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Abstract

We consider the same problem as in Kamiya and Takemura (1997), but for
discriminant analysis on (n—1) -dimensional unit sphere S™~!. That is, we regard
pairwise discriminant analysis of m populations on Sn~1 as a process to generate
rankings among the populations, and give a formula for the number of generated
rankings.
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1 Introduction

In a recent paper (Kamiya and Takemura(1997), abbreviated as KT throughout the pa-
per), we investigated properties of rankings associated with linear discriminant analysis
among m populations in R™. In that paper, we regarded multiple linear discriminant
analysis as a process to generate rankings among the populations, and gave formulae for
the number of generated rankings, and moreover, basic characterizations of non-generated
rankings.

In the present paper, we consider the same problem for discriminant analysis on
(n — 1) -dimensional unit sphere S" ' = {x € R" : ||z|| = 1}. Suppose we are given m
populations on S”~!. For each pair of the populations, we take an (n — 2) -dimensional
discriminant boundary. Then S"! is divided into regions by m(m —1)/2 such bound-
aries, and each region is indexed by a ranking among the m populations according to
the proximity to them. In this way, we can regard pairwise discriminant analysis on Sl
as a process to generate rankings among the populations.

Let the m populations be the von Mises-Fisher distributions M, (u;, %), ¢ =1,...,m,
with common concentration parameter x > 0:

T = («7517 Lo, ... 73571)/ ~ Cn(ﬁ)enuimdsn—fly



where c,(k) is the normalizing constant, g; = (i, i, - - -5 fni)' € Sntog=1,...,m,
and dS,_; is the volume element on S™~! (Mardia, Kent, and Bibby(1979)).

Assuming equal prior probability for the m populations, we follow the following
pairwise allocation rule: Assign a subject = = (x1,22,...,%,) € S®™' to population i
in preference to population j iff

(k)T > ¢, (k) e P T , (1)

This rule is equivalent to the allocation according to the geodesic distance d on S™7':

d(a:, y) = C()S__l(<:l?, ‘y>), Tr = (le, RN ,.’L‘n),, Yy = (yh - ,yn)l € Sn-»—l’ <ZB, ’y> = 2?:1 TiY;-
Specifically, (1) is equivalent to

d(@, pg) < d(x, py). (2)

Thus, the discriminant boundary B;; between populations ¢ and j is the set of points
on S™ 1 equidistant from g, and pr; in terms of d:

B ={z e S" " d(z,p) = dz. p)}

Now, S™~! is divided into regions by m(m —1)/2 such boundaries B;;, 1 <1 <j<m,
and each region is indexed by a ranking of {1,2,...,m} in which ¢ is ranked better
than j iff (2) holds with an arbitrary point « in the region.

However, as in the case of discrimination in R", when n is small compared with m,
not all the m! rankings are generated. Here we ask the same question as in the case of
R™ : How many rankings are generated from the discrimination on S™7'? Actually, our
regions on S™~! correspond to the unbounded regions of the linear discriminant analysis
in R" treated in our previous paper KT. Hence, as would be clear for the readers of
KT, in the case of discrimination on S™, we have that for each pair of mutually reverse
rankings of {1,2,...,m}, both of them or neither of them is generated. That is, a
ranking is generated if and only if its reverse ranking is generated.

The organization of this paper is as follows. After explaining background concepts in
Section 2, we give the main result of this paper in Section 3. In the final section, we state
several results of independent interest.

2 Background concepts and definitions

In this section, we introduce background concepts from rankings and hyperplane arrange-
ments. We first explain some concepts concerning rankings.

