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In a balanced one-way model with random effects, the simultaneous estimation
of the variance components are considered under the intrinsic Kullback-Leibler loss
function. The uniformly minimum variance unbiased (UMVU) or ANOVA estima-
tors are known to have a drawback of taking negative values. The paper shows
the minimaxity of the ANOVA estimators of the variance components and obtains
classes of minimax estimators. Qut of these classes, two types of minimax and non-
negative estimators are singled out, and they are characterized as empirical Bayes
and generalized Bayes estimators. Also a residual maximum likelihood (REML)
estimator is interpreted as an empirical Bayes rule. The risk performances of the
derived estimators are investigated based on simulation experiments. An extension
to the general mixed linear model with two components of variances is studied, and
nonnegative estimators improving on the ANOVA estimators are given.
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1 Introduction

Mixed linear models or variance components models have been effectively and exten-
sively employed in practical data-analysis. When the statistical inference for regres-
sion coefficients or treatment effects is implemented, estimators of the variance compo-
nents are used to get two-stage procedures such that two-stage generalized least squares
(2GLS) estimators and 2GLS tests (for instance, see Fuller and Battese(1973), Peixoto
and Harville(1986), Battese et al.(1988) and Rao et al.(1993)).

In the estimation of the variance components, it is well known that every unbiased
estimator of the ‘between’ component of variance possesses the crucial drawback of taking



negative values with a positive probability. Much effort has been devoted to this issue
and reasonable procedures eliminating this undesirable property have been proposed: see
Hartung (1981), Mathew (1984), Mathew et al.(1992) and their references. Of these,
LaMotte (1973) showed that with the exception of the error variance, unbiased nonnega-
tive quadratic estimators of variance components do not exist. On the other hand, Kleffe
and Rao (1986) demonstrated that nonnegative biased quadratic estimators of the ‘be-
tween’ component of variance fail the minimum condition of consistency as each number
of replication remains fixed, but the number of blocks or groups tend to infinity. These
let us consider nonnegative estimators other than the quadratic estimators.

A simple modification of an undesirable unbiased estimator is a truncation of it at zero,
yielding the uniform improvement as noted by Herbach (1959), Thompson (1962) and
others. The truncated estimator, however, seems still unpleasant because the ‘between’
component of variance needs to be estimated by zero with a probability. Some other
reasonable procedures have been proposed by Portnoy (1971), Chow and Shao (1988),
Mathew et al.(1991), Kubokawa (1995) and Kubokawa et al.(1993b). From the aspects
of Bayesness, minimaxity and admissibility, however, decision-theoretical researches have
not been developed for the estimation of the ‘between’ component of variance.

In this paper, our interest is focused on the estimation of the variance components in
a decision-theoretic framework. Especially our scope is to construct classes of minimax
estimators improving on the ANOVA estimators, and to find out empirical Bayes and
generalized Bayes estimators within the classes.

The mixed linear model we first treat in the present paper is the simple one-way
random effect model with equal replications:

yij:H+vi+eija izlv"'ak7 j:la"'?nv (11)

where v;’s and ¢;;’s are independent random variables, v; being normally distributed with
mean 0 and variance 2, M'(0,0?) and e;; having N (0,02). Let 7,. = X7, ij/n, §.. =
_Z_le 2y Yii/ (nk), Sy = ¥ i (i —7,.)? and Sy = n "% (7,. — 7..)%. The statistics
Y.., Sy and S, are the minimal sufficient and are mutually independently distributed as

g.. ~ N, (nk)~'(o? + nop)),
Sy~ U?X?/] and Sy ~ (0 + naf)xi, (1.2)

for

v =k(n—1) and v, =Fk—1,
where x2 designates a chi squared distribution with v degrees of freedom. Then we want
to estimate the variance components ¢? and o2 based on 57 and Sj.

For comparing estimators of ¢? and o2, the squared errors loss or quadratic loss
have been mainly utilized in the literature. For instance, the quadratic loss is given
by L,(6%/0?) = (6%/0? — 1)* in estimation of o2. It may be, however, inappropriate



to employ L,(62/0?) because L,(62/0?) penalizes the under-estimate less than the over-
estimate as seen from the fact that limy0L,(t) = 1 and limye L4(?) = co. This is also a
reason why the best multiple of S} in terms of the mean squared error (MSE) is given by
(vy +2)71, that is, the unbiased estimator &zUB is not the best relative to the MSE.

In this paper, instead of the quadratic loss, we employ the Kullback-Leibler loss func-
tion in the simultaneous point estimation of the variance components ¢? and o?2:
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for a couple of unknown parameters w = (¢2,¢2). This loss is defined in the case of

6%+ n6? > 0. This can be verified to be a convex function of 62/02 and &2/c2. In fact
(1.3) can be derived from the Kullback-Leibler information loss
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where f(s1, s2|02,02) is a joint density of S} and S,. With respect to the Kullback-Leibler
loss, the ANOVA estimators (62V5, O'QUB) is the best in the sense of minimizing the risk

among estimators (62, 52) = (aS;,n"1(bS; — aS))) for constants a and b, where

S
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which are the uniformly minimum variance unbiased (UMVU) estimators of 62 and o?.
In Section 2, it is first shown that the ANOVA estimator (62V8, 52VB) is minimax rel-

ative to the Kullback-Leibler loss (1.3). We next construct classes of minimax estimators

improving on (62VB 52UB). Qut of the classes, we develop two types of nonnegative and

minimax estimators (528 (a), 5288 (q)) and (5 2GB(b), 5268 (b)), where

6 v

&QEB(Q) = min {Sl .91_-{—__(25_’2}7
vy Vit s
L S, Sy +aS
52" (a) = {ma {SQ’M} _ min{ 1 01 ta 2}]’
n Vo U+ vy —2 V1 vy + vy
N QGB(b) . S fé352/51 $u2/2—1/(1 + .‘I)(V1+V2)/2dil,‘
vt (R gz (1 4 g2 dy]

