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Abstract

This paper presents a theoretical foundation of the possibility that multimarket
contact enhances firms’ abilities to sustain implicit collusion. When firms operate in a
single market and can not perfectly monitor the opponents’ choices of supply, it is
impossible to achieve efficiency among these firms in a self-enforcing way, even
though these firms have the long-term strategic relationship. By using models of
infinitely repeated game with discounting, we shows that when firms encounter each
other in a number of distinct markets and the degree of multimarket contact is large
enough, efficiency can be approximately sustained by a subgame perfect equilibrium.
This efficiency theorem in the imperfect monitoring case holds under almost the same
condition on the discount factor as the perfect monitoring case.
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1. Introduction

A large enterprise typically supplies multiple products. Even a single-product firm
operates in a number of distinct geographic markets. Such firms come to contact with
each other in a considerable number of markets. Corwin Edwards first raised the
possibility that multimarket contact enhances firms abilities to sustain implicit
collusion. Edwards (1955) argued,

“The multiplicity of their contact may blunt the edge of their competition.”

Several empirical studies following Edwards such as Mueller (1977) also have
found a significant multimarket effect.' The present paper gives a theoretical foundation
of the effect of muitimarket contact on the possibility of implicit collusion among rival
firms.

It is well-known in the game theory literature that in an infinitely repeated game
with discounting players can achieve fully collusive, or efficient, allocations among
them as self-enforcing subgame perfect equilibria when players can perfectly monitor
the rivals’ actions. Friedman (1971) applied this efficiency theorem to the study of an
oligopolistic single market in which a small number of rival firms have a long-term
strategic relationship, and showed that these firms can enforce implicit collusion in a
self-enforcing way.

However, it is also well known at the present time that we can not extend this
efficiency theorem to the more realistic, imperfect monitoring case. If the discount
factor is less than unity and players can not directly observe the opponent’s choices, it is
impossible that efficiency can be sustained by a subgame perfect equilibrium, even
though players can obtain some noisy information about the opponents’ unobservable
actions. In a quantity-setting oligopoly, the market demand may randomly fluctuate
according to some unobservable exogenous factors, and therefore, the market-clearing
price is regarded as a random variable which includes noisy information about the
opponent’s unobservable choices of supply. Stigler (1964) first raised that in such cases
of imperfect monitoring it is impossible for firms to detect the opponents’ secret price
cuts which cause the failure of implicit collusion. Green and Porter (1984) modeled an
infinitely repeated game with imperfect monitoring and discounting, and derived an
inefficiency result on this line.

! See Scherer (1980) also.



In this paper, we argue that when firms encounter each other in multiple markets
and make the choices in a market dependent not only on the history of the prices
realized in this market bur also on the histories of the prices realized in the other
markets, it is much easier for these firms to achieve implicit collusion than when they
operate in a single market. Of particular importance, it is shown that when the degree of
multimarket is large enough, efficiency can be approximately sustained by a subgame
perfect equilibrium even in the imperfect monitoring case wnder almost the same
condition on the discount factor as the perfect monitoring case.

We investigate the following two-person infinitely repeated game with discounting.
The component game is defined by a combination of m identical prisoner-dilemma
games. In every period, each firm simultaneously chooses an m-dimensional vector of
supply each component of which is either “small supply” or “large supply’. The
resulting market price in a market is either “high” or “low”, and is randomly determined
according to some identical probability function which depends only on the current
choices of supply in this market. Each firm can not observe the opponent’s choice of
supply, but can imperfectly monitor it through the realization of noisy market price. The
probability that the “low” price occurs is positive when both firms’ choosing “small
supply”, but this probability is larger when a firm’s choosing “large supply”.

The Nash equilibrium payoff vector in the one-shot game says that both firms
choose “large supply” in every market, but is Pareto-dominated by the efficient payoff
vector induced by both forms’ choosing “small supply” in every market. When
monitoring is perfect, the optimal subgame perfect equilibrium payoff vector is
equivalent to the efficient payoff vector if and only if the discount factor is more than or
equal to some threshold which is strictly less than unity and is independent of the
degree of multimarket contact m. However, in the imperfect monitoring case, the
optimal subgame perfect equilibrium payoff vector is Pareto-dominated by the efficient
payoff vector irrespective of how the discount factor is specified.

Our main theorem says that, in the perfect monitoring case, if the discount factor is
more than this threshold, the optimal subgame perfect equilibrium payoff vector per
market approaches the efficient payoff vector per market as the degree of multimarket
contact m increases.

