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1 Introduction

Stein estimators or more generally shrinkage estimators have found many applications.
Efron and Morris (1975) used it in predicting batting average of baseball players and
estimating the Toxoplamosis prevalence rates. Fay and Herriot (1979) used it in esti-
mating income for small places, Battese, Harter and Fuller (1985) used it in prediction of
county crop areas and Tsutakawa, Shoop and Marienfied (1985) used it to estimate cancer
mortality rates. More recently Breiman and Friedman (1997) showed that the shrinkage
estimators performs better in multivariate regression model with many independent vari-
ables. To assess the performance of these estimators, however, researchers often resort to
Monte Carlo methods. Thus, it would be desirable to provide estimates of the expected
risk / risk difference of the existing and Stein estimators etc. Although uniformly mini-
mum variance unbiased (UMVU) estimators are available for many cases, they have the
shortcoming of taking negative values with positive probability. See Stein (1973), Efron
and Morris (1976), Bilodeau and Srivastava (1988), Carter, Srivastava, Srivastava and
Ullah (1990) for UMVU estimators.

Venter and Steel (1990) considered a truncated estimator for the risk of the positive-
part Stein estimator and showed numerically its superiority over UMV U estimators. But
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a systematic theoretical study is lacking although some related estimating problems of
loss functions have been considered by Johnston (1987), Rukhin (1987) and Lu and Berger
(1989).

The objective of this paper is to present estimators of the risk, risk difference and
mean squared error matrix etc, which are better than the UMVU estimators in terms of
the mean squared error (MSE) matrix and take positive values with probability one.

In Section 2, we consider the estimation of a risk function of the Stein type shrinkage
estimators with respect to a scale-invariant loss function, and propose positive truncated
estimators improving on the UMVU estimator of the risk. Also the problem of estimating
the MSE matrix divided by a dispersion parameter is treated, and improved positive
procedures are derived. In Section 3, we propose estimators for the difference of the
MSE / MSE matrices of shrinkage estimators and the maximum likelihood estimator. In
Section 4, we discuss the problem of estimating the MSE and MSE matrix of the shrinkage
estimators.

2 Improved Non-Negative Estimators of the Risk

2.1 Notations and unbiased estimators of the risk

Let X = (Xi,...,X,) be a p-dimensional random vector distributed as normal with
mean vector 8 and covariance matrix oI, denoted by N,(8,5°I). Let S be distributed
as o2x2, where x? denotes a chi-square distribution with n degrees of freedom. It will
be assumed that X and S are independently distributed and that p > 3. Consider the
problem of estimating 8 by an estimator § with an invariant loss function given by

Li(8,6) = ||6 - 8]*/c*,
where [|z]|* = 2’z for column vector z € RP. The risk function of § is given by
Ri(d) = E[L(8,9)]
(6?)"YE[L(8,0)] = (¢°) ' R(4), say. (2.1)

Stein-type estimators that have smaller risks than the maximum likelihood (ML) and
UMVU estimator X is given by

g(W)

2
592{1———-————})(, for W= X711

S

w

where the shrinkage function g(w) satisfies the conditions
(a) g(w) is absolutely continuous and non-decreasing,

(b) 0 < g(w) <2(p—2)/(n+1).
The estimator proposed by James and Stein (1961), denoted by 877 is obtained by
putting

glw)=k=(p—2)/(n+2)
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and the positive rule estimator denoted by 8% is obtained by choosing g(w) = min{k,w}.
The risk function for the ML estimator § = X is given by

RI(X) =P
and the risk function for the Stein-type estimators 4, is given by
Ri(8y) = p — Ela(W)]

where

a(W) =2(p— 2)2%}/-2 —(n+ 2)22—(];—/—) + 4¢'(W) + 49(W)g'(W). (2.2)

Clearly, then the UMVU estimator of R;(d,) is given by
R{P(8,) = p—a(W), (2:3)

which can take negative values with positive probability. For example, consider the case
when g(W) =k = (p — 2)/(n +2), giving the James-Stein estimator. For this case,

_ (p—2)
W)= raw

and hence for W < (p — 2)2/{p(n + 2)}, p — (W) < 0. Since W can be less than
(p—2)?/{p(n + 2)} with positive probability, the UMVU estimator will be negative with
positive probability.

The first objective of this section is to propose an improved positive estimator of
R;(8) that has smaller mean squared error than the UMVU estimator. These results are
generalized to the situation where the covariance matrix of the random vector X is an

unknown p X p positive definite X which is estimated by a p x p random symmetric matrix
S being distributed as W,(X,n), n > p, independently of X.

