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Abstract

We shall generalize the Black-Scholes option pricing formula by incor-
porating stochastic interest rates. Although the existing literatures have
obtained some formulae for stock cptions under stochastic interest rates,
the closed-form solutions have been known only under the Gaussian (Mer-
ton type) interest rate processes. We shall show that an explicit solution,
which is an extended Black-Scholes formula under stochastic interest rates
in certain asymptotic sense, can be obtained by extending the asymptotic
expansion approach when the interest rate volatility is small. This method
called the small-disturbance asymptotics for [t6 processes has been recently
developed by Kunitomo and Takahashi (1995, 1998), and Takahashi (1997).
We found that the extended Black-Scholes formula is decomposed into the
original Black-Scholes formula under the deterministic interest rates and
the adjustment term driven by the volatility of interest rates. We illustrate
the numerical accuracy of our new formula by using the Cox-Ingersoll-Ross
model for the interest rates.
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1 Introduction

Over a few years a considerable number of studies have been devoted to various
generalizations of the Black-Scholes formula. (See Black and Scholes (1973).)
Stochastic interest rates, dividends, and stochastic volatilities for the underlying
assets processes are important examples. The valuation of options on risky assets
in the stechastic interest economy, which is the main forcus of this paper, has
been studied recently by two approaches.

The first approach is the general equilibrium-based option pricing. Turnbull
and Milne (1991) and Amin and Ng (1993) proposed the closed form solutions
for discrete time version of an extended Black-Scholes formula by this approach.
The second approach is the arbitrage-based option pricing, which has been rapidly
developed after the work by Harrison and Kreps (1979). At the earliest, Merton
(1973) considered the Black-Scholes economy under stochastic interest rates and
derived some option pricing formula under the assumption of Gaussian interest
rate process. Duffie (1988) also described an stochastic interest rate ecomony,
but in his case the interest rate process is assumed to be a function of underlying
asset and time, and the closed-form option pricing formula in his economy has not
been obtained. Cheng (1989) considered the class of bond price process which is
consistent with the arbitrage-free valuation. Amin and Jarrow (1992) generalized
the approach utilized by Heath, Jarrow and Morton (1992) by imbedding their
stochastic interest rate economy into the one containing an arbitrary number
of risky assets and obtained some option pricing formula for various options on
interest rate sensitive risky assets. However, these studies have derived the closed-
form solutions for the option pricing formulae under the assumption that the
underlying interest rates are Gaussian processes.

In this paper, we shall derive an explicit extension of the Black-Scholes formula
under stochastic interest rate by using the asymptotic expansion of the solution
when the interest rate volatility is small. Here, we mean ‘explicit’ by that our
option pricing formula can be analytically expressed only as the function of pa-
rameters in the assumed system in certain asymptotic sense. The asymptotic
expansion method for the valuation problem of contingent claims under continu-
ous stochastic processes has been recently developed by Kunitomo and Takahashi
(1995, 1998), and Takahashi (1897).

The plan of this paper is as follows. In Section 2 we explain the extended
Black-Scholes economy when the spot interest rate is stochastic and present our
main theoretical result from the asymptotic expansion approach. Section 3 in-
vestigates the hedging issue when the interest rate is stochastic. Then in Section



4, we shall give an example in which the spot interest rate is the same process of
diffusion type proposed by Cox, Ingersoll, and Ross (1985). The related tables of
our numerical analyses in this case are summarized in Appendices. Finally, some
concluding remarks are given in Section 5.

2 The Black-Scholes Economy under Stochas-
tic Interest Rates

We consider an economy in which there are two primitive securities. Fix a prob-
ability space (2, F, P) with the Brownian filtration {F; : ¢ € [0, T'|} generated
by the two-dimensional Brownian motion {W = (Wy,W,) : t € [0, T]; T < oo}
with the zero initial value. The first security, called stock, has the price process
of diffusion type given by

i i -~
(2.1) Se = So + / 1(Ss, s) ds + / 7(S,, 8) dWis
0 JO

where So > 0and u: Rx [0, T] - Rand o : Rx [0, T] — R are F-adapted and
satisfy technical conditions, which guarantee the existence of the non-negative
solution to (2.1) .

The second security, called bond, is implicitly defined by the spot interest rate
process, rt(c), which is given by

t t
(2.2) rf‘) =1y + / C(rg‘), s)ds + e/ u(rﬁf’, s) dWa,,
0 o

where € is a parameter (0 < e < 1),and ¢ : Rx[0,T] > Randv: Rx [0, T] » R
are adapted with respect to JF; and satisfy technical conditions, which guarantee
the existence of the non-negative solution to (2.2). We shall set the above two
asset prices to have possibly non-zero covariation.

As the numeraire, let us introduce an accumulation factor corresponding to a
continuously rolled over money market account (or short-term deposits, or cash

bond) by )
O oo ([0

where Gy > 0 and r{ is defined by (2.2).

By the satndard argument of the arbitrge-free valuation, we assume that the
stock price process is determined by

t t
(2.3) SO = 8+ / rS5© ds + / o(S©, s) dWi,
0 0

!See Chapter IV of Ikeda and Watanabe (1989) for the sufficient conditions on drift and
volatility terms for the existence and uniqueness of the strong solution, for instance.
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and {W,} is the Brownian motion under the probability measure ) such that the
discounted price process St(c) / ,Bt(e) is a martingale. Here we use the notation for the
price process St(ﬁ) with a parameter ¢ under ). We note that the normalized bond
price processes are also martingales under the equivalent martingale measure @
and the drift ¢(r{?,¢) in (2.2) is now interpreted as the function of the market
price for risk under the equivalent martingale measure Q).

If we set Z§5) = exp (— fg e ds) [Srf:) — K ], the value of derivative security
called European stock call option at the initial date, V(0), under the complete
market is determined by

(2.4) V(o) - B2|[z]'],
where [-]* = max|0, -].