In the proof of the main theorem, we construct a strategy profile which is regarded
as a generalization of the trigger strategy profile by Friedman and is also related to the
idea of review strategy profile by Radner (1986). According to this specified strategy
profile, a firm has no incentive to deviate in a// markets at one time: By observing the
ratio between the number of all markets m and the number of markets in which the



“low” price occurred, and by using the law of large number, the rival firm can almost
certainly detect such an all-market deviation. A firm also has no incentive to deviate
only in a single market: It might be difficult for the rival firm to detect such a single-
market deviation in the imperfect monitoring case, but a firm nevertheless hesitates to
deviate only in a single market for fear that the rival firm should retaliate in all markets.
This point corresponds to the view that Edwards (1955) first raised and is commonly
held:

“A prospect of advantage from vigorous competition in one market may be weighed against the
danger of retaliatory forays by the competitor in other markets.”

The difficulty that makes this paper non-trivial might be found in the proof that a
firm has no incentive to deviate in more than one but less than all markets. We will
show as Lemma 3 that there exists an integer £* such that the gain from deviation when
a firm chooses “large supply” in some & markets and “small supply” in the other m—k
markets is concave with respect to £ if k is less than £, whereas it is convex with
respectto k if k is more than k*. This guarantees, as is shown in Lemma 4, that if a
firm has incentive to deviate, this firm always has incentive to deviate either only in a
single market or in all markets. Hence, all we have to do is to show that a firm has no
incentive to deviate either only in a single market or in all markets.

In spite of the unquestionable importance of the multimarket contact effect, there
are few previous works on its theoretical foundations. Exceptions are Bulow,
Geanakoplos, and Klemperer (1985), and Bernheim and Whinston (1990). Bulow,
Geanakoplos, and Klemperer investigated a two-stage game of price-setting duopoly
where one firm operates in another market as a monopolist and its production cost in
the duopolistic market depends on the sum of its output in the two markets. They
explained some effect of commitment in the monopolistic market which calms price
competition in the duopolistic market.

Bernheim and Whinston (1990) is much more related to our work. They
investigated an infinitely repeated game, and confined their attention to the perfect
monitoring case. They explained the multimarket contact effect on enhancing implicit
collusion, and referred to the relevancy to several empirical studies. However, it must
be recognized that the multimarket effect in the perfect monitoring case is quite limited,
because, as they have mentioned as “an irrelevance result’, when markets and firms are
identical, multimarket contact never enhances firms' abilities to enforce implicit
collusion.



The efficiency theorem presented in this paper should be regarded as the remarkable
contribution in the repeated game literature also. Radner, Myerson and Maskin (1986)
presented an example in which, in the imperfect monitoring case, efficiency can not be
approximated by a subgame perfect equilibrium even though the discount factor is close
to unity. Matsushima (1989) pointed out that the logical core of this “uniform
inefficiency” depends crucially on the specialty of the example. Fudenberg, Levine and
Maskin (1994), Abreu, Milgrom and Pearce (1991), and Kandori and Matsushima
(1997) presented their respective limit folk theorems in which efficiency can be
approximated by a subgame perfect equilibrium. These works commonly assumed that
the discount factor is close to unity. Hence, the present paper should be regarded as the
first work to derive the efficiency theorem with /ow discount factor.

The organization of this paper is as follows. Section 2.1 defines a prisoner-dilemma
game. Section 2.2 explains multimarket contact, and define infinitely repeated games
with discounting and with imperfect monitoring. Section 2.3 presents a basic result in
the perfect monitoring case, which gives a necessary and sufficient condition on the
discount factor under which efficiency can be sustained by a subgame perfect
equilibrium. Section 3 gives the main theorem in the imperfect monitoring case, and
section 4 present the proof of this theorem. Section 5 concludes.



2. The Model

2.1. Prisoner-Dilemma Games

We define a prisoner-dilemma game G =(N, A4, 4,,u,1,) by

N =1{12},
A =4, ={cd},
u: A x4, > R,

u(c,c)=1and u(d,d)=0 for i=12,
ul(c,d)=u(d,c)=~L,
and
u(d,c)=u(c,dy=1+K,
where K>0, L>0and 1> K- L. Wedenote a, €4, for i=12, a=(a,a,),and
wa)=(u(a),u,(a)).