The second objective is to consider the problem of estimating the MSE matrix divided
by o%, namely,

Mi(8,) = o "E[(8, —6)(d, - 0)]
= o*M(4,), say, (2.4)

and to propose positive estimators improving on the UMVU estimator.
Note that the UMVU estimator for M ;(d,) is provided by

—.UB i :‘Zg(W) _)_(_)f_/_
M. (8,) = {1 - }I+b(W) T (2.5)
where tal(W 2y
bw) = 200 4 (g )0 g — 9wy o0, (2.6)
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For the case of the James-Stein estimator 67° = (1 — k/W)X, the UMVU estimator of
M ;(67%) simplifies to

—UB k EXX'
MI (JJS) — Ip—Q—W——Ip—{—(p'\Lz)Wm—z‘
, k k

= T [(1 + %7) E,+ (1 — ZW) (Ip - E11)] r, (27)

where I' is a p x p orthogonal matrix such that I'X = ([|X||,0,...,0) and Ey;isapxp
matrix which has one for (1,1)-element and zero for the others. This expression indicates
that the first(largest) eigenvalue is much larger than one for smaller W and others have
possibilities of taking unreasonable negative values.

The problems of estimating R;(d,) and M (d,) are discussed in Sections 2.2 and 2.3,
and the estimations of the MSE R(d,) and the MSE matrix M (4,) are treated in Section
4.

2.2 Estimation of R;(4,).
Let
apy = Erzola(W)]
- /0 /0 a(ufv) f,(w) fa(v)dudv,
where A = ||0]|*/a?, and f,(u) and f,(v) denote densities of chi-square distributions with
p and n degrees of freedom, respectively. Our aim in this section is to provide an improved

positive estimator of R;(d,) over the UMVU estimator RYB(8,) = p — a(W) for a(W)
given by (2.2). We propose a class of estimators of the type

Ri($;8,) = p — a(W)$(W), (2.8)

where ¢(w) is an absolutely continuous function. Under the conditions of Theorem 1, it
will be shown that it has a smaller mean squared error

E[{R1(¢;6,) ~ Ri(8,)}’]
than the UMVU estimator RYB(4,).

Theorem 1. Assume that E[{RY?(8,)}?] < oo, R;(8,) < co and p > 3. Assume
that

(a) a(w) is nonincreasing in w,

(b) ¢(w) is absolutely continuous, nondecreasing in w and lim, ,cod(w) = 1,

(c) ¢(w) > ¢"8(w), where
¢TR(w) = min{l, a,,/a{w)}.
Then R;($;8,) dominates RVB(4,).



Table 1. Values of a,,, for the Estimator 6°*

, p
3 ) 7 10 20

n

3 0.857799 2.268824 3.611723 5.683447 12.355029
5 1.025757 2.692283 4.269549 6.594915 14.436470
7 1115159 2.892845 4.596360 7.153935 15.492499
0 1.182874 3.080593 4.892471 7.547653 16.438395

Kubokawa (1988) showed that the condition (a) implies the monotonicity of the risk
function, so that (a) guarantees that E\ja(W)] > Ei_ola(W)] = a,, (also see Casella
(1990)). It can be seen that the condition (a) is satisfied for the James-Stein estimator
879 with g(w) = k = (p — 2)/(n + 2) and the positive-part Stein estimator o5t with
g(w) = min(k, w). For the James-Stein estimator 677, it is seen that a,, = (p —2)*(n +
2)7YE[X2/x2] = n(p — 2)(n + 2)~". For the positive-part Stein estimator 8°F, we can
numerically obtain the values of a,,,, which are given in Table 1 for p = 3,5,7,20, and
n =357, 20,

The monotonicity and boundedness of g(w) stated in Section 2.1 implies that lim, e
¢(w) = 0 or lim,_a(w) = 0, so that ¢** satisfies the condition (b). Thus we get
improved estimators

R{™é,) = Ri(s™8,)
= p—a(W)e"(W)
= max{p—a(W), p—a,.}. (2.9)

Since p — a,, is the value of risk R;(8,) at A =0, RTR(§,) is always positive. Hence
RTE(8,) is eliminating the drawback of the unbiased estimator RY?(d,) as well as im-
proving upon it. For the James-Stein estimator, R?R(szS) is given by

~ 8 ~ 2(n +
RTE(§79) = max {RII]B((VS), ——(TT_:—QB)-} . (2.10)

It is seen that E[{RTR(87%)}?] < oc for p > 1 while the condition that p > 5 is required for
E[{RYP(67%)}?] < co. The truncated rule (2.9) is also reasonable because the parameter
space of R;(d,) is restricted to the interval [p — a,,, p]. This fact was indicated by

Venter and Seel (1990), who considered such a truncated estimator for the risk reduction
E[a(W)] of 8°F and revealed numerically the superiority of it.

The condition (a) about the monotonicity of a(w) may be restrictive. If the conditions
in Theorem 1 cannot be verified, then one can get the simple non-negative improved



estimator

RYB(8,) if RYB(8,) >0,
~ + ~ . ~
[RYP(8,)] =4 —RYB(8,) if —c< RYB(8,) <0,
c if RVB(8,) < —c,

where ¢ is a non-negative constant suitably chosen. When ¢ = 0, [RYB (6 2)J¢ is a procedure
truncated at zero. When ¢ > 0 and P[RYB(8,) = 0] = 0, then [RYB(4,)]} is almost
surely positive. Practically small ¢ > 0 should be chosen, but the choice includes the

arbitrariness.