5,2 f(;)SQ/Sl IU2/2_1/(1 + x)(w—i—uz)/?dfc __ ~2GB

5298 ()],

1
~2GB b) = =
g, ( ) n [’/1 + 1y f552/51 33”2/2/(1 + :c)(”1+”2)/2+1dw
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where a and b are suitable constants satisfying

9
2 oy and 1<b< 2EE
vy + 2 1y

It is interesting to note that (288(a), 528 (a)) and (629B(b), 5629 (b)) for 0 < a < 1 and
0 < b <1 can be derived as empirical Bayes and generalized Bayes rules as shown in
Section 2.2. This implies that the case of b = 1 in (1.6) satisfies both the minimaxity and
the generalized Bayesness. Putting ¢ =1 in (1.5) yields

: (ST St 4+ 5,
GIREML OEEB('I) = mm{ , = },

1y -+ 125} (l 7)
R N Y I3 1 S‘Z Agl -
O_gRE,ML — (szB(l) = —max {_..._ —_— 0} ,
n %) 141

which are known as the residual (or restricted) maximum likelihood (REML) estimators.

The risk performances of some nonnegative estimators including the above ones are
investigated based on simulation experiments. Section 3 deals with an extension to general
mixed linear models with two variance components and constructs classes of estimators
improving on ANOVA estimators.

2 Bayes and Minimax Estimation

2.1 Construction of a Class of Minimax Estimators

We now construct a class of minimax estimators improving on the ANOVA estimator
(62Y8, 52UB) given by (1.4) relative to the Kullback-Leibler loss (1.3).

From the form of the ANOVA estimator, we may consider the estimators of the general
type

#6) = s (2)

o) =+ {6 () - 510 ()}

Then the risk function of (62(v)), 5(¢,v;n)) relative to the Kullback-Leibler loss (1.3) is
written by

(2.1)

R(w; 62(2), 62(¢, 103 n); 11, 1, 1)
= v Ry(w; Sy (§;>) + vy Ry(w; Sap (—5:1—> in), (2.2)



where

Riwisw (2)) = & [g—‘—d) (3) - oeg (2)- 1} ,
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Hence the original problem under the loss (1.3) is decomposed into two problems of
estimating o2 and o?+no? in terms of the risks Ry (w; S19) and Ra(w; Sa¢;n), respectively.

We begin with noting the minimaxity of the ANOVA estimator (1.4) under the
Kullback-Leibler loss (1.3). In the above transformed problem, this issue is equivalent to
the minimaxity of the estimator (v7'S;,v5'S5,). Since the parameter space is restricted
by the inequality ¢ < ¢? 4+ no?, the Bayes estimator of each parameter is not simple,
and so the minimaxity of (1.4) is not trivial. However we can verify that the Bayes risk
of the Bayes estimator converges the constant risk of the estimator (v;'Sy,v;'S,) when
the prior distribution approaches a noninformative (improper) prior. The details of the
proof are given in Section 4.

i

Proposition 1. The ANOVA estimator (62V8 52UB) given by (1.4) is minimaz rel-
ative to the Kullback-Leibler loss (1.3).

We next construct a class of minimax estimators, namely, improving on the ANOVA es-
timator. The Integral-Exzpression-of-Risk-Difference (IERD) method given by Kubokawa
(1994a,b) is useful for deriving sufficient conditions for the domination, and we can get
the following main results.

Theorem 1. Assume that
(a) P(w) is nondecreasing and lim,, . ¥ (w) = v7?,

(b) (w) > ho(w) where

1 wgre /21 (1 4 g)tr2)/2dy

= . 2.3
wo(w) 1/1 + Vs wa xV2/2"1/(1 + w)(V1+U2+2)/2dI ( )
Then Ry(w; S13(S5/51)) < Ry(w;vitSy) uniformly for every w.
Theorem 2. Assume that
(a) ¢(w) is nondecreasing and ¢p(0) = v3*,
(b) $(w) < ¢o(w) where
1 /w 1/2/2—-1 1 + T (V1+V2)/2d.77

v vy [ g2 (1 4 g) e +2)/2de
Then Ro(w; S2¢(S1/92);n) < Ro(w; vy 'Sy n) uniformly for every w.
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The proofs are technical and deferred to Section 4. Combining Theorems 1 and 2 gives

Corollary 1. The estimator (62(v), 62(p,y;n)) given by (2.1) is minimaz relative
to the Kullback-Leibler loss (1.3) if the shrinkage functions ¢ and  satisfy the conditions
(a) and (b) of both Theorems I and 2.

When we find minimax estimators by using the above results, the following lemma is
useful. For positive constants o and 3, let

/(1 +2)Pde
Tz 71 ¥ 2y
fZ 22 /(1 + z)Pda
fZaot (1 + 2)0+de’

hl(z; aaﬁ)

ha(z; 0, B)

Lemma 1.
(i) hi(z; o, B) is increasing in z with lim,,eohy(z; 0, 8) = B/(8 — a — 1), and

a+1

hi(z;e,08) <1+ o 5%

(ii) ha(z; a, B) is decreasing in z with lim,ho(z; 0, 3) = B/(c + 1), and

a+21

ho(z; > .
2(Z7a7ﬁ) —~1+a+1z

Proof. For the monotonicity of h,(z; a, 8), the derivative (d/dz)h,(z; a, 3) is propor-
tional to

[e3

z

- /z ’ dxr — - /Z : ° dx
(14 2)?Jo (14 x)s+! (1+ 2% Jo (1+z)°

/2 z22%(z — ) d
0 (14 @)1+ z)t 7

which is positive, and thus h(z;a,3) is increasing. It is easy to show that hi(z; e, 3)
converges (3/(3 —a —1) as z tends to infinity. Finally the inequality given in (i) is derived
as follows:

7 zot (1 + 2)PHda
Fe/(1+ ) e
Joz*tldz o +1

[ axode at2

hl(z;aa[}) -1

(2.5)



Here the inequality (2.5) is expressed by
BT [X(1+X)™"] < BX[X]E™ |(1+ X)), (2.6)

where £*[-] stands for the expectation with respect to the probability P*(A) = f, 2*/(1+
2}tz / [§2%/(1 + z)PT'dz. Since X and (1 + X)~”~! are monotone to the opposite
directions, the inequality (2.6) holds and we get the inequality (2.5). The results for

ha(z; «, B) can be verified by the same arguments. Especially, the inequality in (ii) follows
from the fact that

Joz°/(1 + 2)**'da

Pz D) =1 = T 0 e
Joxode a+21
T fPaetldr a+lz
Therefore we get the results of Lemma 1. od

2.2 Empirical Bayes and Generalized Bayes Estimators with Minimaxity
We shall develop empirical Bayes and generalized Bayes estimators out of the class of
minimax estimators given by Section 2.1.

