taken place during [0, {) and an
innovation takes place during [t, t+dt]. Since the probability of the former
event equals (I-W(t)) and the probability of the latter event equals vFdt
under Hypothesis (IN-a) and EFf,(N,)dt under Hypothesis (IN-b), we get an
equation of the form of:

(Ala) dW(t) = (1-W(t))vFdt

under Hypothesis (IN-a), and an equation of the form of:

(Alb) dW(t) = (1-W(t))EFf,(N,)dt

under Hypothesis (IN-b). (Al-a) can be solved as:

(A2a) W(t) =1-¢ V! for t 2 0.

This is (7a) of the main text. On the other hand, if we rewrite (A1-b) as d(1-
W(t))/(1-W(t)) = -EFfi(N,)dt, integrate it and rearrange terms, we obtain:

(F-D)+ e g

t )
(A2b) W(t) = 1-& 0N g 1Py ¥R f N )T = 1 F

3

for t 2 0. This is (7b) of the main text.

Let @ be the expected waiting time. Then, we can calculate it under
Hypothesis (IN-a) as:
(A3a) @ = [JdW(t) =[] tvF exp(VFt)dt = 1/VF,
and under Hypothesis (IN-b) as:

| o o w, F-1+ e g (1-1/F )
(A3b) @=["tdW(t) = [T(1-W(t)dt ={ (————)THds = 372 )" .

Jo fo Jo 7 ZI'O(EHU')F

Note that an increase in v decreases @ in (A3a) and an increase in £ and u

decreases w in (A3b).
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<Appendix B>
The purpose of this Appendix is to deduce the long-run average efficiency
shares of firms, given by (/0a) and (10b) in the main text.

Let us begin by examining the share of the best technology f/(N,). This
share emerges from 0 at T(N,) and moves along a logistic growth curve (5):
1/(1+(F-1) e'“F(t'T(N'))) from that time on. Its value is thus determined by
how far back its innovation time was. Accordingly, let B/(z) denote the
cumulative probability of the length of time measured backwards from ¢ to
T(N,), or B/(z) = Pr{s-T(N,) <z}. We may call this ‘the backward waiting
period distribution’. In terms of this distribution, we can express the

expected share of the best technology as:
t-T( Nt) 7
(Ad) E{f(NJ)} = | —dBit(z).
0 1+(F-1)e B

Now, since the sequence of waiting times, 7(2)-T(1), ..., T(N¢+1)-T(N,),
constitutes a ‘renewal process,” the renewal theory tells us that the
distribution of the backward waiting time B,(z) will in the long-run approach

a steady-state distribution, or as f — oo:

(A5)  Biz) - [Z ) g
@

0
independently of t.* Hence, under Hypothesis (IN-a), we obtain by (A2a) and
(A3a):
vFe -vFz

I-x
(A6a) E{f(N)} — = X _I-vie VI g
@) BUO] £I+(F 1)eH I/J’F(I/F SRV

This is nothing but the first line of (10a). By the same token, under
Hypothesis (IN-b), we obtain by (A2b):

= (1-W(z))/ ® T4 dw(z)

(A6b) E{f:(Ny)} — dz = [— d - L

N (J;I+(F-l) uFz péfo  dz EFo
1

S(1-1/F ) /(1+(WeE)i)

*! See Feller [1966], p. 355.
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This is nothing but the first line of (10b).
Next, let us turn to the examination of the shares of the less than best
technologies fi(N,-i) fori = I, 2, ..., Ni-1. Rewrite (6) recursively as:

(A7) f(Nw-i) =
I-fi(Nt)  frene)(Nei ) 1-fr(neo)( Ne-1)  fromve-1)( Ne-i)

........

I-fr(ne)( Nt ) fr(neo)( Ne-i ) 1-fr(ne-1)( Ne-1 ) fr(ne-1-0)( Ni-i )

1—_]‘“7'(Nt»i-())( N:»z.+ 1) fronveiv iy Nt-l')‘ Frowei s 1-0)( Nei)
I-fr(nei+ 1){ Ne=i + 1) fr(Nei +1-0)( Ne-1)

The share of a lesser technology fi(N,-i) (i = 1, 2, 3, ...) thus goes through i
different phases. First, it emerges at its own innovation time T(N,-i) and
moves along a logistic growth curve: 1 /(1+(F-1)e*(sTON=0) ) yntil the
next innovation time T(N,-i+1). If the innovator of N,-i+1 does not belong to
its members, it traverses T(N,-i+I) smoothly and starts to follow a decay
curve: frneisn)(Nei)(1-fs(Ns))/(1-1/F) until T(N,-i+2). 1f, however, the
innovator turns out to be one of its former members, it loses a share of I/F at
T(N,-i+1) and follows the same decay curve from a reduced initial value: fr:.
is1)(Ne=i) = frnve-irr-0)(Ne-i)-1/F. This process is repeated for T(Ni+2) <s
<T(N-i+3), ..., for T(N,-1) £s < T(N;), and finally in a truncated form for
T(N:) Ss <t.