More generally, we consider the problem of estimating positive parameter o by esti-
mator &. If & take negative values with positive probability, we can consider non-negative
estimator

& ifa>0,
B = —a if —e<a<0, (2.11)
¢ fa<—e

Proposition 1. The non-negative estimator [&]F is better than & in terms of the
MSE criterion. '

This proposition can be shown easily. Denote the set of —¢ < & < 0 and the set of
& < —c by Ay and Ay, respectively. Let I4, be the indicator function for 2 = 1,2. Then
the risk difference is written by

El(& - a)*] - E[([a]} - 0)?]
= B[a-[aH)(a+[a}f ~20)]
= B[(&— (—&)(@+ (—a) - 20) 4]
)

+
=
B
|
o

both of which can be seen to be nonnegative by taking the definitions of A; and A, into
account.

We here provide the results of Monte Carlo simulation for the MSE of the estimators
of the risks. For the estimation of the risk of the James-Stein estimator 8”°, we first
compute the values of R;(67%) based on 100,000 replications and then obtain the values
of B[{R;(6”°) — R;(67°)}?] based on 50,000 replications. Three types of estimators
RUB(§75), RTR(§7%) and [R(I]B(st)r, denoted by UB, TR and NN(c¢), are treated for
¢ = 0.0,0.5 and 1.0. Figure 1 illustrates the MSE behaviors of the estimators where
p=10,n=3,0°=1and 0, = (i/10)t for: = 1,...,p and 0 < ¢ < 10. This figure reveals
that

(1) the MSE of each estimator is decreasing in ¢ or the noncentrality parameter A =
16112/,

(2) RT%(87°) has the best performance among the five estimators and a significant
risk gain at £t =0,



(3) RTR(§7%) dominates {R?B(csjs)]j, being better than RYP(879),

(4) three estimators [,IA%II]B((SJS)}:L with ¢ = 0.0,0.5 and 1.0 has similar MSE perfor-
mances.

These observations propose the use of the truncated estimator BTR(875)."

The same manner of the simulation is applied to get the MSE bahaviours of estimators
RYB(85%), RTR(§%%) and [IA%SJB((?SJ“)F, denoted by UB, TR and NN(¢), for ¢ = 0.0,0.5
and 1.0. Figures 2 and 3 provide their 'MSE behaviors for p = 3 and p = 10, respectively,
and demonstrate that they perform similarly to the case of §7%. These indicate the
superiority of fi?R(55+).

The monotonicity of the MSEs of the estimators is one of remarkable properties ob-
served from Figures 1, 2 and 3. This property can be also verified analytically for the MSE

of RYB(87%) for the James-Stein estimator §7%. For the non-central chi-square random
variable x2(A), we note that

EROEOD] = B [E(C) 7] (2.12)

where J follows a Poisson distribution with mean A/2. The MSE of RY®(87%) can be
easily rewritten by

% ' ' ' T T T T T T
ug —
MSE e —
NN(c =0.0) -----
NN&c = 05; ,,,,,,,,,,,
* NN(c = 1.0) —~ N
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Figure 1. MSE of Estimators RYB(87%), RT7(67°) and
[1:7?8(5‘]5)]: for ¢ = 0.0,0.5,1.0 and p = 10
(These estimators are denoted by UB, TR and NN(c¢) in the figure.)
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Figure 2. MSE of Estimators RYB(65%), RTR(§5%) and
[R[[]B(5S+)]: for ¢ =0.0,0.5,1.0 and p =3
(These estimators are denoted by UB, TR and NN(¢) in the figure.)
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Figure 3. MSE of Estimators RVB(85+), RTR(§5%) and
[E?B(JSJ’)F for ¢=0.0,0.5,1.0 and p = 10



— [ 5JS (5JS)}2]
= En{Bln+ D2+ 207 (1 +2) 7 = n (Bl(p—2+2)7")’]
for ¢ = (p—2)%/(n+2), which gives MSE'5(0) = 2n(p—2)*(n+p—2)/{(n+2)*(p—4)}.

From the proof of Lemma 2 given by Kubokawa(1988), differentiating M SE75(X) with
respect to A gives that

Cz"l

(28 [(p =2+ 20y {(p+2)7" = (p—4+2)7'}]
—mE[(p—-2+42)" E[(p+20)" — (p—2+27)7]}
< 270’ {~E[(p+2)" (p - 24207 (p— 4+ 20)7']

+E|(p—2+20) Y E(p+20) 7 p - 2+20)7"]}
< 0

since (p—2+2J)"" and (p+2J) Y (p—2+2J)"! are decreasing in J. This demonstrates
that MSE73()) is decreasing in .