In the main part of this paper, we will assume imperfect monitoring in the following
sense: Each player i=12 can not observe the opponent’s choice of action, but can
observe a public signal @ €Q = {B,G} which is randomly determined and depends on
the action profile chosen by the players. When an action profile a € 4, x 4, was chosen,
each player i=12 observes public signal B and obtains payoff g(a,,B) with
probability p(a), whereas she observes public signal G and obtains payoff g(a,,G)
with probability 1- p(a). We assume

ple,d)y=pld,c),
and
ple,c)< p(d,c) < p(d,d).
We must note that #,(a) is an expected value, i.e.,
u(a)= p(a)g(a;, B)+{1- pla)}g(a,C).

An application is a quantity-setting oligopoly where each firm i=1.2
simultaneously chooses either a small amount of supply a, = ¢ (“cooperation”) or a
large amount of supply g, = d (“defection”). Public signal @ is regarded as the market
price, where @ = B means the competitive, low price and @ = G means the collusive,
high price. Because the market demand fluctuates randomly according to some
exogenous factors, the market-clearing price is also randomly determined. Each firm
can not observe the opponent’s choice of supply. The realized market price gives a noisy

information about it.
We must note that the action profile (d,d) is the unique Nash equilibrium in G,



and the associated expected payoff vector u(d,d)=(0,0) is Pareto-inferior to an
efficient payoff vector u(c,c}=(1,1).

2.2. Multimarket Contact and Repeated Games

We introduce the situation of multimarket contact in the following way. There exist
two rival firms, i.e., firm 1 and firm 2, which produce commodities in m number of
distinct quantity-setting duopolistic markets. Each market 4 =1,...,m is modeled by the
identical prisoner-dilemma game defined in subsection 2.1. In market £, firm /=12
chooses an amount of supply a,, e{c,d}, and then observes a public signal, or a
market price in market 2, @, €Q.

These firms produce in every market infinitely many times. This repeated situation
1s modeled by an infinitely repeated game with discounting denoted by G(m,5), where
m is the number of markets, & €(0,1) is the discount factor, and the component game
is defined by a combination of m identical prisoner-dilemma games. Let S, = 4"

denote the set of actions for firm 7, and let ® = Q™ denote the set of signal profiles. In
every period f=12,..., firm J chooses an action s,(f)=(a,,(¢),...,a,,(t)) €S,, and
then observes a public signal profile &(¢)=(w,(¢),...,®,(t)) e ®. Here, a,,(t) e{c,d}
is the amount of supply which firm / chooses in market # in period ¢, and
w, (1) € {B,G} 1s the price realized in market % in period ¢.
A pure public strategy, or simply a strategy, for firm 1 is defined by
o Jo' - S,
=0

where @, = {4}, ¢, is the null history, forevery 21,
g, =(HD),...H1) e,
H1r)=(0,(7),...,0,(1)e® for v=1,..,¢,
O-i(¢¢) = (o-i,l(¢t )>'~'>Gi,m(¢t )) € Si >
and
o,,(#,) € 4, is the amount of supply which firm i chooses in
market /4 in period 7 +1 given history ¢,.

A firm’s choice of supply in a market may depend on not only the history relevant to
this market bur also the histories relevant to the other markets.

Let o =(0,,0,). Let v,(0,0) denote the normalized expected payoff for firm i
induced by strategy profile o .Let v(o,d0)=(v,(0,8),v,(0,0)). For every history ¢,,
let o , denote the strategy for firm / after history ¢, occurs. Let o] , =(o, l 420 | ) A



strategy profile o is said to be a public perfect equilibrium in G(m, ) if for every
t=12,..., every ¢ €®,, every i=12 and every strategy o,

v,.(a'Lﬁ’,é‘) zv,(o],0,

¢,§) where j # /.

Remark 1: The terminology of public strategy and public perfect equilibrium is
introduced by Fudenberg, Levine and Maskin (1994) and Radner, Myerson and Maskin
(1986). In general, a strategy for a player may depend on not only public histories of
signal profiles but also private histories of her own actions. However, Fudenberg,
Levine and Maskin have shown that the public perfect equilibrium property is robust in
the sense that there exists no strategy which depends on private histories and gives the
higher payoff than this public equilibrium strategy. See Fudenberg and Tirole (1991,
Chapter 5).

2.3. Perfect Monitoring: Basic Result

Before starting the analysis of the imperfect monitoring case, it might be helpful to
consider the perfect monitoring case. Assume that each firm can directly observe the
opponent’s choice at the end of every period. Define a strategy for firm i, which is so-
called the trigger strategy, as follows:

Choose s,(1)=(c,...,¢) inperiod 1.

In every period ¢ 22, choose s5,(t)=(c,...,c) if firm i/ observed

((c,...,c),(c,...,c)) € S; x S, in all previous periods.