Let n = 1/0% and € = 02?/(0? + no?) and note that £ is constrained by 0 < £ < 1.
When prior distribution 7(n,£) of (n,£) is supposed, the Bayes estimators under the loss
(1.3) are generally given by

5_23 — 1
¢ Eﬂ-[nISI7S2]’ (2.7)
~ 2B 1

1 A23]7

v :E[Ef[nftsl,sg 7e

where E7[-|S),5;] stands for an expectation with respect to the posterior distribution

7(1,€|51, S2) of (1,€) given Sy and S,.

For the purpose of derivation of empirical Bayes procedures, let a be a given positive
constant less than or equal to one, and suppose the prior distribution 7(n, &) = n~ (€ =
o) where () denotes the indicator function, P({ = &) = 1| and & is an unknown
constant such that 0 < & < a. Namely the supposed prior information about £ is that
¢ is unknown and in the interval (0, a]. Then the posterior density of  given 5; and 5;,
and the marginal density of S; and S, are given by

(posterior density) oc n(“1+”2)/2‘16_%(S‘%OS?)”

(marginal density) oc 52/2[51 + 5032]"(‘“+"2)/2Slul/2_1552/2—1.



Hence the Bayes estimators of ¢? and o? are

. S S.

UzB(fo) — ;1++£IO/2 27

sy L SitE6S

g, (EO) - n [(Vl + V2)£0 O, (60)}

Since o is unknown, it should be estimated from the marginal density. Noting that
0 < & < a, it is seen that the maximum likelihood estimator of & is written by ¢MF =
min{i,S1 /(1 S2), a}, which is substituted in the above Bayes estimators so as to obtain
the empirical Bayes rules:

52B(a) = &P (&)
S1 51-{'352

= min {-—, } (2.8)

vy vty

and
&8 a) = &PE™)
= 1 [max {—5—2-’ _____Sl/a + 5 } — (}ZEB(a)}. (2.9)
n 9 1 + vy

This estimator is also rewritten by

L & 5 + 615,
néé\/m vy + v

1 v Sy -1 . (ST S+ aS,
= —maxq|——= —1,a ——1}-m1n{-———————————- ,

)
n vy Sy vy vt

5’2EB((L) —

v

so that 6258 (a) is positive almost everywhere as long as a is strictly less than one. Espe-
cially putting a = 1 yields

B T - ’ 5’
&fREML = min{é, %+ “2‘}» (2.10)
vy 1+ s
- 1 4 AS' S S
GIREML —max{ﬂgi_ 1’0}~min{‘i, Lt 2}
n vy Sy vy v+
1 S.
= —max{—%-“gl“,o}a (2‘11)
n vy vy

which are known as the Residual (or Restricted) Maximum Likelihood (REML) esti-
mators. So it is interesting to point out that the REML estimators are derived as the
empirical Bayes rules.



The minimaxity of the empirical Bayes estimators is argued based on Theorems 1 and
2 and Lemma 1. From the inequalities in Lemma 1, it is seen that

1 120) )
< 1
1/)0(10)'_1/1'1-1/2( +l/2+2w ’ :

X i (2.12)
1%) &
oL (14222,
¢O(w>—V1+l/z( T Vo v
Putting
) 1 1+aw}
Tlwa) = L _
WTwia) = min{ ST
1 .
i) = n{i—ii”/—}
Vy 1+ e

we can check that 7 (w;a) and ¢*(w;a), respectively, satisfy the conditions (a) and (b)
of Theorems 1 and 2 if

vyf(va +2) <a <. (2.13)
As one of drawbacks of the REML estimator &2##ML given by (2.11), the parameter o2
is estimated by zero when v; 'S, < v;!S). Alternative estimators may be provided by
putting a = v5/ (v, +2) and we denote 6268 = 5288 (1, /(1,+2)) and 67F8 = 62EB (1, /(12 +
2)), which is also expressed by

52EB _ imax{'/l Sz 1,_2_} ' min{é’ S1 + 1a(1y +2)"152}.

! n vy Sy Vo vy v+ Iy

This demonstrates that (6228 52FB) is a positive, minimax and empirical Bayes procedure
for (¢%,02). The risk performances of the empirical Bayes estimators are investigated in
Section 2.3 for various values of a. The investigation reveals that the empirical Bayes
estimator violates the minimaxity for small a.

For deriving the generalized Bayes estimators, suppose the improper prior distribution
w(n, €)dndé = n~ ¢ dndé1(0 < € < b)

for suitable constant b. Then the posterior density of (n, £) given Sy and S, is proportional
to

€u2/2—1n(u1+u2)/2—le—%(Sl+§Sg)n](0 < 6 < b),

so that from (2.7), the generalized Bayes estimator of (02, ¢2) is given by (6298 (b), 529B (b))
where

529B(b) = Sitho(bS2/51) (2.14)
S, fé?SZ/S] xu2/2—l/<1 + x)(lq-{-ug)/?dx
vy + v fOng/Sl 2221 (1 4 g)atve) /241y
G2B(h) = nTY[Sy¢0(S1/(bSy)) — Syabo(bSy/Sy)] (2.15)
L LS B ) e

v+ vp fé’s2/sl xv2/2[(1 + z)ntv2) /241 dy

7

n
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Although the generalized Bayes estimator has a complicated form including the ratio
of integrals, it can be expressed by the incomplete beta functions ratio I,(-,-), for the
integrals are written as

. : wl(14w)
/ Za/(l + Z)(Y+de — / :Ca(l - x)ﬁ‘zdx
0 ‘ 0
= B(Of+1’ﬂ*‘ l)ltu/(1+w)(a+176-1)'

When a table of values of the incomplete beta functions ratio is available, one can compute
them in a practical use.