Proof of Theorem 1. Letting
C(Ri(9)) = E[{Ri(8,;6) - Ri(8,)}’]
= E[{a(W)¢(W) — Ela(W)]}],

we can apply the IERD (Integral Expression of Risk Difference) method given by Kubokawa
(1994, 1998a,b). From the condition (b), we note that

C(RYP) — C(Ri(9))
= E[{a(W)d(c0) — Ela(W)}?] — E[{a(W)p(W) — E[a(W)]}?]
= B[{a(W)s(tw) - Bl ]

it:l

Then from the absolute continuity of ¢(w), we have that
C(RYP) = C(Ri(9))
- Eum%ammwmn—mwwm%4
Y [ /0@ (a(W)o(tW) ~E[a(W)]}a(W)¢’(tW)Wdt]

[ s (2o ()

X fo(u; A) fu(v)dudv, (2.13)



where f,(u;A) and f,(v) denote the densities of || X||?/o? and S/c?, respectively. Making
the transformations w = (¢/v)u with dw = (t/v)du and z = w/t with dz = (w/t*)dt in
turn, we can rewrite (2.13) as

o [ o (2) s - s (2)

x fp(f’-;ﬁ; ) fo(v)dtdvduw

= 2 “lalz ) — Ela(W y
] [ az)6(w) = ElaW)}a(z)6' (w)
X fp(vz; A) fr(v)dzdvdw.
When ¢/(w) = 0, C(RYP) = C(R($)). When ¢'(w) > 0, it suffices to show that
E\[a(W)EY[fy" a(z)vfp(vz; A)dz]
w) > ,
plw) 2 E¥[fy a?(2)v fp(vz; N)dz]
where Ev[] designates the expectation with respect to v. Hence from the condition (a),
we note that
Jo a(z)v fp(vz; A)dz < 1
o a*(z)vfp(vz; N)dz — o<stw —a(w)’

a(z)
Also the condition (a) implies that

Exla(W)] = E) [a (@)] =5 [“ (i% ! &)}

X2 X2 X2

2
X
= s ()] 2o

where J is a random variable following Poisson law Po(A/2). Hence C(RYBY—C(Ri(9)) >
0 if in the case of ¢'(w) > 0, ¢(w) > a,n»/a(w), which is satisfied by the condition (c),
and Theorem 1 is proved. oo

2.3 Estimation of M;(4,).

We next consider the problem of estimating the MSE matrix divided by o, namely,
M(8,) = 072E[(8, — 0)(d, — 0)']. As seen in (2.7), the UMVU estimator Y\./I\II]B(&JS)
for the James-Stein estimator 6”° takes negative eigen values with positive probability.

The object of this section is to obtain estimators not only eliminating this shortcoming
but also improving upon the UMVU estimator.

More generally, we consider finding an estimator better than the unbiased estimator
—UB :
M, (8,) given by (2.5) for the general type of estimator §,. For this purpose, the

estimator we look into is of the form
gW)

M (;8,) = IP—Q—W—Q/)(W) (I,,

— XX’ _ g(W) X X' . _‘)gi(i
||X]|2) 2 W HXH2+b(W)HX||2 (2.14)

= I [{1 - 29—%@ + b(W)} Ey + {1 - 29(7]3/—2¢(W)} (I — En)} r,
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where

b(W) = 43%’—) +(n+ 2)5]2—‘(4—,@ —4g' (W) — 4g(W)g' (W). (2.15)

——UB .

Since (p — 1) eigen values of M; (8,) other than the first(largest) eigen value may take
negative values with a positive probability, the shrinkage function (w) is 1ncorporated
in the (p —1) elgenvalues except for the first. To investigate the dispersion of MI(@Z), a)s

the MSE criterion E[tr(M (¢;8,) — M1(d,))?] is utilized. Let

b = sup{b,a(27)}; (2.16)
320

. 2x2 X2+2‘ 1 X2+2'
b n 2] = E { n q ( Pty __ b prTe) ,
pnl2) Xpr2i~ \ Xi pP+2j \ Xi

where X;2;+2j and x? are independently distributed as chi-square distributions with p +2j
and n degrees of freedom.

Theorem 2. Assume that p > 3, £ [tr{MlI]B((?g)}} < oo and M (é,) < oo.

Assume the following conditions:
(a) g(w)/w is nonincreasing in w,

(b) E[b (Xp+2]/x'n)] >0 forany j >0,
(¢) ¥(w) is nondecreasing in w and hmw_moz/)( ) =1,
(d)

P(w) > quR( ), where
1/)TR(w) = min {1, %ﬁg—(%—} )
Then M [(4;8,) dominates MI (59),

It will be easy to check the condition (a). It may be troublesome to check the condition
(b) and to get the value of b, , for various shrinkage estimators 8. It is easily seen that the
James-Stein estimator 7% satisfies (a) and (b). For the derivation of b,,, the following

expression may be helpful. For RYB(8,) and M, (d,), we note the relation given by

R?B(‘sg) = trM[ (
au ) B,

which 1s used to get

Lo gWw) 1 [su 5, 9W)
bat23) = b [200 L, s Y

25 . {29(W) .
A rie) (2.7
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Table 2. Values of b,,, for the Estimator 6t

p
3 3 7 10 20
0.801497 0.724463 0.730345 0.739707 0.749023
0.922034 0.849682 0.857039 0.849293 0.855735
7 0.943779 0.913598 0.908870 0.908389 0.911405
10 1.085830 0.975158 0.951344 0.958228 0.949081

652 G VL]

for W = x2,,;/x2. For 673, we can get

bn(2)) = 27 2kn N 1 (p—2)kn
o p+2p—2+2j p+2ip—-2+25
(p—2+4g)nk
(p+25)(p—2+2j)
< EZC-:15,1,,,1, (2.18)
p

where the equality is attained at 7 = 0 and j = 2. For other estimators, however, it is hard
to derive explicit values of b,,,. We will need a computational help for maximizing b, ,,(27)
numerically. For the positive-part Stein estimator 8°%, we can numerically compute the
values of b, , and provide them in Table 2 for p = 3,5, 7 10,20 and n = 3,5,7,10. All the
values of b, , are attained at j = 0, that is, b,,, = bpyn(O) in (2.16).