Choose s,(¢)=(d,...,d), otherwise.
The trigger strategy says that firm i chooses “cooperation in all markets” as long as no
firm deviates from “cooperation in all markets”, but chooses “defection in all markets”
once a firm deviated from “cooperation in all markets”.

We must note that if both firms conform to the trigger strategy profile, they obtain
the efficient normalized expected payoft (m,m).

Proposition 1: 7he trigger strategy profile is a perfect equilibrium if and only if these

firms are patient enough to satisfy the inequality
K
o= . 1
1+K )

Proof: Whenever a firm deviates in a market, then the opponent will choose 4 in all



markets forever from the next period according to the trigger strategy. Hence, choosing
d in all markets in all periods is the best strategy among all deviating strategies. This
deviating strategy gives the deviant the normalized expected payoff (1-)m(1+K). It
is clear that this value is less than or equal to the normalized expected payoff induced
by the trigger strategy profile m, if and only if inequality (1) holds.

Q.E.D.

Remark 2: We must note that the one-shot Nash equilibrium payoff vector (0,0) is the
minimax point, and therefore, the infinite repetition of the choice of (d,d) in all
markets is regarded as the severest equilibrium punishment. According to Abreu (1988),
one gets that inequality (1) is not only sufficient but also necessary for the attainability
of efficiency among these firms, even though all strategy profiles other than the trigger
strategy profile are taken into account as possible equilibrium strategy profiles.

Remark 3: We must also note that the necessary and sufficient condition (1) does not
depend on the number of markets m. This corresponds to the “irrelevance result’ by
Bernheim and Whinston (1990, section 3) which says that in the perfect monitoring
case multimarket contact gives no influence on the possibility of implicit collusion
when the model is symmetric.

10



3. Imperfect Monitoring: Main Theorem

From now on, we investigate the imperfect monitoring case. It is well known in
game theory literature that if monitoring is imperfect and the discount factor is strictly
less than unity, it is impossible to achieve efficiency as a perfect equilibrium payoff
vector.” We show as the main theorem of this paper that as the number of markets m
increases, the efficiency loss per market of public perfect equilibrium in the imperfect
monitoring case approaches zero, and therefore, the efficient payoff vector per market
(1,1) can be approximately sustained by a public perfect equilibrium when m is large
enough. Of particular importance, this approximate efficiency holds under almost the
same condition on the discount factor as the perfect monitoring case, i.e., this
approximate efficiency holds if inequality (1), which is the necessary and sufficient
condition in the perfect monitoring case, holds with strict inequality.

Theorem: If inequality (1) holds with strict inequality, i.e.,

K
o , 2
>1+K @)

then there exists an infinite sequence of strategy profiles (o"™)2_, which satisfies that

Jorevery i=12,
[m}
lim vi(e™.0) _ 1, 3)

m—»x m

and there exists ™ such that for every m>m, o™ is a public perfect equilibrium in
G(m,9).

We present the proof of this theorem in the next section.

? See Pearce (1992) and Fudenberg and Tirole (1991, Chapter 5).
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4, Proof of the Theorem

The proof of this theorem is constructive. Fix a positive integer r(m) e{l,..., m}

arbitrarily, which is called the threshold for m. Define o!™ as follows:
o) =(c,...,c),

forevery r21,
o™ (@) =(c,...,c) if #{hefl,..,m} w,(7)=B}<r(m) for all
r=1,...,t,

and
oc"(¢)=(d,...,d) if #{he{l,..m} @, (r)=Byzr(m) for
some 7=1,..,¢t.

Let o = (o™, o).

According to o™, each firm continues to choose “cooperation in all markets” as
long as the number of markets in which signal B is observed is less than the threshold
r(m). Once this number is more than or equal to »(m), both firms immediately stop
choosing “cooperation in all markets” and continue to choose “defection in all markets”
from the next period.

For every » €{0,...,m} and every k €{0,...,m}, let f(r,m k) €[0,1] denote the
probability that the number of markets in which signal B is observed is r, i.e., the
probability that #{h e{l,...,m}: @,(7)= B} = r holds, provided that a firm chooses d
in some k markets, chooses ¢ in the other m— k markets, and the opponent chooses ¢
in all markets. By the standard calculation,

min[r,m-k]
f(r,mk)= D(h,r,mk), 4)

h=max[0,r—k}
where
klW(m—k)!

h(m—-k—-h)l(r-n)!(k-r+h)
- ple,e) 1= ple, )} p(d,c) {1~ p(d,c)} .