For the minimaxity of the generalized Bayes estimator, from Theorems 1 and 2 and
Lemma 1, it is seen that ¢(bS2/51) and ¢o(.S1/(bS2)), respectively, satisfy the conditions
(a) and (b) of Theorems 1 and 2 as long as b is greater than or equal to one. Hence
(529B(b), 529B(b)) is minimax for b > 1. On the other hand, it is the generalized Bayes
for b < 1. Hence for b = 1, (62B(1),5?“2(1)) is the generalized Bayes and minimax
rule. When b > 1, the support of the prior distribution of £ is beyond the parameter
space, that is, it is not an appropriate generalized Bayes rule. Nevertheless, it is minimax
and smooth, and so from a frequentist’s stand-point, we can take it into account as
one of possible candidates. Since (AEPB(I)),&E)GB(Z))) approaches the ANOVA estimator
(62VB 52UB)Y as b tends to infinity, 5298(b) may happen to take negative values unless b

is small. Here from (2.12), g
. 1 ) v )
ch(b) = ;{ [52%(51/(532)) - 511/)0(652/51)}
1 120} + Sl 1/2b SQ
ol (72
~ n(v1 4 ) [ 2 veb Sy ! ( 2+251>]

1 vy + 2 } vob
= —13<S Sy 2,
n(vy + vy) { vyb { et vy + 2 2}

which implies that o025 (b) is positive almost everywhere when

Namely, (6298(b), 629B(b)) is positive and minimax for 1 < b < 1 4 2/14, and is gener-
alized Bayes for b = 1. The risk performances of the estimators (628 (b), 5295(b)) are
numerically investigated in the next section for various values of b. This study will show
that (6298 (b), 5298 (b)) violates the minimaxity when b is less than 1.

2.3 Simulation Studies

It is of interest to investigate the risk behaviors of several estimators given in Section 2.2.
For the sake of simplicity, we denote (528 &2VB) (52EB (1, (v, + ¢)) , 6228 (1y/ (vy + €)))

v

and (6298 (1 + ¢/1n), 6298 (1 4 ¢/1n)) by UB, EB(c) and GB(¢), respectlvely. We provide
the result@ of Monte Callo simulation for the risks relative to the Kullback-Leibler loss
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where the values of the risks are given by average values of the risk functions based on
50,000 replications.

We first treat the model (1.1) with (n, k) = (2,6), that is, (11, 15) = (6,5), and o? = 1.
The range of o2 is taken between 0 and 14. Figure 1 reports the risk behaviors of the
ANOVA estimator UB and the empirical Bayes estimators EB(c) for ¢ = 0,2,4 and 6.
From (2.13), the minimaxity of EB(c) is guaranteed for 0 < ¢ < 2, and EB(0) and EB(2)
correspond to (G2REML G2REMLY and (52EB 52EB) | respectively, which are also denoted
by REML and EB. Figure 1 reveals that

(1) EB(4) is minimax while EB(6) violates the minimaxity,

(2) for larger ¢, EB(c) has a larger risk at 02 = 0, and the risk of EB(c) is minimized
at o2 being farther from zero,

(3) the minimum values of the risks of EB(c) are almost the same for 0 < ¢ < 6.

Figure 2 reports the risk behaviors of the ANOVA estimator UB, the generalized Bayes
estimators GB(-1) and GB(0) and the minimax estimators GB(2), GB(5) and GB(10).
From the figure, we see that

(1) the generalized Bayes estimator GB(-1) is not minimax and has the largest risk at
o2 =0,

(2) the generalized Bayes estimator GB(0) has no risk reduction at o = 0 while it is
the best among minimax estimators in a large range of o2,

(3) for larger ¢, the point of o minimizing the risk of GB(c) is closer to zero.

2‘4 1 T T T T T
UB —
~4 £B(0) ----
L oL, EB(2) - ]
ot - F EB(4)
EB(6) ---
22 J
21 p E
2 i -
19 K -
;’I
" ]
17 b -
1.6 H .
15 1 i 1 1 1 1 0'3
0 2 4 6 8 10 12 14

Figure 1. Risks of the ANOVA Estimator UB and the Empirical Bayes Estimators
EB(0), EB(2), EB(4) and EB(6)
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Figure 2. Risks of the ANOVA Estimator UB, the Generalized Bayes Estimators
GB(-1) and GB(0) and the Smooth Estimators GB(2), GB(10) and GB(15)
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Figure 3. Risks of the Estimators UB, REML, EB, GB(0), GB(2)



Table 1. Risks of Estimators UB, REML, EB, GB(0) and GB(2)
under the Kullback-Leibler Loss in the Balanced Cases

o, 0.0 0.01 005 01 05 10 40 9.0 16.0
UB 2.09 2.09 2.09 209 2.09 2.09 2.09 2.09 2.09

n=3 REML 147 147 149 153 1.82 1.96 2.06 2.07 208
k=6 EB 1.62 1.60 1.52 148 1.67 187 2.04 2.07 2.08
GB(0) 2.09 2.05 1.88 1.75 1.57 1.69 195 2.05 2.07
GB(2) 169 1.67 1.61 1.57 1.65 1.80 2.00 2.06 2.08
UB 217 217 217 217 217 217 217 217 217
REML 136 137 1.40 145 1.77 1.92 207 213 2.15
EB 1.79 171 150 1.40 1.53 1.73 198 210 2.13
GB(0) 217 207 1.78 1.59 145 1.61 1.89 2.06 2.11
GB(2) 147 145 1.42 142 1.66 1.82 2.02 211 214

fl

™3
]
w o

It is still open to obtain a minimax and generalized Bayes estimator possessing a significant
improvement at o2 = 0.