In the following discussion, we shall suppress the superscript of the probability
measure () in expectation operations for the notational ease without making any
ambiguity. We shall evaluate the equation (2.4) explicitly and compare with
the original Black-Scholes option pricing formula. For this purpose, we start to
expand the interest rate process, rfé), as € | 0 by using the asymptotic expansion
approach developed ? by Kunitomo and Takahashi (1995, 1998), and Takahashi
(1997).

()

By expanding r;”’ with respect to € formally, we write

(2.5) ) =1+ eAQ) + B () + -+,
where 7y = rfo),
t
(2.6) re=ro+ [ ((ry,s)ds,
0
67.(6)
2.7 Al = T
(2.7) (&) = = Ly
and
16%
2.8 (1) = | .
(2.8) B )= 5%a |,

By comparing both terms of (2.2) and (2.5), the stochastic process (2.7) can be
represented by

(2.9) A(t) = /()t OC(r® s) A(s) ds + [)t v(rs,s) dWay, ,

2We do not discuss the rigorous mathematical validity of the asymptotic expansion approach
in this paper. It has been discussed in Kunitomo and Takahashi (1998) to certain extent, which

is based on the Watanabe-Yoshida theory on Malliavin Calculus recently developed in stochastic
analysis.



where

(re?, s)
@ —— D2\ 8 7/
(2.10) o (rs”,s) = or® | —p@

In order to have concise representations of processes, let Y; be the solution of
the differential equation

dY; = 0((ry, t) Yy dt
with Yy = 1. Then the stochastic differential equation (2.9) can be solved as
(2.11) Mn:ﬁﬁnﬁwmgm%r
By using the same procedure, we can also express B*(t) as
(2.12) B*(t) = / VY B (r®, s) A%(s) ds + 200(r®, s) A(s) dWay] ,
where

ov(r9,s)
9 (0) = ) 7/ .
( 13) ov (T ) arr(f) 7(€) =(0)

From the equation (2.11), we can notice that A(t) follows the Gaussian process
with A(t) ~ N [0,%,,] , where

¢
(2.14) Ya, = / Y2Y, 2u(r,,s)* ds.
0

Then the interest-rate-sensitive stock price process (2.3) can be expanded with
respect to € formally as

(2.15) 89 = S, + / re + €A(s) + 2B (s) 4 ---] SOds + / 59, 5) dWi,

E[(%EZ)(MU dWa )] —(Fl) ll))dt.

In the above notation, p is the instantaneous correlation coefficient between two

standard Brownian motions. We notice that when € goes to zero, the equation
(2.15) becomes

where

1 t
(2.16) SO — 5o+ / re SO ds + / o (SO, s) dWr, ,
0 (1]

where r, is a deterministic function satisfying the integral equation (2.6). Further,
if we set {(rs,s) = 0, rs = 1o, and (S, s) = 55O, then (2.15) becomes the
geometric Brownian motion with a constant risk free rate, which corresponds to
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the original Black-Scholes economy.

In the rest of this paper, we shall make the following assumption to derive some
useful results.

Assumption I : The volatility function of the risky asset S’t(e) is given by
o(S49), ) = 0,5, where o, is a deterministic function of time.

Let X{? be log S with Xy = log S. Then by using the It&'s lemma, the
equation (2.15) leads to

€ t 1 ./ i
217 XE — Xo+ /O (rs — 502+ As) + B (s) + o,,(é)) ds + A oW, .

Next, we need to evaluate the present value of money being worth 1 Yen at

time ¢ when € is small. From the equation (2.5), we expand the present value
formally with respect to € as

¢
exp (~ jg rgf)ds)
¢ ¢ t
= exp («[) rsds — E./o A(s)ds — C2L B*(s)ds + -- )

2

= exp (— /: rsds) [l - e[:A(s)ds — ¢ /{: B*(s)ds + 52— (/Ot A(s)ds)2 + .- ]

= Eyt+ebBy+EEy+ -,

where we denote

FEy = exp (_ L ‘ rsds)
E;, = —exp (~— [) t rsds) A t A(s)ds
FEy = exp (~ /: rsds) {— /Ot B*(s)ds + % </0t A(s)ds)z} .

In (2.17) we have obtained an asymptotic expansion of the stochastic process Xfe)
with respect to €. Then by combining (2.17) with the above expression, we can
obtain an asymptotic expansion for the random variable Z§f ) as

© _ LT o (e 2
Zf) = Spexp[Xur 5 oids|~[Eo+ €Ei + @By 4 - |xK
1]
= Z()+6Z1+€2Z;2+--',

where we have implicitly defined
T -
(2.18) Xar :/ osdWis ,
0

6



) T T 1,
Zy = exp («j{) rsds) [So exp (X]T + ‘L (rs - 50"3) ds) - K] ,

and 7Z; = —FE; x K (1 = 1,2).

Although we have obtained an asymptotic expansion for Zt((‘), we need to
cope with one technical issue in our problem. Because the payoff function of call
option value is a non-linear and nonnegative function, the valuation of option
should be done by taking into account of the condition that Séf) —K >0 In
order to accomplish this, we define the random vector of X = (X7, Xa7), where
Xor = [ A(s)ds .