From the definition of f(r,m, k), we must note
f(romk)= p(d,c)f(r-1,m-1k-1)
+{1- p(d, o)} f(r,m=1k~1), ()

D(h,r,mk) =

and
f(r,mk—-1)= p(c,c)f(r-1,m-1k-1)
+{1-plc,o)} f(r,m—-1k-1). (6)

The normalized expected payoff for firm i induced by o™ is written by

12



r(m)-1

(o™, 8)=(1-8)m+8 Y f(r,m0w,(c™,6),
r=0

that is,
Vi(o,[m], 5) = S(]m’;kg)m .
1-6 ) f(r,m0)
r=0
Choose an infinite sequence of thresholds (r(m));_, which satisfies
r(m)-1

lim Y f(r,m0)=0, (7
m-»c0 —

tim "7 = pie,o), ®)
m-yo ni

and
(1-86)K

8{p(d,c)- p(c,c)}

lim mf (r(m)-1,m-1,0)>

€))

Lemma 1: There exists an infinite sequence of thresholds (r(m)),., which satisfies

equalities (7) and (8) and inequality (9).
Proof: See Appendix A.

Equality (7) says

[m] -
lim 27720 iy 120y

1-6 Y f(r,m0)

>0 m

that is, equality (3) holds. Hence, for every large enough m, o™ approximately
achieves the efficient payoff vector per market (11).

We show below that there exists 7 such that for every m>#i, o™ is a public
perfect equilibrium in G(m,5).

If firm i deviates from o™ by choosing ¢ in some k markets and choosing ¢ in
the other m -k markets and conforms to o™ afterwards, then it is penalized by the
opponent with probability z f(r,m, k), and its normalized expected payoff is

r=r(m)
r(m)-1
w(k,m)= (1= 8)Ym+kK)+8 Y f(r.mkw(c"™,8).  (10)
r=0
We must note that v,(o'™,8)=w,(0,m), and o' is a public perfect equilibrium in
G(m, o) ifforevery kef{l,...,m},
w,(k,m)< v,(c'™,6), (11)

13



ie,if forevery k e{l,...,m},

(1+ %—-){1 - 5@2%}&, mO} <1~ 5Milf(r, m k). (12)

The following property of single-peakedness of f(r,m, k) with respect to & will

simplify the proof for public perfect equilibrium of o™

Lemma 2: There exists an integer k' (r,m) such that
f(rom k)2 f(r,mk=1) if k<k'(r,m),
and
f‘(r9n1’k)S f(ram:k“l) gf k> k’(r’m)'

Proof: See Appendix B.

By using Lemma 2, we prove a lemma as follows, which plays am important role in
the proof of this theorem.

Lemma 3: For every m, w,((k,m)—w,(k—1,m) is nonincreasing with respect to k if
kell,. k' (r(m)-1,m-1)}, whereas it is nondecreasing with respect to k if
k ek’ (r(m)-1,m=1)+1,...,m}.

Proof: From equalities (5) and (6),
if(r,m,k) = if(r,m_ Lk-D+p(d,c)f(r(m)-1,m-1k~-1),

r=r(m) r=r(m)
S fromk-1)= 3 f(r,m=Lk-1)+p(c,c)f(r(m)=,m~1k~1),
r=r{m} r=r(m)
and therefore,

if(r,m,k)-— ff(r,m,k—l)

r=r(m) r=r{m)

={p(d,c)- p(c,c)} f(r(m)—-1,m-1k-1). (13)
From equalities (10) and (11),
w,(k,m)—w,(k-1,m)

3 Theorem 3 in Kandori and Matsushima (1997) is based on the main theorem of the present
paper. Kandori and Matsushima cited in p.646, 1.1 this inequality as “inequality (14) in
Matsushima (1995)".
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=(1-6)K - &{ if(r, m, k) - zm:f(r, mk -1, (a!™,5)

r=r(m) r=r(m)
=(1-8)K - 8{p(d,c)- p(c,e)} f(r(m)—1,m~1L k=1, (c"™,5). (14)
From Lemma 2 and inequality p(d,c)> p(c,c), value (14) is nonincreasing with
respect to k €{l,...,k (r(m)~1,m-1)}, whereas it is nondecreasing with respect to
ke{k (r(m)-1,m-1)+1,...,m}.
Q.E.D.