Now, under Hypothesis (IN-a) the probability that the innovator belongs to
one of their members is equal to its very share, so that its expected reduction
at each innovation time becomes equal to (1/F)frnem)s OF E{frvem)(Ne-8)/fr(ne-
m-0)(N=i)} = (1-1/F) at least in the long-run, m =i-1, i-2, ..., 0. Noting that
T(N-i+1)-T(N,-i) < z obeys the probability distribution W(z) and ¢-T(N,) <z
the probability distribution B/(z), we can express the expected value of the

share of the i+’ best technology as follows.
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(A8a) E{fu(Ne-i)} =

t-T( Ne-i ) (N L) 1)
[@(z)dW(z)(1-1/F) | S AW UE )
0 0 L

tT(NrJ) ET(NG) 4 o
N "’(Z)dW( -1F) | P g

where @(z) is a logistic function I/ (1+(F-1)e*f?) .

Ast — oo, t-T(N,-j) — o0 and dB,(z) — (I-W(z))dz/®. Noting that since we
have (1-W(z))/w = dW(z) = vFexp(-vFz) in the case of Poisson process, we can
easily rewrite the above expression as:

(A9a) E{f(Ny-i)} — O(1- D)’ with i=12 ..., N-I,

o - I-x
where @ = 2 )Fe VFiax = d y-vik VIl gy .
Joz) ,/JF(I/F (1 a

This is the second line of (10a) in the main text.
Next, under Hypothesis (IN-b) the innovator always comes from among the
users of the former best technology, so that the discontinuous phase

transition occurs only once and at the second innovation time T(N;-i+1). We

thus have:
(A8b) E{fi(N;-i)} =
t-T( Nt-i ) tT(Ntx+1)1 tT(Nt-I) i t-T(Nt) 4.
, 9(2) 1-¢(z) 1-¢(z)
z AW (z)-1/F dw — I LdW dB .
I B 7 s W7 LA W w7t

Ast — oo, t-T(Nt-j) — oo and dB,(z)—> (I1-W(z))dz/®. Now, in view of (AIb) and
(A3b) we have:

J(i -@(z))dW(z)= I(I @(z))EF@(z)(1- W(Z)

( )

=(&u) J(J-W(z))dw(z)‘:(f/u) ;u-mv)"Wu-(p(z))ﬁ/#dgo(z)
1/F 1/ F

= (&) (1-1/F) A&/ )" [0-(1-1/F) " 0] = (1-1/F ) (§/(E+p)).
Substituting this expression as well as (A6b) into (A8b) and rearranging

terms, we obtain:
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1
FA/(S;(1-1/F ) /(§+ i)
withi =1, 2, ...,N,-1. This is the second line of (10b) in the main text.

(A9b) E{fi(Ni-i)} =

<Appendix C>

The purpose of this Appendix is to solve the differential equations (19d),
(20d), (19¢) and (20e).

Let y(t) =1/(1- s{(N,)) and @(t) = fi(N,), then (19d) becomes y(t)” = (YAL+WF @(t))y(t)-
yA{. This is a first-order ordinary differential equation of y(z) and has the
solution:

(A10d) y(t) = olr(PEHERENIS oy 1t (a7 lo(PEHREQ(INr 4
By (1) we have:ef;upq)(g)dsz eyg‘(;))u”)([k/dq’)d(p =eﬁ‘(""¢)—1d‘p=
plos(1-o(t))+log(1-1/F)) _ (1-1/F)/(1-@(t)) and oPAL(ET) _
(F-1)p(t)/(1 -(;o(t)))y)’g. If we substitute these two expressions into the
above solution of y(¢t)= 1/(1-s,(N,)), we can obtain (21d) in the main text. On
the other hand, (I19¢) can be transformed into another first-order ordinary
differential equation of the form: y(t)” = (YAL+OoF @(t)’)y(t)-YAL, which again
has a solution:
(Albe) y(t) = JT(PETOFQ(s))ds oop (AL Jo o (AL +aTo(r))dr )

= e-?’%(f-T)—GF((P(t)—I/F)(y(T) _(wu;)j;e-?’ﬂ»CS—GF(Q’(S)—I/F)ds) )

If we substitute this into s,(N,) = I-1/y(t) and note that sy, (N-i) = O/(1+0)
in the case of an embodied innovation, we obtain (2/¢) in the main text.