We note that

T T S
/ A(s)ds — / (/ Y;X)_ly(ru,v)dwzo ds
[} 0 0
T T
(2.19) - / ( ] Y;ds) Y, (e, v) AW -
0 v

Hence we have shown that X is a two dimensional Gaussian random vector. By
using direct calculations, the variances and covariance of two random variables
are given by

2
T T
(2.20) She = Var[Xpr| = / ( / Y;ds) Y, 2u(r,, v) dv
0 v
T
(2.21) S = Var|[Xu] = / olds |
0
and

T [ /T
(2.22) Y2 = Cov | Xyr, Xor] = / (/ Y, ds) Y, Y (ry, v)opdv .
0 v

By using the property of the Gaussian distribution, the conditional ditribution is

given by

Y.
Xog|Xir =z~ N [EEIC, 222.1] ,
11

where Y51 = Yog — Yqo° /¥11 . Then we can write

T ¥
f A(s)ds = =2z 4 /Sg912
0 Yn
where z ~ N|0, 1], which is independently distributed from Xjr . By using this
representation, we rewrite the random variables Z; and Z; in terms of X7 and
z as

1 (T T
(2.23) Zy = Sgexp (XIT - 5/ aﬁds) — Kexp (—[) rads) ,
0



and

T ) —
(2.24) 7h = Kexp< [) rsds) [Euxm N ] .

We notice that the condition S — K >0 is equivalent to

K T 1 Y12 —
(2.25)X1T 2’ Iog -S,;)- -——[) (’l"s — 50’?) ds — € [E:XlT + 2z 222_1} + OP(GZ) .

By ignoring higher order terms in the expansion, a little algebra shows that this
condition is formally equivalent to

Y2 K T 1. ?
Xy 2 {1 — 65,—1—1 + 0(62)} {[log 5 /0 (rs — 505) ds] + € [——z\/Lzz'l] + .- }

= Cp+e(z2Cn+ Cha) + --

where we denote

T ~,
(2.26) Co = logg —‘/0 (rs — %Uﬁ) ds ,
(2.27) Cy = ‘\/722 1,
[ Yo K T 102)
2. = s — —as | ds| .
(2.28) Chrz ' Ln] [l gSO [) (r 57 ) ds

Our next task is to evaluate

Noxo (— 17 r9gs ) 159 _ K1+
E |exp rds | |Sy — K|
0

as ¢ | 0. For this purpose, first we rewrite this as

E [ZOI(ng’ — K >0) + Z1I(S) — K > 0)] + o(e)
= A1+ €Ay + o(e) ,
where I(w) is the indicator function (it is 1 if w being true and 0 otherwise),
A= E[ZI(SF) — K > 0)], and A; = E[Z:1(Sf? — K > 0)] -
We now have to evaluate A; (z = 1,2). For the notational convenience, we set

Y = o*(T) and @y2(r)(z) being the density function of the normal random
variable x with mean 0 and variance o(T).

Then by using the repeated expectation operation given X7 = z, we have

- 1 /m ., T 5©
A= E{Soexp -’”“5/ osds | — Kexp —/ reds || I(Sy’ — K > 0)
0 0
1 T
- E . 2d' y . d.’B
[LzC‘)"rf(ZClHCmHﬂ" S0 P ( 2 /0 s 6) ? Z(T)(T) ]
T
_KeXp ("'/‘ Tst) F [/ ¢02(T) (fE)dJZ] .
0 x>Co+€(2C11+Cr2)+-
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If we take y1 = (z — 0*(T))/o(T) and yp = z/0o(T), the above equation can be
further rewritten as

E / Sop (1) dys
y1>(Co—02(T)+e(z2C11+Cr2)+--) /o(T)

’ d
—K &P (_[) TSds) E [-/3}22(Co+6(2011+012)+"')/U(T) (25(3/2) yZ]
B a?(T) — Cy ~2Cy — Crp
- b {‘I’ [ o) ( o(T) )]}
T —Cy —201 — C
—Kexp (_L rsd.s) E{q) [;?I—') “}‘E(—*;W )]} ’

where ®(-) is the distribution function of the standard normal random variable.

By expanding each term with respect to € in the above expression, we have an
asymptotic expansion given by

B 0"2(T) :’_QQ. N 02(T) -y ‘ —2C1 — Chg
A o= SOE{(I)[ o(T) } Jrqﬁ( a(T) ) < o(T) )}
T Co Co —2C11 — Che ..
— Kexp (—/0 rsds)E{(I) [O‘(T)] +¢'( ([)) ( o(T) )}+
T
= [So®(dy) — K exp (— L rsds) ®(dy)]

—Cn ’
+e (O”(T)_> {Soqﬁ(dl) — Kexp (“A Tsds) ¢(d2)} +

where we have defined

d = o(T) - af:})“
_ (1[) {l g%— N LT (7‘3 + %0’2) ds}

and dg = -C()/O’(T) e d1 - O'(T)

Furthermore, if we rewrite (2.28) as

b
Crz = —Z—E x o(T) x da

we can express the above asymptotic expansion as
T
A = [So®(dy) — K exp (_ / rsds) ®(dy)]
0

—€ (daiﬁ) {SO¢(dl) — Kexp ( _/OT Tsds) ¢(d2)} +

9



By using a similar argument as to Aj, we can also evaluate €A, as

T T
€Ay = €eF [Kexp (*/ Tsds) / A(s)ds I(S) — K > 0)}
4] 0

B T . Y12 S
= eKexp —/ rds | E / =+ Z\/Lzz.l do2(1)(T)dz
0 ‘ z>Co+¢(2zC11+Ci2) >4‘11

_ T ¥y
>~ eKexp|— / rsds —;IEE / Tho2(r)(z)dz
0 11 z>Co+€(zC11+C12)

= eKexp (— [)T Tsds) %EU(TW (d2) -

In the above derivations, the expansion in the third equation deserves a separate
technical consideration, which is given in Appendix A. By collecting all terms

in A; (4 = 1,2), we are now in a position to state our theoretical result on the
European call option.