Lemma 3 implies that there exists an integer £* such that the gain from deviation
when a firm chooses d in k& markets and ¢ in the other m - k markets is concave with
respectto k if k islessthan k*, whereas it is convex with respect to £ if k is more
than k*. By using Lemma 3, we show that all we have to do is to prove that a firm has
no incentive to deviate only in a single market and has no incentive to deviate in all
markets. That is;

Lemma 4: '™ is a public perfect equilibrium in G(m, &) if
w,(1,m)<v,(o™,8) and w,(m,m)< v.(c™,8).

Proof: Lemma 3 says that w,(k,m)—w,(k-1,m) is nonincreasing with respect to
kefl,.. k"((m)-1,m—1)}, and therefore, there is k €{0,...,k"(r(m)—1,m~1)} such
that
w,(k,m) is nondecreasing with respectto k£ in {0,..., IG} "
whereas
w,(k,m) is nonincreasing with respect to & in {IE,..‘, k' (r(m)-1,m-1)}.
This implies that if
w,(1,m) < w,(0,m)=v,(c"™,5),
then
w,(k,m)<v(a™. &) forall kefl,....k (r(m)-1,m-1)}. (15)
Hence, if firm i does not prefer to deviate in a singie market, firm i does not prefer to
deviate in any number of markets less than or equal to & (r(m)—1,m—1) also.
Lemma 3 says that w,(k,m)-—w,(k—1,m) is nonincreasing with respect to
k e{k’(r(m)-1,m-1)+1,...,m}, and therefore, there is k € {k'(r(m)—1,m~1),...,m}
such that
w,(k,m) is nonincreasing with respectto £ e " (r(m)y—1L,m-1),..., k ¥,
whereas
w,(k,m) is nondecreasing with respectto & € {E 1

15



This implies that either
w,(m,m)=w,(k,m) forall k e{k (r(m)-1,m-1),...,m},

or
w, (k" (r(m)~1,m~1),m)2 w,(k,m) forall ke (k' (r(m)—1,m~1),...,m},

and therefore, one gets that if
w,(1,m) < v,(6'™,8) and w,(m,m)<v,(c",6),

then
w,(k,m)< v, (o™, &) forall ke{k’ (r(m)—1,m-1),...,m},

because inequalities (15) imply w,(k*(r(m)~1,m—1),m)< v (c™,8).

From these observations, we have proven this lemma.
Q.E.D.

We show that a firm has no incentive to deviate only in a single market.

Lemma 5: There exists an integer m such that for every m=>mi,
w,(1,m) < v,(c'™,8).

Proof: From equalities (3) and (14) and inequality (9),
Lim {w, (1, m) ~ v(e'™,8)} = lim {w,(1,m)~ w,(0,m)}

i ’l"i“’ig{(l —9)K = 8{p(d,c) - ple,c)imf (r(m)—1,m~ 1,0)&,:]’6)}

=(1-8)K - &{p(d,c)- p(c,c)} lim mf (r(m)—1,m~1,0)
(- 8K
o{p(d,c)- p(c,c)}

>(1-06)K - 6{p(d,c)- plc,c);

>0.
Hence, we have proven this lemma.
Q.E.D.
We show that a firm has no incentive to deviate in a// markets.
Lemma 6: [f inequality (2) holds, then there exists an integer m such that for every
m2mm,

w,(m,m)<v,(c",8).

Proof: The law of large number says that

16



}im{ Zf(r,m,m)}zl forall £>0.

ram{p(d.c)-£}

Let £> 0 satisfy &< p(d,c)- p(c,c). From equality (8),
r{(m)-1
lim{ f(r,m, m)} =1- lim{ z f(r, m,m)}
n-»0 =0 m-->w

rzrim)

=1—’m{ Zf(r,m,m)}zo.

rzmi{p(d,c)-&}
This, together with equalities (3) and (10), implies
fim 20 (m, m)

m-—>®

=(1-8Y1+K)+5 Iim{w S 1f(r, m, m)}
m-> m

r=0
=(1-6)Y1+K),
which is less than 1 because of inequality (2). From equality (3),
lim w,(m,m)—v,(c™,8)

mroe m

<0,

and therefore, we have proven this lemma.
Q.E.D.

From Lemmata 4, 5 and 6, we have proven that there exists 7 such that for every
m2>, o™ is a public perfect equilibrium in G(m,5) under strict inequality (2).

Hence, we have completed the proof of this theorem.
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5. Conclusion

In this paper, we have investigated the long-run strategic relationship between two
rival firms which come into contact with each other in multiple distinct markets. We
have modeled infinitely repeated games with discounting the component game of which
is defined by a combination of multiple identical prisoner-dilemma games. We have
shown that, in the imperfect monitoring case, multimarket contact significantly
enhances firms’ abilities to sustain implicit collusion.