Figure 3 gives the risk performances of the five estimators UB, REML, EB, GB(0) and
GB(2). The empirical Bayes estimators REML and EB present the large improvements
for o2 close to zero, while the significant risk reductions of GB(0) and GB(2) yield for o?
far from zero. The maximum improvements of EB(c)’s are larger than those of GB(c¢)’s.
Table 1 provides the values of the risks of these five estimators for (n,k) = (3,6) and
(6,3), and shows that the estimators have the similar risk performances as in Figure 3.

The empirical Bayes estimator EB(2) is always positive, minimax and has a significant
improvement for small o2, which demonstrates that EB(2) is a superior procedure, and
we want to propose the use of it.

3 An Extension to Mixed Linear Models

We extend the results of Section 2.1 to the general mixed linear models with two variance
components:

y=XpB+Uv+e (3.1)

where y is an N-vector of observations, X is an N x p; known matrix with rank(X) = r,
B is a p-vector of parameters, U is an N x p, known matrix, v and e are independent
random py- and N-vectors, respectively, with v ~ N,,(0,021,,) and e ~ Nn(0,02Iy).
It is reasonable that the variance components o and o? are estimated based on the
statistics that are invariant under the group of transformation y — y + Xa where a is
any pi-vector. For the purpose, consider an (N — r) x N matrix P such that PX =0
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and PP’ = In_,. Letting @ = Py, we see that € ~ Ny_.(0,02PUU'P' + 62 In_,).
Consider the spectral decompositions PUU'P’ = Y‘_, \;E;, where rank(E;) = m; and
¢ m; = rank(PUU’P’). Assume that N —r — Y2¢_, m; > 0, and let

¢ ¢
r=N—7r— Zml and vy = Z mi. (3.2)
=1

=1

Let Eppy =In_, — Zle FE;. The rank of E,y, is v,. We thus get the quadratic statistics
'FE;x fori=1,...,0+ 1 with

! 2.2
e B e ~ olX,,,

o' Eax ~ (o2 +Nol)xh,, 1=1,...,L

For the sake of convenience, let

¢
S = @' Bz, 52=Za:'Eia3 and
1=1

¢ ¢ ¢
o= DA/ 3o =3 A (3.3)

1=1

The quadratic statistics .S; and S, can be given through a usual method when we deal
with the following special model of (3.1):

yij:ngﬂ+vi+eij, j=1,...,ni,i=1,...,k (34)

where @, = (20, Tij1y. -, Tijp—1) with z;;0 = 1 is a vector of known covariates, B =
(Bo, B1y---5 Bp-1)' is a vector of unknown regression coefficients, v; ~ N(0,02), €;; ~
N(0,0?), and v;’s are independent of ¢;;’s. This model is dealt with in Battese et al.(1988)
for prediction of county crop areas (small areas) using survey and satellite data. It is also
known as an error component model in econometrics. In this model, as shown in Fuller and
Battese (1973), Battese et al.(1988) and Rao et al.(1993), S; and S, can be represented

as
S-YE ad SN Y-S
P T

where {¢;;} are the residuals from the OLS regression of y;; —7;. on {1 —Fio1, .. ., Tijpo1—
T;.p—1} without the intercept term for ;. = 3, yi;/n; and Tj.p = 32, 245/ ni, and {i;} are
the residuals from the OLS regression of y;; on {&j1,...,%ijp—1} with the intercept term.
Also v = k — 1 and A defined in (3.3) is written by

A= {N -t [(X'X) Sk P m | ) (k- 1),

In the unbalanced case with 8 = (30,0,...,0), S, and Sy are further simplified as S; =
25:1 ity — g;.)? and S = Zi‘c:l ni(¥;. — g..)* for total mean .. .
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The lack of completeness of the quadratic statistics in the general mixed linear model
causes various unbiased estimators such as, for instance, the MINQUE introduced by
Rao (1971a,b) and the ANOVA estimators given by Henderson (1953). The unbiased

estimators have the fundamental defect of taking on negative values as stated in Section
L.

The present section gives a note that the results of Section 2.1 can be directly appli-
cable for getting nonnegative estimators improving on the ANOVA estimators which can
be derived by the well-known Henderson (1953) method (III). The ANOVA estimators

are of the forms

Y
~2UB Si
O =
1/1
~2UB 52 Sl
7, = —_—— 7,
)\ 1] vy

where vy, v, and A are defined in (3.2) and (3.3). Similar to Section 2.1, we consider the
loss function L(w; 62,6 3,1/1,1/2,)\) given by (1.3) and the estimators (52(¢), 62(¢, ¥; A))
given by (2.1), where L(w;8?,5%;vy,1,,)) is different from an original Kullback-Leibler

loss in the general setup. Then all the results in Section 2.1 still hold in the general mixed
linear models by replacing vy, v, and n in Section 2.1 with v, v, and A, respectively,

given by (3.2) and (3.3).
Theorem 3. Under the same conditions as in Theorem 1, the dominance result
Ry(w; S19(52/51)) < Ry(w; v ' Sh)
holds uniformly for every w.
Theorem 4. Under the same conditions as in Theorem 2, the dominance result
Ry(w; S2¢(S1/82); A) < Ry(w; vy 'S5 A)
uniformly for every w.

The proofs are given in Section 4. By replacing n with A in the estimators given in
Section 2, we can consider the four estimators (G2REML G2REML) (52EB 52EBY (52GB(])
526B(1)) and (629B(1 + 2/vy),629B(1 + 2/14)), which are simply denoted by REML,
EB, GB(0) and GB(2). Also the ANOVA estimator (62V8 52UVP) is indicated by UB.
Combining Theorems 3, 4 and the arguments as in Section 2 shows that REML, EB,
GB(0) and GB(2) are nonnegative estimators improving upon UB, although these do not
necessarily possess Bayesian properties like Section 2.2.