Theorem 2.1 Under the Assumption I, an asymplotic expansion of the value of
FEuropean call option with stochastic interest rate, V(0), is given by

(2.29) V(0) = [So ®(d;) — K exp (——- AT rsds) (P(dz)}

T
+eC) {d250¢(d1) — 1K exp (— A rsds) ¢(d2)} + o(e)

as € | 0, where ®(-) is the distribution function of the standard normal variable
and ¢(-) is its density function, Cy = —%15/0%(T),

1 So T 1
b— o [ bot)as]
1 o*(T)[lOgKJrA (r +2s s]
d = d—o(T),
T
Ty = 2d
(1) = [ olds,
and Y15 ts defined by (2.22).

We use the notations BSy for the first term and B.S; for the coefficient of ¢

of the second term on the right hand side of (2.29). Then our proposition states
that

.1

We notice that BSy corresponds to the Black-Scholes formula when the interest
rate is a deterministic function of time. Then € BS; corresponds to the adjustment
term induced by the volatility of interest rate and the instantaneous correlation

10



between the stock price process and interest rate process. Therefore, the option
value can be decomposed into

V(0) = BS + [BSy — BS] + ¢ BS; + o(e),

where BS is the original Black-Scholes formula. The second term in this ex-
pression reflects the adjustment by the non-constant, but deterministic interest
rate, and the third term represents the adjustment by the volatility of stochastic
interest rate. Also we note that C; in Theorem 2.1 can be expressed by

£ i -1
-;)_——Z-(T) A L Yds | Y, 'v(ry,v)o,dv

we immediately obtain the following result.

Corollary 2.1 When p =0, BS; = 0 and ]ifé’% [V(0) — BS,] = 0.

This corollary confirms the standard argument that the optien value equals
to BSy when the stock price moves irrespectively with the interest rate. Since
the adjustment term, e BS), is linear in p in the general case, however, it has the
symmetric effect as p goes from —1 to 1. This theoretical result can be confirmed
numerically if we cast a glance at tables in Section 4. The sensitivity of the option
value with respect to p is summarized in the next corollary.

Corollary 2.2 Under Assumption I, an asymptotic expansion of the response of

option value to the correlation coefficient between stock price and interest rate is
given by

av() c [("((F -1

x {dz So ¢(d1) — d1 K exp (“‘ /OT Ts dS) ¢(d2)} + o(e)
as e | 0.

By the same method for the valuation of call option, we can derive the the-

oretical value for the put option whose payoff function is given by [K — Sy|* at
the maturity.

Theorem 2.2 Under the Assumption I, an asymptotic expansion of the value of
FEuropean put option with stochastic interest rate, V*(0), is given by

(2.30) V*(0) = lK exp (— L ! rsds) &(—dy) — SotI)(—dl)]
ey {dasoqs(dl) 4K exp (— [ d) ¢<d2>} + (o)

11



as € | 0, where ®(-) is the distribution function of the standard normal variable
and ¢(-) is its density function, and d; (i = 1,2), Cy, and 0*(T) are the same as
in Theorem 2.1.

In this expression, we notice that the correction term to the Black-Scholes
formula with the deterministic interest rate for the put option is the same as the
corresponding term to the call option. This can be also derived from the Put-Call
parity in the standard option pricing theory.

3 Hedging Problem

This section investigates the hedging problem for the exposure generated by the
options. Replicating the option value under the original Black-Scholes econ-
omy can be straightforwardly extended to the Black-Scholes economy under the
stochastic interest rate. Hence we can execute a self-financing hedging strategy
by using (A, ¥:) in the stock and short-term deposit to replicate the payoff of
target options. In particular, we are concerned with A;, which is often called op-
tion delta. An asymptotic expansion of the option delta under stochastic interest
rates can be obtained by utilizing the theoretical results in Section 2.

By making use of the fact that g%ol == gg% = 3.—;[%(—,17) , we can directly calculate
the option delta as

_ v
(3.31) A = dSy
= &(dy) + €C, {d2¢(dl) + [ggz —didy g;:)]

T
x [So¢(d1) — Kexp <_ /0 rsds) ¢(d2)} } +ofe) .

Then by using the identity that

) = 4(dn) . o (— I rsds) ,

the last parenthesis in (3.31) is zero and hence we immediately obtain the next
result.

Theorem 3.1 Under Assumption I in Section 2, an asymptotic expansion of the
option delta al time 0, A, under the stochastic interest rates is given by

(332) A = (I)(dl) + € 01 d2 gb(dl) + 0(6)

as € | 0, where d; (i = 1,2) and C, are given in Theorem 2.1.

12



As we have discussed on the fair option value under stochastic interest rates,
the option delta under stochastic interest rates can be decomposed into

(333) A = A®mst 4 [Adeter __Aconst] n N\>stoch 4+ 0(6),

where A®"* is the option delta in the original Black-Scholes economy when the
interest rate is constant. A%*" = ®(d,) is the options delta under deterministic
interest rates and A**°®* — ¢C, d; ¢(d;). Then, the second term on right hand side
of (3.33) corresponds to the option delta bias due to the drift term of interest rate
process while the third term corresponds to the effects of interest rate volatility.
"Therefore, these terms represent the adjustment sizes generated by incorporating
stochastic interest rates into the standard Black-Scholes economy.

4 The Black-Scholes Economy with CIR Inter-
est Rate Process : An Example

In order to clarify our theoretical results in Sections 2 and 3, we shall illustrate
one example of the Black-Scholes economy with stochastic interest rate. Many
stochastic processes have been proposed to describe the short term interest rates
in this regard. Among them, a considerable attention has been paid on the
one proposed by Cox, Ingersoll, and Ross (1985) (hereafter, the CIR model)
partly because it is a typical diffusion process and has some attractive features
in theory and practice. Thus we shall investigate the Black-Scholes economy
with the CIR interest rate model when the risky asset and the spot interest rate
are correlated. Also we shall give some numerical analyses in details for the
CIR case, but the analysis in this section can be extended to other interest rate
models. In this section we assume that the volatility function of the risky asset S;
is constant for the resulting simplicity of our analysis. This implies that o, = o
and o(T) = o/T.