Since the model studied in this paper is restrictive, we might be asked about
whether the main theorem can be extended to more general environments. My
conjecture is that its essential point can be extended to some general class in which
public signals are independent each other. However, this might not be true in the case
that public signals are correlated each other, or more specially, there exists a common
random shock in all markets. In the latter case, we might not use the law of large
number to detect a firm’s all-market deviation.

The study in more general environments might be important, might have some new
substance, and should be examined as the next step on this line of research.
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Appendix A: Proof of Lemma 1

The law of large number says that for every &> 0,

lim ) f(r,m0)=1,

* ":ii" p(.c,c)L<e
and therefore, there exists an infinite sequence of positive real numbers (&(m)),, ., such
that

lim &(m) =0, (A1)
and
lim > f(r,m0)=1. (A2)

r:l;’;—p( c,c)*«»:(m)

Lemma A-1: There exists (r(m))._, which satisfies that there exists m such that for
every mzm, r=r(m) is the maximal integer among {0,...,m} satisfying inequalities
(1-6)K
8{p(d,c)~ p(c,c)}’

mf(r—1,m-10)> (A3)

and
r <m{p(c,c)— e(m)}. (A4)

Proof: Suppose that there exists no such (r(m)),,_ . Then, we can choose an infinite
sequence of positive integers (m(x)), such that lim m(x)= oo, and for every x,there

is no » which satisfies both inequalities (A3) and (A4) for m = m(x). From equality
4),

fr,m0) = 5 ple,cY (1= ple, ™
ri(m—r)!
and therefore,
£rom0)= 2Dt (- -1, m-1,0). (AS)
r

For every x and every r satisfying inequality (A4) for m = m(x), inequality (A3) does
not hold for m = m(x), and therefore, one gets from equality (A5) that
fir,moys Lo OKAGS)
ér{p’(da C) - p(c: C)}

Hence,

lim > f(r.m(x),0)

= r:i-’—nix—)- plee )§<.s(m(x »
(1-0)Kp(c,c)

Py plecr-s(mxparemix)ip(c.cneman O {P(d, €)= pe,c)}

<lim

X—po0
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< lim (1--6)Kp(c,c)
T ol ) ple,e Y-t m{x Dy <r<m(x Y ple,e Yre(m{x ) om{x){p(c,c)— e(m(x)}{p(d,c)~ p(c,c)}
<lim 2e(m(x))(1-6)Kp(c,c)
o dm(x){p(c,c)— e(m(x))}{p(d,c)~ plc,c)}
=0,
which is a contradiction of equality (A2).

Q.E.D.

It is clear from inequality (A3) that (r(m)),_, specified in Lemma A-1 satisfies
inequality (9).
We show below that (r(m)),_, satisfies equalities (7) and (8) also. Since r = r(m) is

the maximal integer among {0,...,m} satisfying inequalities (A3) and (A4),
r(m)-1

lim 3" f(r,m0)
m-p0 =0

. (1- &)Kp(c,c) }
>1 ,m,0)—
ml_l;& r:kr—mp(?c)kms(m) {f(r " ) &m{[’(da C) - P(C, C)}

: . 2e(m)(1 - 8)Kp(c,c) }
> 1 ,m0)b~1
»i’»’o’o{,,-m:%ﬁfm’" )} »ﬂ{&n{pw,c»e(m)}{p(d,c>—p<c,c)}

=1-0=1,
which implies equality (7).
Next, suppose that equality (8) does not hold. Since inequality (A4) holds for
r = r(m), there exist an infinite sequence of positive integers (m(x))., and 7> 0 such
that iﬂ m(x)= oo, and for every x,

r(m(x)) < mx){p(c,c)—n}.

However, the law of large number says that

r(m{x)r1
lim Y f(r,mx)0)<lim 3 f(r,m(x),0)
xe r=0 ¥ rir<m(x){p(c.c)-n}

=1-1lim > f(r,m(x),0)=1-1=0,

rirzm(x){p(c.c)-n}
which is a contradiction of equality (7).
From these observations, we have proven Lemma 1.
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Appendix B: Proof of Lemma 2

The following lemma will be helpful for the proof of Lemma 2.

Lemma B-1: f(r,m, k) is single-peaked with respect to r, that is, there exists an
integer r (m, k) such that
fromk)= f(r=1Lmk) if r<r(mk), (B1)
from k) f(r+lmk=1)if r2r(mk), (B2)

where r’(m, k) is nondecreasing with respect to k.