As for (20d) and (20e), since they themselves are both are linear first-order
ordinary differential equations of s,(N,-i), they can easily be solved to obtain

(22d) and (22e).

<Appendix D>
The purpose of this Appendix is to deduce (23ad), (23ae) and (23be). We

have to deal with each of them separately.
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(i): The case where Hypotheses (IN-a) and (CG-d) hold.

Let us begin by examining the capital share of the best technology s/(N;).
This share emerges at T(N,) and moves along a curve (21d). Let O(z;s7(n)
define the expression (21d) as a function of z = -T(N,) and syny(N,). Then,

we have:
t-T( Nt)
(All1d) E{s/(N,)} = [O(z;sT(ne)(Ne))dBi(z).
0

Now, under the assumption of disembodied technology (Hypothesis (CG-d)) an
innovator can implement a new technology into all of its capital stocks at the
time of its snccess. This means that unlike the initial value of the firm share
frve(Ny) which always equals I/F, the initial value of the capital share
st(vy(Ny) is a variable whose value depends on the historical path of the
innovator’s capital share. Nonetheless, since under Hypothesis (IN-a) every
firm has an equal chance for innovation, we also know that its expected value
must be equal to the average capital share which is tautologically equal to
1/F. In this paper I will use this average capital share as an approximation
of s7viy(N:). (In the case where only the best technology firms can innovate 1
have not come up with a good approximation of sy (V,), and this is the
reason why I have not been able to deduce any explicit formulae for the long-
run average capital shares for that case under the assumption of disembodied
technology.) Then, if we note that under Hypothesis (IN-a) we have dB(z) =
dW(z) = VFe'Vdez, (Alld) is seen to be equal to I-I';, where I; is defined by
(24ad), as in the first line of (23ad) in the main text.

Next, in order to examine the capital shares of the lesser technologies s,(N,-

i)fori=1,2, ..., N~I, we have to rewrite (22d) recursively as:
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(A12d) s, (N;-1) =
e»yx( i-E)e-T(Ne )y  A=st(Nt)  st(ng(Net)
T-s1(Ne)( Nt ) sTeneo;( Ne-i)
% e-y,l( i-1-C (T(Ne)-T(Ne-1)) 1-ST(N-0)( Ne=1 ) sT(N=1)( Ne-i)
L1-sT(Nt=1)( Ne-1) sT(N=1-0)( Nt-1)

% e""}””"g)(” Nt-i+2)-T(Nt-i+1)) I1-sT(Nt-i-0)( Ne-i + 1) ST(Nt-i + 1)( Ne-i)
1-sT(Nti+ 1)( Ne=L + 1) ST(Nt-i +1-0)( Nt-1)

X ST(Nt=i + 1-0)( Ne-i ).
Now, under Hypothesis (IN-a) the probability that the innovator belongs to
one of the users of technology N,-i is its very share f;(N,-i) and the expected
capital share of each member is s,(Ni)/(Ffi(N,-i)), so that the expected
reduction of its capital share at each innovation time, E{srni.m)(Ne-1)/ST(Nt-m-
0)(Ne-i)}, is equal to (I-1/F) for m =i-1, i-2, ..., 0. Again approximating sr-
m)(Ne-m) by I/F, we can express the expected value of the first, the second, ...,

the penultimate and the last line of the R-H-S of (A12d) respectively as:
e () I
1-O(z;1/F ))e M5 2dB( 7 )-
é( ( )Je ( )I-J/F
f-T( Nc-l) .
[(1-0(2;1/F ))e (-6 qw (7)
0

(1-1/F );

1
1-1/F

(I-1/F );

t-T( Nt-i-1) N 1
[(1-O(z;1/F ))e "6 )2aw () ——(I-1/F );
p 1-1/F
t-T( Nt-i )
[O(z;1/F )dW(z).
0
If we arrange terms and let ¢ — oo, then they respectively converge to I';, I'.y,
..., I't and 1-T¢, where I is defined by (24ad). Hence, we obtain the second
line of (23ad).
(ii): The case where Hypotheses (IN-a) and (CG-¢) hold.

In the case of embodied technological change, the capital share of the best

technology s,(V,;) emerges with a mass of o/(1+0) at T(N,) and moves along a
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curve (21e). Let Il(z) denote s,(N,) given by (/8¢) as a tunction of z = £-T(NV,).