The CIR model is a special case of (2.2) when we take ({9, s) = k(7 — )
and v(rld, s) = \/725 . The solution of (2.6) is given by

re = o exp(—~t) + 7(1 — exp(—£t))

and Y; = exp(—+t). Then using (2.22) in Section 2 and the integration operation
we can derive C in (2.29) explicitly as

Cy = _05’5 [)T(l —exp(—k(T — v)))(exp(—m))(ro —7) + 7")

Nof=

dv

13



N2 [2\/_((1 + 2exp(&T)){/To —37) + (ro — (1 + 2exp(xT)) )\]
0T 2 exp(sT)K2\/T ’

where v = exp(%)\/ro — 7(1 — exp(kT)) and

(V7o + V7)?
ro — 7(1 — 2exp(kT)) + 2y+/7

A = log( ).

Also we can obtain
S, o2
= 7 (1om %+ 7+ L= )1 —exwr) + )

and dy = dy — oV/T.

From Table 1 to Table 6 in Appendix B, we provide the European stock call
option values and option deltas based on our approach for at-the-money case with
the CIR spot rate processes. To incorporate the covariation between the stock
price process and interest rate process, we give a set of numerical values for the
cases of p = —1.0,—0.5,0.0,0.5,1.0. When we consider that the initial interest
rate is in the transitory phases (the downward phase or the upward phase), it
starts at ¥ + 0.04 (or ¥ — 0.04), ¥ = 0.07, and xk = 2.0. In all cases 3 we set
So = K =100, T = 1, (a year), o = 0.2, (stock price volatility) and € = 0.1,0.3
(interest rate volatility). When k = 0 and € = 0, the case corresponds to the
original Black-Scholes economy with a constant risk free rate. Our approach
in each table corresponds to the numerical value of the approximation up to
O(e) based on the asymptotic expansion in Theorem 2.1 by ignoring higer order
terms. The call option value and option delta under the original Black-Scholes
model have been also given for the comparative purpose. As the benchmark, we
also provide the Monte Carlo simulation results in the first row of each table.
The number of simulated sample paths is 16,384 and the time interval is 128. As
the discretization method of sample paths, we have adopted the Euler-Maruyama
approximation 4. All results are the mean of 200 simulation trials and we choose
0.0001 as the stock price increment in the re-simulation. We have found that it
gives sufficient accuracy to get the option delta, for instance.

The figures in Table 1 and Table 2 in Appendix B tell us that for the downward
interest rate process our asymptotic option value and option delta are very close

3We have investigated many other cases as well. Since the results are basically similar,
however, we have omitted their details in this paper.

“See Duffie and Glynn (1995) for the details of the optimal choice of grid size, the order of
the dicrete approximation, and the number of replications for a given fixed computaion budget,
for instance.
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to those of true values. For example, in Table 1 we find that for p = —0.5,
o = 0.2 and € = 0.1, the option value based on the simulation is 12.3811 and
the option value based on our approach is 12.3773, hence the difference between
them is only 0.0038. Besides, for the same set of parameters, the true option
delta and our estimate are 0.707 and 0.7067, respectively ; the difference between
them is very small. Although the deterministic parts of interest rate play a
crucial role in determining option value, the magnitude of the adjustment term
due to the volatility of interest rate can not be ignored, that is, for the same
parameters the latter is -0.1476. In Table 2, as it is stated in Theorem 2.1, we
find that the size of adjustment by interest rate volatility increases as the interest
rate volatility increases. For the same parameters with € = 0.3, it increases
from -0.1476 to -0.4429. Furtherfmore, we numerically observe that the effect of
interest rate volatility on the adjustment term is about linear in p. Therefore, as
the instantaneous correlation coefficient between the stock price process and the
interest rate process increases, the adjustment term increases.

For the upward phase of the interest rate process, we can easily check the
figures in Table 3 and Table 4 in Appendix B, which indicate that the direction
of various effects are opposite. From Table 7 to Table 10 we can notice that
although the option values under stochastic interest rate are not far from the
original Balck-Scholes values with constant interest rate process, the size of the
adjustment by the interest rate volatility can not be disregarded. For in-the-
money and out of money case, similar numerical results have been obtained. The
detailed numerical results in these cases are given in Appendix C.

The above numerical results confirm our argument that the trend of interest
rate plays a crucial role in determining the stock option values. The effects of the
volatility of interest rate process as well as the correlation beteen the stock price
and interest rate are of secondary importance.

5 Concluding Remarks

In this paper we have developed a new valuation method based on the asymptotic
expansion approach for the option prices when the interest rate process is of the
diffusion type and it is correlated with the risky asset prices. We have illustrated
our extension of the Black-Scholes formula by using the CIR interest rate process.
Our approach has some advantage in the sense that we have explicit formula for
the option prices, which is based on the asymptotic expansion of interest rate
process when its volatility is small. Although we did not give the rigorous math-
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ematical validity of the asymptotic expansion approach adopted in this paper,
they have been developed by Kunitomo and Takahashi (1998).

Our theoretical results also give accurate numerical values in most cases when
we have a set of reasonable parameter values in practice. As we have shown in
numerical examples, a set of simulations have strongly suggested the numerical
accuracy of our formula, which is the truncation of the corresponding asymp-
totic expansion of the stochastic process for the interest rate with respect to its
volatility.