?

We investigate the risk behaviors of these nonnegative and improved estimators through
Monte Carlo simulation. We consider the following two models: One is the model
(3.4) with 8 = (£,0,...,0) and o2 = 1, that is, y;; = Bo+vi + e, 7 = 1,...,n,
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Table 2. Risks of Estimators UB, REML, EB, GB(0) and GB(2)
under the Kullback-Leibler Loss in the Unbalanced Cases

ol 0.0 0.01 005 01 05 1.0 40 9.0 16.0

UB 208 208 209 209 212 213 214 215 215

replications REML 1.43 1.43 1.47 1.56 1.95 207 214 215 2.15
(3,3,5, EB 1.61 1.56 1.44 143 182 2.01 213 215 2.15
5,7,7) GB(0) 2.08 199 1.74 158 1.66 1.87 2.09 215 2.15
GB(2) 1.62 159 1.52 150 1.79 1.97 2.12 215 2.15

UB 207 207 209 214 245 259 2.75 2.82 283

replications REML 1.40 1.40 1.48 1.61 2.26 251 274 281 2.83
(1,1,1, EB 1.56 1.53 142 1.45 2.12 244 272 281 2.83
13,13,13)  GB(0) 2.07 1.96 1.67 154 1.92 229 267 281 283
GB(2) 1.59 155 1.49 152 209 241 271 281 2.83

UB  2.09 209 2.09 210 2.18 225 236 242 2.44

replications REML 1.47 147 1.47 149 1.74 197 228 241 244
(1,1,1, EB 1.62 1.60 1.5 1.51 1.58 1.80 222 240 2.43
1,1,13) GB(0) 2.09 2.07 197 1.87 161 1.68 2.04 234 240
GB(2) 1.68 1.67 1.63 1.60 1.62 1.78 214 237 2.42

i =1,..., k. Table 2 reports the average values of the risks of the above five estimators
based on 50,000 replications for (ny, nq,ns, ny,ns,nq) = (3,3,5,5,7,7), (1,1,1,13,13,13)
and (1,1,1,1,1,13) and ¢2 = 0.0, 0.01, 0.05, 0.1, 0.3, 1.0, 4.0, 9.0 and 16.0. The other
model treated here is (3.4) with p = 2 and ny = - -+ = n; = n, that is,

Yi; = Bo+ Biag tuit ey, t=1,....k g=1,...,n

where 02 = 1 and {z;;} are generated from AN (10,02) for o, = 5. Table 3 presents the
risk behaviors of the five estimators for (n, k) = (2,4), (2,10) and (10, 3). Tables 2 and 3
reveal that the estimators REML, EB, GB(0) and GB(2) have risk performances similar
to those indicated in Section 2.3. It is also seen that the risks of UB is increasing in o?.
Since the estimator EB is always positive and has a good risk performance for small o2,
it can be employed for a practical use.

4 Proofs

We first show the minimaxity of the ANOVA estimator (62V% 62UB). From the argu-
ments as around (2.2), the minimaxity of (& 2UB, 62UB) is eqmvalent to the m1n1max1ty of
(51/1/1,52/1/2) in terms of the risk vy Ri(n,0;771) + 1o Ro(n, 6; 0~ 1) where 1%1(n, 0; 77 1) =
F[L(m] )] and Ry(n,0;0-1) = E[L(OO )} for L(2) = z —logz — 1, n = o7% and
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Table 3. Risks of Estimators UB, REML, EB, GB(0) and GB(2)
under the Kullback-Leibler Loss in the Simple Regression Models for o, =5

o2 0.0 001 005 0.1 05 1.0 40 90 160
UB 221 221 221 222 222 223 225 227 227
n=2 REML 163 163 1.64 1.64 175 1.87 2.10 222 225
k=4 EB 180 1.79 1.74 170 1.64 1.72 1.98 2.18 223
GB(0) 221 218 211 2.04 1.78 1.73 1.83 203 2.12
GB(2) 1.83 1.82 1.79 1.77 1.73 177 1.93 211 2.8
UB  2.07 207 207 207 207 2.07 208 209 2.10
n=2 REML 155 155 1.55 1.58 1.81 1.97 208 2.09 2.10
k=10 EB 161 1.60 1.56 1.55 1.71 190 2.07 2.09 2.10
GB(0) 2.07 205 195 1.85 1.64 1.71 1.95 2.08 2.10
GB(2) 1.83 181 1.76 1.71 1.66 1.77 1.99 209 2.10
UB 2.7 2.7 217 217 217 217 217 217 217
n=10 REML 134 134 141 150 1.87 2.00 2.10 214 215
k=3 EB 179 1.66 1.40 1.34 1.65 185 204 212 2.14
GB(0) 2.17 2.00 1.62 144 155 1.75 1.99 2.10 2.13
GB(2) 143 141 139 1.43 1.77 193 207 213 215

0 = (02 4+ no?)~'. If the parameter (n,#) was spanned on whole the space R* x R* for
R" = {z € R; > 0}, the proof of the minimaxity would be trivial. Since the parameter
space of (n,8) is restricted into {(n,0) € RT x R*; n > 6} in this problem, we need to
give a proof for the minimaxity.