A ranking of m items {1,2,...,m} can be expressed as an ordering of them. The
ordering o = (41,19, ...,4,,) corresponds to the ranking in which item 4, is ranked first,
item i, isranked second, and so on. For an ordering o = (i1,...,%y), its reverse ordering
is defined tobe —o = (iy,,...,%1). A partial ordering 7 corresponds to a partial ranking,
in which ties are allowed. Here we follow the convention that the order of items in braces
is irrelevant; in parentheses it is relevant. So the partial ordering 7 = ({2,4},3,1), for
example, corresponds to the partial ranking in which items 2 and 4 are ranked first, item



3 is ranked third, and item 1 is ranked last. We attach the adjective “full” to ranking
(ordering) when we want to emphasize the distinction from a partial ranking (ordering).

Next, we give a brief introduction to the theory of hyperplane arrangements. For a
full treatment of the theory, the reader is referred to Chapters 1 and 2 of Orlik and Terao
(1992).

A hyperplane arrangement A is defined to be a finite set of hyperplanes in V' = R".
The problem of counting chambers, i.e., regions, of a hyperplane arrangement becomes
much harder when degeneracy is allowed. Zaslavsky (1975) gave a formula for the number
of regions in an arbitrary arrangement A of hyperplanes. He introduced the method of
deletion and restriction to obtain a recursion formula for chamber counting problems.
By proving that the Poincaré polynomial evaluated at 1, m(A, 1), satisfies the same
recursion, he obtained a beautiful result: The number of regions is equal to (A, 1).

We list some basic definitions from the theory of hyperplane arrangements. A hy-
perplane arrangement A is said to be centered if NpgeaH # 0. In particular, it is said
to be central if each hyperplane contains the origin. The intersection poset (partially
ordered set) L = L(A) is defined to be the set of nonempty intersections of elements of
A endowed with the partial order defined by

X<Y<<=YCX

The rank function on L is defined by the codimension: 7(X) = n — dim(X), where
dim(X) is the dimension of X. Maximal elements of L(A) have the same rank, and
the rank r(A4) of A is defined to be the rank of a maximal element of L(A). Let
L, = L,(A) = {X € L(A)| r(X) = p}. The Hasse diagram of L is, by definition, the
diagram which has vertices labeled by the elements of L and arranged on levels Ly for
p >0, and whose edges connect X € L, with Y € L, iff X <Y. Define the Mobius
function v as follows:

v(V)y=1,
{V(X) = —Yyeyxv(Y) fV <X,

The Poincaré polynomial of 4 is defined by

(A, t) = Z 1/(X)(-—t)r(x),

XelL

where ¢ is an indeterminate. A chamber is defined to be a connected component of
{x € R" : & ¢ Ugea H}. However, in this paper we use the term “region” instead of
“chamber.”

Now we specialize to the arrangement of discriminant hyperplanes in the pairwise
linear discriminant analysis among m populations N, (u;,I), t=1,...,m, in R".

Denote by H,;;, 1< j <i<m, the discriminant hyperplane between populations
¢ and j:

Hy = {o € B (0~ 1) (@ — (o + 1)) = O,



and consider the arrangement of discriminant hyperplanes
A:{Hz]1§]<L§m}

Each element of L = L(A) can be indexed by a partition J of m indices into blocks,
and X <Y for X,Y € L corresponds to the fact that the corresponding partition of
X is a refinement of that of Y, so that each block of the latter is a union of some blocks
of the former. Specifically, to X € L corresponds the partition of {1,2,...,m} into
equivalence classes under the equivalence relation ~x defined by

i~vx j = X C Hy,

where we agree that H; =V and Hj = H;; for i > j. Note that ¢ ~x j means that
x € X is equidistant from g, and p;.

The m populations are ranked according to the Euclidean distances to p;. The
population i with the nearest g, is ranked first; j with the farthest p; last. Thus,
each region is indexed by a full ordering. Note that a region is open in R". Elements
of L of rank n, if they exist, are called terminal nodes, and can be indexed by partial
orderings.