Finally, we should mention to the fact that it is further possible to extend
our asymptotic expansion approach to several interesting cases. For instance, the
valuation of options when the underlying asset pays a stochastic dividend and
the valuation of currency options under stochastic interest rates may be imme-
diate examples. We shall report other applications of the asymptotic expansion
approach in another occasion.
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6 Appendices
6.1 Appendix A

In this appendix we give the validity of our approximation in the evaluation of
€ A2, which has been used in the derivation of Theorem 2.1. We need a careful
argument on this. We note that € A, can be rewritten as

T
(634) €A2 = CKexp (._../ rsds) {E [EE
0

¥ -/x>Co+€(ZCn+Clz)
+E [\/ Y21 /
x

Zho2(1)(T) d:z:]

z ¢U2 (T) ($)d$] }

>Co+e(zC11+C12)
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Then we need to evalulate the expectation terms in the parentheses. B}é setting
y = z/o(T) and using the property of the Gaussian density such that Sly) _

—yd(y), the extected value of the first parenthesis can be rewritten as

}_42 F . .
ol d
Ella(T)E _ /,, ety ieg Y9W) y]

_ O'(T)E é (Co +€(z2Chy + Ch2) )jl
Yu ]

o(T)
) )Ju X Co 5
- Stomr o) 1¢ () e can -]

- sl )[ (=t15) - (0@,))¢<0(C;,))ecm]+

Next, we need to evaluate the second expectation term in A;. By construction
two random variables z and z are independent. By setting y = z/o(T’), we have

E22.1E [z /y> CO+E(ZCT]§+012) ¢(y)dy]
= \/EE;;E [z(b (_C" +e(zCn + 012))]

o(T)

. Co . Co 6(2 Cnh + 012) o
- ‘/’51’{ o (- <T>)*¢( a(T)) )
\/ 2210 ( (T)) (,[)6011 + -

which is in the order of o(€). Because we can ignore all terms except the leading

term in the asymptotic expansion of € Ay, which is in the order of o(€), we have
the desired result.

6.2 Appendix B

We give some numerical results for stock option values for the at-the-money case
from Table 1 to Table 6.
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Table 1: European Call Option Value on Equity and Option Delta under Down-
ward Stochastic Interest Rate in CIR type : ¢ = 0.2, ¢ = 0.1

We set 79 = 0.11 > 7 = 0.07, kK = 2.0, ¢ = 0.1, Sy = K = 100, 0 = 0.2, and T = 1.0. The call
option value based on the original Black-Scholes formula is 13.868.

Corr. Coefl. bt. Stock Price and Interest Rate
p=—-1]p=—05] p=0 | p=05] p=1

[(1) Simulation [ 122271 | 12.3811 | 12.5288 | 12.6731 | 12.8127 |
(2) Our Approach 12.2207 | 12.3773 | 12.525 | 12.6726 | 12.8203
(2-1) B-S value under deter. | 12.525 12.525 12.525 | 12.525 | 12.525
(2-2) Adjustment by stoch. || -0.2953 | -0.1476 0 0.1476 | 0.2953
D-2) ~0.0026 | 0.0038 | 0.0038 | 0.0005 | -0.0076
(2-1)-Original B-S Value -1.3430 | -1.3430 | -1.3430 | -1.3430 | -1.3430
(2) - Original B-S Value -1.6383 | -1.4907 | -1.3430 | -1.1954 | -1.0477
Option Delta by Simul. 0.709 0.706 0.705 0.702 0.699
Our Option Delta 0.7092 0.7067 0.7042 | 0.7017 | 0.6992
B-S Option Delta 0.7422 0.7422 0.7422 | 0.7422 | 0.7422

T'able 2: European Call Option Value on Equity and Option Delta under Down-
ward Stochastic Interest Rate in CIR type: ¢ = 0.2, ¢ = 0.3

We set 1o = 0.11 > 7 = 0.07, k = 2.0, € = 0.3,50 = K = 100, 0 = 0.2, and T' = 1.0. The call
option value based on the original Black-Scholes formula is 13.868.

Corr. Coeff. bt. Stock Price and Interest Rate
p=—1]p=—05] p=0 | p=05] p=1

| (1) Simulation [ 11.6306 | 12.1267 | 12.5671 | 12.9701 | 13.3439 |

(2) Our Approach 11.6391 | 12.082 [ 12.525 [ 12.9679 | 13.4108
(2-1) B-S value under deter. | 12.525 | 12.525 | 12.525 | 12.525 | 12.525
(2-2) Adjustment by stoch. | -0.8859 | -0.4429 0 0.4429 | 0.8859
(1)-(2) -0.0085 [ 0.0447 [ 0.0421 ] 0.0022 | -0.0669
(2-1)-Original B-S Value -1.3430 | -1.3430 | -1.3430 | -1.3430 | -1.3430
(2) - Original B-S Value -2.2289 | -1.7860 | -1.3430 | -0.9001 | -0.4572
Option Delta by Simul. 0715 | 0.709 | 0.703 | 0.695 | 0.687

Our Option Delta 0.7191 | 0.7116 | 0.7042 | 0.6967 | 0.6893
B-S Option Delta 0.7422 | 0.7422 | 0.7422 | 0.7422 | 0.7422
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Table 3: European Call Option Value on Equity and Option Delta under Upward
Stochastic Interest Rate in CIR type : 0 = 0.2, € = 0.1

We set 15 = 0.03 < 7 = 0.07, Kk = 2.0, € = 0.1, S; = K = 100, 0 = 0.2, and T' = 1.0. The call
option value based on the original Black-Scholes formula is 9.4134.