Then, we have:
t-T( Nt )
(A]]d) E{S{(N()} = J’H(Z)(IBf(Z)~
0

Since as t — o dB,(7)— yFe VF&

under Hypothesis (IN-a), this expression
converges to the first line of (23ae). Next, since (22¢) is identical with (22d),
the capital shares of the lesser technologies s.(N;-i) can also be expressed by
(A12d). And under Hypothesis (CG-¢) an innovation creates a new capital
share of the best technology equal to o/(I1+0) and is expected to reduce all the
capital shares of the lesser technologies uniformly by the factor of 1/(1+0).
Hence, the expected value of the terms:

(1/(I-sT(Nei + 1)( Ne=i + 1))(ST(Ne-i + 1)( Ni=i )/sT(Ne-i + 1-0)( Ni-i ) in (Al1d) becomes all
equal to I, and the expected value of the first, the second, ..., the penuitimate

and the last line of the R-H-S of (A11d) respectively becomes equal to:
t-T( Nt) ) t-T( Ne-1 ) ,
[(1-II(z))e S %apyz);  [(1-T(z))e (18 awz);...;
] 0
t-T( Ne-i-1) t-T( Nt-i )
[(1-TI(z))e 1S awz);  [H(z)dW(z).
0 0

If we note that dW(z) = vFe ¥ and dB,(z) — vFe V' under Hypothesis (IN-
a), it is easy to see that these expressions converge to A; Ay, ..., A; and [-Ag,
where A; is defined by (24ae), as t—>o00o. We can then obtain the second line of
(23ae) in the main text.

(iii): The case where Hypotheses (IN-b) and (CG-e) hold.

All the formulae for this case is identical with the previous case, except
that W(z) = 1-((1-qo(z))/(l-1/F))§/“ and dB.(z)— (I-W(z))dz/®. Hence, E{s/(N)}
—3 I-Qg and this is the first line of (23be). Also the expected value of the
first, the second, ..., the penultimate and the last line of the R-H-S of (A13d)
respectively converge to £2; Wi, ....,%¥; and 1-¥;, where £; and ¥; are defined
by (24be) and (24be’). We can then obtained the second line of (23be).
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Fig. 1 : Industry supply curve in the short-run and in the long-run.
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Fig. 2 : Efficiency distribution of firms.
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Fig. 3: Evolution of the efficiency distribution of firms under the sole pressure of
technological diffusion.



Fig. 4: Evolution of the efficiency distribution of firms under the joint pressure of
technological diffusion and recurrent innovations.
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E{f(N-i)}

Nt N1 Ne2 ..
Fig. 5a: Long-run average efficiency distribution of firms when every firm can strike an
innovation.

E{f(N-1)}

Nt Nt-1 Nt-2

Fig. 5b: Long-run average efficiency distribution of firms when only one of the best
technology firms can strike an innovation.
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Fig. 6: Efficiency distribution of capitals.
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Fig. 7: Evolution of the efficiency distribution of capitals under the sole pressure of
economic selection.



Fig. 8d: Evolution of the efficiency distribution of capitals under the joint pressure of
economic selection, technological diffusion and recurrent innovations in the case where
technology is not embodied in capital stocks.
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Fig. 8e: Evolution of the efficiency distribution of capitals under the joint pressure of
economic selection, technological diffusion and recurrent innovations in the case where
technology is embodied in capital stocks.
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Fig. 9ad: Long-run average distribution of capitals in the case where technology is
disembodied and every firm can strike an innovation.
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Fig. 9ae: Long-run average distribution of capitals in the case where technology is
embodied and every firm can strike an innovation.
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Fig. 9be: Long-run average distribution of capitals in the case where technology is
embodied and only one of the best technology firms can strike an innovation.
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Fig.10: Short-run industry supply curve and determination of profit.
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Fig. 11ad: Long-run average industry supply curve in the case where technology is
disembodied and every firm can strike an innovation.

log pt
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Fig. 11ae: Long-run average industry supply curve in the case where technology is
embodied and every firm can strike an innovation.

63



log pt

E{y}

0 1

Fig. 11be: Long-run average industry supply curve in the case where technology is
embodied and only one of the best technology firms can strike an innovation.
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Fig. 12: Short-run ‘pseudo’ aggregate production function.
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Fig. 13ad: Long-run average ‘pseudo’ aggregate production function in the case where
technology is disembodied and every firm can strike an innovation.

E{y}

0 E{x}

Fig. 13ae: Long-run average ‘pseudo’ aggregate production function in the case where
technology is disembodied and every firm can strike an innovation.
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Fig. 13be: Long-run average ‘pseudo’ aggregate production function in the case where
technology is embodied and only one of the best technology firms can strike an
innovation.
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