Under the conditions (a) and (b), we get the improved estimator
—TR .
M, (8,) = M;(y"%4,)
= max{] -29(12/) 1—-bpn}I —{-29( )wTR( W)
gW) XX’ ). 9. ¢
W IX o) X|)?
X1 X1l

. [{1—2 (W)er(W)}EH

XX’
X1

(2.19)

I T

In particular, for the James-Stein estimator, this estimator gives the form

2k 2(n+p)
W p(n +2)

which is positive definite as well as better than the UMVU estimator (2.7).

—TR

M, (5JS) =TI Kl + %/]i) FE, —|~max{1

}(1,, - Eu)] r, (2.20)

12



Table 3. MSEs of the Estimators /Z\Z[IJB(JSJr) and /M;FR(55+)
for p=3and t =0.0,0.1,0.5,1.0,2.0,5.0,10.0

0.0 0.1 0.5 1.0 2.0 ‘ 5.0 10.0
—=UB

MY (65%) 2.664 2.664 2.643 2.584 2202 1.016 0.075
M, (85%) 1811 1811 1.799 1765 1566 0.724 0.068

, ) —~TR .

From (2.19) it is seen that the eigen values of M ; () other than the first eigen value
are non-negative if 1 —b,,, > 0. We here state a note concerning the constant b, ,. When
0 = 0, the symmetry of the density of each X; on zero implies that

- X%\ XiX; . X? 1
Fg—o |b =0 f Foep | —te | = =
H SVADSE o7 B[R] T
and X2/||X|>,¢=1,...,p, are independent of || X||. Thus we have
- X7y XX’
Ey—o |b
[ ( SVABR

o (L) g (X )]

= B[b(x22)r'T,]. (2.21)

From (2.5), (2.16) and (2.21), it follows that

—UB
By [M°(6,)] = {1 = ban O},
the value of the MSE matrix M(d,) at A = 0 or = 0. This means that

1= b,,,(0) > 0.

If we can choose by, in (2.16) as b,,, = b, ,,(0), then the (p — 1) eigen values of K/I\fR((sg)
other than the first are always positive. The inequality (2.18) and Table 2 imply that
by = by, (0) for 7% and bdeS*.

The same manner of the simulation as uaed for giving Figure 1 is applied to investigate

the MSE behaviors of the estimators MI (55+) and ﬁf3(55+) of the risk matrix of the

positive-part Stein estimator . The values of their MSEs are glven in Table 3 for p =3
and t = 0 O 0.1,0.5,1.0,2.0,5.0,10.0, and it demonstrates that MI (55+) is much better
than MI (69+).
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The conditions (a) and (b) of Theorem 2 may be restrictive, and the condition that
1 —b,, > 0 may be hard to be checked for various estimators d,. In such cases, a simple
non-negative definite and improved estimator is given by

(31,%6,)} = 1" [0~ 290)/W + 007} B
+[L = 2g(W)/W]F (I - Ew)| T,

where the truncation rule [-]F is defined by (2.11).

¢

—UB +
Proposition 2. The non-negative definite estimator {MI (59)} is better than

—UB ¢
M (d,) in terms of the MSE criterion.

) . —UB
The proof is easily done as follows: For simplicity, write M; (d,) by

/MJ[]B((SQ) = hl(W)F/E11P + hg(W)F,EQQF,

where Egy = I — Eqy, hy(W) = 1 — 2g(W)/W + b(W) and hy(W) = 1 — 29(W)/W.
Also let M; = Elh;(W)["E;I'] for 1 = 1,2, and M| = M (d,). Then the variance of
—UB . .

M (d,) is written as

o 2
E {tr (]WIUB - MI> }
= E [t (h(W)I'EyT — My)’| + E [tr (ho(W)T'Ep T — M)’
+2E [tI’ (hl(W)FIEll.[‘ - Ml) (,"1,2(VV)Ij,I;IQQI-v - MQ)I] . (222)

For the first two terms in the r.h.s. of (2.22), the same arguments as in the proof of
Proposition 1 gives that for ¢ = 1,2,

B [tx (hi(W)I' Bl — M| 2 E [tr (I (W) BT - Mi)z] .
Since I"E [, I'T'E»,TI" = 0, the third term is expressed as
—QE[hl(W)trF/E11FM2 + hg(W)trF'EQQFIVIﬂ "+’ 21JI'M1M2.
For the term —2FE[hy(W)trI"E ' M}, the difference is written by

~2B[hy (W )" Eyy T M) — (=2E[[hy (W[} e ' B I M)
= —4E[h(W)teI"Ey T MyI(—c < hy (W) < 0)]
—2E[(hy(W) — e)te " Ey ' My I(hy(W) < —¢)],

which is non-negative. Similarly,

~2B[hy(W)tr " Egy T M| — (=2E[[ho(W)[F tr "B, M ,]) > 0,

14



and Proposition 2 is shown.
Proof of Theorem 2. For simplicity, let
Aw) = 2 I, - || X2 X X’
(w) = Zglw)(w) (I, - | XX X),

(W) = BW) - 20 g(W),
h(N) = ERW™lg(W)].