Corr. Coeff. bt. Stock Price and Interest Rate
p=—1]p=—05] p=0 | p=05] p=1
[(1) Simulation ” 10.3592 ] 10.4794 | 10.5953 | 10.7088 [ 10.8212 |

(2) Our Approach 10.3615 | 10.4783 | 10.5952 | 10.7120 | 10.8288
(2-1) B-S value under deter. || 10.5952 | 10.5952 | 10.5952 | 10.5952 | 10.5952
(2-2) Adjustment by stoch. | -0.2337 | -0.1168 0 0.1168 | 0.2337
(1)-(2) -0.0023 | 0.0011 0.0001 | -0.0032 | -0.0076
(2-1)-Original B-S Value 1.1818 1.1818 1.1818 | 1.1818 | 1.1818
(2) - Original B-S Value 0.9481 1.0649 1.1818 | 1.2986 | 1.4154
Option Delta by Simul. 0.643 0.642 0.642 0.641 0.639
Our Option Delta 0.6438 0.6429 0.6419 | 0.6409 | 0.6400
B-S Option Delta 0.5987 0.5987 0.5987 | 0.5987 | 0.5987

Table 4: European Call Option Value on Equity and Option Delta under Upward
Stochastic Interest Rate in CIR type : 6 = 0.2, ¢ = 0.3

We set 79 = 0.03 < 7= 0.07, Kk = 2.0, e = 0.3, So = K = 100, 0 = 0.2, and T' = 1.0. The call
option value based on the original Black-Scholes formula is 9.4134.

Corr. Coeff. bt. Stock Price and Interest Rate
p=—1]p=—05] p=0 | p=05]| p=1
| (1) Simulation | 9.9045 | 10.2750 | 10.6179 | 10.9383 | 11.2403 |

(2) Our Approach 9.8942 | 10.2447 | 10.5952 | 10.9456 | 11.2961
(2-1) B-S value under deter. || 10.5952 | 10.5952 | 10.5952 | 10.5952 | 10.5952
(2-2) Adjustment by stoch. || -0.7010 | -0.3505 0 0.3505 | 0.7010
(1)-(2) 0.0103 0.0303 0.0227 | -0.0073 | -0.0558
(2-1)-Original B-S Value 1.1818 1.1818 1.1818 | 1.1818 | 1.1818
(2) - Original B-S Value 0.4808 | 0.8313 | 1.1818 | 1.5322 | 1.8827
Option Delta by Simul. 0.6426 0.643 0.641 0.637 0.632
Our Option Delta 0.6476 | 0.6448 | 0.6419 | 0.6390 | 0.6362
B-S Option Delta 0.5987 | 0.5987 | 0.5987 | 0.5987 | 0.5987
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Table 5: European Call Option Value on Equity and Option Delta under Level
Stochastic Interest Rate in CIR type : ¢ = 0.2, ¢ = 0.1
We set 1o = 7 = 0.07, kK = 2.0, ¢ = 0.1, S; = K = 100, 0 = 0.2, and T' = 1.0. The call option

value based on the original Black-Scholes formula is 11.5415.

Corr. Coeff. bt. Stock Price and Interest Rate
p=—1]p=—05] p=0 | p=05] p=1
[ (1) Simulation [ 11.2683 | 11.4085 | 11.5436 | 11.6757 | 11.8046 |

(2) Our Approach 11.2707 | 11.4061 | 11.5415 | 11.6768 | 11.8122
(2-1) B-S value under deter. | 11.5415 11.5415 | 11.5415 | 11.5415 | 11.5415
(2-2) Adjustment by stoch. || -0.2707 | -0.1354 0 0.1354 | 0.2707
(1)-(2) -0.0024 0.0024 0.0021 -0.0011 | -0.0076
(2-1)-Original B-S Value -0.00003 | -0.00003 | -00003 | -0.00003 | -0.00003
(2) - Original B-S Value 02708 | -0.1354 |-0.00003 | 0.1353 | 0.2707
Option Delta by Simul. 0.676 0.675 0.674 0.672 0.670
Our Option Delta 0.6770 0.6753 0.6736 0.6720 0.6703
B-S Option Delta 0.6736 0.6736 0.6736 0.6736 0.6736

Table 6: European Call Option Value on Equity and Option Delta under Level
Stochastic Interest Rate in CIR type : o0 = 0.2, € = 0.3
We set 1o = 7 = 0.07, Kk = 2.0, ¢ = 0.3, o = K = 100, 0 = 0.2, and T' = 1.0. The call option

value based on the original Black-Scholes formula is 11.5415.

Corr. Coeff. bt. Stock Price and Interest Rate
p=-1]p=—05] p=0 | p=05]| p=1
| (1) Simulation [ 107290 | 11.1734 [ 11.5751 | 11.9455 | 12.2913 |

(2) Our Approach I 10.7293 | 11.1354 | 11.5415 | 11.9476 | 12.3537
(2-1) B-S value under deter. | 11.5415 | 11.5415 | 11.5415 | 11.5415 | 11.5415
(2-2) Adjustment by stoch. || -0.8122 | -0.4061 0 0.4061 | 0.8122
(1)-(2) -0.0003 | 0.0380 0.0336 | -0.0021 | -0.0624
(2-1)-Original B-S Value -0.00003 | -0.00003 | -0.00003 | -0.00003 | -0.00003
(2) - Original B-S Value -0.8122 | -0.4061 | -0.00003 | 0.4061 | 0.8122
Option Delta by Simul. 0.679 0.677 0.672 0.667 0.660
Our Option Delta 0.6838 0.6787 0.6736 | 0.6686 | 0.6635
B-S Option Delta 0.6736 0.6736 0.6736 | 0.6736 | 0.6736
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6.3 Appendix C

We give some numerical results for stock option values for the in-the-money case

and the out-of-the-money case. The in-the-money cases are given in Table 7 and

Table 8 while the out-of-the-money cases are given in Table 9 and Table 10.

Table 7: European Call Option Value or: Equity and Option Delta under Down-
ward Stochastic Interest Rate in CIR type: o = 0.2, € = 0.1
Weset ro = 0.11 > 7 = 0.07, k = 2.0, e = 0.1, Sp = 110 > K = 100, 0 = 0.2, and 7" = 1.0. The

call option value based on the original Black-Scholes formula is 21.9837.