Proof: Consider % = 0. From equality (4),

m!

f(r,m0) = —————p(c,c) {1~ plc,e)}"",
ri(im-r)!

and therefore,

J(r+1,mQ0)  (m-r)p(c,c)
f(r,m0) — (r+D{l-plc,0)}’
which is less than or equal to 1 if and only if
r<(m+1)p(c,c)-1.
This implies that f(r,m,0) is single-peaked with respectto r.
Suppose that £ >1,and f(r,m k—1) is single-peaked with respect to » . Equality
(5) says that for every r e{l,...,r (m-1k~-1)},
f(romk)=p(d,c)f(r-1,m-1k-1)
+{1-p(d, o)} f(r,m-1Lk-1)
2 p(d,e)f(r-2,m-Lk-1)+{1-p(d,c)} f(r-LLm-1Lk~-1)
= f(r-Lmk),
where f(-1,m-1Lk-1)=0. Moreover, equality (5) says that for every
re{rim-L,k-1)+1,...,m-1},
f(romk)=p(d,c)f(r-1,m-1k-1)
+{1-p(d,c)} f(r.m-1k—-1)
2 p(d,c)f(rom-1Lk-1) +{1-p(d,c)} f(r+1,m-1Lk-1)
= f(r+1,mk),
where f(m,m-1,k—-1)=0.Hence, f(r,m, k) is single-peaked with respectto r.
From these observations, we have proven that there exists r (m, k) which satisfies
inequalities (B1) and (B2).
We show below that »"(m, k) is nondecreasing with respect to k. Suppose that
f(r+1L,mk-1)2 f(r,mk —1). Equality (6) says
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0L f(r+Lmk-1)- f(r,mk-1)
= ple,){f(r,m-Lk-1)- f(r-1,m-1Lk~-1)}
+{1-ple,e{f(r+L,m-Lk-1)- f(r,m=1Lk~1)},

which, together with the single-peakedness with respect to r, implies
f(r,m=-Lk-1)2 f(r-1,m-1k-1). (B3)

If f(r+L,m-1k-1)2 f(r,m~1k-1), then equality (5) and inequality (B3) say

f(r+1,mk)- f(r,mk)
= p(d,c ) f(r,m=-Lk-1)— f(r-1,m-1Lk-1)}
+{1-pld, N f(r+1L,m-Lk-1)- f(r,m-1k-1)}
20.
If fr+1,m-1k-1)< f(r,m—1,k-1), then equalities (5) and (6) and inequalities
(B3)and p(d,c)> p(c,c) say
f(r+Lmk)— f(r,mk)
= p(d,c ) f(r,m-1Lk-1)— f(r-1L,m-1k-1)}
+{1-p(d, )} {f(r+1,m-Lk-1)- f(r,m-1k-1)}
> ple,e ) f(r,m—Lk-1)— f(r-1L,m-1k-1)}
+{l- plc,e 3 {f(r+1l,m=-Lk-1)—- f(r,m—1k~-1)}
= f(r+l,mk-1)- f(r,mk-1)
>0.

From these observations, we have proven that if f(r+1l,mk-1)2 f(r,mk~-1),
then f(r +1,m,k)> f(r,m, k). This implies that r"(m, k) is nondecreasing with respect
to k.

Q.E.D.

By using Lemma B-1, we prove Lemma 2 in the following way. Fix (r,m, k)
arbitrarily.
Suppose that 0 <7 <r'(m-1,k~1). LemmaB-1says »"(m-Lk)2r" (m-1,k-1),
and therefore, 0<r<r'(m-1k),ie.,
f(r,m-1Lk)z f(r-1,m-1k).
Equalities (5) and (6) and inequalities p(d,c)> p(c,c) say
fromk)— f(r,mk+1)
={p(d,c)- plc,c)}{f(r.m=1Lk)— f(r-1,m-1,k)}
20. (B4)
Suppose that r" (m~1,k~1)<r < m. Then,
f(r,m-Lk-D< f(r-1,m-1k-1).
Equalities (5) and (6) and inequalities p(d,c)> p(c,c) say
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f(r.mk -1~ f(r,mk)
={p(d,c)- ple.)}{f(r,m-Lk-1)- f(r-1L,m-1k~-1)}
<0. (B5)
From inequalities (B4) and (BS), one gets that for every (r,m, k),
either f(r,mk)2 f(r,mk+1) or f(r,mk-1)< f(r,mk),
which means the single-peakedness with respectto % .
From these observations, we have proven Lemma 2.
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