Proof of Proposition 1. Suppose that (62V8, 52V is not minimax relative to the

T v

Kullback-Leibler loss (1.3). Then there exists an estimator (4., 6,) such that

sup R(n,0;6.,8,) < supR(n,0;62%, &207)
n>0 n26

= I/1R1(1,l;1/1_151)+V2R2(1,1;I/;ISQ). (41)
Let £ = 02/(0? 4+ no?) = 0/n with 0 < £ < 1. Suppose that n and ¢ are independently
distributed as n ~ Gamma(b/2,a/2) and & ~ Beta(c/2,1), that is,

1 b\ c
— e af2—1_-bn/2 S ref2-1 4.9
"6 =t (5) e 5 (12)

for positive constants a, b and c. Then the posterior distribution of (1, £) given (51, S2) =
(81,82) is proportional to

w(n,ﬁisl,szk) o 77(111+V2+a)/2'-1£(l/2+c)/2—1e—(31+b+§52)fq/2'
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Denoting the Bayes estimators of n7! and 6~' by 62 and 6%, we see that

/ /OO [VlRl (n,€m;67) + 12 Ra(n, En; 6 )}7r(777 £)dndé
= ‘Jup R(W79;5e75u)~ (43)

n>8

From the inequalities (4.1) and (4.3), the contradiction yields if we can establish that

a—-)O,})i—g(l),c——-)D/ ] {VIRI 77 677, + 1/232(71 577755,)} ( aﬁ)dﬂdf
=1 R(1, 1,071 51) + 1y Ry(1, 1; 0571 S,). (4.4)
We first show that
lim  r(m,6F) = Ri(1, 1,071 5)), (4.5)

a-0,b—0,c—0

e (e 6F) = [ [ Ran,néss2)m(n, €)dnde.

-1

The Bayes estimator 62 of n~! is given by

5’
67 = 8P( ybye) = (S b ca(_i—)a
1 1 (a C) ( 1+ )¢, Sl—f'b

where
1 f t(u2+c /2~ 1/( + t) l/1+l/2+a)/2dt

¢c,a(w) = v+ +a f(;u t(vatc)/2- 1/(1 + t)(u1+u2+a)/2+1dt
and ry(m, 6F) is written by

ry (7, 68) / / (sl+b¢m(51$jb>n)n2§
x f1(ns1) fa(nés2)m(n, £)dsidszdndg,

where fi(-) is a density of x2 for i = 1,2. Making the transformations z = s,/(s; + b)
and y = (s; + b)y with dz = (s, + b)7'ds, and dy = (s; + b)dn, we have

n(m o) = [ [ L1+ 0)ea (2hn)nE(s + )
x fi(ns1) f2(n€(s: er)z) (1, €)ds1dzdndé

= / /L Yea (2 ——“_Ifg)—ﬁ

<h () faewm (g €) dondedyde

1/1/2 1

= [ [ Lt V) Gy

y(u1+u2+a /2— 1§(V2+c /2 llvllz/2 1 ,“‘(1+5Z)y/2d51dzdyd£,
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where
2—(u1+1/2+a)/2—1ba/20

[(11/2)T(12/2)[ (af2)

Cl 01(1/1,1/2,0, b C)
By using the equation

[ st Te/9I(a/?)
Jo (s 02 2l (1 + ) [2)°

ri(m, 6B) is rewritten by

r(m,68) = Cg/ / / (Yea(2)y)

yu1+u2+a /2~ 1§(U2+C)/2 1 1/2/2 1 —(1+£z)y/2dzdyd€

where
2-(1/1 41 +a)/2—lc

(1 4 a)/2)I(12/2)

Making a tend to zero, we see that r(m,dP) approaches

2(u1+u2)/2]
* B _
fdt) = o [ [ e

y(’”+"2 J2— 15 (vat+e)/2=1 v2/2-1, (1+€Z)y/2dzdyd§.

C; = CZ(”I)’/?)avc) =

Making the transformations z = £z and 7 = £%% in turn with dz = £dz and dr

(c/2)€4/7-1d¢E gives that

(Ul V2
ri(m 7)) = 31/2+ XONE) // / L (oo (277%°) y)

sy (1221 e 2= o =(142)0/2 gy

Here note that
limc—%OwC,O (mT~2/c> - hmw—«)ood)O,D(w) = Vl—l-

Applying the Lebesgue’s dominated convergence theorem, we get

C . B 9—(v1+v2)/2 e
ll—lgcl)rl(wjl) = I'(n [2)T(1,/2) / / / Vl y
YUt 2=1 e (2= o= (42 2 o oy

2—1/1/2

— OOL -1 v f2-1 —~y/2d
F(V1/2) A (Vl 3/) Y € Yy

= Rl(l,l;z/flSl),

which proves (4.5).
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On the other hand, the Bayes estimator 62 of 0=! is given by

Sy +b>

- S’.2¢ca ( SQ

where
1 foi/w t(yz+c)/2—1/(1 + t)(u1+U2+a)/2dt

1241 + 1 20) + a fol/w f(ug+c)/2/(1 + t)(l/1+l/2+a)/2+1dt.
Let ro(m,62) = [ [ Ry(n,n€; 68)m(n, £)dndé. In order to assert that

d)c,a(w) =

lim 7‘2(71‘,623) = Rz(l, 1,1/2_152), (46)

a—0,b-+0,c—0

the same arguments as in the proof of (4.5) gives that

i) = [ 7L (bl

wylitvetal/2=1 glate)[2=1 02 [2=1 = (14€2)8/2 4o oy
which converges

A = i b e ) )

Xy(u1+u2)/2 1)1/2/2 1 (1+I)y/2d$dyd7'

as a tends to zero. Since lim._o0¢.0(2717%¢) = ¢.0(0) = v;!, the Lebesgue’s dominated
convergence theorem can be applied to get

o-(n+w2)/
ligyr3(m, 87) = [(n/2)0 1/2/2 // / L (v3ay)

><J(z/1+l/2)/2 1,v2/2-1 e~ (1+2) U/zdxdydT

2—1/2/2 o0 L
— - va/2-1 —v/2
= 7D ./0 L (y2 v) e eV 5y (4.7)

= Rz(l, 1, 1/2“132),

where the transformation v = yz with dv = ydz is made in the second equality in (4.7).
Combining (4.5) and (4.7) proves (4.4) and it contradicts the inequality (4.1). Therefore
the minimaxity of (52VE, 62UB) is established. oo

»

We next prove Theorems 3 and 4 in the general mixed linear models (3.1) since The-
orems 1 and 2 are included by Theorems 3 and 4.