Regions fall into two types: bounded regions and unbounded ones. This distinction
played an important role in the characterization of non-generated rankings in KT (Section
3 of KT). Also, there is a connection between unbounded regions and ideal vectors. See
Section 4.3 of KT. In general, ideal vector model is defined as follows: Objects or items
1,2,...,m are represented as points x|, T, ..., &L, in R" for some n, and the “ideal
vector” d is supposed to exist. Then the m objects are ranked according to the projec-
tions onto this direction. Specifically, i is ranked better than j iff (d,x;) > (d,x;).

3 The main result

In this section, we give a formula for the number of regions in pairwise discriminant

analysis of m populations M, (p,;, %), i =1,...,m, £ >0, on S*"! under the rule (1).
We begin by defining non-degeneracy of our discriminant analysis on St

3.1 Definition of non-degeneracy

We say that our discriminant analysis is non-degenerate if the following condition holds:

(A) The points py,...,p, € S* " regarded as points in R" are in general position
(in the sense of Remark 3.1 below).

Remark 3.1

When m < n+ 1, we say that m points ®1,...,T, € R* are in general position
iff for any set of scalars ay,...,am satisfying Y;a; =0, equation 3 a;x; = 0 implies
a; =0 forall i=1,...,m.

When m > n+1, we say that ,,..., &, € R" are in general position iff any n+1

of them are in general position.



Now we move on to the problem of finding the number of regions. We solve this
problem by identifying our discrimination on S™ ! with linear discriminant analysis in
R

3.2 Identification with discrimination in R"

Regarding py,..., 1, € S™ ! as points in R", we see that (2) is equivalent to the
following rule by means of hyperplanes in R" :

(1 — 1)z > 0. (3)
Denote the hyperplanes in (3) by H;; :
Hj={zeR": (u;,—p)x =0}, 1 <j<i<m (4)

Since each H;;, 1 < j < i <m, contains the origin, we see that the arrangement A of
these hyperplanes in R" :
is central. Accordingly, the closure of each region of A is a polyhedral cone. Hence, each

of the rankings corresponding to these regions in R" appears as a region on 571 when
Sn-1 is embedded in R"™ (see Lemma 3.2 of KT). Note that (2) is equivalent to

e — pll <l — pll-

Conversely, it is clear that each ranking on S™ ! appears as a region in R". Therefore,
we see that the sets of generated rankings agree for the discrimination in R™ and on
Sl

The above argument implies that, instead of our original discrimination on S =l we
may consider the discrimination in R" by hyperplanes H;; in (4). Thus we can resort
to the theory of the arrangements of hyperplanes as in our previous paper KT, but the
linear discriminant analysis in R" of the present paper differs from that of KT: The
linear discrimination of the present paper is “degenerate” in the sense of KT, since the
arrangement A in (5) is central.

3.3 The number of regions
We are now in a position to state the main result of this paper.

Theorem 3.1
The number of rankings generated by the non-degenerate discriminant analysis of m
populations on S™' is given by

{2(671»1 +Cpgt -+ C‘O)a n. Odd;
2(cp 1+ Cpz+ - +c1), n:oeven,

where cg =1 and
= S Dbl k21

1<l <lp<-<lp<m—1

in which Iy, 1y, ..., 1l are natural numbers.



Note that ¢; are the unsigned Stirling numbers of the first kind.

Proof. As was stated earlier, we may count the number of regions for the arrangement
A of hyperplanes H;; in (4).

First, we treat the case n <m — 1.

Proceeding along the lines of the proof of Lemma 2.2 of KT, consider the partition of
{1,...,m} into k blocks

{{1,...,l1},{l1+1,...,l1+12},...,{7nvlk+1,...,nl}}

with [y >l > -2 >, == l, = 1, and the corresponding system of linear
equations Ax = 0, where

My — p

1 !
ull - ,J’ll-—].
! !
Hypo = M4

' /
By, = i1

/ !
By ety 42 7 Pyl 41

! !
R R R

z € R*, and 0= (0,...,0)' € R". Here, A isofsize (m—k)xn, and by the assumption
of non-degeneracy, its rank is min{m — k,n}. Hence, the space S of solutions x to

Az = 0 satisfies
{dim8=n—— (m —k) when k> m—n,

S = {0} when k& < m — n.