Then for b(W) given by (2.15),

M (y;68,) = I,— A(W)+c(W)[|X||?X X,
M(8,) = I, —h(\I, + B [b(W)|| X[ X X'].

Denoting D(M\I(¢)) by

DV($) = B [{M(;8,) — Mi(6,))]

XX’ XX
tr{c( )“XH2+/L(\)I [b(W)IIXHZ}} ] ’

and noting that tr A(W)c(W)X X'/|| X ||> = 0, we observe that

—-E

= E _tr{A(W)f - 20 A(W) {h(A)IP - [b(m%} H

= & 1~ 8 e - ap - 122

H(W)h(A)

+49—(V-VW—)¢(W) {E[b(W)] - TFJ%T?X,E [b(W) ‘T{X)ﬁz] XH (223

Let Y be a random variable independent of X, having NV,(0/0,1,) and let P be a p xp
orthogonal matrix such that P8 = (||0]],0,...,0). Also let U = (Uy,...,U,) = PX
and Z = (Zy,...,4,) = PY. Then,

xn o (575 o) % = v e (o0 fam| v e

!IXII2

Noting that Zy,..., Z, are mutually independent and that Z; has a density being sym-
metric on zero for ¢ = 2,...,p, we can see that

P () ] =0 oo

15




so that the r.h.s. of the equality in (2.24) is rewritten as

-l 2]
N o) 1 | I Y (2.25)

ot (55 7o
Here Z2 has non-central chi-square distribution x?(A) with noncentrality A = ||8]*/o®
and one degree of freedom. Also Z? has central chi-square distribution Xifori=2,...,p.

For evaluating (2.25), we note that the following equality holds: for integrable function

h()7

plodrand] = SR )

::{(V—%*Ewuiﬁ]ﬁr=—L
VE[h(x,)] ifr =1,

where x2 designates a random variable having a x2-distribution. Taking this note and
(2.12) into account, we observe that

I 1Z]|?\ 7} Y -E -b Xiy2s + X;29~1 Xii2s
5/07 ) 12112] 2 EORRY
A i Xn Xi4+2J T Xp-1
- ) 5 .
X3427 T Xpo1 1+2J
i Xn X3420 T Xp-1

- g E_b (X;3+2+2J> 1+2J ]H

2 2
Xn Xp—+-2+2J

X2 Jp+2J)

Similarly, for 1 # 1,

IIZII2) Z} ] J[ [ (x?+x2_1+2j> X
E b ] - ETE b p—]
{ (5/02 |1Z]]? X2 X+ X142

- Elb X§+2J 1
X2 ) p+2J)

Hence we can rewrite (2.25) as

/]

1 £ {b(llzllz) =1 Ufzf} _ 1 I [b (X;2;+2+2J) (1+20)UF + 30, Uz?:!
U2 S/o* | Z]}? \U|? X2 Xiyat2d
L () 2O
Uik \ x: p+2J

16



Denoting H(A\;U) by

HOGU) = (p— V() — E[b(W)] + HUWUE[b ('5‘;‘:) nzziz} U
)wﬁQQMMq_w(ﬁHq<pmn+2ﬂ«~wnmm%y

X2 X2 p+2J

= El|(p-1
[ X§+2J

we note that the following inequality holds by the condition (b):

2x (X2+2J) 1 (X2+2J )}
HMNU) < -1 E & L4 - b| =L
( ) (v ) |:Xp+2]g Xa p+2J X

S (p - 1)bpm (226)

for by, given by (2.16).

In this way, we can express the r.h.s. of the extreme equality in (2.23) as

DT (w) = B [1tp - v w) — anoswy 2 uon|

Applying the IERD method, using the inequality (2.26) and making the same transfor-
mations as in the proof of Theorem 1, we see that

D(M,") — D(M ()
- [/mdt{ 1) 2( )¢2(tW) H(/\;U)f’—(ﬁv/—y—)th)}dt]

Yy [/1 {2(p~1)92v(vvp¢(tW)—H(A;U)QfW@}¢’(tW)Wdt]

> 4(p—1)E [ [ {2‘91(VW)¢ (tw) - bpn%vl} w'(tW)Wdt}

- - | [ ]2 _p 9) i (w)v f(vz; A)dz
= o) [ [ {2 ) 8, 22 oy oz ]
which is non-negative if, in the case of ¥'(w) > 0,

bon BV {9(2)/ 2} fp(vz; A)dz]
2 EY[f{g(2)/ 2} f,(vz; Ndz] (2.27)

P(w) >

From the condition (a),
E[Je{9(2)/z}vfp(vz; Ndz] sup { z }: w
EV[[s'{g(2) /230 fuvzs A)dz] — ocecw L 9(2) ) g(w)’

so that (2.27) is satisfied by the condition (d), and the proof of Theorem 2 is complete.
aa
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2.4 Other situations of the covariance matrix