The key tool for these proofs is the Integral-Erpression-of-Risk-Difference (IERD)
method given by Kubokawa(1994a,b) in estimation of a scale parameter. The IERD
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method is, through the fundamental theorem of calculus, to give an integral-expression
for a difference of risks of two estimators. For other instances in which the IERD method
was applied, see Kubokawa et al. (1993a, 94).

Proof of Theorems 1 and 3. Since lim,_,.%(w) = vy, from the IERD method of
Kubokawa (1994a,b), we have

Ri(w; Sty — Ry(w; Sivp (g—j))
- {50 () -wmize (20} | w
[ 4 e ]

Let v = S;/0?, u; = @' E;z/(0? + \jo?), and 6; = | + N0 /02, and denote the density
functions of v and u; by f and g;, respectively. Carrying out the differentiation in (4.8)

gives
o {5 ) 5 (394

A { »(20; u,v/t)}(Zei“i/”w'(mwit/v)dt
x f(v )Hzg,( DdvlTdu;.

Making the transformations (¢/v)u; = w; and 1/t = z in order, we observe that the r.h.s.
of (4.8) is equal to

/ j[/ { +(20; wz)} (20w, /1) Y (L6;w;t)

v e
X (7) f(v);g; (vw;/t) dtdvll;dw;

=/ { o(28; w,)}(zeiwi)”/’/(zgiwi) (4.9)
xv' f(v) ./o 21 g; (wivz) dedvll;dw;.

Since ¥'(w) > 0, it is concluded that the r.h.s. of (4.9) is nonnegative if

Joo vt f(v) fo 2 Ligi(wivz)dedv
T vt f(v) [y 2 Lgi(wive)dedy

Since 6; > 1 and ¥'(w) > 0, it follows that ¥(Z6;w;) > ¥(Zw;), which, from (4.10),
gives the sufficient condition that ¢ (Xw;) is greater than or equal to the r.h.s. of (4.10).

P(S0w;) > (4.10)
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Integrating out the r.h.s. of (4.10) with respect to v yields ¢o(Xw;) given by (2.3). Hence
the inequality (4.10) is guaranteed by the condition (b) of Theorems 1 and 3, which are
established. oo

Proof of Theorems 2 and 4. Since $(0) = 15!, observe that
v -1 ~ Sl 3 q
Ry(w; Savy ) — Ry(w; Sz («S,—-)) (4.11)
1 d S, S1 S <Sl )
_ L B B B ¢ dt
E{/o dt { 2+)\02¢<52 ) 10g02+/\02q§ S

Y0;u; 1 v, [ vt
/ // { vt/LQ u) 14+ S <2e,~ui)dt

X f () gi(u;)doll; du;

!

for T = o2/o?. Making the transformations (t/Z6;u;)v = w and w(1/t) = y in order, we
can rewrite (4.11) as

/ . / /D ‘ {qb(luj) _ fﬁ"i; }qﬁ’(w)wzgiui/tz

X f(EOiuiw/t)Higi(u?;)dtH,-duidw

/...//:’{d)(b - f_ﬁ"‘;}&(w)zeiui (4.12)

X f(20;uy)11;g:(w;)dylldu;dw

so that since ¢/(w) > 0, the L.h.s. of (4.11) is nonnegative if

P(w) < - L L (B0 f(B0iuiy ) Tigi () dyUidu,
= L (50u)2 /(1 + A7) F(20;uy) igi (wi ) dyTldu;

(4.13)

Letting s = %¢_,u; and z; = u;/s, we see that

5 ~ X12/27
Z; Beta(mi/Q, Zj;gﬂﬁj/?)

and s and z; are independent. Let () = £6;z;, being independent of s. The r.h.s. of (4.13)
can be rewritten as

E°[[ [ Qsf(Qsy)g(s)dyds]
ER[f [7 Q*s* /(1 + A7) f(Qsy)g(s)dyds]
ER(f5 [ sf(sz)g(s)dsdz]
ERIQ/(1 4 A7) [5o, [ s*f(sz)g(s)dsdx]’

(4.14)
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where g(s) is a density of x2,. Since @ and [, [ s*f(sz)g(s)dsdz are monotone in the
opposite directions, we can show the following inequality for the denominator of the r.h.s.
of (4.14):

+Ar/w/ $f(sz)g( dsdm]
< E? [HAJ [/w/ $? f(s2)g dsdw]. (4.15)

Here observe that

¢
Q[_@ 1 _ _1 L NTEz 4.16
E [1+)\T] 1+)\T+1+)\T; Bz (4.16)
1 1 XXTmy

Y

1+ A7 + 14+ A7 1y
since A = Y. A\;m; /. Combining (4.13), (4.14), (4.15) and (4.16) gives a sufficient condi-

¢ YT T 4.17
) < Tl 5 (sz () doda] (4.17)
Furthermore the r.h.s. of (4.17) can be shown to be greater than or equal to
wi [ sf(sz)g(s)dsdz
k) { Jouw [ s2f(sz)g (s)dsdx} ' (4.18)

By integrating out the numerator and denominator of (4.18) with respect to s, it is seen
that this quantity is expressed as

1 5, a7 (1 + o) +)/2dy
v+ vy fgo, 2 /3 /(1 + z) et D)/2dy

1 fol/QlU ZI/Q/Q-'-l/(l + Z)(I/1+l/2)/2dz
v + vy fol/Qw ZV2/2/(1 + Z)("1+V2+2)/2d$
= ¢o(Quw),

where ¢o(w) is defined by (2.4) and the first equality of (4.19) can be obtained by making
the transformation z = 27!, From Lemma 1, it follows that ¢o(w) is nondecreasing, so
that ¢o(Qw) > ¢o(w) since @ > 1. Combining this inequality, (4.17), (4.18) and (4.19),
we get the sufficient condition that ¢(w) < ¢o(w), which is just the condition (b), and
the proofs of Theorems 2 and 4 are complete. an

(4.19)
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