Therefore, r(A) = n, and the Hasse diagram is the same as in the case of non-
degenerate discriminant analysis of KT except that the vertices of rank n degenerate
to a single vertex with index {{1,...,m}}, connected by edges with all vertices of rank
n— 1.

Since the Poincaré polynomial of the non-degenerate case was

n

(A1) = 2(~1)lcl(-t)l
=0
(KT, Proof of Theorem 2.1), the sum of the values of the Mdbius function at rank [ was
(=1)'¢;. Thus the Mobius function in the present case takes the same values at ranks less
than n and — ¥,c,1(=1!q at rank n.
Therefore, the Poincaré polynomial of the present case is

A0 = Y al+ (- X )

I<n—1 <n-1



and the number of regions is

m(A4,1) = Y 1+ (=)

I<n-—-1

= 2(Cn—1 +cep3tcCpos+ - )

The proof for the case n < m — 1 is complete.
The formula is still valid for the case n > m — 1 because of

2(m2+ Cma+---) = ml,

Cm-1tCm3+ " = Cp2t+Cmagt-

(KT, p.21) and ¢; =0 for ¢ > m.

|
Remark 3.2
Perturb the m points py,..., M, € S*™' slightly in R™ in such a way that
(e ealP)s - (s lll®)
are in general position in R as well as py, ..., 1, 1 R" (KT, p.12). Then, compar-

ing the two arrangements before and after the perturbation, we see that the arrangement
before perturbation is obtained by degenerating all the terminal nodes of the arrangement
after perturbation to a single point. Accordingly, regions of the linear discrimination in
R™ of the present paper are expected to correspond to regions of unbounded regions of
non-degenerate discriminant analysis in R" of KT. Indeed, the number of unbounded
regions in KT is

(cotCn1+- o) = (n =t +Caa— ) =2(Ch1+ oo+
(KT, Theorems 2.1 and 2.3), which agrees with the result in Theorem 3.1.

Remark 3.3

As is seen from Theorem 3.1, the number of rankings generated by discriminant anal-
ysis on S™ ' is always even. This can be understood by considering for each x € N
its antipodal point —x € S™L. That is, for each pair of mutually reverse rankings, both
of them or neither of them is generated.

4 Miscellaneous results

Other results in KT for linear discrimination in R™ remain to hold with minor modifi-
cations in our spherical discrimination.

First, the shortest path in terms of the usual metric on S™™! is also the shortest path
in terms of a particular distance for orderings. Specifically, the numerator of Kendall’s
7 between two generated orderings—that is, the minimum number of pairwise adjacent
transpositions needed to transform one ordering to the other-—is equal to the number of

7



discriminant boundaries B;; meeting the geodesic path on S™1 between points of the
two corresponding regions. The proof is almost the same as that of Theorem 4.1.1 of KT.

Secondly, we can characterize the regions around a terminal node in the following way.
First note that, in view of the identification with discrimination in R™ in Section 3.2,
a terminal node in our spherical discrimination—that is, a point on S™!' given as the
intersection of some of the discriminant boundaries B;; —can be indexed by a partial
ordering with m —n + 1 blocks

m = (7'('1, e >7Tm——n+l)- (6)

Now, when n < m, around a terminal node z € S®! corresponding to partial ordering
(6), there arise those, and only those, regions which are obtained by giving arbitrary orders

to items in 7,...,Tm-ny1 independently. The proof is similar to that of Theorem 4.2.1
of KT.

Thirdly, the equivalence of our ranking rule and the rule by ideal vector model in R"
is obvious from the equivalence of (2) and (z,p;) > (x,p;), © € S*"
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