Corr. Coeff. bt. Stock Price and Interest Rate

p=—1]p=—05] p=0 [p=05] p=1

| (1) Simulation [ 20.0939 | 20.2126 | 20.3262 | 20.4356 | 20.5384 |
(2) Our Approach 20.0976 | 20.2099 | 20.3221 | 20.4344 | 20.5467
(2-1) B-S value under deter. || 20.3221 | 20.3221 | 20.3221 | 20.3221 | 20.3221
(2-2) Adjustment by stoch. || -0.2245 | -0.1123 0 0.1123 | 0.2245
(1)-(2) -0.0037 | 0.0027 [ 0.0042 | 0.0012 | -0.0083
(2-1)-Original B-S Value -1.6616 | -1.6616 | -1.6616 | -1.6616 | -1.6616
(2) - Original B-S Value -1.8861 | -1.7738 | -1.6616 | -1.5493 | -1.4370
Option Delta by Simul. 0.852 [ 0.848 [ 0.845 [ 0.841 | 0.836
Our Option Delta 0.8528 | 0.8486 | 0.8445 | 0.8403 | 0.8362
B-S Option Delta 0.8700 | 0.8700 | 0.8700 | 0.8700 | 0.8700

22



Table 8: European Call Option Value on Equity and Option Delta under Upward
Stochastic Interest Rate in CIR type : 0 = 0.2, ¢ = 0.1
Weset 15 = 0.03 < 7 =0.07, k — 2.0, € = 0.1, Sp = 110 > K = 100, 0 = 0.2, and 7 = 1.0. The
call option value based on the original Black-Scholes formula is 16.2837.

Corr. Coefl. bt. Stock Price and Interest Rate

p=—1]p=—05] p=0 [ p=05] p=1

| (1) Simulation | 17.6541 | 17.7555 | 17.8527 | 17.9464 | 18.0348 |

(2) Our Approach 17.6594 | 17.7559 | 17.8524 | 17.9489 | 18.0453
(2-1) B-S value under deter. || 17.8524 | 17.8524 | 17.8524 | 17.8524 | 17.8524
(2-2) Adjustment by stoch. | -0.1929 | -0.0965 0 0.0965 | 0.1929
(1)-(2) -0.0053 | -0.0004 | 0.0003 | -0.0025 | -0.0105
(2-1)-Original B-S Value 1.5687 | 1.5687 | 1.5687 | 1.5687 | 1.5687
(2) - Original B-S Value 1.3758 | 1.4722 1.5687 | 1.6652 | 1.7616
Option Delta by Simul. 0.805 0.802 0.799 0.797 0.794

Our Option Delta 0.8052 | 0.8024 | 0.7996 | 0.7968 | 0.7940
B-S Option Delta 0.7662 | 0.7662 | 0.7662 | 0.7662 | 0.7662

Table 9: European Call Option Value on Equity and Option Delta under Down-
ward Stochastic Interest Rate in CIR type : ¢ = 0.2, ¢ = 0.1
Weset 7o = 0.11 > 7= 0.07, K = 2.0, e = 0.1, So = 90 < K = 100, 0 = 0.2, and T = 1.0. The

call option value based on the original Black-Scholes formula is 7.36263.

Corr. Coeff. bt. Stock Price and Interest Rate
p=—1]p=—05] p=0 [ p=05] p=1
| (1) Simulation | 6.1366 | 6.2945 [ 6.4469 | 6.5970 | 6.7471 |

(2) Our Approach 6.1365 | 6.2899 | 6.4434 | 6.5968 | 6.7502
(2-1) B-S value under deter. || 6.4434 | 6.4434 | 6.4434 | 6.4434 | 6.4434
(2-2) Adjustment by stoch. || -0.3069 | -0.1534 0 0.1534 | 0.3069
(1)-(2) 0.0001 | 0.0046 | 0.0035 | 0.0003 | -0.0031
(2-1)-Original B-S Value -0.9193 | -0.9193 | -0.9193 | -0.9193 | -0.9193
(2) - Original B-S Value -1.2262 | -1.0727 |-0.9193 | -0.7658 | -0.6124
Option Delta by Simul. 0.5003 | 0.5021 0.5038 | 0.5055 | 0.5065
Our Option Delta 0.5006 | 0.5022 | 0.5039 | 0.5055 | 0.5071
B-S Option Delta 0.5490 | 0.5490 | 0.5490 | 0.5490 | 0.5490
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Table 10: European Call Option Value on Equity and Option Delta under Upward
Stochastic Interest Rate in CIR type : 0 = 0.2, ¢ = 0.1
Weset 70 = 0.03 < 7= 0.07, k = 2.0, e = 0.1, So = 90 < K = 100, 0 = 0.2, and T' = 1.0. The

call option value based on the original Black-Scholes formula is 4.44793.

Corr. Coefl. bt. Stock Price and Interest Rate
p=—1]p=—05]p=0]p=05] p=1
| (1) Simulation [ 49615 | 5.0738 [5.1828 [ 5.2912 | 5.4018 |

(2) Our Approach 4.9610 | 5.0718 | 5.1827 | 5.2935 | 5.4044
(2-1) B-S value under deter. || 5.1827 | 5.1827 | 5.1827 | 5.1827 | 5.1827
(2-2) Adjustment by stoch. || -0.2217 | -0.1108 0 0.1108 | 0.2217
(1)-(2) 0.0005 | 0.0020 | 0.0001 | -0.0023 | -0.0026
(2-1)-Original B-S Value 0.7347 | 0.7347 | 0.7347 | 0.7347 | 0.7347
(2) - Original B-S Value 0.5131 | 0.6239 | 0.7347 | 0.8456 | 0.9564
Option Delta by Simul. 0.4303 | 0.4329 | 0.4352 | 0.4373 | 0.4392
Our Option Delta 0.4307 | 0.4329 | 0.4352 | 0.4374 | 0.4396
B-S Option Delta 0.3910 | 0.3910 | 0.3910 | 0.3910 | 0.3910
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