It can be shown that results similar to the ones stated in previous sections hold in the
case of known o2 = 52. The results can be given by replacing g(w), ¢(w) and (w) in
the above statements with g(nw)/n, ¢(nw) and ¢(nw) and by taking n to the infinity.
More specifically, the MSE and the MSE matrix of the shrinkage estimator §, = {1 —
g(IIX11))/1IX|?} X with o} = 1 are provided by

R(8,) = p — Ela(|| X]]")],

where
o _or o dUXIPR) S UIXT) L, )
o(I1X1F) = 2p =220 - S ag X1,
and
T _ (](HX@ 2 Eﬁ'
M6 =1, + 8- L o 2275
where
o 9UXP) L PUXIE) 2
(|| X]7) =4 X + X 44'(11X1]%).

By letting a, = Fi=o[a(||X|[*)] and

b, = sup £ [QQ(X?’HJ) _ b(Xp+2j)}
i’ v

320 X;27+2j p+2)

we can obtain similar results as in Theorems 1 and 2.

Also the results of Theorem 1 can be applied to the case where the covariance matrix
X is fully unknown, that is, X ~ N,(68,X¥) and S ~ W,(n, X'), the Wishart distribution
with E[S] = nX. The risk function of estimator 8, = {1 —g(X'S™'X)/X'S"' X} X for
invariant loss (8§, — 8)'X'(8, — 6) is provided by

Ri(8,) = p—Ela(W), W=X'S"X,
g W)

W) = 20~ 280 4 (- pr T

—4g' (W) — 4g(W)g' (W),

so that results similar to that of Theorem 1 for this case can be obtained by replacing n
with n — p+ 1.

3 Estimation of the MSE reduction matrix and its trace

We here consider estimating the quantity of how much the shrinkage estimator im-
proves on the ML and UMVU estimator X. One of such measures is the Relative
Risk Difference {pc* — R(8,)}/(po?) = p — R;(d,), and its matricial version given by

18-



{c*T, — M(8,)}/o* = I, — M((d,). The unbiased estimators and the corresponding
truncated improved estimators are similar to the ones given in Section 2.

In this section, we address the problem of estimating risk reductions (risk gains or risk
differences) by the James-Stein estimator in the sense of the MSE and MSE matrix. The
results given here are helpful for providing non-negative procedures for estimation of the
MSE and MSE matrix which is discussed in the next section.

The MSE reduction and the MSE reduction matrix for §”7° are, respectively, denoted
by
R*(67S) = po® — R(6”S)
= (p—2kno'E [||X]|7?],
M*(6"7%) = &I, — M(87%)
= kno'E 21X (|72, — (p+2)[| X || X X ]

for k = (p—2)/(n+2). The UMVU estimators of them are given by

~ .S X7
*UB/gJS 2
= /C fpnped = ——
REE(67) W’ i S
—«UB kS

sy kS5 XX’

Since M*(879) is not necessarily nonnegative definite, we do not require the non-negative
definiteness for estimators of M*(87%), but the estimator of B*(6”°) should be positive.
For improving upon the unbiased estimators, we consider shrinkage procedures similar to

(2.8) and (2.14):

R(6:8%%) = Kow)
e kS . XX Xx
W) = g e ont -2 i o
koS
— n+2WF{ —pEy +2p(W)(I, — En)} I

The shrinkage function % (w) operates the (p — 1) eigen values other than the first. Then
the following theorems are obtained.

Theorem 3. Forp > 5, assume that
(a) ¢(w) is nondecreasing and lim,, .. p(w) =1,
(b) B(w) > ¢TE(w), where

#TF(w) = min {1, nniu4} :

Then R*(¢;87%) dominates RVB(87%).
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Theorem 4. For p > 5, assume that
(a) ¥(w) is nondecreasing and lim, oot (w) = 1,

(b) ¥(w) > pTH(w), where
TE(1p) = min ———-————n(n +2) w}
P (w) = {1’ 2p(n+4) |

Then M (1:67%) dominates M*UB(J‘IS).

The condition that p > 5 guarantees the existence of the MSEs of R*(¢;67%) and
“(4;87°). From the theorems, we get two improved truncated estimators:

E*T‘R(ég) — E*(¢TR;5JS)

§ .|k n
= kbxrnm{w, n+4}’
(37%) = M8
kS n(n + 2)
= e W [mln{Z, p(n+4)W}Ip
n(n+2)w} XXQ}
pn+4) " ][ X]]

A*] R

~—min {p +2,p+

Proof of Theorem 3. Let C(R*(¢)) = k™20 *E[(R*(¢;6”%) — R(67%))?]. Then, by

the same arguments as in the proof of Theorem 1,

C(R™UP) — C(R*(9))
- e [[ {5 - o[} o
~ 2F [ /1 h {i?-v/—;:¢(tvv) _E [”(’ﬁ; 1212)"2]} Ségz d)’(tW)Wdt}
> 2/00012” [/va{%;qb(w) (pnj;)} — 3 (w)fy(a: )\)daz] duw

= of g [/OW if (z; N)dzv {f“w :j;:g:i;dl v2p(w) — % ]c,b'(w)clw

2inf {E” l/om 7 f(x; N)dx x v? {vé%—)—) — %H qb'(w)}

where the first inequality follows from the condition (a) and the fact that E\[o?/]| X||?] <
1/(p — 2). Note that fy 27 f,(z; A)dz is increasing in v and that ¢(v) = v*{vé(w)/w —
n/k} has one sign change, that is, there is some vy such that g{v) <0 for 0 < v < v and

v
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g(v) > 0 for v > vy. Then we can see that

EY [/OW 7! fo(a; N)da X v? {vqs—(:)—liz — %H

| > {/Ovow 7t f,(a; )\)dx} x B {02{ }

(For instance, see Kubokawa(1998b)). This inequality implies that C(R*VB)— (é*(cb)) >
0 if, in the case of ¢'(w) > 0,

EY |0v® ¢(w) _ >0
w p—2|
which is satisfied by the condition (b), and Theorem 3 is proved. oo

Proof of Theorem 4. Denote D(M () = E[tr{M (1;87%)— M*(67)}*]/(k*0*),
and let 2(\) = B[0?||X||7%] and H(\) = ¢?E[|| X ||~*X X']. Then, similar to the proofs
of Theorems 2 and 3,

«UB

DM ")~ D(M (v))

- ax || (e S - S b oy

~(p+2) {h(Y) — IX||2 X H (A X}]b/" (tW)}dt]

= 4E [/;” {2(5;21)2 SMZ (W) — n—i—-j[z(p — 1)A(A)
S/o?

~(p+2) {h(\) = [|X|| 2 X"H()) X}] }v,b’(tW)Wdt}

| e p—1 5%/c* n p—1 S ,
> e —
> 4E [/1 {2(n e R 2 . S (AWYWt|
since from (2.18) and (2.26),

o1y L X
B o= Uiy v+ {5 Baadiaad)

: 2 p+2
< — 1 EY — -
< =D [IIYHZ <p+2J>nY|v]
p—2+4y p—1
< —1)su - — .
S ol N2t 2) - p

Similar to the proof of Theorem 3, it can be verified that D(/M*UB) — D(M(¥)) > 0 if,

in the case of ¥'(w) > 0,

 + 2 -1
Ev |:2(p . 1),031!)(“)) . (n + )n(p )v2 2 0,
w p
which is satisfied by the condition (b), and we get Theorem 4. oo
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4 Estimation of the MSE and the MSE Matrix

In Section 2, the estimation of the scale invariant MSE and MSE matrix is treated. In
the situation of constructing confidence sets based on the Stein-rule estimators, the non-
scale-invarianit measure, namely the usual MSE R(87°) and MSE matrix M (6”7%) need
to be estimated. This issue of the estimation is a bit different from that of estimating the
scale-invariant MSE matrix M ;(67%) and its trace R;(87°), for the parameter space of the
usual MSE is a whole space of positive real numbers and zero, that is, it is not restricted
to any interval of positive numbers far from zero. Although the unbiased estimator of
the MSE has an undesirable property of taking negative values, we could not apply the
arguments used in Section 2 to develop any positive improved estimator of it. Of course,
the unbiased estimator can be improved on by being truncated at zero. It is, however,
not practical to estimate MSE by zero. A usual confidence set based on the James-Stein
estimator may be of the form (875 — )’ﬁ_l(éﬁ — @) < ¢ where ¢ is a positive constant
and M is an estimator of E[(87% - 8)(67% —8)] = 0> M 1(67°) = M (6”%). When a zero-
truncated estimator is used for M (87°), it has a singularity with a positive probability,
and so we could not construct any meaningful confidence sets.

In this section, we propose positive and positive definite estimators of the MSE R(JJS)
and the MSE matrix M (879) which are made from the estimation of the MSE reduction
R*(67%) and reduction matrix M*(8”7%). Although the preference of such procedures is
not verified analytically, they have practical sense.

The UMVU estimators of R(67%) and M (87%) are described, respectively, by

~ S 5,8
UB(gJSy _ 2 129
RUP(87%) = p=—k

w’
UB, ¢ s koS XX’
= ] 2
6 = Zr- L S b ean g

which have drawbacks of taking negative values. As procedures suggested from the results
of Theorems 3 and 4, we here propose the truncated estimators of the forms

~ - S n kn?
JS — > -
Rysp(677) = ~ xmax{p k? W P n+4}’
— S 2nk 1 kn?
Mysp(d”®) = = xmax{l - —" | — —"
MS'E(‘S ) - Xmax{l n-}-2W 1 p(n —%4)}11,
kS n(n + 2) XX
— 2,
+n+zwmm{“ PE ) }HXII’”

which are positive and positive-definite, since p — kn?(n + 4)™! is always greater than
zero. Although their improvements are not guaranteed analytically, they will be good
candidates for practical uses.

Another choice of getting positive or positive definite estimators is to apply Proposi-
tions 1 and 2, which yield almost surely positive or positive definite procedures, and they
are guaranteed to improve upon the UMVU estimators.
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